WorldWideScience

Sample records for mox fast reactor

  1. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  2. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOXMOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  3. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Garnier, J.C.; Ikegami, T.

    1993-01-01

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  4. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  5. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  6. An experimental investigation of accumulation and transmutation behavior of americium in the MOX fuel irradiated in a fast reactor

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Koyama, Shin-ichi; Maeda, Shigetaka; Mitsugashira, Toshiaki

    2005-01-01

    Americium isotopes generated in the MOX fuel irradiated in the experimental fast reactor JOYO were analyzed by applying a sophisticated radiochemical technique. Americium was isolated from the irradiated MOX fuel by a combined method of anion-exchange chromatography and oxidation of Am. The isotopic ratios of americium and its content were determined by thermal ionization mass spectroscopy and α-spectrometry, respectively. The americium isotopic ratio was similar for all the specimens, but was significantly different from that of PWR-MOX. On the basis of present analytical results, the accumulation and transmutation behavior of americium nuclides in a fast reactor is discussed from the viewpoints of neutron spectrum dependence and the isomeric ratio of the 241 Am capture reaction. The estimated isomeric ratio is about 87%, which is close to the latest evaluated value. A rapid estimation method of Am content by using the 240 Pu to 239 Pu ratio was adopted and proved to be valid for the spent fuel irradiated in the fast reactor

  7. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  8. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  9. Uranium, Plutonium and Neptunium Co-recovery with Irradiated Fast Reactor MOX Fuel by Single Cycle Extraction Process

    Energy Technology Data Exchange (ETDEWEB)

    Masaumi Nakahara; Yuichi Sano; Kazunori Nomura; Tadahiro Washiya; Jun Komaki [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1194 (Japan)

    2008-07-01

    The behavior of Np in single cycle extraction processes using tri-n-butylphosphate (TBP) as an extractant for U, Pu and Np co-recovery was investigated as a part of NEXT (New Extraction System for Transuranium) process. Two approaches for Np co-recovery with U and Pu were carried out with irradiated MOX fuel from fast reactor 'JOYO'; one was the counter current experiment using a feed solution with a high HNO{sub 3} concentration and the other used a scrubbing solution with a high HNO{sub 3} concentration. Experimental results showed that the leakage of Np to the raffinate were 0.986 % and 5.96 % under the condition of high HNO{sub 3} concentration in the feed solution and scrubbing solution, respectively. The simulation results based on these experiments indicated that most of Np could be extracted and co-recovered with U and Pu, just by increasing HNO{sub 3} concentrations in the feed and scrubbing solution on the single cycle extraction process. (authors)

  10. Report on Evaluation, Verification, and Assessment of Porosity Migration Model in Fast Reactor MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Novascone, Stephen Rhead [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Abstract This report documents the progress of simulating pore migration in ceramic (UO2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of the fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.

  11. MOX in reactors: present and future

    International Nuclear Information System (INIS)

    Arslan, Marc; Gros, Jean Pierre; Niquille, Aurelie; Marincic, Alexis

    2010-01-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR TM or ATMEA TM designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR TM reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR TM can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO 2 , ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  12. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  13. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  14. Nuclear design for high temperature gas cooled reactor (GTHTR300C) using MOX fuel

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Kunitomi, Kazuhiko

    2008-01-01

    A design study of the hydrogen cogeneration high temperature gas cooled reactor (GTHTR300C) that can produce both electricity and hydrogen has been carried out in Japan Atomic Energy Agency. The GTHTR300C is the system with thermal power of 600MW and reactor outlet temperature of 950degC, which is expected to supply the hydrogen to fuel cell vehicles after 2020s. In future, the full deployment of fast reactor cycle without natural uranium will demand the use of Mixed-Oxide (MOX) fuels in the GTHTR300C. Therefore, a nuclear design was performed to confirm the feasibility of the reactor core using MOX fuels. The designed reactor core has high performance and meets safety requirements. In this paper, the outline of the GTHTR300C and the nuclear design of the reactor core using MOX fuels are described. (author)

  15. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A. [AREVA - Tour AREVA, 1 Place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

  16. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    International Nuclear Information System (INIS)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A.

    2013-01-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO 2 fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory

  17. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  18. Some results on development, irradiation and post-irradiation examinations of fuels for fast reactor-actinide burner (MOX and inert matrix fuel)

    International Nuclear Information System (INIS)

    Poplavsky, V.; Zabudko, L.; Moseev, L.; Rogozkin, B.; Kurina, I.

    1996-01-01

    Studies performed have shown principal feasibility of the BN-600 and BN-800 cores to achieve high efficiency of Pu burning when MOX fuel with Pu content up to 45% is used. Valuable experience on irradiation behaviour of oxide fuel with high Pu content (100%) was gained as a result of operation of two BR-10 core loadings where the maximum burnup 14 at.% was reached. Post-irradiation examination (PIE) allowed to reveal some specific features of the fuel with high plutonium content. Principal irradiation and PIE results are presented in the paper. Use of new fuel without U-238 provides the maximum burning capability as in this case the conversion ratio is reduced to zero. Technological investigations of inert matrix fuels have been continued now. Zirconium carbide, zirconium nitride, magnesium oxide and other matrix materials are under consideration. Inert matrices selection criteria are discussed in the paper. Results of technological study, of irradiation in the BOR-60 reactor and PIE results of some inert matrix fuels are summarized in this report. (author). 2 refs, 1 fig., 3 tabs

  19. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  20. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  1. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  2. Program on MOX fuel utilization in light water reactors

    International Nuclear Information System (INIS)

    Kenda, Hirofumi

    2000-01-01

    MOX fuel utilization program by the Japanese electric power companies was released in February, 1997. Principal philosophy for MOX fuel design is that MOX fuel shall be compatible with Uranium fuel and behavior of core loaded with MOX fuel shall be similar to that of conventional core. MOX fuel is designed so that geometry and nuclear capability of MOX fuel are equivalent to Uranium fuel. (author)

  3. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  4. The high moderating ratio reactor using 100% MOX reloads

    International Nuclear Information System (INIS)

    Barbrault, P.

    1994-06-01

    This report presents the concept of a High Moderating ratio Reactor, which should accept 100% MOX reloads. This reactor aims to be the plutonium version of the European Pressurized Reactor (EPR), which is developed jointly by French and German companies. A moderating ration of 2.5 (instead of the standard value of 2.0) is obtained by replacing several fuel rods by water holes. The core would contain 241 Fuel Assemblies. We present some advantages of over-moderation for plutonium fuel, a description of the core and assemblies, calculations of fuel reload schemes and Reactivity Shutdown Margins, and the behavior of the core during two occidental transients. (author). 2 refs., 9 figs., 2 tabs

  5. Hot vacuum outgassing to ensure low hydrogen content in MOX fuel pellets for thermal reactors

    International Nuclear Information System (INIS)

    Majumdar, S.; Nair, M.R.; Kumar, Arun

    1983-01-01

    Hot vacuum outgassing treatment to ensure low hydrogen content in Mixed Oxide Fuel (MOX) pellets for thermal reactors has been described. Hypostoichiometric sintered MOX pellets retain more hydrogen than UO 2 pellets. The hydrogen content further increases with the addition of admixed lubricant and pore formers. However, low hydrogen content in the MOX pellets can be ensured by a hot vacuum outgassing treatment at a temperature between 773K to 823K for 2 hrs. (author)

  6. Preliminary analysis of in-reactor behavior of three MOX fuel rods in the halden reactor

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong; Joo, Hyung Kook

    1999-09-01

    Preliminary analysis of in-reactor thermal performance for three MOX fuel rods that are going to be irradiated in the Halden reactor from the first quarter of the year 2000 have been conducted by using the computer code COSMOS. Using the assumption that microstructure of MOX fuel fabricated by SBR and dry milling method is the same, parametric studies have been carried out considering four kinds of uncertainties, which are thermal conductivity, linear power, manufacturing parameters, and model constant, to investigate the effect of each of uncertainty on in-reactor behavior. It is found that the uncertainty of model constants for FGR has a greatest impact of the all because the amount of gas released to the gap is one of the parameters that dominantly affects the gap conductance. The parametric analysis shows that, tn the case of MOX-1, calculational results vary widely depending on the choice of model constants for FGR. Therefore, the model constants for FGR for the present test need to be established through the measured fuel centerline temperature, rod internal pressure, stack length if any, and finally thermal conductivity derived from measured data during irradiation. On the other hand, the difference in thermal performance of MOX-3 resulting from the choice of FGR model constants is not so large as that for MOX-1. This might arise, since the temperature of the MOX-3 is high, the capacity of grain boundaries to retain gas atoms is not sufficient enough to accommodate the large amount of gas atoms reaching the grain boundaries through diffusion. (Author). 20 refs., 7 tabs., 47 figs

  7. Preliminary analysis of in-reactor behavior of three MOX fuel rods in the halden reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong; Joo, Hyung Kook

    1999-09-01

    Preliminary analysis of in-reactor thermal performance for three MOX fuel rods that are going to be irradiated in the Halden reactor from the first quarter of the year 2000 have been conducted by using the computer code COSMOS. Using the assumption that microstructure of MOX fuel fabricated by SBR and dry milling method is the same, parametric studies have been carried out considering four kinds of uncertainties, which are thermal conductivity, linear power, manufacturing parameters, and model constant, to investigate the effect of each of uncertainty on in-reactor behavior. It is found that the uncertainty of model constants for FGR has a greatest impact of the all because the amount of gas released to the gap is one of the parameters that dominantlyaffects the gap conductance. The parametric analysis shows that, tn the case of MOX-1, calculational results vary widely depending on the choice of model constants for FGR. Therefore, the model constants for FGR for the present test need to be established through the measured fuel centerline temperature, rod internal pressure, stack length if any, and finally thermal conductivity derived from measured data during irradiation. On the other hand, the difference in thermal performance of MOX-3 resulting from the choice of FGR model constants is not so large as that for MOX-1. This might arise, since the temperature of the MOX-3 is high, the capacity of grain boundaries to retain gas atoms is not sufficient enough to accommodate the large amount of gas atoms reaching the grain boundaries through diffusion. (Author). 20 refs., 7 tabs., 47 figs.

  8. Radiative capture on $^{242}$Pu for MOX fuel reactors

    CERN Multimedia

    The use of MOX fuel (mixed-oxide fuel made of UO$_{2}$ and PuO$_{2}$) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. Indeed around 66% of the plutonium from spent fuel is made of $^{239}$Pu and $^{241}$Pu, which are fissile in thermal reactors. A typical reactor of this type uses a fuel with 7% reprocessed Pu and 93% depleted U, thus profiting from both the spent fuel and the remaining $^{238}$U following the $^{235}$U enrichment. With the use of such new fuel compositions rich in Pu the better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. This is clearly stated in the recent OECD NEA’s “High Priority Request List” and in the WPEC-26 “Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations” report. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United ...

  9. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  10. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  11. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  12. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  13. Development of MOX manufacturing technology in BNFL

    International Nuclear Information System (INIS)

    Buchan, P.G.; Powell, D.J.; Edwards, J.

    1998-01-01

    BNFL is successfully operating a small scale MOX fuel fabrication facility at its Sellafield Site and is currently constructing an advanced, commercial scale MOX facility to complement its existing LWR UO 2 fabrication capability. BNFL's MOX fuel capability is fully supported by a comprehensive technology development programme aimed at providing a high quality product which is successfully competing in the market. Building on the experience gained over the last 30 years, is from the production of both thermal and fast reactor MOX fuels, BNFL's development team set a standard for its MOX product which is targeted at exceeding the performance of UO 2 fuel in reactor. In order to meet the stringent design requirements the product development team has introduced the Short Binderless Route (SBR) process that is now used routinely in BNFL's MOX Demonstration Facility (MDF) and which forms the basis for BNFL's large scale Sellafield MOX Plant. This plant not only uses the SBR process for MOX production but also incorporates the most advanced technology available anywhere in the world for nuclear fuel production. A detailed account of the technology developed by BNFL to support its MOX fuels business will be provided, together with an explanation of the processes and plants used for MOX fuel production by BNFL. The paper also looks at the future needs of the MOX business and how improvements in pellet design can assist the MOX fabrication production process to meet the user demand requirements of utilities around the world. (author)

  14. Main trends and content of works on fabrication of fuel rods with MOX fuel for the WWER-1000 reactor

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Golovanov, V.N.; Mayorshin, A.A.; Yurchenko, A.D.; Ilyenko, S.A.; Syuzev, V.N.

    2000-01-01

    The main trends of production of pellet MOX-fuel for the WWER reactors using the trial-experimental equipment at SSC RF RIAR are set forth. The main realized parameters of fabrication of MOX-fuel pellets are presented. The content of the reactor tests program is considered with allowance for their licensing requirements for the WWER reactors. (author)

  15. MOX fuel for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Kamath, H.S.; Anantharaman, K.; Purushotham, D.S.C.

    2000-01-01

    A sound energy policy and a sound environmental policy calls for utilisation of plutonium (Pu) in nuclear power reactors. The paper discusses the use of Pu in the form of mixed oxide (MOX) fuel in two Indian boiling water reactors (BWRs) at Tarapur. An industrial scale MOX fuel fabrication plant is presently operational at Tarapur which is capable of manufacturing MOX fuels for BWRs and in future for PHWRs. The plant can also manufacture mixed oxide fuel for prototype fast breeder reactor (PFBR) and development work in this regard has already started. The paper describes the MOX fuel manufacturing technology and quality control techniques presently in use at the plant. The irradiation experience of the lead MOX assemblies in BWRs is also briefly discussed. The key areas of interest for future developments in MOX fuel fabrication technology and Pu utilisation are identified. (author)

  16. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  17. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  18. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  19. Advanced analysis technology for MOX fuel

    International Nuclear Information System (INIS)

    Hiyama, T.; Kamimura, K.

    1997-01-01

    PNC has developed MOX fuels for advanced thermal reactor (ATR) and fast breeder reactor (FBR). The MOX samples have been chemically analysed to characterize the MOX fuel for JOYO, MONJU, FUGEN and so on. The analysis of the MOX samples in glove box has required complicated and highly skilled operations. Therefore, for quality control analysis of the MOX fuel in a fabrication plant, simple, rapid and accurate analysis methods are necessary. To solve the above problems instrumental analysis and techniques were developed. This paper describes some of the recent developments in PNC. 2. Outline of recently developed analysis methods by PNC. 2.1 Determination of oxygen to metal atomic ratio (O/M) in MOX by non-dispersive infrared spectrophotometry after inert gas fusion. 7 refs, 9 figs, 4 tabs

  20. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  1. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  2. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  3. The nuclear future; prospects for reprocessing and mixed oxide nuclear fuel; why use MOX in civil reactors?

    International Nuclear Information System (INIS)

    Bay, H.

    2002-01-01

    There are many answer to the question 'Why use MOX in civil reactors?'. The most likely one is because plutonium is an energy source and MOX is used when it is economic to do so. Other incentives include the reduction of global separated plutonium stocks and the subsequent potential reduction of proliferation risk. (author)

  4. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    International Nuclear Information System (INIS)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of the equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX fuel rods used in the experiments are obtained by calculations and the modification of the equipment for the experiments are shown. (author)

  5. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  6. Integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  7. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  8. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  9. The fast breeder reactor

    International Nuclear Information System (INIS)

    Patterson, W.

    1990-01-01

    The author criticises the United Kingdom Atomic Energy Authority's fast breeder reactor programme in his evidence to the House of Commons Select Committee on Energy in January 1990. He argues for power generation by renewable means and greater efficiency in the use rather than in the generation of electricity. He refutes the arguments for nuclear power on the basis of reduced global warming as he claims support technology produces significant amounts of carbon dioxide in any case. Serious doubts are raised about the costs of a fast breeder reactor programme compared to, say, generation by pressurised water reactors. The idea of a uranium scarcity in several decades is also refuted. The reliability of fast breeder reactor technology is called into question. He argues against reprocessing plutonium for economic, health and safety reasons. (UK)

  10. The fast breeder reactor

    International Nuclear Information System (INIS)

    Keck, O.

    1984-01-01

    Nowadays the fast-breeder reactor is a negative symbol of advanced technology which is getting out of control and, due to its complexity, is incomprehensible for politicians and therefore by-passes the established order. The author lists the most important decisions over state aid to the fast-breeder-reactors up until the mid-seventies and uses documents from the appropriate advisory bodies as reference. He was also aided by interviews with those directly involved with the project. The empirical facts forces us to discard our traditional view of the relationship between state and industry with regard to advanced technology. The author explains that it is impossible to find any economic value in the fast-breeder reactor. The insight gained through this project allows him to draw conclusions which apply to all aspects of state aid to advanced technology. (orig.) [de

  11. Analysis of a Partial MOX Core Design with Tritium Targets for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anistratov, Dmitriy Y. [Texas A & M Univ., College Station, TX (United States); Adams, Marvin L. [Texas A & M Univ., College Station, TX (United States)

    1998-04-19

    This report constitutes tangible and verifiable deliverable associated with the task To study the effects of using WG MOX fuel in tritium-producing LWR” of the subproject Water Reactor Options for Disposition of Plutonium. The principal investigators of this subproject are Naeem M. Abdurrahman of the University of Texas at Austin and Marvin L. Adams of Texas A&M University. This work was sponsored by the Amarillo National Resource Center for Plutonium.

  12. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  13. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  14. Integral validation of the effective beta parameter for the MOX reactors and incinerators; Validation integrale des estimations du parametre beta effectif pour les reacteurs Mox et incinerateurs

    Energy Technology Data Exchange (ETDEWEB)

    Zammit-Averlant, V

    1998-11-19

    {beta}{sub eff}, which represents the effective delayed neutron fraction, is an important parameter for the reactor nominal working as well as for studies of its behaviour in accidental situation. In order to improve the safety of nuclear reactors, we propose here to validate its calculation by using the ERANOS code with ERALIB1 library and by taking into account all the fission process physics through the {nu} energy dependence. To validate the quality of this calculation formalism, we calculated uncertainties as precisely as possible. The experimental values of {beta}{sub eff}, as well their uncertainties, have also been re-evaluated for consistency, because these `experimental` values actually contain a calculated component. We therefore obtained an entirely coherent set of calculated and measured {beta}{sub eff}. The comparative study of the calculated and measured values pointed out that the JEF2.2 {nu}{sub d} are already sufficient because the (E-C)/C are inferior to 3 % in average and in their uncertainly bars. The experimental uncertainties, even if lightly superior to those previously edited, remain inferior to the uncertainties of the calculated values. This allowed us to fit {nu}{sub d} with {beta}{sub eff}. This adjustment has brought an additional improvement on the recommendations of the {nu}{sub d} average values, for the classical scheme (thermal energy, fast energy) and for the new scheme which explains the {nu}{sub d} energy dependence. {beta}{sub eff}, for MOX or UOX fuel assemblies in thermal or fast configurations, can therefore be obtained with an uncertainty due to the nuclear data of about 2.0 %. (author) 110 refs.

  15. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  16. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  17. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  18. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  19. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  20. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  1. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    International Nuclear Information System (INIS)

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  2. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  3. Interest in 100% MOX future reactors as seen from the fuel fabrication and from the Pu manager point of view

    International Nuclear Information System (INIS)

    Golinelli, C.; Guillet, J.L.; Nigon, J.L.

    1996-01-01

    Today, plutonium recycling in PWR type reactors has reached the industrial phase. But, on a competitive market, cost reduction can be achieved by improving fuel performances and fuel management. That is why researches on MOX future reactors are still carried out in the world and particularly in France. As a matter of fact, MOX future reactors can be more competitive if the in-reactor utilization is improved. This solution should certainly be the next step to re-use the recovered plutonium from reprocessed spent fuel. (O.M.)

  4. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  5. System analysis of nuclear safety of VVER reactor with MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A.D.; Zharkov, V.P.; Suslov, I.R. [Russia, Moscow Malaya Krasnoselskaya St. (Russian Federation); Boyarinov, V.F.; Kevrolev, V.V.; Tchibinyaev, A.V.; Tsibulskiy, V.F. [RRC KI, Russia, Moscow (Russian Federation); Kochurov, B.P. [ITEP, Russia, Moscow (Russian Federation); Giovanni, B. [NFPSC, FRAMATOME (France)

    2005-07-01

    The report presents a short summary of the results achieved in the ISTC (International Science and Technology Center) project 'System analysis of nuclear safety of VVER reactor with MOX fuel' (April 2005). The studies within the project are of a systematic character and include the solutions of 15 tasks. The report gives an overview of the major blocks of these tasks: neutron transport equation solution; calculations of isotopic vectors, analysis of the impact of uncertainties on predicted reactor functionals. The calculation methods, the verification results and the corresponding codes are briefly described. (authors)

  6. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  7. Dounreay fast reactor

    International Nuclear Information System (INIS)

    Maclennan, R.; Eggar, T.; Skeet, T.

    1992-01-01

    The short debate which followed a private notice question asking for a statement on Government policy on the future of the European fast breeder nuclear research programme is reported verbatim. In response to the question, the Minister for Energy said that the Government had decided in 1988 that the Dounreay prototype fast reactor would close in 1994. That decision had been confirmed. Funding of fast breeder research and development beyond 1993 is not a priority as commercialization is not expected until well into the next century. Dounreay will be supported financially until 1994 and then for its subsequent decommissioning and reprocessing of spent fuel. The debate raised issues such as Britain losing its lead in fast breeder research, loss of jobs and the Government's nuclear policy in general. However, the Government's position was that the research had reached a stage where it could be left and returned to in the future. (UK)

  8. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  9. Irradiation test of fuel containing minor actinides in the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Soga, Tomonori; Sekine, Takashi; Wootan, David; Tanaka, Kosuke; Kitamura, Ryoichi; Aoyama, Takafumi

    2007-01-01

    The mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using the experimental fast reactor Joyo of the Japan Atomic Energy Agency to research early thermal behavior of MA-MOX fuel. Two irradiation experiments were conducted in the Joyo MK-III 3rd operational cycle. Six prepared fuel pins included MOX fuel containing 3% or 5% americium (Am-MOX), MOX fuel containing 2% americium and 2% neptunium (Np/Am-MOX), and reference MOX fuel. The first test was conducted with high linear heat rates of approximately 430 W/cm maintained during only 10 minutes in order to confirm whether or not fuel melting occurred. After 10 minutes irradiation in May 2006, the test subassembly was transferred to the hot cell facility and an Am-MOX pin and a Np/Am-MOX pin were replaced with dummy pins including neutron dosimeters. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24-hours in August 2006 at nearly the same linear power to obtain re-distribution data on MA-MOX fuel. Linear heat rates for each pin were calculated using MCNP, accounting for both prompt and delayed heating components, and then adjusted using E/C for 10 B (n, α) reaction rates measured in the MK-III core neutron field characterization test. Post irradiation examination of these pins to confirm the fuel melting and the local concentration under irradiation of NpO 2-x or AmO 2-x in the (U, Pu)O 2-x fuel are underway. The test results are expected to reduce uncertainties on the design margin in the thermal design for MA-MOX fuel. (author)

  10. Fast reactor database

    International Nuclear Information System (INIS)

    1996-02-01

    This publication contains detailed data on liquid metal cooled fast reactors (LMFRs), specifically plant parameters and design details. Each LMFR power plant is characterized by about 400 parameters, by design data and by relevant materials. The report provides general and detailed design characteristics including structural materials, data on experimental, demonstration, prototype and commercial size LMFRs. The focus is on practical issues that are useful to engineers, scientists, managers and university students and professors. The report includes updated information contained in IAEA previous publications on LMFR plant parameters: IWGRF/51 (1985) and IWGFR/80 (1991) and reflects experience gained from two consultants meetings held in Vienna (1993,1994). This compilation of data was produced by members of the IAEA International Working Group on Fast Reactors (IWGFR)

  11. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  12. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  13. Knowledge management in fast reactors

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Satya Murty, S.A.V.; Swaminathan, P.; Raj, Baldev

    2010-01-01

    This paper highlights the work that is being carried out in Knowledge Management of Fast Reactors at Indira Gandhi Centre for Atomic Research (IGCAR) including a few examples of how the knowledge acquired because of various incidents in the initial years has been utilized for the successful operation of Fast Breeder Test Reactor. It also briefly refers to the features of the IAEA initiative on the preservation of Knowledge in the area of Fast Reactors in the form of 'Fast Reactor Knowledge Organization System' (FR-KOS), which is based on a taxonomy for storage and mining of Fast Reactor Knowledge. (author)

  14. Highlights on R and D work related to the achievement of high burnup with MOX fuel in commercial reactors

    International Nuclear Information System (INIS)

    Lippens, M.; Maldague, Th.; Basselier, J.; Boulanger, D.; Mertens, L.

    2000-01-01

    Part of the R and D work made at BELGONUCLEAIRE in the field of high burnup achievement with MOX fuel in commercial LWRs is made through lnternational Programmes. Special attention is given to the evolution with burnup of fuel neutronic characteristics and of in-reactor rod thermal-mechanical behaviour. Pu burning in MOX is characterized essentially by a drop of Pu 239 content. The other Pu isotopes have an almost unchanged concentration, due to internal breeding. The reactivity drop of MOX versus burnup is consequently much less pronounced than in UO 2 fuel. Concentration of minor actinides Am and Cm becomes significant with burnup increase. These nuclides start to play a role on total reactivity and in the helium production. The thermal-mechanical behaviour of MOX fuel rod is very similar to that of UO 2 . Some specificities are noticed. The better PCI resistance recognized to MOX fuel has recently been confirmed. Three PWR MOX segments pm-irradiated up to 58 GWd/tM were ramped at 100 W/cm.min respectively to 430-450-500 W/cm followed by a hold time of 24 hours. No segment failed. MOX and UO 2 fuels have different reactivities and operate thus at different powers. Moreover, radial distribution of power in MOX pellet is less depressed at high burnup than in UO 2 , leading to higher fuel central temperature for a same rating. The thermal conductivity of MOX fuel decreases with Pu content, typically 4% for 10% Pu. The combination of these three elements (power level, power profile, and conductivity) lead to larger FGR at high burnup compared to UO 2 . Helium production remains low compared to fission gas production (ratio < 0.2). As faster diffusing element, the helium fractional release is much higher than that of fission gas, leading to rod pressure increase comparable to the one resulting from fission gas. (author)

  15. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J.

    2004-01-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  16. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  17. Development of database system on MOX fuel for water reactors (I)

    International Nuclear Information System (INIS)

    Kikuchi, Keiichi; Nakazawa, Hiroaki; Abe, Tomoyuki; Shirai, Takao

    2000-04-01

    JNC has been conducted a great number of irradiation tests to develop MOX fuels for Advanced Thermal Reactor and Light Water Reactors. In order to manage irradiation data consistently and to effectively utilize valuable data obtained from the irradiation tests, we commenced construction of database system on MOX fuel for water reactors in 1998 JFY. Collection and selection of irradiation data and relevant fuel fabrication data, design of the database system and preparation of assisting programs have been finished and data registration onto the system is under way according to priority at present. The database system can be operated through the menu screen on PC. About 94,000 records of data on 11 fuel assemblies in total have been registered onto the database up to the present. By conducting registration of the remaining data and some modification of the system, if necessary, the database system is expected to complete in 2000 JFY. The completed database system is to be distributed to relevant sections in JNC by means of CD-R as a media. This report is an interim report covering 1998 and 1999 JFY, which gives the structure explanation and users manual concerning to the prepared database up to the present. (author)

  18. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  19. The MOX

    International Nuclear Information System (INIS)

    Legay, Christophe

    1997-06-01

    In this report, the author first proposes a presentation of plutonium with a brief history of its discovery and the discovery of other transuranic elements, a presentation of its main characteristics, and a description of its production ways. He also proposes an overview of data regarding world plutonium production and plutonium stock situation. The second part addresses the MOX fuel in relationship with the choice of non proliferation. The author describes the MOX fuel cycle (production, use in reactor, and reprocessing) and outlines the environmental and economic benefits of this fuel, and its interest within the frame of struggle against nuclear proliferation. The third part addresses the present situation and perspectives. He comments the American posture (principles and recent statements), discusses alternatives regarding nuclear wastes, and outlines MOX opportunities by evoking the French case and international perspectives, and the benefits in terms of matching irreversibility and safety

  20. Fast breeder reactors

    International Nuclear Information System (INIS)

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  1. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  2. Fast reactors and nonproliferation

    International Nuclear Information System (INIS)

    Orlov, V.V.

    1997-01-01

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  3. Analysis of boiling water reactors capacities for the 100% MOX fuel recycling

    International Nuclear Information System (INIS)

    Knoche, Dietrich

    1999-01-01

    The electro-nuclear park exploitation leads to plutonium production. The plutonium recycling in boiling water reactors performs a use possibility. The difference between the neutronic characteristics of the uranium and the plutonium need to evaluate the substitution impact of UOX fuel by MOX fuel on the reactor operating and safety. The analysis of the main points reached to the following conclusions: the reactivity coefficients are negative, during a cooling accident the re-divergence depends on the isotopic vector of the used plutonium, the efficiency lost of control cross resulting from the plutonium utilization can be compensate by the increase of the B 4C enrichment by 10 B and the change of the steel structure by an hafnium structure, the reactivity control in evolution can be obtained by the fuel poisoning (gadolinium, erbium) and the power map control by the plutonium content monitoring. (A.L.B.)

  4. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  5. Fast reactor programme

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1976-11-01

    Estimated reactivity effects of fission products in the SNR-300 fast breeder are given. Neutron cross sections of 127 I and 129 I are also given. Results of the in-pile canning failure experiments on fuel pins R54-F35 and F39 are discussed. Sinter experiments using mixed UC-UN powders are reported. Results of tensile tests on high-dose and low-dose irradiated specimens of 18Cr1 1Ni stainless steel (DIN 1.4948) used in the SNR-300 reactor vessel are given. It is shown that the aerosol behaviour in condensing sodium vapour can be described by the same MADCA model developed for the decay of aerosols in condensing water vapour. Results of heat transfer measurements in the electrically heated 28-rod bundle under liquid-phase and subsequently under two-phase conditions are commented on

  6. Uranium and the fast reactor

    International Nuclear Information System (INIS)

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  7. The safety of fast reactors

    International Nuclear Information System (INIS)

    Justin, F.

    1976-01-01

    A response is made to the main questions that a man in the street may arise concerning fast breeder reactors, in particular: the advantages of this line, dangerous materials contained in fast breeder reactors, containment shells protecting the environment from radiations, main studies now in progress [fr

  8. Fast reactor physics - an overview

    International Nuclear Information System (INIS)

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  9. Evaluation of thermal physical properties for fast reactor fuels. Melting point and thermal conductivities

    International Nuclear Information System (INIS)

    Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya

    2006-10-01

    Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)

  10. A programmatic approach for implementing MOX fuel operation in advanced and existing boiling water reactors

    International Nuclear Information System (INIS)

    Ehrlich, E.H.; Knecht, P.D.; Shirley, N.C.; Wadekamper, D.C.

    1996-01-01

    This paper describes a programmatic overview of the elements and issues associated with MOX fuel utilization. Many of the dominant considerations and integrated relationships inherent in initiating MOX fuel utilization in BWRs or the ABWR with partial or full MOX core designs are discussed. The most significant considerations in carrying out a MOX implementation program, while achieving commercially desirable fuel cycles and commercially manageable MOX fuel fabrication, testing, qualification, and licensing support activities, are described. The impact of politics and public influences and the necessary role of industry and government contributions are also discussed. (J.P.N.)

  11. Fast mixed spectrum reactor concept

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  12. Experience on Russian military origin plutonium conversion into fast reactor nuclear fuel

    International Nuclear Information System (INIS)

    Grachev, A.F.; Skiba, O.V.; Bychkov, A.V.; Mayorshin, A.A.; Kisly, V.A.; Bobrov, D.A.; Osipenko, A.G.; Babikov, L.G.; Mishinev, V.B.

    2001-01-01

    According to the Concept of Russian Minatom on military plutonium excess utilization, the State Scientific Center of Russian Federation ''Research Institute of Atomic Reactors'' (Dimitrovgrad) has begun study on possibility of technological processing of the metal military plutonium into MOX fuel. The Program and the stages of its realization are submitted in the paper. During 1998-2000 the first stage of the Program was fulfilled and 50 kg of military origin metallic plutonium was converted to MOX fuel for the BOR-60 and BN-600 reactor. The plutonium conversion into MOX fuel is carried out under the original technology developed by SSC RIAR. It includes pyro-electrochemical process for production of fuel on the domestic equipment with the subsequent fuel pins manufacturing for the fast reactors by the vibro-packing method. The produced MOX fuel is purified from alloy additives (Ga) and corresponds to the vibro-packed fuel standard for fast reactors. The fuel pins manufacturing for BOR-60 and BN-600 reactors are carried out by the vibro-packing method on a standard procedure, which is used in SSC RIAR more than 20 years. (author)

  13. Present status of reactor physics in the United States and Japan-IV. 2. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design. We used the subgroup method to treat the space dependence of the self-shielding effect of heavy nuclides, and we used the characteristics method to treat the angular dependence of neutron flux in a fuel pellet. Figure 1 compares the power distributions in MOX and UO 2 fuel cells at the beginning of burnup. The power is calculated with and without considering the space dependence of the self-shielding effect of the cross sections. For the MOX cell, the power distribution has a peak at the cell edge because of large Pu absorption especially when considering the spatial self-shielding effect. When a MOX rod is adjacent to UO 2 fuel rods, the flux distribution has an azimuthal dependence in addition to the radial dependence within a rod. For example, consider a 2x2 fuel assembly composed of three UO 2 rods and one MOX rod, with the mirror reflection boundary condition. A burnup calculation was done with the condition; the radius of the MOX pellet is divided into two regions, and the azimuthal angle is divided into eight. The number density of 239 Pu at 44 000 MWd/t for the MOX rod shows azimuthal dependence by 20%. The maximum burnup occurs in the direction of the UO 2 rods. This is

  14. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1981-06-01

    The accuracy requirements and the status of the evaluated fission-product cross sections for fast reactors are reviewed; the work on calculating the sensitivity of the sodium void effect to fission-product cross sections is described; some results of the intercomparison of adjusted data sets for capture cross sections of fission-products (RCN-2A and CARNAVAL-IV) are discussed; the applicability of the maximum-likelihood method for the analysis of resolved resonance parameters for a large class of fission-product nuclides is demonstrated; the neutron cross sections for corrosion product 64 Ni are evaluated. Some results of post-irradiation examination of a loss-of-cooling experiment are given; the progress in testing the equipment and instrumentation for transient-overpower experiments is reported. The proceedings in the thermochemical investigations on uranium compounds with some fission-products are described. The creep behaviour of a heat of DIN 1.4948 parent metal is investigated with respect to the changes in strain with different test temperatures. Sodium smoke aerosols have been produced and analysed with respect to their aerodynamic behaviour and morphology. The two-phase local boiling experiments have been analysed to find criteria for the occurrence of different boiling regimes with the objection to deduce general dryout correlations

  15. Fast reactor recharging device

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Kurilkin, V.V.

    1979-01-01

    Disclosure is made of a device for recharging a fast-neutron reactor, intended for the transfer of fuel assemblies and rods of the control and safety system, having profiled heads to be gripped on the outside. The device comprises storage drums whose compartments for rods of the control and safety system are identical to compartments for fuel assemblies. In order to store and transport rods of the control and safety system from the storage drums to the recharging mechanism provision is made for sleeve-type holders. When placed in such a holder, the dimensions of a rod of the control and safety system are equal to those of a fuel assembly. To join a holder to a rod of the control and safety system, on the open end of each holder there is mounted a collet, whereas on the surface of each rod of the control and safety system, close to its head, there is provided an encircling groove to interact with the collet. The grip of the recharging mechanism is provided with a stop interacting with the collet in order to open the latter and withdraw the safety and control system rod from its holder

  16. Summary of the Minor Actinide-bearing MOX AFC-2C and -2D Irradiations

    International Nuclear Information System (INIS)

    McClellan, Kenneth; Chichester, Heather; Hayes, Steve; Voit, Stewart

    2013-01-01

    Summary of AFC-2C and AFC-2D tests: • AFC-2C and 2D, 1st MOX experiments in FCRD, were irradiated in ATR; • Initial results indicate performance of experimental MA-MOX fuels are similar to standard FR MOX fuels; • Cd-shrouded ATR experiment assembly and 235 U enrichment produce prototypic fast reactor power and temperature profiles leading to classic MOX zone restructuring; • Baseline postirradiation examinations have been completed for AFC-2C MOX and MA-MOX fuels; • Future work includes: – PIE of AFC-2D; – compare results to prototypic MOX fuel performance; – electron microscopy for microstructure and constituent distribution; – advanced NDE on saved pins

  17. Uranium-plutonium fuel for fast reactors

    International Nuclear Information System (INIS)

    Antipov, S.A.; Astafiev, V.A.; Clouchenkov, A.E.; Gustchin, K.I.; Menshikova, T.S.

    1996-01-01

    Technology was established for fabrication of MOX fuel pellets from co-precipitated and mechanically blended mixed oxides. Both processes ensure the homogeneous structure of pellets readily dissolvable in nitric acid upon reprocessing. In order to increase the plutonium charge in a reactor-burner a process was tested for producing MOX fuel with higher content of plutonium and an inert diluent. It was shown that it is feasible to produce fuel having homogeneous structure and the content of plutonium up to 45% mass

  18. Materials development for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  19. Fast reactor database. 2006 update

    International Nuclear Information System (INIS)

    2006-12-01

    Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. Ten experimental fast reactors and six prototype and commercial size fast reactor plants have been constructed and operated. In many cases, the overall experience with LMFRs has been rather good, with the reactors themselves and also the various components showing remarkable performances, well in accordance with the design expectations. The fast reactor system has also been shown to have very attractive safety characteristics, resulting to a large extent from the fact that the fast reactor is a low pressure system with large thermal inertia and negative power and temperature coefficients. In addition to the LMFRs that have been constructed and operated, more than ten advanced LMFR projects have been developed, and the latest designs are now close to achieving economic competitivity with other reactor types. In the current world economic climate, the introduction of a new nuclear energy system based on the LMFR may not be considered by utilities as a near future option when compared to other potential power plants. However, there is a strong agreement between experts in the nuclear energy field that, for sustainability reasons, long term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology, and that, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This publication contains detailed design data and main operational data on experimental, prototype, demonstration, and commercial size LMFRs. Each LMFR plant is characterized by about 500 parameters: physics, thermohydraulics, thermomechanics, by design and technical data, and by relevant sketches. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors with complete technical information of a total of 37 LMFR

  20. Fast reactor collaboration in Europe

    International Nuclear Information System (INIS)

    Smith, G.E.I.

    1987-01-01

    Fast reactors have been developed in several European countries, the United Kingdom, France, Germany and Italy. A suggestion to collaborate on fast reactor research and development resulted in an Intergovernmental Memorandum of Understanding signed in 1984 by the UK, France, Germany, Italy and Belgium. Holland was expected to join later. This provided for co-operation between electric utilities, reactor design, research and development companies and fuel cycle companies. Three steering committees have so far been set up, the European fast reactor utilities Group, the European research and development and the European fuel cycle steering committees. Progress on these is detailed. The main areas of technology exchange are listed in the Appendix. The possibility exists for a series of three large demonstration plants to be built in Europe and a fuel reprocessing plant to confirm the reactor system. (U.K.)

  1. Design and selection of materials for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.

    2011-01-01

    Sodium cooled fast reactors are currently in operation, under construction or under design by a number of countries. The design of sodium cooled fast reactor is covered by French RCC - MR code and ASME code NH. The codes cover rules as regards to materials, design and construction. These codes do not cover the effect of irradiation and environment. Elevated temperature design criteria in nuclear codes are much stringent in comparison to non nuclear codes. Sodium corrosion is not an issue in selection of materials provided oxygen impurity in sodium is controlled for which excellent reactor operating experience is available. Austenitic stainless steels have remained the choice for the permanent structures of primary sodium system. Stabilized austenitic stainless steel are rejected because of poor operating experience and non inclusion in the design codes. Route for improved creep behaviour lies in compositional modifications in 316 class steel. However, the weldability needs to be ensured. For cold leg component is non creep regime, SS 304 class steel is favoured from overall economics. Enhanced fuel burn up can be realized by the use of 9-12%Cr 1%Mo class steel for the wrapper of MOX fuel design, and cladding and wrapper for metal fuel reactors. Minor compositional modifications of 20% cold worked 15Cr-15Ni class austenitic stainless steel will be a strong candidate for the cladding of MOX fuel design in the short term. Long term objective for the cladding will be to develop oxide dispersion strengthened steel. 9%Cr 1%Mo class steel (Gr 91) is an ideal choice for integrated once through sodium heated steam generators. One needs to incorporate operating experience from reactors and thermal power stations, industrial capability and R and D feedback in preparing the technical specifications for procurement of wrought products and welding consumables to ensure reliable operation of the components and systems over the design life. The paper highlights the design approach

  2. How not to reduce plutonium stocks. The danger of MOX-fuelled nuclear reactors

    International Nuclear Information System (INIS)

    1999-01-01

    Plutonium is a radioactive by-product of nuclear reactor operation and one of the most toxic substances known. The world would be a safer place if the governments of countries with stocks of it, including Britain, would adopt effective policies for reducing and managing them. Two recent authoritative reports recommend that the British government take urgent action to reduce its 'civil' plutonium stock - currently one quarter of the world's total and set to rise to about two-thirds by the year 2010. The March 1999 House of Lords report, Management of Nuclear Waste, concludes that British government policy on plutonium 'should be the maintenance of the minimum strategic stock, and the declaration of the remainder as waste'. A report from the Royal Society, Britain's main learned society, meanwhile states that: 'In addition to disposing of some of the plutonium already in the stockpile, steps should be taken to reduce the amount added to it each year, primarily by reducing the amount of reprocessing carried out'. The government's reply to the House of Lords is expected to be followed by a public consultation before changes in legislation are proposed. But, at the same time, the government is considering an application from British Nuclear Fuels Limited (BNFL), the government-owned company which separates plutonium from spent nuclear fuel rods, for a licence to operate a new plant at Sellafield in Cumbria to produce mixed-oxide (MOX) nuclear fuel from its plutonium stockpile. The nuclear industry justifies the Sellafield MOX plant as one way of reducing plutonium stocks. But critics point out that this is not a rational way to manage plutonium. This briefing aims to contribute to an informed debate during the current flurry of British government nuclear policymaking by explaining why. (author)

  3. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  4. Review of fast reactor activities

    International Nuclear Information System (INIS)

    1982-01-01

    A description of some highlights of the activities performed by the Commission of the European Communities in the field of fast reactors is given. They fall into two categories: coordinating and harmonizing activities and research activities. The former are essentially performed in the frame of the Fast Reactor Coordinating Committee (FRCC), the latter in the Commission's Joint Research Center and to some extent under contract in research centers of the Member States

  5. Behavior of 241Am in fast reactor systems - a safeguards perspective

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Lafleur, Adrienne M.

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of 241 Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased (α,n) production in oxide fuels from the 241 Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of 241 Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of 241 Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of 241 Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  6. Review of fast reactor activities

    International Nuclear Information System (INIS)

    Haeussermann, W.; Royen, J.

    1978-01-01

    Since 1971, when the Co-ordinating Group on Gas-Cooled Fast reactors Development was set up, the participating countries have maintained an interest in keeping this option as a back-up solution to the sodium cooled fast reactors. Two different concepts were investigated, one based on coated particle type fuel elements and the other on pin type fuel elements. The coated particles studies have been brought to an end, and resources were concentrated on the further development of the pin type concept. The work done in previous years covered design and safety investigations, heat transfer studies and irradiation experiments in thermal reactors

  7. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  8. MOX fuel fabrication: Technical and industrial developments

    International Nuclear Information System (INIS)

    Lebastard, G.; Bairiot, H.

    1990-01-01

    The plutonium available in the near future is generally estimated rather precisely on the basis of the reprocessing contracts and the performance of the reprocessing plants. A few years ago, decision makers were convinced that a significant share of this fissile material would be used as the feed material for fast breeder reactors (FBRs) or other advanced reactors. The facts today are that large reprocessing plants are coming into commercial operations: UP3 and soon UP2-800 and THORP, but that FBR deployment is delayed worldwide. As a consequence, large quantities of plutonium will be recycled in light water reactors as mixed oxide (MOX) fuels. MOX fuel technology has been properly demonstrated in the past 25 years. All specific problems have been addressed, efficient fabrication processes and engineering background have been implemented to a level of maturity which makes MOX fuel behaving as well as Uranium fuel. The paper concentrates on todays MOX fabrication expertise and presents the technical and industrial developments prepared by the MOX fuel fabrication industry for this last decade of the century

  9. Fast breeder reactor

    International Nuclear Information System (INIS)

    Ito, Shin-ichi; Maki, Koichi.

    1975-01-01

    Object: To conserve loaded fuel, aquire controllable surplus reaction degree, increase the breeding index, flatten output and improve sealing of neutrons by inserting a decelerating substance in a blanket section. Structure: A decelerating substance such as beryllium or beryllium oxide is inserted in a blanket section between an outer reactor core and reflector. With this arrangement, neutrons are decelerated to increase the low energy components, which are partly subjected to reflection by the outer reactor core to thereby reduce leakage of neutrons from the reactor core. (Kamimura, M.)

  10. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  11. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  12. Fast reactors: the industrial perspective

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1986-01-01

    Industrial participation in the development of the fast reactor is reviewed, from the construction of PFR at Dounreay to the initial steps towards collaboration in Europe. The optimum design of the fast reactor has changed considerably from the days when it was needed urgently to forestall a shortage of uranium to today when uranium is abundant and cheap. The evolution of the reactor design over this period is described. Collaboration in Europe is shown to be the only answer to high development costs and the search for a reactor which will compete with thermal reactors in today's environment. The partner countries in this collaboration are all motivated differently, and this is leading to some delays in concluding the necessary agreements. The objective on the industrial front is now to participate in the two or three demonstration fast reactors that will be built in Europe during the remainder of the century leading, it is hoped, to a competitive reactor design by the year 2000. (author)

  13. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1979-10-01

    Various experiments being performed at the SNR reactor are described including: capture cross sections of various nuclei; fuel can failure; creep testing of welded joints; gas leakage through concrete/steel interfaces; testing of the test section of the four rod bundle for Laser Doppler Anemometry

  14. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    Science.gov (United States)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  15. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  16. Fast Reactors and Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  17. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  18. Fuel component of electricity generation cost for the BN-800 reactor with MOX fuel and uranium oxide fuel with increasing of fuel burnup and removing of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2001-01-01

    Nowadays there are two completed design concepts of Nuclear Power Plants (NPPs) with the BN-800 type reactors developed with due regard for advanced safety requirements. One of them is the design of the fourth unit of the Beloyarsk Nuclear Power Plant; the other one is the design of three units of the South Ural Nuclear Power Plant. The both concepts are to use mixed oxide fuel (MOX fuel) based on civil plutonium. Studies on any project include economical analyses and cost of fuel is an essential parameter. In the course of the design works on the both projects such evaluations were done. For BN-800 on the Beloyarsk site nuclear fuel costs were taken from actual expenses of the BN-600 reactor and converted to rated thermal power and design capacity factor of the BN-800 and then increased by 20% in connection with turning to MOX fuel. Then this methodology was rewarding, but the ratio of uranium fuel and MOX fuel costs might change for the last years. For the project of three units of the South Ural Nuclear Power Plant nuclear fuel expenses were calculated from the data on a MOX fuel fabrication production facility (Complex-300). However, investigations performed recently shown that the methodology of economical assessments should be revised, as well as design and technology of MOX fuel fabrication at Complex-300 should be revised to meet all the existing safety requirements. Excepting there is a great bulk of civil plutonium to be reproduced, now we came up against the problem to utilize the exceeding ex-weapons plutonium that obviously can be used for MOX fuel fabrication as well. Construction of the MOX fuel fabrication facility - Complex-300 - was started in 1983. Its design output was planned to provide simultaneously 4 fast reactors of the BN-800 type with MOX fuel. By now about 50% of construction works (taking into account auxiliary buildings and arrangements) and 20% of installation works have been done at Complex-300. Along this, first works to construct

  19. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  20. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  1. The Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  2. Fast reactor research in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Hudina, M.; Pelloni, S.; Sigg, B.; Stanculescu, A.

    1998-01-01

    The small Swiss research program on fast reactors serves to further understanding of the role of LMFR for energy production and to convert radioactive waste to more environmentally benign forms. These activities are on the one hand the contribution to the comparison of advanced nuclear systems and bring on the other to our physical and engineers understanding. (author)

  3. Review of fast reactor activities

    Energy Technology Data Exchange (ETDEWEB)

    Balz, W [Commission of the European Communities, Brussels (Belgium)

    1978-07-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle.

  4. Review of fast reactor activities

    International Nuclear Information System (INIS)

    Balz, W.

    1978-01-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle

  5. Status of national programmes on fast reactors

    International Nuclear Information System (INIS)

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  6. Fast reactor core monitoring device

    International Nuclear Information System (INIS)

    Sanda, Toshio; Inoue, Kotaro; Azekura, Kazuo.

    1982-01-01

    Purpose: To enable the rapid and accurate on-line identification of the state of a fast reactor core by effectively utilizing the measured data on the temperature and flow rate of the coolant. Constitution: The spacial power distribution and average assembly power are quickly calculated using an approximate calculating method, the measured values and the calculated values of the inlet and outlet temperature difference, flow rate and coolant physical values of an assembly are combined and are individually obtained, the most definite respective values and their errors are obtained by a least square method utilizing a formula of the relation between these values, and the power distribution and the temperature distribution of a reactor core are estimated in this manner. Accordingly, even when the measuring accuracy and the calculating accuracy are equal as in a fast reactor, the power distribution and the temperature distribution can be accurately estimated on-line at a high speed in a nuclear reactor, information required for the operator is provided, and the reactor can thus be safely and efficiently operated. (Yoshihara, H.)

  7. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  8. Argentine nuclear fuels MOX irradiated in the Petten reactor: Analysis of experience with the BACO code

    Energy Technology Data Exchange (ETDEWEB)

    Marino, A C; Perez, E; Adelfang, P [Argentine Atomic Energy Commission, Buenos Aires (Argentina)

    1997-08-01

    The irradiation of our first prototypes of MOX nuclear fuels fabricated in Argentina began in 1986. These experiences had been made in the HFR-Petten reactor, Holland. The six rods were fabricated in the {alpha} Facility (GAID-CNEA-Argentina). The first rod has been used for destructive pre-irradiation analysis in the KFK (Kernforschungszentrum Karlsruhe), Germany. The second one was a pathfinder for calibrating systems in the HFR. Another two rods included doped pellets based on iodine. One of them included CsI and auxiliary components. The second one included elemental iodine. The concentration of iodine was intended to simulate 15 MWd/ton(M) of burnup. We defined the power histories with the BACO code. We assumed a cycle of 15 days that included interaction treatments of cladding and pellet due to the power cycling. The last ramp is let run until stress corrosion cracking (SCC) is induced. The experience named BU15 was done with the last two rods. The final burnup was 15 MWd/ton(M), and a final ramp test was arranged for one of them. This burnup is the same as the previous two rods. The power level during irradiation was low and without major solicitations, only the normal shutdowns of the HFR. The ramp was similar to that used for the iodine test. We attempt to see the correct correspondence between the BU15 and the doping test. The pathfinder had an excellent behavior in the HFR reactor. The presence of microcracks inside the cladding was observed in the iodine test as we predicted with the BACO code. The post-irradiation tests of the BU15 experience has just ended. The development of the ramp was interrupted due to an increase of activity in the system. We presumed the presence of a failure in the rod. The visual inspection of the rod shows an atypical failure for this kind of fuel, i.e. they found a small circular hole. We use the BACO code for the behavior analysis of the fuel rods. 23 refs, 29 figs, 5 tabs.

  9. Argentine nuclear fuels MOX irradiated in the Petten reactor: Analysis of experience with the BACO code

    International Nuclear Information System (INIS)

    Marino, A.C.; Perez, E.; Adelfang, P.

    1997-01-01

    The irradiation of our first prototypes of MOX nuclear fuels fabricated in Argentina began in 1986. These experiences had been made in the HFR-Petten reactor, Holland. The six rods were fabricated in the α Facility (GAID-CNEA-Argentina). The first rod has been used for destructive pre-irradiation analysis in the KFK (Kernforschungszentrum Karlsruhe), Germany. The second one was a pathfinder for calibrating systems in the HFR. Another two rods included doped pellets based on iodine. One of them included CsI and auxiliary components. The second one included elemental iodine. The concentration of iodine was intended to simulate 15 MWd/ton(M) of burnup. We defined the power histories with the BACO code. We assumed a cycle of 15 days that included interaction treatments of cladding and pellet due to the power cycling. The last ramp is let run until stress corrosion cracking (SCC) is induced. The experience named BU15 was done with the last two rods. The final burnup was 15 MWd/ton(M), and a final ramp test was arranged for one of them. This burnup is the same as the previous two rods. The power level during irradiation was low and without major solicitations, only the normal shutdowns of the HFR. The ramp was similar to that used for the iodine test. We attempt to see the correct correspondence between the BU15 and the doping test. The pathfinder had an excellent behavior in the HFR reactor. The presence of microcracks inside the cladding was observed in the iodine test as we predicted with the BACO code. The post-irradiation tests of the BU15 experience has just ended. The development of the ramp was interrupted due to an increase of activity in the system. We presumed the presence of a failure in the rod. The visual inspection of the rod shows an atypical failure for this kind of fuel, i.e. they found a small circular hole. We use the BACO code for the behavior analysis of the fuel rods. 23 refs, 29 figs, 5 tabs

  10. Generation of multigroup cross-sections from micro-group ones in code system SUHAM-U used for VVER-1000 reactor core calculations with MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V.F.; Davidenko, V.D.; Polismakov, A.A.; Tsybulsky, V.F. [RRC Kurchatov Institute, Moscow (Russian Federation)

    2005-07-01

    At the present time, the new code system SUHAM-U for calculation of the neutron-physical processes in nuclear reactor core with triangular and square lattices based both on the modern micro-group (about 7000 groups) cross-sections library of code system UNK and on solving the multigroup (up to 89 groups) neutron transport equation by Surface Harmonics Method is elaborated. In this paper the procedure for generation of multigroup cross-sections from micro-group ones for calculation of VVER-1000 reactor core with MOX loading is described. The validation has consisted in computing VVER-1000 fuel assemblies with uranium and MOX fuel and has shown enough high accuracy under corresponding selection of the number and boundaries of the energy groups. This work has been fulfilled in the frame of ISTC project 'System Analyses of Nuclear Safety for VVER Reactors with MOX Fuels'.

  11. Feasibility study for fast reactor and related fuel cycle. Preliminary studies in 1998

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Enuma, Yasuhiro; Kubota, Kenichi; Yoshida, Masashi; Uno, Osamu; Ishikawa, Hiroyasu; Kobayashi, Jun; Umetsu, Youichiro; Ichimiya, Masakazu

    1999-10-01

    Prior to the feasibility study for fast reactors (FRs) starting from the 1999 fiscal year, planned in the medium and long-term program of JNC, preliminarily studies were performed on 'FR systems except sodium cooled MOX fueled reactors'. Small scale or module type reactors, heavy metal (Pb or Pb-Bi) cooled reactors, gas cooled reactors, light water cooled reactors, and molten salt reactors were studied on the basis of literature. They were evaluated from the viewpoint of the technical possibility (the structure integrity, earthquake resistance, safety, productivity, operability, maintenance repair, difficulty of the development), the long-term targets (market competitiveness as an energy system, utilization of uranium resources, reduction of radioactive waste, security of the non-proliferation), and developmental risk. As the result, the following concepts should be studied for future commercialized FRs. Small scale and module type reactor: Middle-sized reactor with an excellent economical efficiency. Small power reactor with a multipurpose design concept. Gas cooled reactor: CO2 gas cooled reactor, He gas cooled reactor. Heavy metal cooled reactor: Russian type lead cooled reactor. Light water cooled reactor: Light water cooled high converter reactor and super critical pressure light water cooled reactor. Molten salt reactor: Trichloride molten salt reactor which matches the U-Pu cycle. (author)

  12. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  13. Analysis of transition to fuel cycle system with continuous recycling in fast and thermal reactors - 5060

    International Nuclear Information System (INIS)

    Passereini, S.; Feng, B.; Fei, T.; Kim, T.K.; Taiwo, T.A.; Brown, N.R.; Cuadra, A.

    2015-01-01

    A recent Evaluation and Screening study of nuclear fuel cycle options identified a few groups of options as most promising. One of these most promising Evaluation Groups (EGs) is characterized by the continuous recycling of uranium (U) and transuranics (TRU) with natural uranium feed in both fast and thermal critical reactors. This evaluation group, designated as EG30, is represented by an example fuel cycle option that employs a two-technology, two-stage fuel cycle system. The first stage involves the continuous recycling of co-extracted U/TRU in Sodium-cooled Fast Reactors (SFRs) with metallic fuel and breeding ratio greater than 1. The second stage involves the use of the surplus TRU in Mixed Oxide (MOX) fuel in Pressurized Water Reactors that are MOX-capable (MOX-PWRs). This paper presents and discusses preliminary fuel cycle analysis results from the fuel cycle codes VISION and DYMOND for the transition to this fuel cycle option from the current once-through cycle in the United States (U.S.) that consists of Light Water Reactors (LWRs) that only use conventional UO 2 fuel. The analyses in this paper are applicable for a constant 100 GWe capacity, roughly the size of the U.S. nuclear fleet. Two main strategies for the transition to EG30 were analyzed: 1) deploying both SFRs and MOX-PWRs in parallel or 2) deploying them in series with the SFR fleet first. With an estimated retirement schedule for the existing LWRs, an assumed reactor lifetime of 60 years, and no growth, the nuclear system fully transitions to the new fuel cycle within 100 years for both strategies without SFR fuel shortages. Compared to the once-through cycle, transition to the SFR/MOX-PWR fleet with continuous recycle was shown to offer significant reductions in uranium consumption and waste disposal requirements. In addition, these initial calculations revealed a few notable modeling and strategy questions regarding how recycled resources are allocated, reactors that can switch between

  14. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  15. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  16. The 'SURA' fast reactor program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  17. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  18. The MOX fuel in France

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly describes the MOX production cycle which is performed in the MELOX plant in Marcoule by AREVA. It briefly indicates the main risks occurring during the whole MOX production and use cycle. They are associated with MOX production (high neutron and gamma dose rates, contamination, criticality, heat release), transportation, its use in reactors, its storage in pools after irradiation. All these stages need radiation protection measures

  19. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  20. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  1. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    International Nuclear Information System (INIS)

    Mertyurek, Ugur; Gauld, Ian C.

    2016-01-01

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  2. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  3. MOX manufacturing perspectives in a fast growing future and the MELOX plant

    International Nuclear Information System (INIS)

    Bekiarian, A.; Le Bastard, G.

    1991-01-01

    The potential MOX fuel market will grow regularly in the nineties. In view of satisfying the needs of the market, mixed-oxide fuel manufacturers have a strong incentive to increase the capacity of existing facilities and to build new ones. The Belgonucleaire plant at Dessel has been in operation since 1973. It has been backfitted up to a capacity of 35 t/y of LWR fuel which is now fully available. To satisfy the need of MOX fuel it was equally decided to adapt facilities in Cadarache where a production line, with a capacity of 15 t/y, is now delivering its production. But planned production up to the end of the century implies further increases in manufacturing capacities : MELOX, a plant for 120 t/y is under construction on the COGEMA site of Marcoule as well as a further expansion of Belgonucleaire plant at Dessel (P1) is studied to reach 70 t/y on this site. Similar developments are also planned by SIEMENS for a new manufacturing capability at Hanau (Germany). MELOX as well as all the new facilities have to get high levels of safety concerning environment and personnel. This leads to largely automated operations, and a particular care for waste treatment. (author)

  4. Electrochemistry in fast reactor technology

    International Nuclear Information System (INIS)

    Mathews, C.K.

    1987-01-01

    Electrochemistry plays a significant role in the production, characterisation or behaviour of the fuel, the coolant and structural materials used in fast reactor systems. The role of electrochemistry in sodium production, in the fuel cycle, in the development of electrochemical meters used for the on-line monitoring of the various impurities at sub ppm levels and in the recovery of plutonium and uranium are discussed. The advantage of voltammmetric techniques in the analysis of impurities and the application of electrochemical meters have been investigated. (author). 5 figs., 15 refs

  5. A review of the UK fast reactor programme. April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bramman, J I [International Relations Department, United Kingdom Atomic Energy Authority, Risley, Warrington (United Kingdom)

    1992-07-01

    Total energy consumption in the UK in 1991 was 351.6 million tones of coal or coal equivalent, an increase of 2.1% on 1990. Nuclear electricity accounted for 19.5% of the total electricity consumption of about 300 TWh. The technical part of the report is principally concerned with progress with the Prototype Fast Reactor (PFR) and its associated fuel reprocessing plant and with some aspects of international cooperation on fast reactors. The total gross electrical generation of PFR for 1991 was 34,767 MWd, equivalent to annual load factor of 41.6%. The principal factor depressing the load factor figure was an ingress of lubricating oil from bearing on primary sodium pump 2 into the primary coolant which led to the station being out of service for six months. Two PFR fuel reprocessing campaigns were undertaken during the year. In the first, 18 subassemblies at burnup levels up to 12%, plus some loose pins from the fuel post-irradiation examination facility, were processed. In the second, a further 7 subassemblies at burnup levels up to 17.3%, plus some more loose pins were dealt with. The cumulative total amount of fuel reprocessed to date is now 17.99 tons of heavy metal, containing 3.17 tonnes of plutonium. The reduction of Government funding to the fast reactor research and development programme since 1989 has led to termination of fuel cycle research and development work. However, valuable information continues to be obtained from operation of the PFR fuel reprocessing plant and its support facilities and from development work on the manufacture of thermal MOX fuel. Information exchanges and cooperative work programmes conducted under the UKAEA's agreements with Japan (PNC and JAERI), the USA (US Department of energy), and the CIS are now coordinated with those of the UKAEA's European Fast Reactor research and development partners.

  6. A review of the UK fast reactor programme. April 1992

    International Nuclear Information System (INIS)

    Bramman, J.I.

    1992-01-01

    Total energy consumption in the UK in 1991 was 351.6 million tones of coal or coal equivalent, an increase of 2.1% on 1990. Nuclear electricity accounted for 19.5% of the total electricity consumption of about 300 TWh. The technical part of the report is principally concerned with progress with the Prototype Fast Reactor (PFR) and its associated fuel reprocessing plant and with some aspects of international cooperation on fast reactors. The total gross electrical generation of PFR for 1991 was 34,767 MWd, equivalent to annual load factor of 41.6%. The principal factor depressing the load factor figure was an ingress of lubricating oil from bearing on primary sodium pump 2 into the primary coolant which led to the station being out of service for six months. Two PFR fuel reprocessing campaigns were undertaken during the year. In the first, 18 subassemblies at burnup levels up to 12%, plus some loose pins from the fuel post-irradiation examination facility, were processed. In the second, a further 7 subassemblies at burnup levels up to 17.3%, plus some more loose pins were dealt with. The cumulative total amount of fuel reprocessed to date is now 17.99 tons of heavy metal, containing 3.17 tonnes of plutonium. The reduction of Government funding to the fast reactor research and development programme since 1989 has led to termination of fuel cycle research and development work. However, valuable information continues to be obtained from operation of the PFR fuel reprocessing plant and its support facilities and from development work on the manufacture of thermal MOX fuel. Information exchanges and cooperative work programmes conducted under the UKAEA's agreements with Japan (PNC and JAERI), the USA (US Department of energy), and the CIS are now coordinated with those of the UKAEA's European Fast Reactor research and development partners

  7. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  8. A review of the UK fast reactor programme. March 1977

    International Nuclear Information System (INIS)

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  9. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  10. International Experience with Fast Reactor Operation & Testing

    International Nuclear Information System (INIS)

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  11. Joint European contribution to phase 5 of the BN600 hybrid reactor benchmark core analysis (European ERANOS formulaire for fast reactor core analysis)

    International Nuclear Information System (INIS)

    Rimpault, G.

    2004-01-01

    Hybrid UOX/MOX fueled core of the BN-600 reactor was endorsed as an international benchmark. BFS-2 critical facility was designed for full size simulation of core and shielding of large fast reactors (up tp 3000 MWe). Wide experimental programme including measurements of criticality, fission rates, rod worths, and SVRE was established. Four BFS-62 critical assemblies have been designed to study changes in BN-600 reactor physics-when moving to a hybrid MOX core. BFS-62-3A assembly is a full scale model of the BN-600 reactor hybrid core. it consists of three regions of UO 2 fuel, axial and radial fertile blankets, MOX fuel added in a ring between MC and OC zones, 120 deg sector of stainless steel reflector included within radial blanket. Joint European contribution to the Phase 5 benchmark analysis was performed by Serco Assurance Winfrith (UK) and CEA Cadarache (France). Analysis was carried out using Version 1.2 of the ERANOS code; and data system for advanced and fast reactor core applications. Nuclear data is based on the JEF2.2 nuclear data evaluation (including sodium). Results for Phase 5 of the BN-600 benchmark have been determined for criticality and SVRE in both diffusion and transport theory. Full details of the results are presented in a paper posted on the IAEA Business Collaborator website nad a brief summary is provided in this paper

  12. Advanced Safeguards Approaches for New Fast Reactors

    International Nuclear Information System (INIS)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  13. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  14. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  15. Japan: The Experimental Fast Reactor JOYO. Profile 12

    International Nuclear Information System (INIS)

    2017-01-01

    The experimental fast reactor JOYO of the Japan Atomic Energy Agency (JAEA) is the first sodium-cooled fast reactor (SFR) in Japan. JOYO attained its initial criticality as a breeder core (MK-I core) in 1977. During the MK-I operation, which consisted of two 50 MWt and six 75 MWt duty cycles, the basic characteristics of plutonium (Pu) and uranium (U) mixed oxide (MOX) fuel core and sodium cooling system were investigated and the breeding performance was verified. In 1983, the reactor increased its thermal output up to 100 MWt in order to start the irradiation tests of fuels and materials to be used mainly for other SFRs. Thirty-five duty cycle operations and many irradiation tests were successfully carried out using the MK-II core by 2000. The core was then modified to the MK-III core in 2003. In order to obtain higher fast neutron flux, the core was modified from one region core to two region core with different Pu fissile contents. Accordingly, the reactor power increased up to 140 MWt together with a renewal of intermediate heat exchangers (IHXs) and dump heat exchangers (DHXs). The rated power operation of the MK-III core started in 2004. The MK-III core has been used for the irradiation tests of fuels and materials for future SFRs and other R&D fields like innovative nuclear energy systems and technologies as well. This powerful neutron irradiation flux has an advantage especially for high burn-up fuel irradiation and material irradiation with high neutron dose. This paper shows the outline of the irradiation irradiation irradiation irradiation irradiation capabilities and capacities to develop capabilities and capacities to develop capabilities and capacities to develop capabilities and capacities to develop innovative nuclear energy systems and technologies.

  16. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  17. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  18. Interfacial effects in fast reactors

    International Nuclear Information System (INIS)

    Saidi, M.S.; Driscoll, M.J.

    1979-05-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed to measure U-238 capture rates near th blanket--reflector interface in the MIT Blanket Test Facility. Prior MIT experiments on a thorium--uranium interface in a blanket assembly were also reanalyzed. Extremely localized fertile capture rate increases of on the order of 50% were measured immediately at the interfaces relative to extrapolation of asymptotic interior traverses, and relative to state-of-the-art (LIB-IV, SPHINX, ANISN/2DB) calculations which employ infinite-medium self-shielding throughout a given zone. A method was developed to compute a spatially varying background scattering cross section per absorber nucleus which takes into account both homogeneous and heterogeneous effects on the interface flux transient

  19. AFCI : Co-extraction impacts on LWR and fast reactor fuel cycles

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Szakalay, F. J.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2007-01-01

    A systematic investigation of the impact of the co-extraction COEXTM process on reactor performance has been performed. The proliferation implication of the process was also evaluated using the critical mass, radioactivity, decay heat and neutron and gamma source rates and gamma doses as indicators. The use of LWR-spent-uranium-based MOX fuel results in a higher initial plutonium content requirement in an LWR MOX core than if natural uranium based MOX fuel is used (by about 1%); the plutonium for both cases is derived from the spent LWR spent fuel. More transuranics are consequently discharged in the spent fuel of the MOX core. The presence of U-236 in the initial fuel was also found to result in higher content of Np-237 in the spent MOX fuel and less consumption of Pu-238 and Am-241 in the MOX core. The higher quantities of Np-237 (factor of 5), Pu-238 (20%) and Am-241 (14%) decrease the effective repository utilization, relative to the use of natural uranium in the PWR MOX core. Additionally, the minor actinides continue to accumulate in the fuel cycle, even if the U-Pu co-extraction products are continuously recycled in the PWR cores, and thus a solution is required for the minor actinides. The utilization of plutonium derived from LWR spent fuel versus weapons-grade plutonium for the startup core of a 1,000 MWT advanced burner fast reactor (ABR) increases the TRU content by about 4%. Differences are negligible for the equilibrium recycle core. The impact of using reactor spent uranium instead of depleted uranium was found to be relatively smaller in the fast reactor (TRU content difference less than 0.4%). The critical masses of the co-extraction products were found to be higher than that of weapons-grade plutonium and the decay heat and radiation sources of the materials (products) were also found to be generally higher than that of weapons-grade plutonium (WG-Pu) in the transuranics content range of 0.1 to 1.0 in the heavy-metal. The magnitude of the

  20. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  1. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  2. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  3. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  4. Economic Issues of Fast Reactor in China

    International Nuclear Information System (INIS)

    Yang Hongyi

    2013-01-01

    Conclusions: 1. More and more fast reactors could be appearing in the world currently and near future. 2. China gets little experience and practice about the economics issues of sodium cooled fast reactors. 3. The economic issues become more and more important for the deplot of fast reactors. Suggestions: 1. An authoritative economic evaluation solution for fast reactor and related fuel cycles facilities is necessary. The solution may be developed by the interested country in order to share the few data, experience and methodology. 2. A new initiative to help to share the economic information for fast reactor and related fuel cycle facilities is necessary. A meeting like TM-44899 organized by the IAEA is very beneficial for this topic and hopefully will continue

  5. Implications of plutonium and americium recycling on MOX fuel fabrication

    International Nuclear Information System (INIS)

    Renard, A.; Pilate, S.; Maldague, Th.; La Fuente, A.; Evrard, G.

    1995-01-01

    The impact of the multiple recycling of plutonium in power reactors on the radiation dose rates is analyzed for the most critical stage in a MOX fuel fabrication plant. The limitation of the number of Pu recycling in light water reactors would rather stem from reactor core physics features. The case of recovering americium with plutonium is also considered and the necessary additions of shielding are evaluated. A comparison between the recycling of Pu in fast reactors and in light water reactors is presented. (author)

  6. Status of fast reactor activities in Russia

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  7. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  8. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  9. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  10. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  11. Fission energy: The integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  12. Fission energy: The integral fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.

  13. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of WWER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual WWER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the WWER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in WWER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from WWER-440 in the fission products. The next step is multi recycling of Pu in the fission products to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (Authors)

  14. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of VVER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual VVER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the VVER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in VVER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from VVER-440 in the FR. The next step is multirecycling of Pu in the FR to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (authors)

  15. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  16. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  17. Power from plutonium: fast reactor fuel

    International Nuclear Information System (INIS)

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  18. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  19. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  20. Some questions and answers concerning fast reactors

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The theme of the lecture is the place of the fast reactor in an evolving nuclear programme. The whole question of plutonium is first considered, ie its method of production and the ways in which it can be used in the fast reactor fuel cycle. Whether fast reactors are necessary is then discussed. Their safety is examined with particular attention to those design features which are most criticised ie high volumetric power density of the core, and the use of liquid sodium as coolant. Attention is then paid to environmental and safeguard aspects. (U.K.)

  1. Fast breeder reactors--lecture 4

    International Nuclear Information System (INIS)

    Marshall, W.; Davies, L.M.

    1986-01-01

    This paper discusses the economics of fast breeder reactors. An algebraic background is presented which represents the various views expressed by different nations regarding the cost of fast breeder reactors and their associated fuel cycle services, the timescale by which they might be available, and the simultaneous variations in the price of uranium. Actual presentations made by individual countries in recent discussions serve to verify the general nature of this present discussion. It is assumed that if nuclear power is to make a long term contribution to the needs of the world, the introduction of fast breeder reactors is both essential and necessary

  2. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  3. Fuel component of electricity generation cost for the BN-800 reactor with 800 MOX fuel and uranium oxide fuel, increased fuel burnup, and removal of radial breeding blanket

    International Nuclear Information System (INIS)

    Raskach, A.

    2000-01-01

    There are two completed design concepts of NPP with BN-800 type reactors developed with due regard for enhanced safety requirements. They have been created for the 3 rd unit of Beloyarsk NPP and for three units of South Ural NPP. Both concepts are proposed to use mixed oxide fuel (MOX) based on civil plutonium. At this moment economical estimations carried out for these projects need to be revised in connection with the changes of economical situation in Russia and the world nuclear market structure. It is also essential to take into account the existing problem of the excess ex-weapons plutonium utilization and the possibility of using this plutonium to fabricate MOX fuel for the BN-800 reactors. (authors)

  4. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  5. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    2009-11-01

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  6. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  7. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  8. Optimal reactor strategy for commercializing fast breeder reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  9. The fast reactor and energy supply

    International Nuclear Information System (INIS)

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  10. Design codes for fast reactor steam generators

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1978-01-01

    The paper reviews the design methods and design criteria which are available for fast reactor structures, and discusses the materials data which are required to demonstrate the integrity of the plant components. (author)

  11. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  12. Review of fast reactor activities in India

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, S R [Reactor Research Centre, Kalpakkam, Tamil Nadu (India)

    1981-05-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties.

  13. Fast reactors - Dounreay and the future

    International Nuclear Information System (INIS)

    Jordan, G.

    1988-01-01

    In 1960 at Dounreay, the Dounreay Fast Reactor (DFR) supplied the world's first fast reactor grid electricity, and went on to a highly successful career as a test facility, as fuel designs advanced. In the 1960s, the Prototype Fast Reactor (PFR) was designed and built, beginning operation in 1974. The PFR was built to provide a sound technical and experienced base to support the UK's future Fast Reactor development and design. The in-vessel fuel handling facilities have demonstrated the flexibility of the pool design and a considerable body of in-core fuel handling experience is available. A key issue for further Fast Reactor application is the performance of fuel and, because PFR was designed to take full-scale fuel assemblies, the fuel performance experience is directly relevant to commercial designs. The original PFR design irradiation target of 60000 MWd/t U (equivalent to 7.5 % burn-up) has already been exceeded by a factor of more than two and a 15.9 % burn-up sub-assembly has been discharged and reprocessed without difficulty. Soon a 20 % sub-assembly will follow. Also the PFR reprocessing plant has demonstrated the safety and efficiency of this essential adjunct to Fast Reactor operation. The safety and the environmental protection features of both the PFR and its fuel reprocessing plant have been demonstrated over the last 14 years. 2 refs., 3 figs

  14. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1981-01-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties

  15. Optimization of multi-group cross sections for fast reactor analysis

    International Nuclear Information System (INIS)

    Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.

    2013-01-01

    The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO 2 -UO 2 with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)

  16. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In accordance with the Long-term Program for Development and Utilization of Nuclear Energy defined by the Japan Atomic Energy Commission (JAEC), Power Reactor and Nuclear Fuel Development Corporation (PNC) is playing the key role in the development of a plutonium utilization system by fast breeder reactor (FBR), which is superior to the uranium utilization system by light water reactor, aiming to achieve future stable long-term energy supply and energy security of Japan. The experimental reactor Joyo, located in the O-arai Engineering Center (OEC) of PNC, has provided abundant experimental data and excellent operational records attaining 43,500 hours operation in total by the end of 1991, since its first criticality in 1977. On the prototype reactor Monju, 97.6% of construction works has already been completed and the function tests are in progress aiming at the initial criticality by the end of FY 1992. As for the demonstration fast breeder reactor (DFBR) of Japan, the Japan Atomic Power Company (JAPC) is promoting design study under the contracts with several leading Japanese fabricators, including Toshiba, Hitachi and Mitsubishi Heavy Industries, for selection of the basic specifications of DFBR. The related research and development (R and D) works are underway at several organizations under the discussion and coordination of the Japanese FBR R and D Steering Committee, which was established by the JAPAC, PNC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). Progress of the design study and the related R and D are reported to the Subcommittee on FBR Development Program of JAEC. Recent major emphases on the PNC R and D are placed on the integrated feedback of all existing R and D results and experiences to the development of demonstration reactor. Furthermore, the overall functional and performance tests of Monju, is another important key role to attain further excellency of FBR technology, with

  17. A review of fast reactor program in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In accordance with the Long-term Program for Development and Utilization of Nuclear Energy defined by the Japan Atomic Energy Commission (JAEC), Power Reactor and Nuclear Fuel Development Corporation (PNC) is playing the key role in the development of a plutonium utilization system by fast breeder reactor (FBR), which is superior to the uranium utilization system by light water reactor, aiming to achieve future stable long-term energy supply and energy security of Japan. The experimental reactor Joyo, located in the O-arai Engineering Center (OEC) of PNC, has provided abundant experimental data and excellent operational records attaining 43,500 hours operation in total by the end of 1991, since its first criticality in 1977. On the prototype reactor Monju, 97.6% of construction works has already been completed and the function tests are in progress aiming at the initial criticality by the end of FY 1992. As for the demonstration fast breeder reactor (DFBR) of Japan, the Japan Atomic Power Company (JAPC) is promoting design study under the contracts with several leading Japanese fabricators, including Toshiba, Hitachi and Mitsubishi Heavy Industries, for selection of the basic specifications of DFBR. The related research and development (R and D) works are underway at several organizations under the discussion and coordination of the Japanese FBR R and D Steering Committee, which was established by the JAPAC, PNC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). Progress of the design study and the related R and D are reported to the Subcommittee on FBR Development Program of JAEC. Recent major emphases on the PNC R and D are placed on the integrated feedback of all existing R and D results and experiences to the development of demonstration reactor. Furthermore, the overall functional and performance tests of Monju, is another important key role to attain further excellency of FBR technology, with

  18. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  19. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  20. A glossary of terms for fast reactors

    International Nuclear Information System (INIS)

    Wheeler, R.C.

    1979-04-01

    The glossary aims to provide definitions of technical terms likely to be used in a fast reactor enquiry and to encourage the use of the same set of consistent terms in any documents intended for such an inquiry. In some cases definitions are formulated in the limited context of LMFBRS rather than applying to all types of reactors. A brief guide is presented to the different reactor types. (author)

  1. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  2. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  3. Review of Fast Reactor Activities, March 1980

    International Nuclear Information System (INIS)

    Balz, W.

    1980-01-01

    As in previous years, a short outline of the major achievements made since the last IWGFR meeting is given in the following. On 18 February 1980 the Council of Ministers has approved a resolution in which they recognise the strategic importance of fast breeder reactors and the need to continue the efforts towards maintaining an effective fast breeder option in the Member States

  4. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  5. Fast reactor research activities in Brazil

    International Nuclear Information System (INIS)

    Menezes, A.

    1998-01-01

    Fast reactor activities in Brazil have the objective of establishing a consistent knowledge basis which can serve as a support for a future transitions to the activities more directly related to design, construction and operation of an experimental fast reactor, although its materialization is still far from being decided. Due to the present economic difficulties and uncertainties, the program is modest and all efforts have been directed towards its consolidation, based on the understanding that this class of reactors will play an important role in the future and Brazil needs to be minimally prepared. The text describes the present status of those activities, emphasizing the main progress made in 1996. (author)

  6. Performance of MOX fuel: An overview of the experimental programme of the OECD Halden Reactor Project and review of selected results

    International Nuclear Information System (INIS)

    Wiesenack, W.; McGrath, M.

    2000-01-01

    The OECD Halden Reactor Project has defined an extensive experimental programme related to MOX fuels which is being executed with the objective to provide a performance data base similar to that available for UO 2 . In addition to utilising fresh MOX fuel and re-instrumented segments from LWR irradiations to high burnup, the concept of inert matrix fuel is being addressed. The irradiation in the Halden reactor is performed in rigs allowing steady state, power ramping and cyclic operation. In-pile data are obtained from instrumentation such as fuel centreline thermocouples, pressure transducers, fuel and cladding elongation detectors, and movable gauges for measuring the diametral deformation. Various phenomena can be assessed in this way, e.g. thermal performance, swelling and densification, PCMI and fission gas release. The paper describes the objectives of various experiments and provides examples of temperature, pressure and cladding elongation measurements performed on MOX fuel. Salient results are related to the threshold for the onset of significant fission gas release and the relaxation behaviour in a power ramp-PCMI situation. (author)

  7. Stationary Liquid Fuel Fast Reactor

    International Nuclear Information System (INIS)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-01-01

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  8. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  9. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  10. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  11. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  12. A worldwide survey of fast breeder reactors

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1986-01-01

    While the completion of the SNR 300 was accompanied by manifold discussions on questions relevant to safety and energy policies in the Federal Republic of Germany and as a result considerable scheduling delays and exceeding of budgets were recorded, breeder reactor technology has been progressing worldwide. The transition from the development phase with small trial reactors to the construction and operation of large performance reactors was completed systematically, in particular in France and the Soviet Union. Even though the uranium supply situation does not make a short-term and comprehensive employment of fast breeder reactors essential, technology has meanwhile been advanced to such a level and extensive operating experience is on hand to enable the construction and safe operation of fast breeder reactors. A positive answer has long been found to the question of the realization of a breeding rate to guarantee the breeding effect. There remain now the endeavors to achieve a reduction in investment and fuel cycle costs. (orig.) [de

  13. Nuclear Burning Wave Modular Fast Reactor Concept

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  14. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    , mainly pressurized heavy water reactors (PHWRs) to .... plug housing 12 absorber rod drive mechanisms is supported on ... state-of-art erection equipments and construction methodologies and .... This decision is taken after.

  15. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  16. Post-accident monitoring systems in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Suriya Murthy, N.; Sivasailanathan, Vidhya; Ananth, Allu; Roy, Kallol

    2018-01-01

    PFBR is a 500 MW(e) MOX fueled and sodium cooled fast reactor (SFR) under advanced stage of commissioning at Kalpakkam. Currently, the main vessel is preheated and sodium has been charged into two secondary loops that are operated in recirculation mode. In order to characterize the radiation field and contamination, the workplace monitoring is undertaken using installed monitors that are commissioned and made operational. This helps to ensure radiological protection during normal operating conditions. On the other hand, radiological monitoring in emergency conditions is quite different. For undertaking the mitigative accident management, a set of specialized nuclear instruments called post-accident monitoring systems (PAMS) which include radiation monitors are stipulated. The Fukushima Daiichi accident emphasized the importance and need for reliable accident monitoring instrumentation to indicate the safety functions during the progression and aftermath of accident in NPP. In PFBR, the PAMS are integrated with other monitoring systems in design stage itself to manage the measurements and indicating the safety functions for implementing EOP and SAMG

  17. Fast reactors and problems in their development. Chapter 6

    International Nuclear Information System (INIS)

    Dombey, N.

    1980-01-01

    The main differences between fast reactors, in particular the liquid-metal fast breeder reactor (LMFBR), and thermal reactors are discussed. The view is taken, based on the intrinsic physics of the systems, that fast reactors should be considered as a different genus from thermal reactors. Some conclusions are drawn for fast reactor development generally and for the British programme in particular. Physics, economics and safety aspects are covered. (U.K.)

  18. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  19. The safety of the fast reactor

    International Nuclear Information System (INIS)

    Matthews, R.R.

    1977-01-01

    Verbatim of an address by R.R. Matthews, Chief Nuclear Health and Safety Officer, UK Central Electricity Generating Board given on January 15th 1977. The object of this address was to give some opinions on the safety issues of fast reactors as seen from an operational point of view. An outline of the basic responsibilities for nuclear safety is first given, and it is emphasized that the Central Electricity Generating Board has a statutory responsibility for the safe operation of its nuclear plant. The Nuclear Installations Act places absolute responsibility on the operator for ensuring that injury to persons and damage to property do not occur, and the new Health and Safety at Work Act does likewise. In addition the Board has a Nuclear Health and Safety Department that has to ensure that adequate provision for safety is made in the design, construction, and operation of nuclear plant, and safety at operational stations is monitored continuously by inspectors. In addition the requirements of the Nuclear Installations Inspectorate, laid down in the site licence conditions, must be satisfied. All these requirements are here discussed in the light of application to commercial fast reactors. It is considered that the hazards to fast reactor operating personnel are small and little different from those of other types of reactor, and in some respects the fast reactor has advantages, particularly in regard to the use of a Na coolant. The possibility of various types of accident is considered. Radioactive effluent discharge is also considered. The fast reactor as an international problem is discussed, including security matters. The extensive experience gained in operation of the experimental and prototype fast reactors at Dounreay is emphasized. (U.K.)

  20. Release of WIMS10: a versatile reactor physics code for thermal and fast systems - 15467

    International Nuclear Information System (INIS)

    Lindley, B.A.; Newton, T.D.; Hosking, J.G.; Smith, P.N.; Powney, D.J.; Tollit, B.; Smith, P.J.

    2015-01-01

    the WIMS code provides a versatile software package for neutronic calculations, which can be applied to all thermal reactor types including mixed moderator systems. It can provide lattice cell and supercell calculations using a range of flux solutions methods to produce the neutronic libraries for use in PANTHER or other whole core analysis codes. With the release of WIMS10, the range of problems which WIMS can solve has been greatly extended. A WIMS/PANTHER calculation route has been developed and validated for part MOX-fuelled PWRs, with calculations showing excellent agreement with 2D core deterministic and Monte Carlo transport solutions. A flexible geometry 3D method of characteristics transport solver, CACTUS3D has been added to the code. CACTUS3D has been benchmarked for a 3D BWR assembly model, and was in good agreement with a direct 172-group solution in the Monte Carlo code MONK. Fast reactor calculations using the ECCO deterministic calculation route have been validated using experimental data from the ZEBRA reactor. Power deposition can be treated through following neutrons and/or photons to their point of interaction. The improved methodology is shown to give more accurate calculation of heat deposition and improve agreement between calculated and measured detector responses for part MOX-fuelled cores. (authors)

  1. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  2. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  3. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  4. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  5. Expert system for fast reactor diagnostic

    International Nuclear Information System (INIS)

    Parcy, J.P.

    1982-09-01

    A general description of expert systems is given. The operation of a fast reactor is reviewed. The expert system to the diagnosis of breakdowns limited to the reactor core. The structure of the system is described: specification of the diagnostics; structure of the data bank and evaluation of the rules; specification of the prediagnostics and evaluation; explanation of the diagnostics; time evolution of the system; comparison with other expert systems. Applications to some cases of faults are finally presented [fr

  6. Fast reactor development programme in France

    Energy Technology Data Exchange (ETDEWEB)

    Le Rigoleur, C [Direction des Reacteurs Nucleaires, CEA Centre d` Etudes de Cadarache, Saint-Paul-lez-Durance (France)

    1998-04-01

    First the general situation regarding production of electricity in France is briefly described. Then in the field of Fast Reactors, the main events of 1996 are presented. At the end of February 1996, the PHENIX reactor was ready for operation. After review meetings, the Safety Authority has requested safety improvements and technical demonstrations, before it examines the possibility of authorizing a new start-up of PHENIX. The year 1996 was devoted to this work. In 1996, SUPERPHENIX was characterized by excellent operation throughout the year. The reactor was restarted at the end of 1995 after a number of minor incidents. The reactor power was increased by successive steps: 30% Pn up to February 6, followed by 50% Pn up to May then 60% up to October and 90% Pn during the last months. A programmed shutdown period occurred during May, June and mid-July 1996. The reactor has been shutdown at the end of 1996 for the decenial control of the steam generators. The status of the CAPRA project, aimed at demonstrating the feasibility of a fast reactor to burn plutonium at as high a rate as possible and the status of the European Fast Reactor are presented as well as their evolution. Finally the R and D in support of the operation of PHENIX and SUPERPHENIX, in support of the ````knowledge-acquisition```` programme, and CAPRA and EFR programmes is presented, as well as the present status of the stage 2 dismantling of the RAPSODIE experimental fast reactor. (author). 4 refs, figs, 2 tabs.

  7. Current status of fast reactor physics

    International Nuclear Information System (INIS)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented

  8. Fast Reactor Knowledge Management at IGCAR, India

    International Nuclear Information System (INIS)

    Kuriakose, K.K.

    2013-01-01

    The Process Architecture: → Acquire: Solicitation; Voluntary submission; Mandatory requirements; Interview/Observation; → Quality Control: Review/Editing; Certification; Quality index; → Disseminate: Publish through the Technology architecture; Formal/Informal Meetings; COPs; → Utilize: Projects; Day-to-day activities; → Maintenance; → Retirement. Mission: To conduct a broad based multidisciplinary programme of scientific research and advanced engineering development, directed towards the establishment of the technology of Sodium Cooled Fast Breeder Reactors (FBR) and associated fuel cycle facilities in the Country. The mission includes the development and applications of new and improved materials, techniques, equipment and systems for FBRs, pursue basic research to achieve breakthroughs in Fast Reactor technology

  9. Slow clean-up for fast reactor

    Science.gov (United States)

    Banks, Michael

    2008-05-01

    The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.

  10. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  11. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  12. MOX use in PWRs. EDF operation experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2011-01-01

    From the origin, EDF back-end fuel cycle strategy has focused on 'closing the fuel cycle', in other words integrating fuel reprocessing, with vitrification of high level waste concentrated within small volumes, and the recycling of valuable materials. The implementation of this policy was marked in 1987 by the first loading of sixteen MOX. By December 2010, 20 reactors have been loaded with 1750 tHM of MOX. EDF current strategy is to match the reprocessing program with MOX manufacturing capacity to limit the quantity of separated plutonium. This is routinely called the 'flow ad-equation' strategy. Currently, the MOX Parity core management achieves balance of MOX and UOX performance with a significant increase of the MOX discharge burn-up. Globally, the behavior under irradiation of MOX fuel assemblies has been satisfactory. So far, from the beginning of MOX use in EDF PWRs, only 6 MOX FAs with rod leakage have been identified, which gives a very satisfactory level of reliability. The industrial maturity of MOX fuel, with increased performances, allows the improvement of nuclear KWh competitiveness and of the plant operation performance, while maintaining in operation the same safety level, without significant impact on environment and radiological protection. (author)

  13. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  14. The behaviour of materials in fast reactors

    International Nuclear Information System (INIS)

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  15. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  16. Development Status on Innovative Sodium-Cooled Fast Reactor (JSFR)

    International Nuclear Information System (INIS)

    Yanagisawa, Tsutomu; Sato, Kazujiro

    2006-01-01

    The first step in Japan's nuclear fuel cycle policy is to introduce MOX recycle in light water reactors (LWRs) and the final step is to establish multiple TRU recycle in fast reactors (FRs), with the goal of realizing a stable supply, effective use of nuclear fuel resources, and the environmentally friendly production of energy. Therefore, a feasibility study on commercialized FR cycle systems has been launched since July 1999 by a Japanese joint project team of Japan Atomic Energy Agency (JAEA) and the Japan Atomic Power Company (JAPC: the representative of the electric utilities) in cooperation with Central Research Institute of Electric Power Industry (CRIEPI) and vendors. In the period from July 1999 to March 2001, the feasibility study phase-I was conducted to screen out representative FR cycle concepts. In the feasibility study phase-II (April 2001 - March 2006), investigations in to the representative FR concepts were carried out to clarify the most promising concept for commercial deployment. This paper describes an innovative sodium-cooled FR, which is named as the JAEA Sodium-cooled FR (JSFR), as the most promising FR concept that meets the Generation-IV performance target. The JSFR employs several advanced technologies, such as an oxide dispersion strengthened (ODS) cladding for higher burn-up, a short-piping configuration with less elbows by adopting high chromium steel, a large scale integrated intermediate heat exchanger with a primary circulation pump, etc. Based on the design, construction and operation experiences of JOYO and MONJU, there are extensive technology bases for sodium-cooled FRs. Nevertheless, several innovative technologies implemented into the JSFR have to be developed in order to realize higher economic competitiveness by reducing construction costs and improving plant availability

  17. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  18. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  19. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  20. The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program

  1. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  2. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  3. Integral data for fast reactors

    International Nuclear Information System (INIS)

    Collins, P.J.; Poenitz, W.P.; McFarlane, H.F.

    1988-01-01

    Requirements at Argonne National Laboratory to establish the best estimates and uncertainties for LMR design parameters have lead to an extensive evaluation of the available critical experiment database. Emphasis has been put upon selection of a wide range of cores, including both benchmark, assemblies covering a range of spectra and compositions and power reactor mock-up assemblies with diverse measured parameters. The integral measurements have been revised, where necessary, using the most recent reference data and a covariance matrix constructed. A sensitivity database has been calculated, embracing all parameters, which enables quantification of the relevance of the integral data to parameters calculated with ENDF/B-V.2 cross sections

  4. Development of MOX fuel database

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    We developed MOX Fuel Database, which included valuable data from several irradiation tests in FUGEN and Halden reactor, for help of LWR MOX use. This database includes the data of fabrication and irradiation, and the results of post-irradiation examinations for seven fuel assemblies, i.e. P06, P2R, E03, E06, E07, E08 and E09, irradiated in FUGEN. The highest pellet peak burn-up reached ∼48GWd/t in MOX fuels, of which the maximum plutonium content was ∼6 wt%, irradiated in E09 fuel assembly without any failure. Also the data from the instrumented MOX fuels irradiated in HBWR to study the irradiation behavior of BWR MOX fuels under the steady state condition (IFA-514/565 and IFA-529), under the load-follow operation condition (IFA-554/555) and under the transit condition (IFA-591) are included in this database. The highest assembly burn-up reached ∼56 GWd/t in IFA-565 steady state irradiation test, and the maximum linear power of MOX fuel rods was 58.3-68.4 kW/m without any failure in IFA-591 ramp test. In addition, valuable instrument data, i.e. cladding elongation, fuel stack elongation, fuel center temperature and rod inner pressure were obtained from IFA-554/555 load-follow test. (author)

  5. Liquid metal fast reactor transient design

    International Nuclear Information System (INIS)

    Horak, C.; Purvis, E. III

    2000-01-01

    An examination has been made of how the currently available computing capabilities could be used to reduce Liquid Metal Fast Reactor design, manufacturing, and construction cost. While the examination focused on computer analyses some other promising means to reduce costs were also examined. (author)

  6. Thermophysical properties of fast reactor fuel

    International Nuclear Information System (INIS)

    Fink, J.K.

    1984-01-01

    This paper identifies the fuel properties for which more data are needed for fast-reactor safety analysis. In addition, a brief review is given of current research on the vapor pressure over liquid UO 2 and (U,PU)O/sub 2-x/, the solid-solid phase transition in actinide oxides, and the thermal conductivity of molten urania

  7. Charging machine for a fast production reactor

    International Nuclear Information System (INIS)

    Artem'ev, L.N.; Kurilkin, V.V.

    1971-01-01

    Charging machine for a fast production reactor is described. The machine contains charging mechanism, mechanism for positioning fresh fuel and spent fuel assemtlies, storage drums with sockets for control rod assemtlies and collet tongs for control rods. Recharging is conducted by means of ramp channel

  8. Fast breeder reactor at Kalkar. Pt. 2

    International Nuclear Information System (INIS)

    Degen, G.

    1979-02-01

    After a brief description of the previous development of the case the legal decisions are documented and commented on. The concept of the then FDP-Minister of Economy of North Rhine Westphalia (Riemer, Pu-combustion plant) is presented and the prospects and risk for the fast breeder reactor after the 3. partial construction license are discussed. (orig./HP) [de

  9. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  10. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  11. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  12. The development of fast reactors in France

    International Nuclear Information System (INIS)

    Vautrey, L.

    1982-01-01

    Only minor changes were introduced in the French nuclear programme by the new government in 1981. The operating conditions of Rapsodie were very satisfactory up to January 1982. After a leak in the double primary jacket (nitrogen circuit) the reactor was shut down for investigations. Phenix is continuing to operate smoothly. Construction of Super Phenix (Creys Malville power plant) is proceeding normally though with some delay. The studies for the future (after Creys Malville) are following their way both for the Project 1500 (Super Phenix 2) and for the specific plants of the fuel cycle. Research and development are largely directed toward Super Phenix 1 needs and the prospects of Super Phenix 2. International cooperation remains very intensive. The financial resources devoted to the development of fast reactors are globally stable. Including fuel cycle and safety (but excluding the Phenix operation) about 1300 millions of francs will be devoted to fast reactors by the C.E.A. in 1982. (author)

  13. Status of fast reactor activities in Brazil

    International Nuclear Information System (INIS)

    Menezes, Artur

    1996-01-01

    This text describes the present status of fast reactor activities in Brazil, emphasizing the strategies being used to preserve this reactor concept as a viable alternative for future electricity generation in the country. The program is mostly research-oriented and has the objective of establishing a consistent knowledge basis which can serve as a support for the transition to the activities more directly related to design, construction and operation of an experimental fast reactor. Due to the present economic difficulties, the program is still modest but it is gradually growing. A report which has been finalized in December, 1995 and submitted to the authorities indicates the existence of the grounds for enlarging and consolidating the program. (author)

  14. Nuclear data for advanced fast reactors

    International Nuclear Information System (INIS)

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  15. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  16. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  17. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  18. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  19. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  20. Scenario for commercialization of fast breeder reactors

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Sato, Morihiko

    1989-01-01

    To realize the commercialization of fast breeder reactors (FBRs), it is essential to reduce construction costs to the same level as those for the current light water reactors. For this target to be attained, a highly important factor is to reduce to the lowest-levels possible the quantities of materials and volume of the buildings required for the primary and secondary sodium loops of the FBR. In this direction, an innovative compact FBR plant concept which holds promise for commercialization has been developed by introducing the pooltype reactor concept with the shortest possible secondary sodium loops, realized by coupling electromagnetic pumps with the steam generators. In comparison with the French Super Phenix reactor, for example, the construction of this 1,300-MWe FBR plant could be achieved with half the material quantities and plant volume required by the former type. (author)

  1. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  2. Conceptual design of reactor assembly of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  3. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  4. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  5. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  6. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  7. Improvement the value of sodium void reactivity effect of the fast neutron reactor by the instrumentality of the Monte Carlo code

    OpenAIRE

    P.A. Maslov; V.I. Matveev; I.V. Malysheva

    2015-01-01

    To fulfill safety of fast sodium reactors in a beyond design-basis accident (BDBA) like unprotected loss of flow accident (ULOF), the sodium void reactivity effect (SVRE) should be close to zero. Its value depends on the fuel burnup – the higher burnup the higher value of SVRE. We analyze limitation of the fuel burnup in the core of a large sodium reactor imposed by SVRE. The model of a large sodium-cooled reactor core is chosen for analysis. Two fuel types are considered – MOX and nitride...

  8. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  9. Integral fast reactor shows its mettle

    International Nuclear Information System (INIS)

    Chang, Ya.; Lajnberri, M.; Barris, L.; Uoters, L.

    1988-01-01

    The main aspects of the problem of developing a closed fuel cycle at a NPP built in the so-called integrated version when a fast reactor and the plant for spent fuel regeneration and fuel element production are located in the same site (IFR project), are considered. The technologies of U-Pu-Zr alloy fuel reprocessing and production based on high-temperature metallurgical process and the method of casting under pressure are described. The demonstration of practical feasibility of the fuel cycle on the basis of the IFR reactor is planned for 1990

  10. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  11. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  12. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  13. EDF research on fast neutron reactors

    International Nuclear Information System (INIS)

    In order to make possible the calculation of the temperatures of the sodium, of the sheath and of the fuel in fast reactor assemblies, taking into account the mixing phenomena induced by the helicoidal wires, two design codes have been developed. Those codes have then been adapted for their integration in the Superalcyon system. This system shall constitute the reference tool for the development of those codes that shall manage Phenix, and other reactors of the family. Cooling accidents, thermohydraulic studies, and steam generator studies are also in progress

  14. Fuel management codes for fast reactors

    International Nuclear Information System (INIS)

    Sicard, B.; Coulon, P.; Mougniot, J.C.; Gouriou, A.; Pontier, M.; Skok, J.; Carnoy, M.; Martin, J.

    The CAPHE code is used for managing and following up fuel subassemblies in the Phenix fast neutron reactor; the principal experimental results obtained since this reactor was commissioned are analyzed with this code. They are mainly concerned with following up fuel subassembly powers and core reactivity variations observed up to the beginning of the fifth Phenix working cycle (3/75). Characteristics of Phenix irradiated fuel subassemblies calculated by the CAPHE code are detailed as at April 1, 1975 (burn-up steel damage)

  15. Liquid metal cooled experimental fast reactor simulator

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  16. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  17. A review of the UK fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Picker, C [AEA Technolgy plc, Risley, Warrington, Cheshire (United Kingdom); Ainsworth, K F [British Nuclear Fuels plc, Sellafield, Cumbria (United Kingdom)

    1996-07-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  18. Material choices for the commercial fast reactor steam generators

    International Nuclear Information System (INIS)

    Willby, C.; Walters, J.

    1978-01-01

    Experience with fast reactor steam generators has shown them to be critical components in achieving a high availability. This paper presents the designers views on the use of ferritic materials for steam generators and describes the proposed design of the steam generators for the Commercial Fast Reactor (CFR), prototype of which are to be inserted in the Prototype Fast Reactor at Dounreay. (author)

  19. The fast reactor and electricity supply, a utility view

    International Nuclear Information System (INIS)

    Wright, J.K.; Hall, R.S.; Kemmish, W.B.; Thorne, R.T.

    1982-01-01

    The significance of the fast reactor is discussed from the viewpoint of the Central Electricity Generating Board. The need for the fast reactor and a possible timescale for its introduction are examined. It is emphasised that demonstration of the commercial and environmental acceptability of the fuel cycle will be needed before any commitment can be made to fast reactors. (U.K.)

  20. What is the future for fast reactor technology?

    International Nuclear Information System (INIS)

    Kraev, Kamen

    2017-01-01

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  1. What is the future for fast reactor technology?

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, Brussels (Belgium). The Independent Global Nuclear News Agency

    2017-08-15

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  2. Review of fast reactor activities in India (1982-83)

    International Nuclear Information System (INIS)

    Paranjpe, S.R.

    1983-01-01

    A review of fast reactor activities in India in 1982-1983 is given. One stage of construction of Fast Breeder Test Reactor (FBTR) is briefly described. The emphasis is on design studies for the 500 MWe Prototype Fast Breeder Reactor (PFBR). The main features of this design are introduced

  3. Fast reactor versions: elements of choice

    International Nuclear Information System (INIS)

    Tassart, J.; Zerbib, J.C.

    1984-01-01

    This paper has the objective of explaining in detail the economical, political, social and technical elements on which the CFDT (French Trade Union) bases its opposition to the commercial development of the version of fast reactors. An examination of the different choices which were investigated does not point to any legitimate grounds for this choice. What has to be done is to present the facts which enable the greatest possible number of workers or civilians to take up a position on the choices concerning them. A technical comparison of the fast neutron reactor with those operating at present is put forward (France and United Kingdom). It covers the different radioactive waste products and the results of the individual and collective monitoring of the workmen [fr

  4. 3 Investment Scenarios for Fast Reactors

    International Nuclear Information System (INIS)

    Shoai Tehrani, Bianka; Da Costa, Pascal

    2013-01-01

    Results: • 4 families of scenarios: – In each of them, 3 options for national nuclear policy → 12 scenarios; – 3 favorable to FRs: - “climate constraint” with strong pro-nuclear policy - “climate constraint” with moderate pro-nuclear policy - “totally green” with strong pro-nuclear policy. • Business As Usual is not favorable to Fast Reactors; Fast reactors deployment: - Needs strong climate policy - Is viable in case of important renewable progress as long as climate policy is strong. International perspective: • Results are valid for Europe, other drivers being likely to be more important in other countries : high growth and demand (Asia); • With strong contrasts between European countries. Further research: • Finer modeling of drivers with unclear influence (clustered and excluded variables): Influence of weak signals

  5. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  6. Recent prospects of MOX fuel and strategy about nuclear fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1991-04-01

    It is clearly described what is the preliminary adequate strategic concern for different nuclear power countries under different nuclear power development conditions. It is also stressed on the basic situation of the design technology, manufacture technology, operation experiences and quantitative economic analysis for MOX fuel application since fast breed reactor commercialization has been delayed. The author specially proposed that in a short term China should adopt an intermediate storage strategy matched with the construction of a pilot reprocessing plant to prepare the technical basis for commercialized reprocessing plant later on and to follow the development of MOX fuel technology

  7. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  8. Non-electric Applications of Fast Reactors

    International Nuclear Information System (INIS)

    Safa, Henri; Borgard, Jean-Marc

    2013-01-01

    Conclusions: → Most of industrial applications (80%) require low temperature heat below 540°C; → Fast Reactors are technically suitable to provide industrial steam at temperatures not accessible by standard LWRs; → As an illustrative example, the application at an oil refinery site has been studied showing the economic benefits; → Nuclear Cogeneration enhances the overall energy efficiency of the power plant; • Nuclear Cogeneration allows massive cut in CO 2 emissions

  9. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  10. An evaluation of fast reactor blankets

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  11. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  12. Some aspects of fast reactor economics

    International Nuclear Information System (INIS)

    Kazachkovskij, O.D.

    1996-01-01

    Expedient approach to evaluation of economic efficiency of fast reactors is discussed. It is concluded that determination of electric power generation cost should be based on the fact, that plutonium cost is dictated only by expenses for its extraction from the spent fuel. The cost of the first critical load is not included into capital investments, and investment charges should be sufficiently lower, than standard ones. 5 refs

  13. Thermal baffle for fast-breeder reactor

    International Nuclear Information System (INIS)

    Rylatt, J.A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel. 3 claims, 2 figures

  14. Sensitivity and optimization studies on plutonium vector variations for a plutonium burning fast reactor

    International Nuclear Information System (INIS)

    Hunter, Stuart N.

    2000-01-01

    Sensitivity studies were carried out on a 600 MW(e) Pu burning fast reactor, to determine the effects of changing Pu vector and the core design changes needed to adapt to a varying Pu vector. The applicability to Pu burner cores of models developed for breeder reactors was examined. The high flexibility of a fast reactor core for Pu burning was demonstrated by an optimization study to show the feasibility of using a single reactor design with Pu vectors varying from highly enriched (military) Pu to degraded Pu produced by multiple recycling. With fuel limited to MOX (∼45% Pu) and a single sub-assembly geometry for all grades of Pu, effective compensation for changes in Pu vector was achieved by replacing fuel with diluent material. The most suitable diluent had two components-absorber ( 10 B 4 C) and a moderator or neutron-transparent material (ZrH was most effective)-this gave an additional degree of freedom for optimizing safety-related core parameters. Where pin power ratings were high, hollow pellets introducing void as diluent were effective. Calculations demonstrated a possibility of flux distortions and anomalous rating distributions; these were a consequence of significant moderation of the flux in combination with the interaction between the core and the above/below core structures in the absence of breeder blankets. (author)

  15. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  16. The integral fast reactor - an overview

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Hannum, W.H.

    1997-01-01

    The Integral Fast Reactor (IFR) is a system that consists of a fast-spectrum nuclear reactor that uses metallic fuel and liquid-metal (sodium) cooling, coupled with technology for high-temperature electrochemical recycling, and with processes for preparing wastes for disposition. The concept is based on decades of experience with fast reactors, adapted to priorities that have evolved markedly from those of the early days of nuclear power. It has four essential, distinguishing features: efficient use of natural resources, inherent safety characteristics, reduced burdens of nuclear waste, and unique proliferation resistance. These fundamental characteristics offer benefits in economics and environmental protection. The fuel cycle never involves separated plutonium, immediately simplifying the safeguarding task. Initiated in 1984 in response to proliferation concerns identified in the International Nuclear Fuel Cycle Evaluation (INFCE, 1980), the project has made substantial technical progress, with new potential applications coming to light as nuclear weapons stockpiles are reduced and concerns about waste disposal increase. A breakthrough technology, the IFR has the characteristics necessary for the next nuclear age. (author)

  17. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  18. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  19. Risk Management for Sodium Fast Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  20. Today's attitudes and future prospects of fast reactors in Italy

    International Nuclear Information System (INIS)

    Barabaschi, S.; Cicognani, G.; Pierantoni, F.

    1982-01-01

    The Italian fast reactor programme is reviewed. The 15 year collaboration with France has resulted in the construction of the PEC reactor, development of the Superphenix-1 and a common R and D programme for future large fast reactors. The CNEN 4th five year (1980-84) plan is outlined. The budget breakdown for different areas shows the importance attached to the fast reactor. (U.K.)

  1. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  2. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  3. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  4. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  5. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1994-01-01

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 ± 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF

  6. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  7. A review of the UK fast reactor programme, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  8. Status of the DEBENE fast breeder reactor development, March 1979

    International Nuclear Information System (INIS)

    Daeunert, U.; Kessler, G.

    1979-01-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests

  9. Status of the DEBENE fast breeder reactor development, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Daeunert, U; Kessler, G

    1979-07-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests.

  10. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  11. Fast Reactor Programme. Third Quarter 1969. Progress Report

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1970-02-01

    The RCN research programme on fast spectrum nuclear reactors comprises reactor physics, fuel performance, radiation damage in canning materials, corrosion behaviour in canning materials, aerosol research and heat transfer and hydraulics. An overview is given of the fast reactor experiments at the STEK critical facility in Petten, the Netherlands, in the third quarter of 1969

  12. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  13. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  14. The economics of fast breeder reactors

    International Nuclear Information System (INIS)

    Rapin, M.

    1990-01-01

    The overall status of the fast breeder reactor (FBR) system is periodically reviewed in France. In 1983, a report was prepared on the status and prospects of the FBR system at the request of the then Minister of Industry. Five years later, Electricite de France (EdF) and the French Atomic Energy Commission (CEA) jointly updated this report. The FBR reactor system economic considerations mentioned here are taken from the work performed in 1987-88 for this updating. The position in 1983 is reviewed to highlight concrete developments. Developments that have occurred since then are presented, along with the prospects that today enable us to define better the technical and economic potential of the FBR system. In conclusion, the effects of these findings on desirable directions are discussed, in particular with regard to European FBR cooperation. (author)

  15. Gas cooled fast reactor research in Europe

    International Nuclear Information System (INIS)

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2011-01-01

    Research on the gas-cooled fast reactor system is directed towards fulfilling the ambitious long term goals of Generation IV (Gen IV), i.e., to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. In common with other fast reactors, gas-cooled fast reactors (GFRs) have exceptional potential as sustainable energy sources, for both the utilisation of fissile material and minimisation of nuclear waste through transmutation of minor actinides. The primary goal of GFR research is to develop the system primarily to be a reliable and economic electricity generator, with good safety and sustainability characteristics. However, for the longer term, GFR retains the potential for hydrogen production and other process heat applications facilitated through a high core outlet temperature which, in this case, is not limited by the characteristics of the coolant. In this respect, GFR can inherit the non-electricity applications of the thermal HTRs in a sustainable manner in a future in which natural uranium becomes scarce. GFR research within Europe is performed directly by those states who have signed the 'System Arrangement' document within the Generation IV International Forum (the GIF), specifically France and Switzerland and Euratom. Importantly, Euratom provides a route by which researchers in other European states, and other non-European affiliates, can contribute to the work of the GIF, even when these states are not signatories to the GFR System Arrangement in their own right. This paper is written from the perspective of Euratom's involvement in research on the GFR system, starting with the 5th Framework Programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). The evolution of the GFR concept from the 1960s onwards is discussed briefly, followed by the current perceived role, objectives and progress with

  16. Safe Management Of Fast Reactors: Towards Sustainability

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2015-01-01

    An interdisciplinary systemic approach to socio-technical optimization of nuclear energy management is proposed, by recognizing a) the rising requirements to nuclear safety being realized using fast reactors (FR), b) the actuality to maintain and educate qualified workforce for fast reactors, c) the reactor safety and public awareness as the keystones for improving attitude to implement novel reactors. Knowledge management and informational support firstly is needed in: 1) technical issues: a) nuclear energy safety and reliability, b) to develop safe and economic technologies; 2) societal issues: a) general nuclear awareness, b) personnel education and training, c) reliable staff renascence, public education, stakeholder involvement, e).risk management. The key methodology - the principles being capable to manage knowledge and information issues: 1) a self-organization concept, 2) the principle of the requisite variety. As a primary source of growth of internal variety is considered information and knowledge. Following questions are analyzed indicating the ways of further development: a) threats in peaceful use of nuclear energy, b) basic features of nuclear risks, including terrorism, c) human resource development: basic tasks and instruments, d) safety improvements in technologies, e) advanced research and nuclear awareness improvement There is shown: public education, social learning and the use of mass media are efficient mechanisms forming a knowledge-creating community thereby reasoning to facilitate solution of key socio-technical nuclear issues: a) public acceptance of novel nuclear objects, b) promotion of adequate risk perception, and c) elevation of nuclear safety level and adequate risk management resulting in energetic and ecological sustainability. (author)

  17. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  18. GENIUS & the Swedish Fast Reactor programme

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2012-01-01

    Concluding remarks: Sweden’s growing fast reactor programme focuses on LFR technology, but we also participate in ASTRID. • An innovative facility for UN fabrication, an LBE thermal hydraulics loop and a lead corrosion facility are operational. • A plutonium fuel fabrication lab is is under installation (this week!) • The government is assessing the construction of ELECTRA-FCC, a centre for Gen IV-system R&D, at a tentative cost of ~ 140±20 M€. • Location: Oskarshamn (adjacent to intermediate repository) • Date of criticality: 2023 (best case) • Swedish participation in IAEA TWG-FR should intensify

  19. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  20. Heterogeneous cores for fast breeder reactor

    International Nuclear Information System (INIS)

    Schroeder, R.; Spenke, H.

    1980-01-01

    Firstly, the motivation for heterogeneous cores is discussed. This is followed by an outline of two reactor designs, both of which are variants of the combined ring and island core. These designs are presented by means of figures and detailed tables. Subsequently, a description of two international projects at fast critical zero energy facilities is given. Both of them support the nuclear design of heterogeneous cores. In addition to a survey of these projects, a typical experiment is discussed: the measurement of rate distributions. (orig.) [de

  1. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  2. Nuclear fuel assembly for fast neutron reactors

    International Nuclear Information System (INIS)

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  3. The Argentine-Brazilian fast reactor programme

    International Nuclear Information System (INIS)

    Gho, C.J.; Mauricio, A.

    1989-01-01

    This paper summarizes the Argentine-Brazilian Fast Reactor Programme and gives reasons for the decision of a binational venture. The work carried out by both countries is described, showing how they complement each other, with the corresponding saving of resources. The main objectives of the Programme and tentative schedules in three progressing integrating stages are given and the present nuclear know-how in each country is identified as a good starting point. The paper also gives some details regarding the economical and human resources involved. (author). 1 graph

  4. Accident analysis for US fast burst reactors

    International Nuclear Information System (INIS)

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-01-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards

  5. Reprocessing of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Bourgeois, M.

    1981-05-01

    A PUREX process specially adapted to fast neutron reactor fuels is employed. The results obtained indicate that the aqueous process can be applied to this type of fuel: almost 10 years operation at the AT 1 plant which processes fuel from RAPSODIE; the good results obtained at the MARCOULE pilot plant on large batches of reference fuels. The CEA is continuing its work to transfer this technology onto an industrial scale. Industrial prototypes and the launching of the TOR (traitement d'oxydes rapides) project will facilitate this transfer. In 1984, it is expected that fast fuels will be able to be processed on a significant scale and that supplementary R and D facilities will be available [fr

  6. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  7. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  8. Review of fast reactor activities in Italy, April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Pierantoni, F [CNEN Fast Reactor Programme, Bologna (Italy)

    1978-07-01

    In summary, the Italian fast reactor programme was developing in the following directions: PEC reactor, SUPEPHENIX reactor and long-term research and development work. Research was related to sodium technology, steam generators development, pumps, tests on mechanics and thermal insulation, core fluid dynamics, noise analysis, studies of oxide and carbide fuels, reactor safety, CABRI and SCARABEE experiments.

  9. Review of fast reactor activities in Italy, April 1978

    International Nuclear Information System (INIS)

    Pierantoni, F.

    1978-01-01

    In summary, the Italian fast reactor programme was developing in the following directions: PEC reactor, SUPEPHENIX reactor and long-term research and development work. Research was related to sodium technology, steam generators development, pumps, tests on mechanics and thermal insulation, core fluid dynamics, noise analysis, studies of oxide and carbide fuels, reactor safety, CABRI and SCARABEE experiments

  10. ETDR, The European Union's Experimental Gas-Cooled Fast Reactor Project

    International Nuclear Information System (INIS)

    Poette, Christian; Brun-Magaud, Valerie; Morin, Franck; Dor, Isabelle; Pignatel, Jean-Francois; Bertrand, Frederic; Stainsby, Richard; Pelloni, Sandro; Every, Denis; Da Cruz, Dirceu

    2008-01-01

    In the Gas-Cooled Fast Reactor (GFR) development plan, the Experimental Technology Demonstration Reactor (ETDR) is the first necessary step towards the electricity generating prototype GFR. It is a low power (∼50 MWth) Helium cooled fast reactor. The pre-conceptual design of the ETDR is shared between European partners through the GCFR Specifically Targeted Research Project (STREP) within the European Commission's 6. R and D Framework Program. After recalling the place of ETDR in the GFR development plan, the main reactor objectives, the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: - Sub-assembly technology for the starting core (pin bundle with MOX fuel and stainless steel cladding). - The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the starting core. - Starting Core reactivity management studies model including experimental GFR sub-assemblies. - Neutron and radiation shielding calculations using a specific MCNP model. The model allows evaluation of the neutron doses for the vessel and internals and radiation doses for maintenance operations. - System design and safety considerations, with a reactor architecture largely influenced by the Decay Heat Removal strategy (DHR) for de-pressurized accidents. The design of the reactor raises a number of issues in terms of fuel, neutronics, thermal-hydraulics codes qualification as well as critical components (blowers, IHX, thermal barriers) qualification. An overview of the R and D development on codes and technology qualification program is presented. Finally, the status of international collaborations and their perspectives for the ETDR are mentioned. (authors)

  11. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  12. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Dones, R.; Hudina, M.; Pelloni, S.

    1996-01-01

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  13. A small modular fast reactor as starting point for industrial deployment of fast reactors

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Lo Pinto, Pierre; Konomura, Mamoru

    2006-01-01

    The current commercial reactors based on light water technology provide 17% of the electricity worldwide owing to their reliability, safety and competitive economics. In the near term, next generation reactors are expected to be evolutionary type, taking benefits of extensive LWR experience feedbacks and further improved economics and safety provisions. For the long term, however, sustainable energy production will be required due to continuous increase of the human activities, environmental concerns such as greenhouse effect and the need of alternatives to fossil fuels as long term energy resources. Therefore, future generation commercial reactors should meet some criteria of sustainability that the current generation cannot fully satisfy. In addition to the current objectives of economics and safety, waste management, resource extension and public acceptance become other major objectives among the sustainability criteria. From this perspective, two questions can be raised: what reactor type can meet the sustainability criteria, and how to proceed to an effective deployment in harmony with the high reliability and availability of the current nuclear reactor fleet. There seems to be an international consensus that the fast spectrum reactor, notably the sodium-cooled system is most promising to meet all of the long term sustainability criteria. As for the latter, we propose a small modular fast reactor project could become a base to prepare the industrial infrastructure. The paper has the following contents: - Introduction; - SMFR project; - Core design; - Supercritical CO 2 Brayton cycle; - Near-term reference plant; - Advanced designs; - Conclusions. To summarize, the sodium-cooled fast reactor is currently recognized as the technology of choice for the long term nuclear energy expansion, but some research and development are required to optimize and validate advanced design solutions. A small modular fast reactor can satisfy some existing near-term market niche

  14. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  15. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment

  16. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  17. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    1988-11-01

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  18. Seminar on Heat-transfer fluids for fast neutron reactors

    International Nuclear Information System (INIS)

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  19. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  20. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  1. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  2. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  3. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  4. Core characteristics of fast reactor cycle with simple dry pyrochemical processing

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2008-01-01

    Fast reactor core concept and core nuclear characteristics are studied for the application of the simple dry pyrochemical processing for fast reactor mixed oxide spent fuels, that is, the Compound Process Fuel Cycle, large FR core with of loaded fuels are recycled by the simple dry pyrochemical processing. Results of the core nuclear analyses show that it is possible to recycle FR spent fuel once and to have 1.01 of breeding ratio without radial blanket region. The comparison is made among three kinds of recycle fuels, LWR UO 2 spent fuel, LWR MOX spent fuel, and FR spent fuel. The recycle fuels reach an equilibrium state after recycles regardless of their starting heavy metal compositions, and the recycled FR fuel has the lowest radio-activity and the same level of heat generation among the recycle fuels. Therefore, the compound process fuel cycle has flexibility to recycle both LWR spent fuel and FR spent fuel. The concept has a possibility of enhancement of nuclear non-proliferation and process simplification of fuel cycle. (author)

  5. Fast reactor knowledge preservation system: Taxonomy and basic requirements

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA has taken the initiative to coordinate efforts of Member States in the preservation of knowledge in the area of fast reactors. In the framework of this initiative, the IAEA intends to create an international database compiling information from different Member States on fast reactors through a web portal. Other activities related to this initiative are being designed to accumulate and exchange information on the fast reactor area, to facilitate access to this information by users in different countries and to assist Member States in preserving the experience gained in their countries. The purpose of this publication is to develop a taxonomy of the Fast Reactor Knowledge Preservation System (FRKPS) that will facilitate the preservation of the world's fast reactor knowledge base, to identify basic requirements of this taxonomy on the basis of the experience gained in the fast reactor area, as well as results of previous IAEA activities on fast reactor knowledge preservation. The need for such taxonomy arises from the fact that during the past 15 years there has been stagnation in the development of fast reactors in the industrialized countries that were involved, earlier, in intensive development of this area. All studies on fast reactors have been stopped in countries such as Germany, Italy, the United Kingdom and the United States of America and the only work being carried out is related to the decommissioning of fast reactors. Many specialists who were involved in the studies and development work in this area in these countries have already retired or are close to retirement. In countries such as France, Japan and the Russian Federation that are still actively pursuing the evolution of fast reactor technology, the situation is aggravated by the lack of young scientists and engineers moving into this branch of nuclear power

  6. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  7. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  8. Improvement of covariance data for fast reactors

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Hasegawa, Akira

    2000-02-01

    We estimated covariances of the JENDL-3.2 data on the nuclides and reactions needed to analyze fast-reactor cores for the past three years, and produced covariance files. The present work was undertaken to re-examine the covariance files and to make some improvements. The covariances improved are the ones for the inelastic scattering cross section of 16 O, the total cross section of 23 Na, the fission cross section of 235 U, the capture cross section of 238 U, and the resolved resonance parameters for 238 U. Moreover, the covariances of 233 U data were newly estimated by the present work. The covariances obtained were compiled in the ENDF-6 format. (author)

  9. Trial visualization of fast reactor design knowledge

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Minami, Masaki; Takahashi, Tadao

    2011-01-01

    In design problems of large-scale systems like fast breeder reactors, inter-relations among design specifications are very important where a selected specification option is transferred to other specification selections as a premise to be taken account in engineering judgments. These inter-relations are also important in design case studies with the hypothetical adoption of rejected design options for the evaluation of deviation propagations among design specifications. Some of these rejected options have potential worth for future reconsideration by some circumstance changes (e.g., advanced simulations to exclude needs for mock-up tests, etc.), to contribute to flexibility in system designs. In this study, a computer software is built to visualize a design problem structure by representing engineering knowledge nodes on individual specification selections along with inter-relations of design specifications, to validate the knowledge representation method and to derive open problems. (author)

  10. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  11. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  12. Advanced sodium fast reactor accident source terms :

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  13. Plant experience of experimental fast reactor 'Joyo'

    International Nuclear Information System (INIS)

    1982-01-01

    The experimental fast reactor ''JOYO'' installed in Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan completed its operation using the first core (called MK-I core) in December, 1981, and the works to transfer to MK-2 core have been performed since January, 1982. In this report, the experiences obtained through the construction, test and operation of ''JOYO'' over 12 years from the start of erection in 1970 to the termination of operation in 1981 are described. The contents of the report are divided into design, construction, the outline of facilities, testing, operating and maintenance experiences, and the topics on MK-I operation. As for the construction, the design changes performed before the start of manufacture or construction and the improvement and trouble restoring works implemented at the start of overall functional tests are reported. As for testing, overall functional tests, criticality test, low power test and power increasing test are described in detail. The number of test items of overall functional testing reached 266. The rated output operation of the reactor at 75 MW was performed six times in 1980 and 1981 until the termination of operation. No fuel failure was detected in MK-I operation, and the stable operation performance of the FBR was proved through MK-I operation. The topics on the MK-I operation includes natural circulation test, the measurement of total leakage rate for the containment vessel, and wear-marks which are the trace of wear due to the contact of fuel pins with the wires wound around the adjacent fuel pins, found in the post irradiation examination of fuel. (Wakatsuki, Y.)

  14. Actinide burning in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  15. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  16. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  17. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  18. The problems of thermohydraulics of prospective fast reactor concepts

    International Nuclear Information System (INIS)

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  19. A review of fast reactor progress in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tomabechi, K [Power Reactor and Nuclear Fuel Development Corporation, Tokyo (Japan)

    1978-07-01

    The fast reactor development project in Japan is continuing at a slightly increased scale of effort in budget. The total budget for LMFBR development for fiscal year 1978 was 24 billion yen. In August 1977 major industries engaged in LMFBR have set up an office where design work can be jointly conducted. Highlights and topics of the fast reactor development activities cover description of JOYO reactor, its first criticality experiment, and the prototype fast breeder MONJU. Research and development programmes dealt with fission products release and its possible interaction with the soodium coolant, inspection of reactor components, experiments simulating sodium leakage, development of steam generator.

  20. Investigation of zero-release cycle using fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The task force was organized for the main purpose of offering quantitative basic data to the study group on nuclear fuel cycle in February, 1997. The effect of so-called frontier technologies such as the isotope separation by laser method, the FP annihilation with electron beam accelerators and so on in the FBR cycle based on MOX fuel and PUREX reprocessing method was expected. It is aimed at to recycle the total amount of minor actinides. The object of recycling is the nuclides which contribute largely to toxicity, namely 11 elements, 12 nuclides. The preconditions and the target to be attained of the investigation are explained. As the results of investigation, the amount of reloading MA and FP into a reactor, squeezing the recycling scenario, the effect of reducing toxicity and the subject of the countermeasures to the nuclides with long half-life which cannot be reloaded are reported. As the technical evaluation required for realizing the concept, the concept of the core which excludes recriticality, the advance of reprocessing technology, isotope separation, the fabrication into the optimal form for recycling and so on are discussed. The economical efficiency of the recycling based on MOX and PUREX and the proposal of the development scenario are described. (K.I.)

  1. Simulating the Behaviour of the Fast Reactor Joyo (Draft)

    International Nuclear Information System (INIS)

    Juutilainen, Pauli

    2008-01-01

    Motivated by the development of fast reactors the behaviour of the Japanese experimental fast reactor Joyo is simulated with two Monte Carlo codes: Monte Carlo NParticle (MCNP) and Probabilistic Scattering Game (PSG). The simulations are based on the benchmark study 'Japan's Experimental Fast Reactor Joyo MKI core: Sodium-Cooled Uranium-Plutonium Mixed Oxide Fueled Fast Core Surrounded by UO 2 Blanket'. The study is focused on the criticality of the reactor, control rod worth, sodium void reactivity and isothermal temperature coefficient of the reactor. These features are calculated by applying both homogeneous and heterogeneous reactor core models that are built according to the benchmark instructions. The results of the two models obtained by the two codes are compared with each other and especially with the experimental results presented in the benchmark. (author)

  2. Enhancement of actinide incineration and transmutation rates in Ads EAP-80 reactor core with MOX PuO2 and UO2 fuel

    International Nuclear Information System (INIS)

    Kaltcheva-Kouzminava, S.; Kuzminov, V.; Vecchi, M.

    2001-01-01

    Neutronics calculations of the accelerator driven reactor core EAP-80 with UO 2 and PuO 2 MOX fuel elements and Pb-Bi coolant are presented in this paper. Monte Carlo optimisation computations of several schemes of the EAP-80 core with different types of fuel assemblies containing burnable absorber B4 C or H 2 Zr zirconium hydride moderator were performed with the purpose to enhance the plutonium and actinide incineration rate. In the first scheme the reactor core contains burnable absorber B4 C arranged in the cladding of fuel elements with high enrichment of plutonium (up to 45%). In the second scheme H2 Zr zirconium hydride moderated zones were located in fuel elements with low enrichment (∼20%). In both schemes the incineration rate of plutonium is about two times higher than in the reference EAP-80 core and at the same time the power density distribution remains significantly unchanged compared to the reference core. A hybrid core containing two fuel zones one of which is the inner fuel region with UO 2 and PuO 2 high enrichment plutonium fuel and the second one is the outer region with fuel elements containing zirconium hydride layer was also considered. Evolution of neutronics parameters and actinide transmutation rates during the fuel burn-up is presented. Calculations were performed using the MCNP-4B code and the SCALE 4.3 computational system. (author)

  3. Logistical and economic obstacles to a fast reactor programme

    International Nuclear Information System (INIS)

    Sweet, C.

    1982-01-01

    Fast reactor studies used to place great emphasis on its role as a breeder of plutonium, thereby raising the prospect of a nuclear power system free from the constraint of uranium supplies. Today, not only the timing of fast reactor introduction has slipped (by two or three decades) but the perspective which was central to energy policy has changed dramatically. This article first examines the fast reactor as a system and looks at the interaction of four key variables in its logistics. It then looks at the rise in real costs, especially capital costs. Given the parameters that determine the plutonium balance and the economics of the fast reactor system, the author questions whether there is a sound basis for its introduction, and concludes by suggesting that the most pressing requirement is a study of the opportunity costs of fast reactor R and D expenditures. (author)

  4. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1998-01-01

    The general position with regard to nuclear power and fast reactors in the UK during 1996 is described. The main UK Government-funded fast reactor research and development programme was concluded in 1993, to be replaced by a smaller programme which is mainly funded and managed by British Nuclear Fuels plc. The main focus of this programme sustains the UK participation in the European Fast Reactor (EFR) collaboration and the broader international links built-up over the previous decades. The status of fast reactor studies made in the UK in 1996 is outlined and, with respect to the Prototype Fast Reactor at Dounreay, a report of progress with the closure studies, fuel reprocessing and decommissioning activities is provided. (author)

  5. LTFR-4, Library Generated for Fast Reactor Design Program from JAERI Fast-Set Multigroup Constant

    International Nuclear Information System (INIS)

    Suzuki, Tomoo

    1971-01-01

    Nature of physical problem solved: The program processes JAERI-Fast group constants sets of less than 30-group and prepares a binary library tape for efficient usage by a series of related fast reactor design calculation programmes

  6. Full MOX core for PWRs

    International Nuclear Information System (INIS)

    Puill, A.; Aniel-Buchheit, S.

    1997-01-01

    Plutonium management is a major problem of the back end of the fuel cycle. Fabrication costs must be reduced and plant operation simplified. The design of a full MOX PWR core would enable the number of reactors devoted to plutonium recycling to be reduced and fuel zoning to be eliminated. This paper is a contribution to the feasibility studies for achieving such a core without fundamental modification of the current design. In view of the differences observed between uranium and plutonium characteristics it seems necessary to reconsider the safety of a MOX-fuelled PWR. Reduction of the control worth and modification of the moderator density coefficient are the main consequences of using MOX fuel in a PWR. The core reactivity change during a draining or a cooling is thus of prime interest. The study of core global draining leads to the following conclusion: only plutonium fuels of very poor quality (i.e. with low fissile content) cannot be used in a 900 MWe PWR because of a positive global voiding reactivity effect. During a cooling accident, like an spurious opening of a secondary-side valve, the hypothetical return to criticality of a 100% MOX core controlled by means of 57 control rod clusters (made of hafnium-clad B 4 C rods with a 90% 10 B content) depends on the isotopic plutonium composition. But safety criteria can be complied with for all isotopic compositions provided the 10 B content of the soluble boron is increased to a value of 40%. Core global draining and cooling accidents do not present any major obstacle to the feasibility of a 100% MOX PWR, only minor hardware modifications will be required. (author)

  7. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  8. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  9. Fast neutron nuclear reactor with lightened internal structure

    International Nuclear Information System (INIS)

    Artaud, R.; Aubert, M.; Renaux, C.

    1984-01-01

    The invention concerns an integrated type fast reactor. The inner vessel comprises two truncated shells, of which the large bases are connected either directly, or by a cylindrical shell of large diameter. The small base of the upper truncated shell is prolongated by a shell of small diameter and the small base of the lower truncated shell supports the reactor core. The invention allows the construction of simpler and less expansive fast reactors [fr

  10. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  11. Implications of Fast Reactor Transuranic Conversion Ratio

    International Nuclear Information System (INIS)

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  12. Transport of MOX fuel from Europe to Japan

    International Nuclear Information System (INIS)

    2002-01-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  13. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  14. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  15. Design characteristics of zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Popovic, D.; Nikolic, D.; Antic, D.; Zavaljevski, N.

    1987-01-01

    The concept, purpose and preliminary design of a zero power fast reactor LASTA are described. The methods of computing the reactor core parameters and reactor kinetics are presented with the basic calculated results and analysis for one selected LASTA configuration. The nominal parameters are determined according to the selected reactor safety criteria and results of calculations. Important aspects related to the overall safety are examined in detail. (author)

  16. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  17. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  18. A review of the U.K. fast reactor programme: March 1978

    International Nuclear Information System (INIS)

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  19. A review of the U.K. fast reactor programme: March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [United Kingdom Atomic Energy Authority, Risley (United Kingdom)

    1978-07-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies.

  20. Transport of MOX fuel

    International Nuclear Information System (INIS)

    Porter, I.R.; Carr, M.

    1997-01-01

    The regulatory framework which governs the transport of MOX fuel is set out, including packages, transport modes and security requirements. Technical requirements for the packages are reviewed and BNFL's experience in plutonium and MOX fuel transport is described. The safety of such operations and the public perception of safety are described and the question of gaining public acceptance for MOX fuel transport is addressed. The paper concludes by emphasising the need for proactive programmes to improve the public acceptance of these operations. (Author)

  1. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  2. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  3. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  4. Status of fast reactor activities in the USSR

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Rinejskij, A.A.

    1990-01-01

    Four fast reactors are in operation in the USSR now: BR-10, BOR-60, BN-350 and BN-600. Load factor of BN-600 reactor was in 1989 about 76%. On the basis of operational experience of running reactors design of more powerful commercial size BN-800 power reactor has been completed recently and construction work has started at two sites. The BN-1600 reactor is considered to be the prototype of future commercial reactors. In 1990, it was decided to extend its design approach with the aim to find some additional solutions to provide higher safety and better economics. (author). Figs and tabs

  5. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  6. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  7. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  8. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  9. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  10. Construction schedule management of China Experimental Fast Reactor

    International Nuclear Information System (INIS)

    Wang Yue

    2012-01-01

    China Experimental Fast Reactor (CEFR) in the first Fast Reactor in China, which is one of large project of the National High Technology Research and Development Program ('863' Program). On 21 st July 2011, CEFR had succeeded to connect to power grid, the target of construction had come true. To a large item, schedule management is one of the most important management, this paper a overall discussion about CEFR item. It has proved that the management of CEFR project is scientific, normative and high-efficiency, it will be valuable for lager Fast Reactor item and designers in interrelated field. (author)

  11. Upgrading program of the experimental fast reactor Joyo

    International Nuclear Information System (INIS)

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  12. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  13. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  14. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  15. Analysis of Accident Scenarios for the Development of Probabilistic Safety Assessment Model for the Metallic Fuel Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, S. Y.; Yang, J. E.; Kwon, Y. M.; Jeong, H. Y.; Suk, S. D.; Lee, Y. B.

    2009-03-01

    The safety analysis reports which were reported during the development of sodium cooled fast reactors in the foreign countries are reviewed for the establishment of Probabilistic Safety Analysis models for the domestic SFR which are under development. There are lots of differences in the safety characteristics between the mixed oxide (MOX) fuel SFR and metallic fuel SFR. Metallic fuel SFR is under development in Korea while MOX fuel SFR is under development in France, Japan, India and China. Therefore the status on the development of fast reactors in the foreign countries are reviewed at first and then the safety characteristics between the MOX fuel SFR and the metallic fuel SFR are reviewed. The core damage can be defined as coolant voiding, fuel melting, cladding damage. The melting points of metallic fuel and the MOX fuel is about 1000 .deg. C and 2300 .deg. C, respectively. The high energy stored in the MOX fuel have higher potential to voiding of coolant compared to the possibility in the metallic fuel. The metallic fuel has also inherent reactivity feedback characteristic that the metallic fuel SFR can be shutdown safely in the events of transient overpower, loss of flow, and loss of heat sink without scram. The metallic fuel has, however, lower melting point due to the eutectic formation between the uranium in metallic fuel and the ferrite in metallic cladding. It is needed to identify the core damage accident scenarios to develop Level-1 PSA model. SSC-K computer code is used to identify the conditions in which the core damage can occur in the KALIMER-600 SFR. The accident cases which are analyzed are the triple failure accidents such as unprotected transient over power events, loss of flow events, and loss of heat sink events with impaired safety systems or functions. Through the analysis of the triple failure accidents for the KALIMER-600 SFR, it is found that the PSA model developed for the PRISM reactor design can be applied to KALIMER-600. However

  16. The status of BNFL's MOX project

    International Nuclear Information System (INIS)

    Edwars, John; Cooch, Julian P.; Slater, Michel W.

    2002-01-01

    Full text: In the late 1980s BNFL decided to enter the MOX fuel fabrication business to support our reprocessing business and return the plutonium product to our customers in the useable form of MOX fuel. The first phase of the strategy was to gain some irradiation experience for MOX produced by our own Short Binderless Route (SBR) process. To achieve this the MOX Demonstration Facility (MDF) was built at Sellafield and 28 MOX fuel assemblies were produced up to 1998 that were loaded into PWRs in Europe. In 1994, BNFL started the construction of their large scale MOX production plant, SMP. The design and construction of the plant and supporting facilities was completed some years ago and the commissioning of the plant with uranium commenced around June 1999. In October 2001, the UK Government provided BNFL with the approval to operate SMP with plutonium. On 20 December 2001, the UK Regulators gave BNFL their approval to start plutonium operations. This paper summarises the approach used to commission SMP and describes some of the lessons learnt during the commissioning phase of the project and the start up of the plant with plutonium. An explanation of our experience obtaining a licence to operate the plant is provided together with a description of the changes we have made to ensure that the quality of the product from SMP can be guaranteed. Finally, the paper summarises the experience BNFL has gained during irradiating MOX fuel produced by the SBR process and explains how the data compares with that available for UO2 and supports the in reactor use of MOX fuel made in SMP. (author)

  17. Feasibility study on commercialized fast reactor cycle systems. Phase II final report

    International Nuclear Information System (INIS)

    Ieda, Yoshiaki; Uchikawa, Sadao; Okubo, Tsutomu; Ono, Kiyoshi; Kato, Atsushi; Kurisaka, Kenichi; Sakamoto, Yoshihiko; Sato, Kazujiro; Sato, Koji; Chikazawa, Yoshitaka; Nakai, Ryodai; Nakabayashi, Hiroki; Nakamura, Hirofumi; Namekawa, Takashi; Niwa, Hajime; Nomura, Kazunori; Hayashi, Hideyuki; Hayafune, Hiroki; Hirao, Kazunori; Mizuno, Tomoyasu; Muramatsu, Toshiharu; Ando, Masato; Ono, Katsumi; Ogata, Takanari; Kubo, Shigenobu; Kotake, Shoji; Sagayama, Yutaka; Takakuma, Katsuyuki; Tanaka, Toshihiko; Namba, Takashi; Fujii, Sumio; Muramatsu, Kazuyoshi

    2006-06-01

    A joint project team of Japan Atomic Energy Agency and the Japan Atomic Power Company (as the representative of the electric utilities) started the feasibility study on commercialized fast reactor cycle systems (F/S) in July 1999 in cooperation with Central Research Institute of Electric Power Industry and vendors. On the major premise of safety assurance, F/S aims to present an appropriate picture of commercialization of fast reactor (FR) cycle system which has economic competitiveness with light water reactor cycle systems and other electricity base load systems, and to establish FR cycle technologies for the future major energy supply. In the period from Japanese fiscal year (JFY) 1999 to 2000, the phase-I of F/S was carried out to screen our representative FR, reprocessing and fuel fabrication technologies. In the phase-II (JFY 2001-2005), the design study of FR cycle concepts, the development of significant technologies necessary for the feasibility evaluation, and the confirmation of key technical issues were performed to clarify the promising candidate concepts toward the commercialization. In this final phase-II report clarified the most promising concept, the R and D plan until around 2015, and the key issues for the commercialization. Based on the comprehensive evaluation in F/S, the combination of the sodium-cooled FR with MOX fuel core, the advanced-aqueous reprocessing process and the simplified-pelletizing fuel fabrication process was recommended as the mainline choice for the most promising concept. The concept exceeds in technical advancement, and the conformity to the development targets was higher compared with that of the others. Alternative technologies are prepared to be decrease the development risk of innovative technologies in the mainline choice. (author)

  18. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.; Bando, S.

    1981-03-01

    The fast breeder reactor development project in Japan made progress in the past year, and will be continued in the next fiscal 1981. The scale of efforts both in budget and personnel will be similar to those in fiscal 1980. The budget for R and D works and for the construction of the fast breeder prototype reactor ''Monju'' will be approximately 20 billion yen and 27 billion yen, respectively, excluding the wage of the personnel concerned. The number of the technical personnel currently engaging in fast breeder reactor development in the Power Reactor and Nuclear Fuel Development Corp. is about 530. As for the experimental fast reactor ''Joyo'', three operational cycles at 75 MWt have been completed in August, 1980, and the fourth cycle has started in March, 1981. As for the prototype reactor ''Monju'', progress was made toward the construction, and the environmental impact statement on the reactor was approved by the authorities concerned. The studies on the preliminary design of large LMFBRs have been made by the PNC and also by power companies. The design study carried out by the PNC is concerned with a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of the commissioning of ''Monju''. The highlights and topics in the development activities for fast breeder reactors in the past twelve months are summarized in this report. (Kako, I.)

  19. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  20. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  1. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  2. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  3. Review of fast reactor operating experience gained in 1998 in Russia. General trends of future fast reactor development

    International Nuclear Information System (INIS)

    Poplavski, V.M.; Ashurko, Y.M.; Zverev, K.V.; Sarayev, O.M.; Oshkanov, N.N.; Korol'kov, A.S.

    1999-01-01

    Review of the general state of nuclear power in Russia as for 1998 is given in brief in the paper. Results of operation of BR-10, BOR-60 and BN-600 fast reactors are presented as well as of scientific and technological escort of the BN-350 reactor. The paper outlines the current status and prospects of South-Urals and Beloyarskaya power unit projects with the BN-800 reactors. The main planned development trends on fast reactors are described concerning both new projects and R and D works. (author)

  4. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  5. Radioisotopes in the primary circuit of a fast reactor

    International Nuclear Information System (INIS)

    Berlin, M.; Cauvin, M.

    1976-01-01

    In the frame of the research performed to understand the behaviour of the radioactive isotopes of iodine in the primary coolant circuit of fast reactor, a simple theoretical model is proposed. Results concerning PHENIX and RAPSODIE are given

  6. Review of fast reactor activities at OECD (NEA)

    International Nuclear Information System (INIS)

    Stephens, M.

    1981-01-01

    The Committee on the Safety of Nuclear Installations initiated several reports in 1979. Status reports are published on: the role of fission gas release in case of fuel element failure; reactivity monitoring in a LMFBR at shutdown; increasing the reliability of fast reactor shutdown systems. A report is planned on the interactions between sodium and concrete. LMFBR safety issue that were studied are concerned with containment R and D; natural circulation cooling; and fuel failure modelling. Nuclear Development Division was concerned with Gas cooled fast reactors technology. Nuclear Science Division dealt with fast reactor physics and nuclear data for fast reactors. NEA Data Bank provides technical support and acts as a computer code library and nuclear data centre

  7. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Wheeler, R.C.; Bramman, J.I.

    1988-04-01

    The fast reactor programme in the United Kindom is reviewed under the following headings: Progress with PFR; Reprocessing: Commercial Design Studies; Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance. (author)

  8. Fast wave current drive in reactor scale tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.

    1992-01-01

    The IAEA Technical Committee Meeting on Fast Wave Current Drive in Reactor Scale Tokamaks, hosted by the Commissariat a l'Energie Atomique (CEA), Departement de Recherches sur la Fusion Controlee (Centres d'Etudes de Cadarache, under the Euratom-CEA Association for fusion) aimed at discussing the physics and the efficiency of non-inductive current drive by fast waves. Relevance to reactor size tokamaks and comparison between theory and experiment were emphasized. The following topics are described in the summary report: (i) theory and modelling of radiofrequency current drive (theory, full wave modelling, ray tracing and Fokker-Planck calculations, helicity injection and ponderomotive effects, and alternative radio-frequency current drive effects), (ii) present experiments, (iii) reactor applications (reactor scenarios including fast wave current drive; and fast wave current drive antennas); (iv) discussion and summary. 32 refs

  9. Slovakia: Proposal of movable reflector for fast reactor design

    International Nuclear Information System (INIS)

    Vrban, B.

    2015-01-01

    In fast reactors a larger migration area leading to a significant leak of neutrons can be observed because especially the transport cross-sections are in general smaller as compared to light water reactors. The utilization of a moveable reflector system in conjunction with dedicated safety control rods can increase the ability of accident managing due to enhanced escaping neutrons which otherwise would be reflected back into the fuel zone. The paper demonstrates the possibility of better controlling the transient reactor by additionally moving selected reflector subassemblies equipped with the neutron trap. The main purpose of the analysis of the Gas-cooled Fast Reactor (GFR) presented in the full paper is investigation of the kinetic parameters and of the control and reflector rod worth, as well as optimization of the parts used for partial reflector withdrawal. The results found in this study may serve for future design improvements of other designs such as the liquid metal cooled fast reactors

  10. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  11. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  12. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  13. Integral test of JENDL-3.3 for fast reactors

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  14. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  15. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  16. The MOX Demonstration Facility - the stepping stone to commercial MOX production

    International Nuclear Information System (INIS)

    Macdonald, A.G.

    1994-01-01

    The paper provides an insight into MOX fuel and the economic benefits of its use in pressurized water reactors (PWRs). BNFL and AEA are collaborating in the design, construction and operation of a thermal MOX Demonstration Facility (MDF) on the AEA Windscale site in Cumbria. The process flowsheet and equipment employed in MDF are discussed and the special precautions required to handle plutonium bearing materials are highlighted. The process flowsheet includes the short binderless route which has been specially developed for use in MDF and results in fuel pellets with an homogeneous structure. MDF is the forerunner to the design and construction of a larger scale Sellafield MOX Plant and hence is the stepping-stone to commercial MOX production. (author)

  17. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  18. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  19. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  20. Design characteristics of research zero power fast reactor Lasta

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Nikolic, D.; Antic, D.; Zavaljevski, N.; Popovic, D.

    1990-01-01

    LASTA is a flexible zero power reactor with uranium and plutonium fuel designed for research in the neutron physics and in the fast reactor physics. Safety considerations and experimental flexibility led to the choice of a fixed vertical assembly with two safety blocks as the main safety elements, so that safety devices would be operated by gravity. The neutron and reactor physics, the control and safety philosophy adopted in our design, are described in this paper. Developed computer programs are presented. (author)

  1. Fast breeder reactors: can we learn from experience

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    An economic analysis of FBRs, in particular the long-term benefits to be expected, with reference to the experience of the West German fast breeder reactor programme suggests ways of bringing more realism into governmental decisions on the development of new reactor types. It is suggested that if reactor manufacturers and utilities financed commercial-size demonstration plants from their own funds, then the government would get more realistic advice. (U.K.)

  2. The fifth research coordination meeting (RCM) on 'Updated codes and methods to reduce the calculational uncertainties of liquid metal fast reactors reactivity effects'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    The general objective of the CRP is to validate, verify and improve methodologies and computer codes used for the calculation of reactivity coefficients in fast reactors aiming at enhancing the utilization of plutonium and minor actinides. The objectives of the fifth RCM were: to review the progress achieved since the 4th RCM; to review and finalize the draft synthesis report on BN-600 MOX Fueled Core Benchmark Analysis (Phase 4); to compare the results of Phase 5 (BFS Benchmark Analysis); to agree on the work scope of Phase 6 (BN-Full MOX Minor Actinide Core Benchmark); to discuss the preparation of the final report. In this context, review and related discussions were made on the following items: summary review of Actions and results since the 4th RCM; finalization of the draft synthesis report on BN-600 full MOX-fueled core benchmark analysis (Phase 4); presentation of individual results for Phase 5 by Member States; preliminary inter-comparison analysis of the results for Phase 5; definition of the benchmark model and work scope to be performed for Phase 6; details of the work scope and future CRP timetable for preparing a final report

  3. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  4. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  5. Linear and nonlinear stability analysis, associated to experimental fast reactors

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  6. A review of fast reactor programme in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Y [Experimental Fast Reactor Division, O-arai Engineering Center, PNC (Japan); Bando, S [Project Planning and Management Division, PNC, Minato-ku, Tokyo (Japan)

    1981-05-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report.

  7. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Masuno, Y.; Bando, S.

    1981-01-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report

  8. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  9. Fast reactors: the future of nuclear energy

    International Nuclear Information System (INIS)

    Carvalho, H.G. de.

    1988-08-01

    The main problems to be solved for FBR type reactors become viable economically, presenting the research programs of Europe, United States of America, Japan and Brazil are described. The cooperations between interested countries for improving FBR type reactors, and the financial and human resources necessaries for the development of programs, are evaluated. The fuel cycle is also analysed. (M.C.K.) [pt

  10. Fast Reactor Physics. Vol. II. Proceedings of a Symposium on Fast Reactor Physics and Related Safety Problems

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  11. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  12. Sodium fires at fast reactors: RF status report

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.E.; Buksha, Yu.K.; Drobyshev, A.V.; Zybin, V.A.; Ivanenko, V.N.; Kardash, D.Yu.; Kulikov, E.V.; Yagodkin, I.V.

    1996-01-01

    Scientific and engineering studies carried out in Russian Federation since 1992 up to 1996 in the sodium fire area and their main results are described. A review of activities on modification of the computer codes BOX and AERO developed at IPPE for calculating sodium fire consequences is given. Results of analysis of possible accidental situations at currently designed BN-800 reactor NPP with the use of these codes are presented. Sodium leaks occurring at our domestic fast reactors are briefly analyzed. Experimental work performed are described. Results of comparative analysis of common-cause and sodium fire hazards for fast reactor NPP are presented. (author)

  13. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  14. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  15. Status of national programmes on fast reactors in Korea

    International Nuclear Information System (INIS)

    Kim, Y.I.; Hahn, D.

    2002-01-01

    The role of nuclear power plants in electricity generation in Korea is expected to become more important in the years to come due to poor natural resources and green house gases. This heavy dependence on nuclear power eventually raises the issues of efficient utilization of uranium resources and of spent fuel storage. Fast reactors can resolve these issues. Korea Atomic Energy Research Institute started development of a Liquid Metal Reactor design in 1997 and completed the Conceptual Design in March of 2002. Efforts are currently directed toward the development of advanced fast reactor concepts and basic key technologies. (author)

  16. Review of the United Kingdom fast reactor programme - March 1986

    International Nuclear Information System (INIS)

    Bramman, J.I.; John, C.T.; Wheeler, R.C.

    1986-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (2) progress with the prototype fast reactor (PFR) which achieved its design power on 4 March 1985; (3) nuclear fuel reprocessing; (4) commercial design studies; (5) structural integrity of LMFBR during its lifetime; (6) R and D work on components of LMFBR; (7) materials study; (8) sodium chemistry; (9) reactor core and fuel design philosophy; (10) safety problems; (11) plant performance studies

  17. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  18. Transmutation of Americium in Fast Neutron Facilities

    OpenAIRE

    Zhang, Youpeng

    2011-01-01

    In this thesis, the feasibility to use a medium sized sodium cooled fast reactor fully loaded with MOX fuel for efficient transmutation of americium is investigated by simulating the safety performance of a BN600-type fast reactor loaded with different fractions of americium in the fuel, using the safety parameters obtained with the SERPENT Monte Carlo code. The focus is on americium mainly due to its long-term contribution to the radiotoxicity of spent nuclear fuel and its deterioration on c...

  19. The dissolver paradox as a coupled fast-thermal reactor

    International Nuclear Information System (INIS)

    Lutz, H.F.; Webb, P.S.

    1993-05-01

    The dissolver paradox is treated as coupled fast-thermal reactors. Each reactor is sub-critical but the coupling is sufficient to form a critical system. The practical importance of the system occurs when the fast system by itself is mass limited and the thermal system by itself is volume limited. Numerous 1D calculations have been made to calculate the neutron multiplication parameters of the separate fast and thermal systems that occur in the dissolver paradox. A model has been developed to describe the coupling between the systems. Monte Carlo calculations using the MCNP code have tested the model

  20. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  1. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  2. A review of the Italian fast reactor programme

    International Nuclear Information System (INIS)

    Pierantoni, F.; Tavoni, R.

    1984-01-01

    This review sums up the Italian situation in the field of the fast reactors on the eve of the fifth five year plan (1985-1989), in which the country undertakes to implement an important activity of research and development in the context of a greater European collaboration. Italian participation in the development of European nuclear power stations together with the completion of the PEC plant which will be used to develop a fuel element with the necessary economic and safety characteristics, remain the two principal goals of the Italian fast reactor programme. In 1983 the sum assigned by ENEA for fast reactors was about 220 billion lire of which 145 billion was for the PEC reactor

  3. Research on the usage of a deep sea fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  4. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  5. Probability of Criticality for MOX SNF

    International Nuclear Information System (INIS)

    P. Gottlieb

    1999-01-01

    The purpose of this calculation is to provide a conservative (upper bound) estimate of the probability of criticality for mixed oxide (MOX) spent nuclear fuel (SNF) of the Westinghouse pressurized water reactor (PWR) design that has been proposed for use. with the Plutonium Disposition Program (Ref. 1, p. 2). This calculation uses a Monte Carlo technique similar to that used for ordinary commercial SNF (Ref. 2, Sections 2 and 5.2). Several scenarios, covering a range of parameters, are evaluated for criticality. Parameters specifying the loss of fission products and iron oxide from the waste package are particularly important. This calculation is associated with disposal of MOX SNF

  6. Fast Reactor Programme. Second Quarter 1969. Progress Report. RCN Report

    International Nuclear Information System (INIS)

    Hoekstra, E.K.

    1969-12-01

    This progress report covers fast reactor research carried out by RCN during the second quarter 1969 forming part of the integrated fast breeder research and development programme also in progress at the national nuclear research centres Karlsruhe and Mol. The combined effort is based on a memorandum of co-operation in this field signed by the respective governments in 1968 and on a memorandum of understanding signed by the research centres. The RCN contribution is mainly concerned with the core of the fast breeder reactor and related safety aspects and, as such, must be looked upon as being complementary to the industrial research pro- field of fast reactors. The contribution comprises the following six items: - A Æéatîtôr , physics programme to determine the influence of fission products on several main characteristics of the reactor core such as void coefficient, Doppler coefficient and breeding ratio; - A fuel performance programme in which both stationary and transient irradiations are being carried out to establish the temperature and power limits of fuel rods; also the consequences of loss- of-cooling will be investigated; - Investigation into the change in mechanical properties of fuel canning materials due to high fast neutron doses; - A study of the corrosion behaviour of canning materials and their compatibility with the fuel under conditions of high temperature and high pressure; - Investigation into the behaviour of aerosols of fission products which could be formed after a fast reactor accident; a thorough understanding is of utmost importance for the reactor safety assessment ; - Studies on heat transfer in the reactor core. As fast breeders operate at high power densities, an accurate knowledge on the heat transfer phenomena is required

  7. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  8. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  9. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  10. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  11. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  12. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  13. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  14. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  15. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  16. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  17. Fast-neutron nuclear reactor vessel

    International Nuclear Information System (INIS)

    Presciuttini, L.

    1984-01-01

    The reactor vessel comprises a cylindrical shell, of which axis is vertical, coupled at its lower part with a dished bottom. The reactor core rests on a support plate bearing on the bottom of the vessel. The above dished bottom comprises a spherical sector having the same radius and the same axis as the cylindrical shell and joining the lower part of the shell, and a spherical head of which radius is a little more important than the spherical sector one. A cylindrical support for the reactor core is attached to the vessel at the joint between the two dished sections. The invention applies more particularly to integrated type reactors cooled by liquid sodium [fr

  18. A Review of the UK Fast Reactor Programme: March 1980

    International Nuclear Information System (INIS)

    Smith, R.D.

    1980-01-01

    Towards the end of 1979 the Government announced a new programme of thermal reactor stations to be built over ten years (totalling 15GW), in addition to the two AGR stations at Torness and Heysham 'B' which had been approved by the previous Government. The first station of the new programme will be based on a Westinghouse PWR, subject to safety clearance and the outcome of a public inquiry, and it is envisaged that the remaining stations of the programme would be split between PWRs and AGRs. The AEA Chairman wrote formally to the Secretary of State for Energy in December 1979, putting forward on behalf of the Electricity Supply Authorities, NNC, BNFL and the AEA a recommended strategy for building the Commercial Demonstration Fast Reactor (CDFR), subject to normal licensing procedure and to public inquiry, so as to ensure that the key options for introducing commercial fast reactors, when required, should remain open. A Government statement is expected during the next few months. Meanwhile the level of effort on fast reactor research and development in the UK has been maintained, the fast reactor remaining the largest of the UKAEA's reactor development projects with expenditure totalling somewhat over £80M per annum. The main feature of the UK fast reactor programme has continued to be the operation of PFR (Sections 2 and 7) which is yielding a wealth of experience and of information relevant to the design of commercial fast reactors. Bum-up of standard driver fuel has reached 6-7% by heavy atoms, while specially enriched lead fuel pins have reached 11 % without failure. An extensive programme of work in the reactor and its associated steam plant was completed in March 1980 and the reactor then started its fifth power run. The fuel reprocessing plant at DNE is being commissioned and has reprocessed some of the spent fuel remaining from the DFR. It will start soon on reprocessing fuel discharged from the PFR. During the year improvements to the design of the future

  19. Status of fast reactor activities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, M F; Rinejsjij, A A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1992-07-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication.

  20. The safety basis of the integral fast reactor program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  1. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  2. Status of fast reactor activities in the Russian Federation

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Rinejsjij, A.A.

    1992-01-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication

  3. Looking to the future with the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.

    1985-01-01

    During the past two years, scientists from Argonne have developed a design for an advanced breeder reactor with a closed, self-contained fuel cycle. This Integral Fast Reactor (IFR) is a pool-type, sodium-cooled reactor. It uses a new metal-alloy fuel design which overcomes the problem of swelling. The possibility of unauthorised diversion of nuclear fuel, and the need to transport plutonium to and from the site, is overcome by using a pyrometallurgical fuel reprocessing technique in a compact facility that is an integral part of the reactor plant. (author)

  4. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  5. Argentinean activities related to Fast Reactors

    International Nuclear Information System (INIS)

    Azpitarte, Osvaldo

    2012-01-01

    CNEA objectives in the area of Generation IV nuclear reactors: Implement a programme for the monitoring of the global progress of new technologies for Generation IV nuclear reactors and their fuel cycles, in order to generate and assess associated lines of R&D. – Perform studies and evaluations for defining the Generation IV line or lines on which CNEA would be interested; – Promote the participation on specific international projects; – Implementation of experimental facilities

  6. Licensing issues for inherently safe fast reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Lee, S.; Okrent, D.

    1986-01-01

    There has been considerable interest recently in a new generation of liquid metal reactor (LMR) concepts in the US. Some significant changes in regulatory philosophy will be required if the anticipated cost advantages of inherently safe designs are to be achieved. The defense in depth philosophy will need to be significantly re-evaluated in the context of inherently safe reactors. It is the purpose of this paper to begin such a re-evaluation of this regulatory philosophy

  7. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    Operating within the framework of the New Partnership Approach (NPA) for unirradiated MOX fuel assemblies in LWRs, the IAEA and EURATOM have gained experience in safeguarding 13 LWRs licensed to operate with MOX assemblies. In order to fulfil SIR requirements, verification methods and techniques capable of measuring MOX assemblies under water have been and are still being developed. These encompass both qualitative tests for the detection of plutonium (gross attribute tests) and quantitative tests for the measurement of the amount of plutonium (partial defect tests) and are based on gamma and neutron detection techniques. There are nine PWR and two BWR where the reactor and the spent fuel pond can be covered by the same surveillance device. These are Type I reactors where the reactor and the pond are located in the same hall. In these types of facilities relying on surveillance during the MOX refuelling is especially difficult at the BWRs due to the depth of the core pond. There are two PWR type facilities where the reactor and the spent fuel pond are located in different halls and cannot be covered by the same surveillance device (Type II). An open core camera has not been installed during refuelling and therefore indirect surveillance is currently used to survey MOX loading. Improvements are therefore required and are under consideration. After receipt at the facility, there are a few facilities which must keep the received fresh MOX fuel in wet storage, not only for a short period prior to refuelling, but for more than a year, until the next refuelling campaign. In these cases timely inspections for direct use fresh nuclear material require considerable inspection effort. Additionally, where human surveillance of core loading and finally core closure are necessary there is also a large demand for manpower. Either an agreement should be reached with the operators to delay the MOX loading until the end of the fuelling campaign, or alternative approaches should be

  8. Identification of fast power reactivity effect in nuclear power reactor

    International Nuclear Information System (INIS)

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  9. Materials requirements for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Bennett, J.W.; Horton, K.E.

    1978-01-01

    Materials requirements for Liquid Metal Fast Breeder Reactors (LMFBRs) are quite varied with requisite applications ranging from ex-reactor components such as piping, pumps, steam generators and heat exchangers to in-reactor components such as heavy section reactor vessels, core structurals, fuel pin cladding and subassembly flow ducts. Requirements for ex-reactor component materials include: good high temperature tensile, creep and fatigue properties; compatibility with high temperature flowing sodium; resistance to wear, stress corrosion cracking, and crack propagation; and good weldability. Requirements for in-reactor components include most of those cited above for ex-reactor components as supplemented by the following: resistance to radiation embrittlement, swelling and radiation enhanced creep; good neutronics; compatibility with fuel and fission product materials; and resistance to mass transfer via flowing sodium. Extensive programs are currently in place in a number of national laboratories and industrial contractors to address the materials requirements for LMFBRs. These programs are focused on meeting the near term requirements of early LMFBRs such as the Fast Flux Test Facility and the Clinch River Breeder Reactor as well as the longer term requirements of larger near-commercial and fully-commercial reactors

  10. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  11. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  12. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  13. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  14. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  15. BWRs with MOx fuel

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    Calculations has been performed for loading BWRs with pure MOx or UOx/MOx fuel. It seems to be possible to load MOx bundles in BWRs, since most of the core characteristics are comparable with the ones of a full UOx core. Nevertheless two main problems arise: The shutdown margin at BOC is lower than 1%, this requires to have a new design for the control rods in order to increase their efficiency - but the problem can also be solved by modifying the Pu quality. The cores with MOx fuel are slightly less stable, unfortunately the simple model applied does not allow giving an absolute value for the decay ratio but only allows comparing the stability with the full UOx core

  16. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  17. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1982-01-01

    The fast breeder reactor development project in Japan has been in progress for the past twelve months and will be continued this fiscal year, from April 1982 through March 1983, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1981. The 1982 year budget for R and D work and for construction of a prototype fast breeder reactor MONJU is approximately 20 and 27 billion yen respectively, excluding wages for the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaged in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, power increase from 50 MWt to 75 MWt was made in July 1979 and six operational cycles at 75 MWt were completed in December 1981. With respect to the prototype reactor MONJU, progress toward construction has been made and an environmental impact statement of the reactor was approved by the authorities concerned, and the licensing of the first step was completed at the end of 1981. Preliminary design studies of a large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  18. Mox fuel experience: present status and future improvements

    International Nuclear Information System (INIS)

    Blanpain, P.; Chiarelli, G.

    2001-01-01

    Up to December 2000, more than 1700 MOX fuel assemblies have been delivered by Framatome ANP/Fragema to 20 French, 2 Belgian and 3 German PWRs. More than 1000 MOX fuel assemblies have been delivered by Framatome ANP GmbH (formerly Siemens) to 11 German PWRs and BWRs and to 3 Swiss PWRs. Operating MOX fuel up to discharge burnups of about 45,000 MWd/tM is done without any penalty on core operating conditions and fuel reliability. Performance data for fuel and materials have been obtained from an outstanding surveillance program. The examinations have concluded that there have been no significant differences in MOX fuel assembly characteristics relative to UO 2 fuel. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models necessary for the continuing improvement of the MOX product. As MOX fuel has reached a sufficient maturity level, the short term step is the achievement of the parity between UO 2 and MOX fuels in the EdF French reactors. This involves a single operating scheme for both fuels with an annual quarter core reload type and an assembly discharge burnup goal of 52,000 MWd/tM. That ''MOX parity'' product will use the AFA-3G assembly structure which will increase the fuel rod design margins with regards to the end-of-life internal pressure criteria. But the fuel development objective is not limited to the parity between the current MOX and UO 2 products: that parity must remain guaranteed and the MOX fuel managements must evolve in the same way as the UO 2 ones. The goal of the MOX product development program underway in France is the demonstration over the next ten years of a fuel capable of reaching assembly burnups of 70,000 MWd/tM. (author)

  19. History of fast reactor development in U.S.A.-I

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sasao, Nobuyki

    2007-01-01

    History and present state of fast reactor was reviewed in series. As a history of fast reactor development in U.S.A. - I, this third lecture presented the dawn of the fast reactor development in the USA. The first fast reactor was the Clementine reactor with plutonium fuels and mercury coolant. The LAMPRE-1 reactor was the first sodium cooled and molten plutonium reactor. Experimental breeder reactor (EBR-1) was the first reactor to produce electricity and four kinds of fuels were loaded. Zero-power reactors were constructed to conduct reactor physics experiments on fast reactors. Today there are renewed interests in fast reactors due to their ability to fission actinides and reduce radioactive wastes. (T. Tanaka)

  20. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  1. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1996-01-01

    The main R and D results of Japanese activities are summarized as follows: (1) the experimental 140 MW(th) sodium cooled fast reactor 'Joyo' provided abundant experimental data and excellent operational records, attaining more than 50,000 hours of operation since its first criticality in 1977; (2) the prototype 280 MW(e) fast reactor 'Monju' reached initial criticality on 5 April 1994; presently Monju is under the cold shutdown state because of secondary sodium leak on 8 December 1995, and multiple cause investigations of the sodium leak are being performed; (3) the Japan Atomic Power Company is promoting design studies for demonstration fast reactor (DFBR) with a power output of 600 MW(e) and R and D for DFBR are being conducted under the cooperation of governmental and private sectors. (author)

  2. Economic analysis of fast reactor fuel cycle with different modes

    International Nuclear Information System (INIS)

    Ding Xiaoming

    2014-01-01

    Because of limitations on the access to technical and economic data and the lack of effective verification, the lack of in-depth study on the economy of fast reactor fuel cycle in China. This paper introduces the analysis and calculation results of the levelized cost of electricity (LCOE) under three different fuel cycle modes including fast reactor fuel cycle carried out by Massachusetts Institute of Technology (MIT). The author used the evaluation method and hypothesis parameters provided by the MIT to carry out the sensitivity analysis for the impact of the overnight cost, the discount rate and changes of uranium price on the LCOE under three fuel cycle modes. Finally, some suggestions are proposed on the study of economy in China's fast reactor fuel cycle. (authors)

  3. Seismic analysis of fast breeder reactor block

    International Nuclear Information System (INIS)

    Gantenbein, F.

    1990-01-01

    Seismic analysis of LMFBR reactor block is complex due mainly to the fluid structure interaction and the 3D geometry of the structure. Analytical methods which have been developed for this analysis will be briefly described in the paper and applications to a geometry similar to SPX1 will be shown

  4. Capital cost: gas cooled fast reactor plant

    International Nuclear Information System (INIS)

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design

  5. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  6. A review of fast reactor activities in Switzerland - April 1985

    International Nuclear Information System (INIS)

    Wydler, P.

    1986-01-01

    In the nuclear fission field, there are activities related to many different reactor concepts, including the Light Water Reactor, the Light Water High Converter Reactor, the High Temperature Reactor, the Liquid Metal Fast Breeder Reactor and the recently proposed new concept of a small heating reactor. In 1984 the total expenditure for fast reactor activities remained the same as that in the previous year, but the budget for 1985 has declined. The 6.0 million Swiss Francs expended in 1984 have been allocated to an LMFBR safety progamme (46%) and a fuel development programme (54%). All activities reported below are carried out at the Federal Institute for Reactor Research (EIR). In the natural convection studies described in Section 5, the Nuclear Engineering Laboratory (LKT) of the Federal Institute of Technology at Zuerich is actively participating. In the past twelve months collaboration with foreign research organizations in the Federal Republic of Germany, France, Italy (JRC Ispra) and the U.K. for the LMFBR safety programme, and the Federal Republic of Germany and the U.S.A. for the fuel development programme has proved to be very fruitful. In this context an attachment agreement with CEA-DERS at Cadarache is worth mentioning, since it enabled an EIR staff member to participate in the prediction and analysis of the SCARABEE-APL in-pile tests

  7. Small size modular fast reactors in large scale nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  8. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  9. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  10. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  11. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  12. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  13. Sodium components cleaning status in the Italian fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, B [CNEN-RIT/MAT - Laboratorio Sviluppo Processi - C.S.N. Cassacia, Rome (Italy); Labanti, V [CNEN-DRV, Bologna (Italy); Mennucci, M [NIRA, Genoa (Italy)

    1978-08-01

    As a consequence of the Italian Fast Reactor Development, mainly aimed to the PEC project and to the participation in the French Superphenix project, it is of increasing importance to set up a reliable method for specific reactor components and related test loops. The first problem was the cleaning of the PEC fuelling machine. In order to perform the routine maintenance of the machine an alcohol cleaning method based on the use of 2-butoxyethanol-NN dimethylformamide mixture has been proposed.

  14. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  15. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  19. UK fast reactor components - sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Over the past two decades extensive experience on sodium removal techniques has been gained at the UKAEA's Dounreay Nuclear Establishment from both the Dounreay Fact Reactor (DFR) and the Prototype Fast Reactor (PFR). This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Part 2 of the paper, which describes recent operations associated with the PFR, demonstrates the background to these views. This past and continuing experience is being used in forming the basis of the plant to be provided for sodium removal, decontamination and requalification of components in the UK's future commercial fast reactors. Further improvements in techniques and in component designs can be expected in the course of the next few years. Consequently UK philosophy and approach with respect to maintenance and repair operations is sufficiently flexible to enable relevant improvements to be incorporated into the next scheduled fast reactor - the Commercial Demonstration Fast Reactor (CUR). This paper summarises the factors which are being taken into consideration in this continuously advancing field

  20. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    2000-01-01

    Considering the future clean energy supply in China, a rather consistent opinion is to develop nuclear power step by step with the contribution from a supplementary one up to an important one. The large scale utilization of nuclear energy obviously determines the interest in fast breeders; China right now already has about 300 GWe total electricity capacity using conventional energy resources. As the first step for fast reactor technology development in the country, the China Experimental Fast Reactor (CEFR) project is still under detail design stage, which is a sodium cooled pool type fast reactor with 65 MW thermal power matched with a turbine-generator of 25 MW. The ordering of the components is continuing. The site is ready and the steel works for the 3 m x 69 m x 82.5 m foundation base of reactor building are being arranged layer by layer. The review to the PSAR by the China National Nuclear Safety Administration (CNNSA) is going to the final stage, if everything goes smoothly. The first pouring of the concrete for the reactor building will be in the middle of the year 2000. The brief introduction of the CEFR design, safety characteristics, the main results of the safety analysis and design test demonstration are given in the paper. (author)