WorldWideScience

Sample records for moving heat sources

  1. Thermal Analysis of a Cracked Half-plane under Moving Point Heat Source

    Directory of Open Access Journals (Sweden)

    He Kuanfang

    2017-09-01

    Full Text Available The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. The analytical solution and the numerical means are combined to analyze the transient temperature distribution of a cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked half-plane structure under moving point heat source are presented and discussed in detail.

  2. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  3. Heat transfer from the moving heat source of arbitrary shape

    International Nuclear Information System (INIS)

    Fomin, Sergei A.

    2000-01-01

    The present research is related to contact melting by a moving heat source of arbitrary shape. Heat conduction in the melting material is governed by 3D differential equation, where the thermal conductivity of the surrounding material is assumed to be strongly temperature dependent. By using the Green's formula, the boundary-value problem is converted to the boundary integral equation. This non-linear equation is solved numerically by interactions utilizing the boundary element method. Different shapes of heat sources are investigated. Since the obtained integral equation is the Fredholm type equation of the first kind and belongs to the family of so-called ill-posed problems, therefore, supplementary computations, that verify the stability of numerical algorithm, are provided. For the special cases associated with thermodrilling technology, some analytical estimations and solutions are obtained. Particularly, if the melting velocity is high (Pe>10), asymptotic solutions are found. In this case the integral equation is significantly reduced, that simplifies the computations. Numerical results are in good agreement with the closed-form solutions available for the elliptical shape of a solid-liquid interface. (author)

  4. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, Amit; Oliveira, Jorge L. G.; van der Geld, Cees W. M.; Malskat, Wendy S. J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, Martin J. C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  5. Transient thermal stress analysis of a near-edge elliptical defect in a semi-infinite plate subjected to a moving heat source

    International Nuclear Information System (INIS)

    Mingjong Wang; Weichung Wang

    1994-01-01

    In this paper, the maximum transient thermal stresses on the boundary of a near-edge elliptical defect in a semi-infinite thin plate were determined by the digital photoelastic technique, when the plate edge experiences a moving heat source. The relationships between the maximum transient thermal stresses and the size and inclination of the elliptical defect, the minimum distance from the elliptical defect to the plate edge as well as the speed of the moving heat source were also studied. Finally, by using a statistical analysis package, the variations of the maximum transient thermal stresses were then correlated with the time, the minimum distance between the edge and the elliptical defect, temperature difference, and speed of the moving heat source. (author)

  6. Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids

    Directory of Open Access Journals (Sweden)

    Sameh E. Ahmed

    2016-03-01

    Full Text Available This paper examines numerically the thermal and flow field characteristics of the laminar steady mixed convection flow in a square lid-driven enclosure filled with water-based micropolar nanofluids by using the finite volume method. While a uniform heat source is located on a part of the bottom of the enclosure, both the right and left sidewalls are considered adiabatic together with the remaining parts of the bottom wall. The upper wall is maintained at a relatively low temperature. Both the upper and left sidewalls move at a uniform lid-driven velocity and four different cases of the moving lid ordinations are considered. The fluid inside the enclosure is a water based micropolar nanofluid containing different types of solid spherical nanoparticles: Cu, Ag, Al2O3, and TiO2. Based on the numerical results, the effects of the dominant parameters such as Richardson number, nanofluid type, length and location of the heat source, solid volume fractions, moving lid orientations and dimensionless viscosity are examined. Comparisons with previously numerical works are performed and good agreements between the results are observed. It is found that the average Nusselt number along the heat source decreases as the heat source length increases while it increases when the solid volume fraction increases. Also, the results of the present study indicate that both the local and the average Nusselt numbers along the heat source have the highest value for the fourth case (C4. Moreover, it is observed that both the Richardson number and moving lid ordinations have a significant effect on the flow and thermal fields in the enclosure.

  7. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  8. A One-Dimensional Thermoelastic Problem due to a Moving Heat Source under Fractional Order Theory of Thermoelasticity

    Directory of Open Access Journals (Sweden)

    Tianhu He

    2014-01-01

    Full Text Available The dynamic response of a one-dimensional problem for a thermoelastic rod with finite length is investigated in the context of the fractional order theory of thermoelasticity in the present work. The rod is fixed at both ends and subjected to a moving heat source. The fractional order thermoelastic coupled governing equations for the rod are formulated. Laplace transform as well as its numerical inversion is applied to solving the governing equations. The variations of the considered temperature, displacement, and stress in the rod are obtained and demonstrated graphically. The effects of time, velocity of the moving heat source, and fractional order parameter on the distributions of the considered variables are of concern and discussed in detail.

  9. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins : Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, A.; Oliveira, J.L.G.; van der Geld, C.W.M.; Malskat, Wendy S.J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, M.J.C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  10. Member for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1975-01-01

    Should a radioisotope-powered engine (e.g., a Stirling cycle engine for generating electricity) stop working for any reason, the radioisotope heat source will continue to generate heat. This will result in a rise in temperature which may cause overheating of and possible damage to the engine as well as to the heat source itself. The invention provides a support/location member for conducting excess heat from the heat source and which, in normal operation of the engine, will impede the conduction of heat away from the heat source and so reduce thermal losses. The member is of elongated form and comprises a stack of heat-conductive slugs disposed in a tube and in interspaced relationship along the axis of the tube. The tube supports the slugs in axial alignment. Means are provided for attaching an end one of the slugs to the heat source and means operable on overheating of said end one of the slugs are also provided whereby the slugs are able to move into heat-conducting contact with each other so as to conduct the excess heat away from said heat source. The slugs may be brazed to the tube whereby progressive overheating of the slugs along the stack results in an overheated slug being freed from attachment to the tube so as to allow the overheated slug to move along the stack and engage the next slug in line in heat-conducting contact. (U.S.)

  11. SIMULATION OF SURFACE HEATING FOR ARBITRARY SHAPE’S MOVING BODIES/SOURCES BY USING R-FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Sergiy Plankovskyy

    2016-12-01

    Full Text Available The purpose of this article is to propose an efficient algorithm for determining the place of an action of a heat source with a given motion law for a body of an arbitrary shape using methods of analytical geometry. The solution to this problem is an important part of a modeling of a laser, plasma, ion beam treatment. In addition, it can also be used for mass transfer problems, such as simulation of coating, sputtering, painting etc. The problem is solved by the method of R-functions to define the shape of the test body and the heat source and the analytical determination zone shadowing. As an example, we consider the problem of using the method of ion cleaning parameters optimization considering temperature limitations. Application of the R-functions can significantly reduce the amount of computation with usage of the ray tracing algorithm. The numerical realization of the proposed method requires an accurate creation of a numerical mesh. The best results in terms of accuracy of determination the scope of the source can be expected when applying adaptive tunable meshes. In case of integration of the R-functions into the CAD system, the use of the proposed method would be simple enough. The proposed method allows to determine the range of the source by the expression, which is constructed only once for the body and the source of arbitrary geometric shapes moving in any law. This distinguishes the proposed approach against all known algorithms for ray tracing. The proposed method can also be used for time-dependent multisource with arbitrary shapes, which move in different directions.

  12. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  13. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  14. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  15. Transient thermal stresses due to a zonal heat source moving back and forth over the surface on an infinite plate

    International Nuclear Information System (INIS)

    Sumi, N.; Hetnarski, R.B.

    1989-01-01

    A solution is given for the transient thermal stresses due to a zonal heat source moving back and forth with a constant angular frequency over the surface of an infinite elastic plate. The transient temperature distribution is obtained by using the complex Fourier and Laplace transforms, and the associated thermal stresses are obtained by means of the thermoelastic displacement potential and the Galerkin function. Graphical representations for the solution in dimensionless terms are included in this paper. (orig.)

  16. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  17. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  18. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  19. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  20. Moving-Horizon Modulating Functions-Based Algorithm for Online Source Estimation in a First Order Hyperbolic PDE

    KAUST Repository

    Asiri, Sharefa M.; Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this paper, an on-line estimation algorithm of the source term in a first order hyperbolic PDE is proposed. This equation describes heat transport dynamics in concentrated solar collectors where the source term represents the received energy. This energy depends on the solar irradiance intensity and the collector characteristics affected by the environmental changes. Control strategies are usually used to enhance the efficiency of heat production; however, these strategies often depend on the source term which is highly affected by the external working conditions. Hence, efficient source estimation methods are required. The proposed algorithm is based on modulating functions method where a moving horizon strategy is introduced. Numerical results are provided to illustrate the performance of the proposed estimator in open and closed loops.

  1. Moving-Horizon Modulating Functions-Based Algorithm for Online Source Estimation in a First Order Hyperbolic PDE

    KAUST Repository

    Asiri, Sharefa M.

    2017-08-22

    In this paper, an on-line estimation algorithm of the source term in a first order hyperbolic PDE is proposed. This equation describes heat transport dynamics in concentrated solar collectors where the source term represents the received energy. This energy depends on the solar irradiance intensity and the collector characteristics affected by the environmental changes. Control strategies are usually used to enhance the efficiency of heat production; however, these strategies often depend on the source term which is highly affected by the external working conditions. Hence, efficient source estimation methods are required. The proposed algorithm is based on modulating functions method where a moving horizon strategy is introduced. Numerical results are provided to illustrate the performance of the proposed estimator in open and closed loops.

  2. Improved moving source photometry with TRIPPy

    Science.gov (United States)

    Alexandersen, Mike; Fraser, Wesley Cristopher

    2017-10-01

    Photometry of moving sources is more complicated than for stationary sources, because the sources trail their signal out over more pixels than a point source of the same magnitude. Using a circular aperture of same size as would be appropriate for point sources can cut out a large amount of flux if a moving source moves substantially relative to the size of the aperture during the exposure, resulting in underestimated fluxes. Using a large circular aperture can mitigate this issue at the cost of a significantly reduced signal to noise compared to a point source, as a result of the inclusion of a larger background region within the aperture.Trailed Image Photometry in Python (TRIPPy) solves this problem by using a pill-shaped aperture: the traditional circular aperture is sliced in half perpendicular to the direction of motion and separated by a rectangle as long as the total motion of the source during the exposure. TRIPPy can also calculate the appropriate aperture correction (which will depend both on the radius and trail length of the pill-shaped aperture), and has features for selecting good PSF stars, creating a PSF model (convolved moffat profile + lookup table) and selecting a custom sky-background area in order to ensure no other sources contribute to the background estimate.In this poster, we present an overview of the TRIPPy features and demonstrate the improvements resulting from using TRIPPy compared to photometry obtained by other methods with examples from real projects where TRIPPy has been implemented in order to obtain the best-possible photometric measurements of Solar System objects. While TRIPPy has currently mainly been used for Trans-Neptunian Objects, the improvement from using the pill-shaped aperture increases with source motion, making TRIPPy highly relevant for asteroid and centaur photometry as well.

  3. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  4. Experimental research on novel adsorption chiller driven by low grade heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Shi, Z.X.; Yang, Q.R.; Tian, X.L.; Zhang, J.C.; Wu, J.Y.

    2007-01-01

    A novel silica gel-water adsorption chiller is developed. This chiller consists of three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber. In this chiller, only one vacuum valve is installed between the two adsorption/desorption vacuum chambers to improve its performance when it is driven by a low temperature heat source. The operational reliability of the chiller is highly improved because of fewer moving parts. In this work, the performance of the chiller is experimentally tested under a low grade heat source, such as 55-67 o C. The test results show that the performance of this chiller is satisfying when it is driven by a low grade heat source, such as 65 o C, and the cooling capacity (or refrigeration capacity) will reach about 5 kW when the hot water temperature is 65 o C, the cooling water temperature is 30.5 o C and the chilled water inlet temperature is 15.1 o C. The test results confirm that this kind of adsorption chiller can be effectively driven by a low grade heat source

  5. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  6. Hybrid Heat Capacity - Moving Slab Laser Concept

    International Nuclear Information System (INIS)

    Stappaerts, E A

    2002-01-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module

  7. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  8. Transient heating and evaporation of moving fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2014-01-01

    In combustion devices involving direct injection of low-volatility liquid fuel (e.g., bio-oils from pyrolysis process) into the combustor, transient heating and vaporization is an important controlling factor in ignition and combustion of the fuel vapor/air mixture. As a result, quite many...... experimental and numerical efforts have been made on this topic. In this paper, a comprehensive 3D model that addresses the internal circulation, heat and mass transfer within a moving droplet has been successfully developed. The model is calibrated by analytical solutions for simplified cases and validated...

  9. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  10. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  11. Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source

    Directory of Open Access Journals (Sweden)

    Nazari Mohsen

    2015-01-01

    Full Text Available This paper is concerned with thermal non-equilibrium natural convection in a square cavity filled with a porous medium in the presence of a biomass which is transported in the cavity. The biomass can consume a secondary moving substrate. The physics of the presented problem is related to the analysis of heat and mass transfer in a composting process that controlled by internal heat generation. The intensity of the bio-heat source generated in the cavity is equal to the rate of consumption of the substrate by the biomass. It is assumed that the porous medium is homogeneous and isotropic. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. A simplified Monod model is introduced along with the governing equations to describe the consumption of the substrate by the biomass. In other word, the transient biochemical heat source which is dependent on a solute concentration is considered in the energy equations. Investigation of the biomass activity and bio-chemical heat generation in the case of thermal non-equilibrium assumption has not been considered in the literature and they are open research topics. The effects of thermal non-equilibrium model on heat transfer, flow pattern and biomass transfer are investigated. The effective parameters which have a direct impact on the generated bio-chemical heat source are also presented. The influences of the non-dimensional parameters such as fluid-to-solid conductivity ratio on the temperature distribution are presented.

  12. Electromagnetic Sources in Moving Simple Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1970-01-01

    A retarded potential tensor (4-vector) is derived in an arbitrary system of inertia for an arbitrary electromagnetic source in a moving homogeneous, isotropic, nondispersive, lossless dielectric. The velocity is uniform, and the result is relativistic correct. ©1970 The American Institute...

  13. Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment

    International Nuclear Information System (INIS)

    Bhanja, Dipankar; Kundu, Balaram; Aziz, Abdul

    2014-01-01

    Highlights: • Analytical model for thermal analysis of moving porous fins. • Heat transfer from the fin surface due to convection and radiation. • For practical design aspects, optimization analysis was carried out. • Comparative study was made between the solid and porous moving fins. • Porous moving fin has more heat transfer ability than the stationary fin. - Abstract: In the present article, an exercise has been devoted to establish an analytical model for the determination of temperature distribution, fin efficiency and optimum design parameters of a porous moving fin which is losing heat by simultaneous convection and radiation to its surroundings. For the adaptation of this consideration, the governing equation becomes highly nonlinear. An analytical technique called Adomian decomposition method (ADM) is proposed for the solution methodology. The accuracy of the analytic solution is validated by using a numeric scheme called finite difference method. The results indicate that the numerical data and analytical approach are in agreement with each other. As the present study is an analytic, it is extended to the analysis for determination of optimum dimensions of said fin by satisfying either the maximization of rate of heat transfer for a given fin volume or by the minimization of fin volume for a desired heat transfer rate. The study is further extended to the porous fin in stationary condition and it is found that porous fin in moving condition transfers more heat than stationary condition. Investigation has also been made on solid moving fin to compare the outcomes of these parameters

  14. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  15. Transient heating and evaporation of moving mono-component liquid fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    of which the flow and energy transport equations are numerically solved using the finite volume method. The computer code for the model is developed in a generic 3D framework and verified in different ways (e.g., by comparison against analytical solutions for simplified cases, and against experimental......This paper presents a complete description of a model for transient heating and evaporation of moving mono-component liquid fuel droplets. The model mainly consists of gas phase heat and mass transfer analysis, liquid phase analysis, and droplet dynamics analysis, which address the interaction...... between the moving droplets and free-stream flow, the flow and heat and mass transfer within the droplets, and the droplet dynamics and size, respectively. For the liquid phase analysis, the droplets are discretized into a number of control volumes along the radial, polar and azimuthal directions, on each...

  16. A Generalized Wave Diagram for Moving Sources

    Science.gov (United States)

    Alt, Robert; Wiley, Sam

    2004-12-01

    Many introductory physics texts1-5 accompany the discussion of the Doppler effect and the formation of shock waves with diagrams illustrating the effect of a source moving through an elastic medium. Typically these diagrams consist of a series of equally spaced dots, representing the location of the source at different times. These are surrounded by a series of successively smaller circles representing wave fronts (see Fig. 1). While such a diagram provides a clear illustration of the shock wave produced by a source moving at a speed greater than the wave speed, and also the resultant pattern when the source speed is less than the wave speed (the Doppler effect), the texts do not often show the details of the construction. As a result, the key connection between the relative distance traveled by the source and the distance traveled by the wave is not explicitly made. In this paper we describe an approach emphasizing this connection that we have found to be a useful classroom supplement to the usual text presentation. As shown in Fig. 2 and Fig. 3, the Doppler effect and the shock wave can be illustrated by diagrams generated by the construction that follows.

  17. Temperature distribution in a uniformly moving medium

    International Nuclear Information System (INIS)

    Mitchell, Joseph D; Petrov, Nikola P

    2009-01-01

    We apply several physical ideas to determine the steady temperature distribution in a medium moving with uniform velocity between two infinite parallel plates. We compute it in the coordinate frame moving with the medium by integration over the 'past' to account for the influence of an infinite set of instantaneous point sources of heat in past moments as seen by an observer moving with the medium. The boundary heat flux is simulated by appropriately distributed point heat sources on the inner side of an adiabatically insulating boundary. We make an extensive use of the Green functions with an emphasis on their physical meaning. The methodology used in this paper is of great pedagogical value as it offers an opportunity for students to see the connection between powerful mathematical techniques and their physical interpretation in an intuitively clear physical problem. We suggest several problems and a challenging project that can be easily incorporated in undergraduate or graduate courses

  18. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  19. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...

  20. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  1. Heat sources for heat pumps in the energetic and economic comparison

    International Nuclear Information System (INIS)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus

    2016-01-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO_2 emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  2. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  3. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  4. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  5. Electromagnetic Sources in a Moving Conducting Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1971-01-01

    The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest system of the medium and then write the result in an appropriate four-dimensional, covariant form which...

  6. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  7. Inverse determination of convective heat transfer between an impinging jet and a continuously moving flat surface

    International Nuclear Information System (INIS)

    Mobtil, Mohammed; Bougeard, Daniel; Solliec, Camille

    2014-01-01

    Highlights: • A new method for convective heat flux determination on a moving wall is proposed. • An inverse technique is used for retrieving the heat flux from IR measurements. • Heat flux distribution determination in the slot jet impingement area is performed. • The accuracy of the method is examined using CFD Based simulated experiments. • The inversion quality is tested according to several parameters of the experiments. - Abstract: In this study an inverse method is developed to determine the heat flux distribution on a moving plane wall. The method uses a thin layer of material (the measurement medium) glued on the conveyor belt. The heat flux distribution on the moving wall is then determined by an inverse method based on the temperature measurement by infrared thermography on the upper surface of the measurement medium. A finite element based inverse algorithm of a steady state heat conduction advection in the Eulerian frame is performed. The algorithm entails the use of the Tikhonov regularization method, along with the L-curve method to select an optimal regularization parameter. Both the direct solution of moving boundary problem and the inverse design formulation are presented. The accuracy of the inverse method is examined by simulating the exact and noisy data with four different values of the surface-to-jet velocity ratio, and two different materials (PVC and Aluminum) for the measurement medium. The results show a greater sensitivity to the convective heat flux allowing a better estimation of heat flux distribution for the PVC layer. An alternative underdetermined inverse scheme is also studied. This configuration allows a different extend between the retrieval heat flux surface and the measurement temperature surface

  8. Analytical Solution of the Hyperbolic Heat Conduction Equation for Moving Semi-Infinite Medium under the Effect of Time-Dependent Laser Heat Source

    Directory of Open Access Journals (Sweden)

    R. T. Al-Khairy

    2009-01-01

    source, whose capacity is given by (,=((1−− while the semi-infinite body has insulated boundary. The solution is obtained by Laplace transforms method, and the discussion of solutions for different time characteristics of heat sources capacity (constant, instantaneous, and exponential is presented. The effect of absorption coefficients on the temperature profiles is examined in detail. It is found that the closed form solution derived from the present study reduces to the previously obtained analytical solution when the medium velocity is set to zero in the closed form solution.

  9. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  10. Tracking of Multiple Moving Sources Using Recursive EM Algorithm

    Directory of Open Access Journals (Sweden)

    Böhme Johann F

    2005-01-01

    Full Text Available We deal with recursive direction-of-arrival (DOA estimation of multiple moving sources. Based on the recursive EM algorithm, we develop two recursive procedures to estimate the time-varying DOA parameter for narrowband signals. The first procedure requires no prior knowledge about the source movement. The second procedure assumes that the motion of moving sources is described by a linear polynomial model. The proposed recursion updates the polynomial coefficients when a new data arrives. The suggested approaches have two major advantages: simple implementation and easy extension to wideband signals. Numerical experiments show that both procedures provide excellent results in a slowly changing environment. When the DOA parameter changes fast or two source directions cross with each other, the procedure designed for a linear polynomial model has a better performance than the general procedure. Compared to the beamforming technique based on the same parameterization, our approach is computationally favorable and has a wider range of applications.

  11. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    Science.gov (United States)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  12. Improvements in or relating to devices for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1976-01-01

    Reference is made to radioisotope powered heat engines. Should such an engine stop working for any reason the radioisotope heat source will continue to generate heat, and this may cause overheating and possible damage to the engine as well as the heat source. A device is described for conducting excess heat from the heat source to a heat sink but which in normal operation of the engine will impede heat conduction and so reduce thermal losses. The device may be used to support and/or locate the heat source. Constructional and operational details are given. (U.K.)

  13. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  14. Latent heat of traffic moving from rest

    Science.gov (United States)

    Farzad Ahmadi, S.; Berrier, Austin S.; Doty, William M.; Greer, Pat G.; Habibi, Mohammad; Morgan, Hunter A.; Waterman, Josam H. C.; Abaid, Nicole; Boreyko, Jonathan B.

    2017-11-01

    Contrary to traditional thinking and driver intuition, here we show that there is no benefit to ground vehicles increasing their packing density at stoppages. By systematically controlling the packing density of vehicles queued at a traffic light on a Smart Road, drone footage revealed that the benefit of an initial increase in displacement for close-packed vehicles is completely offset by the lag time inherent to changing back into a ‘liquid phase’ when flow resumes. This lag is analogous to the thermodynamic concept of the latent heat of fusion, as the ‘temperature’ (kinetic energy) of the vehicles cannot increase until the traffic ‘melts’ into the liquid phase. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to lessen the likelihood of collisions with no loss in flow efficiency. In contrast, motion capture experiments of a line of people walking from rest showed higher flow efficiency with increased packing densities, indicating that the importance of latent heat becomes trivial for slower moving systems.

  15. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  16. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  17. Characterization and modeling of the heat source

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  18. Use of moving heat conductor mesh to perform reflood calculations with RELAP4/MOD6

    International Nuclear Information System (INIS)

    Fischer, S.R.; Ellis, L.V.; Chen, Y.S.

    1979-01-01

    RELAP4 is a computer code which can be used for the transient thermal hydraulic analysis of light water reactors and related systems. RELAP4/MOD6 includes many new analytical models which were developed primarily for the analysis of the reflood phase of a PWR loss-of-coolant accident (LOCA) transient. The key feature forming the basis for the MOD6 reflood calculation is a unique moving finite differenced heat conductor. The development and application of the moving heat conductor mesh for use in reflood analysis are described

  19. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  20. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  1. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  2. Fuel fired heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortlinghaus, U

    1977-09-08

    Fuel fired heat sources with a valve-controlled ignition and main burner, whose flame is monitored and whose control valve is closed or opened by a controller according to the control deviation between actual and reference heat source temperature, previously suffered the disadvantage of high consumption of ignition gas. According to the invention this disadvantage is avoided by closing the ignition valve from the controller via a delay unit and having the delay time of the delay unit controlled either by the temperature measured by the sensor or increasing it with increasing deviation of the actual value of pre-temperature from the reference value of the pre-temperature.

  3. Diffusion of heat from a finite, rectangular, plane heat source

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Caballero, C.H.

    1985-01-01

    Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es

  4. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  5. Unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface

    Science.gov (United States)

    Dholey, S.

    2018-04-01

    In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.

  6. Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language

    Directory of Open Access Journals (Sweden)

    Adriano Desideri

    2016-05-01

    Full Text Available When modeling low capacity energy systems, such as a small size (5–150 kWel organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV and the moving boundary (MB approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11 kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows.

  7. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  8. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  9. Protected isotope heat source

    International Nuclear Information System (INIS)

    Burns, R.K.; Shure, L.I.; Katzen, E.D.

    1975-01-01

    A radioactive isotope capsule is disposed in a container (heat shield) which will have a single stable trim attitude when reentering the earth's atmosphere and while falling to earth. The center of gravity of the heat source is located forward of the midpoint between the front face and the rear face of the container. The capsule is insulated from the front face of the container but not from the rear surface of the container. (auth)

  10. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  11. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  12. Mapping of low temperature heat sources in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Holm, Fridolin Müller; Huang, Baijia

    2015-01-01

    heat. The total accessible waste heat potential is found to be approximately 266 PJ per year with 58 % of it below 100 °C. In the natural heat category, temperatures below 20 °C originate from ambient air, sea water and shallow geothermal energy, and temperatures up to 100 °C are found for solar...... and deep geothermal energy. The theoretical solar thermal potential alone would be above 500 PJ per year. For the development of advanced thermodynamic cycles for the integration of heat sources in the Danish energy system, several areas of interest are determined. In the maritime transport sector a high......Low temperature heat sources are available in many applications, ranging from waste heat from industrial processes and buildings to geothermal and solar heat sources. Technical advancements, such as heat pumps with novel cycle design and multi-component working fluids, make the utilisation of many...

  13. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  14. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  15. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream

    International Nuclear Information System (INIS)

    Ishak, Anuar

    2009-01-01

    Effects of thermal radiation on the steady laminar boundary layer flow over a moving plate in a moving fluid is investigated. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. It is found that dual solutions exist when the plate and the fluid move in the opposite directions. Moreover, the existence of thermal radiation is to reduce the heat transfer rate at the surface. (fundamental areas of phenomenology (including applications))

  16. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    Science.gov (United States)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  17. A moving subgrid model for simulation of reflood heat transfer

    International Nuclear Information System (INIS)

    Frepoli, Cesare; Mahaffy, John H.; Hochreiter, Lawrence E.

    2003-01-01

    In the quench front and froth region the thermal-hydraulic parameters experience a sharp axial variation. The heat transfer regime changes from single-phase liquid, to nucleate boiling, to transition boiling and finally to film boiling in a small axial distance. One of the major limitations of all the current best-estimate codes is that a relatively coarse mesh is used to solve the complex fluid flow and heat transfer problem in proximity of the quench front during reflood. The use of a fine axial mesh for the entire core becomes prohibitive because of the large computational costs involved. Moreover, as the mesh size decreases, the standard numerical methods based on a semi-implicit scheme, tend to become unstable. A subgrid model was developed to resolve the complex thermal-hydraulic problem at the quench front and froth region. This model is a Fine Hydraulic Moving Grid (FHMG) that overlies a coarse Eulerian mesh in the proximity of the quench front and froth region. The fine mesh moves in the core and follows the quench front as it advances in the core while the rods cool and quench. The FHMG software package was developed and implemented into the COBRA-TF computer code. This paper presents the model and discusses preliminary results obtained with the COBRA-TF/FHMG computer code

  18. MANET Performance for Source and Destination Moving Scenarios Considering OLSR and AODV protocols

    Directory of Open Access Journals (Sweden)

    Elis Kulla

    2010-01-01

    Full Text Available Recently, a great interest is shown in MANETs potential usage and applications in several fields such as military activities, rescue operations and time-critical applications. In this work, we implement and analyse a MANET testbed considering AODV and OLSR protocols for wireless multi-hop networking. We investigate the effect of mobility and topology changing in MANET and evaluate the performance of the network through experiments in a real environment. The performance assessment of our testbed is done considering throughput, number of dropped packets and delay. We designed four scenarios: Static, Source Moving, Destination Moving and Source-Destination Moving. From our experimental results, we concluded that when the communicating nodes are moving and the routes change quickly, OLSR (as a proactive protocol performs better than AODV, which is a reactive protocol.

  19. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  20. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  1. Hybrid ground-source heat pump system with active air source regeneration

    International Nuclear Information System (INIS)

    Allaerts, K.; Coomans, M.; Salenbien, R.

    2015-01-01

    Highlights: • A hybrid ground source heat pump system with two separate borefields is modelled. • The maximum underground storage temperature depends on the size of the drycooler. • Drycooler selection curves are given as function of underground storage temperature. • The size of the cold storage is reduced with 47% in the cost optimal configuration. • The cooling seasonal performance factor decreases with reduced storage capacity. - Abstract: Ground-source heat pump systems (GSHP) offer great advantages over traditional heating and cooling installations. However, their applications are limited due to the high initial costs of borehole drilling. One way to avoid these costs is by reducing the size of the borefield, e.g. by combining the system with other renewable energy sources or by using active regeneration to increase the system efficiency. In this paper a hybrid ground-source heat pump system (HGSHP) is analyzed. The borefield is split into a warm part and a cold part, which allows for seasonal thermal-energy storage. Additionally, supplementary drycoolers capture heat during summer and cold during winter. The relationship between the underground storage size and temperature and the drycooler capacity is described, using an office building in Flanders (Belgium) as reference case. Results show that with a HGSHP system a significant borefield size reduction can be achieved without compromising system performance; i.e. for the reference case a reduction of 47% was achieved in the cost-optimal configuration. It is also shown that the cooling seasonal performance factor decreases significantly with underground storage capacity. In addition, the HGSHP can be used to maintain or restore thermal balance in the geothermal source when heating and cooling loads do not match

  2. Heat-source specification 500 watt(e) RTG

    International Nuclear Information System (INIS)

    1983-02-01

    This specification establishes the requirements for a 90 SrF 2 heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source

  3. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    International Nuclear Information System (INIS)

    Leung, M; Ching, W H; Leung, D Y C; Lam, G C K

    2005-01-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others

  4. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    Science.gov (United States)

    Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.

    2005-02-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.

  5. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  6. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  7. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  8. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  9. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the last years, different working fluid screening criteria have been used. In broad speaking the screening criteria can be grouped as thermodynamic performance, component size requirement, economic performance, safety and environmental impact. Screening of working fluids at different heat source temperatures (80-200 Celsius degrees) using thermodynamic performance (power output and exergy efficiency) and component size (heat exchanger and turbine) is investigated. It is found that the 'best' working fluid depends on the criteria used and heat source temperature level. Transcritical power cycles using carbon dioxide as a working fluid is studied to produce power at 100 Celsius degrees. Carbon dioxide is an environmentally friendly refrigerant. The global warming potential of carbon dioxide is 1. Furthermore, because of its low critical temperature (31 Celsius degrees), carbon dioxide can operate in a transcritical power cycle for lower heat source temperatures. A transcritical configuration avoids the problem of pinching which otherwise would happened in subcritical power cycle. In the process, better temperature matching is achieved and more heat is extracted. Thermodynamic analysis of transcritical cycle is performed; it is found that there is an optimal operating pressure for highest net power output. The pump work is a sizable fraction of the work produced by the turbine. The effect of efficiency deterioration of the pump and the turbine is compared. When the

  10. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  11. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  12. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  13. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  14. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  15. Mass and heat transfer between a fluidized bed and a freely moving submerged sphere

    NARCIS (Netherlands)

    Prins, W.; Valk, M.

    1995-01-01

    For fluidized bed combustion and gasification of solid fuels, but also for various other fluidized bed processes such as drying, granulation and evaporation, mass and heat transport to (or from) a particle freely moving in the fluidized bed is of great importance. The combustion rate of a

  16. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  17. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  18. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  19. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  20. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  1. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  2. Development of the Sixty Watt Heat-Source hardware components

    International Nuclear Information System (INIS)

    McNeil, D.C.; Wyder, W.C.

    1995-01-01

    The Sixty Watt Heat Source is a nonvented heat source designed to provide 60 thermal watts of power. The unit incorporates a plutonium-238 fuel pellet encapsulated in a hot isostatically pressed General Purpose Heat Source (GPHS) iridium clad vent set. A molybdenum liner sleeve and support components isolate the fueled iridium clad from the T-111 strength member. This strength member serves as the pressure vessel and fulfills the impact and hydrostatic strength requirements. The shell is manufactured from Hastelloy S which prevents the internal components from being oxidized. Conventional drawing operations were used to simplify processing and utilize existing equipment. The deep drawing reqirements for the molybdenum, T-111, and Hastelloy S were developed from past heat source hardware fabrication experiences. This resulted in multiple step drawing processes with intermediate heat treatments between forming steps. The molybdenum processing included warm forming operations. This paper describes the fabrication of these components and the multiple draw tooling developed to produce hardware to the desired specifications. copyright 1995 American Institute of Physics

  3. Radiation from a pulsed dipole source in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V. G.; Petrov, E. Yu.; Pikulin, V. D.; Sutyagina, D. A.

    2006-01-01

    The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources

  4. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  5. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  6. Method and Apparatus for the Portable Identification of Material Thickness and Defects Using Spatially Controlled Heat Application

    Science.gov (United States)

    Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)

    1999-01-01

    A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.

  7. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  8. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  9. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  10. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  11. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  12. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  13. Development of Moving Bed Technology for Heat Treatment and Grinding of Dismantled Concrete

    International Nuclear Information System (INIS)

    Kang, Yong

    2009-04-01

    The factors such as gas or fluid velocity, length, width and depth of each stage, number of Zig-Zag stage, angle of each stage, position of feed stage, size and amount of feed material, amount of treated concrete waste, method of fluid distribution, surface area of heat transfer, position of heater, method of heating, temperature difference between the heater and the material, amount of heat have been found to be important factors in the system. The capability of the system has been analyzed and evaluated by means of total efficiency and grade separation efficiency the experiments by using the simulated Zig-Zag type moving bed flow process with bench scale(3.2m high, Ifi-stage) have shown that the total efficiency has been in the range of 92% - 95% and the grade efficiency of 93% - 95%, respectively, elucidating that the system is quite good

  14. Optimum load distribution between heat sources based on the Cournot model

    Science.gov (United States)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  15. Heat sources for heat pumps in the energetic and economic comparison; Waermequellen fuer Waermepumpen im energetischen und wirtschaftlichen Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2016-07-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO{sub 2} emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  16. Biological effects of intracorporeal radioisotope heat sources

    International Nuclear Information System (INIS)

    Gillis, M.F.; Decker, J.R.; Karagianes, M.T.

    1976-01-01

    A surface heat flux of 0.04 watts/cm 2 from a retroperitoneal implant with healthy surface ingrowth of tissue prior to generation of heat is intolerable, producing gross tissue necrosis. Percutaneous cooling of hot implants during the post-operative healing period is a feasible technique, but our current plutonium heat source implant design has been proven of inadequate size and a new design is described. Rough calculations based on tissue conductivity and conductance values suggest that even with this larger device, added heat to proximate tissues may produce long-term changes even though the heat burden may be tolerable over relatively short periods

  17. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  18. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  19. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  20. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  1. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    International Nuclear Information System (INIS)

    Claudio Filippone

    1999-01-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency

  2. A thermoacoustic engine capable of utilizing multi-temperature heat sources

    International Nuclear Information System (INIS)

    Qiu Limin; Wang Bo; Sun Daming; Liu Yu; Steiner, Ted

    2009-01-01

    Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.

  3. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  4. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  5. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  6. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  7. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  8. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  9. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  10. Assessment of dynamic energy conversion systems for radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745 0 C, and case III with a BOL source temperature of 945 0 C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of 238 Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass

  11. Infant otitis media and the use of secondary heating sources.

    Science.gov (United States)

    Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P

    2004-01-01

    This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.

  12. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  13. Research status and evaluation system of heat source evaluation method for central heating

    Science.gov (United States)

    Sun, Yutong; Qi, Junfeng; Cao, Yi

    2018-02-01

    The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.

  14. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array

    Directory of Open Access Journals (Sweden)

    Yankui Zhang

    2018-05-01

    Full Text Available Direct position determination (DPD is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer–Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  15. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    Science.gov (United States)

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  16. Analysis of carbon monoxide production in multihundred-watt heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Mulford, R.N.R.

    1976-05-01

    The production of carbon monoxide observed within Multihundred Watt heat sources placed under storage conditions was analyzed. Results of compositional and isotopic analyses of gas taps performed on eight heat sources are summarized and interpreted. Several proposed CO generation mechanisms are examined theoretically and assessed by applying thermodynamic principles. Outgassing of the heat source graphite followed by oxygen isotopic exchange through the vent assemblies appears to explain the CO production at storage temperatures. Reduction of the plutonia fuel sphere by the CO is examined as a function of temperature and stoichiometry. Experiments that could be performed to investigate possible CO generation mechanisms are discussed

  17. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  18. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  19. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  20. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    Science.gov (United States)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  1. The effect of location of a convective heat source on displacement ventilation: CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Holland, D. [Dunham Associates, Inc., Minneapolis, MN (United States). Advanced Technologies Group

    2001-08-01

    Two-dimensional computational simulations are performed to examine the effect of vertical location of a convective heat source on thermal displacement ventilation systems. In this study, a heat source is modeled with seven different heights from the floor (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 m) in a displacement ventilation environment. The flow and temperature fields in thermal displacement ventilation systems vary depending on the location of the heat source. As the heat source rises, the convective heat gain from the heat source to an occupied zone becomes less significant. This effect changes the temperature field and results in the reduction of the cooling load in the occupied zone. The stratification level is also affected by the heat source location at a given flow rate. (author)

  2. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  3. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  4. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  5. Design and application for a high-temperature nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    Recent actions by OPEC have sharply increased interest in the United States in synfuels, with coal being the logical choice for the carbon source. Two coal liquefaction processes, direct and indirect, have been examined. Each can produce about 50% more output when coupled to an HTGR for process heat. The nuclear reactor designed for process heat has a power output of 842MW(t), a core outlet temperature of 950 0 C (1742 0 F), and an intermediate helium loop to separate the heat source from the process heat exchangers. Steam-methane reforming is the reference process. As part of the development of a nuclear process heat system, a computer code, Process Heat Reactor Evaluation and Design, is being developed. This code models both the reactor plant and a steam reforming plant. When complete, the program will have the capability to calculate an overall mass and heat balance, size the plant components, and estimate the plant cost for a wide variety of independent variables. (author)

  6. Hydromagnetic Falkner-Skan flow of Casson fluid past a moving wedge with heat transfer

    Directory of Open Access Journals (Sweden)

    Imran Ullah

    2016-09-01

    Full Text Available Numerical solutions are carried out for steady state two dimensional electrically conducting mixed convection flow of Casson fluid along non-isothermal moving wedge through porous medium in the presence of viscous dissipation and heat generation/absorption. The governing partial differential equations, subject to boundary conditions are transformed into ordinary differential equations using similarity transformations. The transformed equations are then solved numerically by Keller-box method. To check the validity of present method, numerical results for dimensionless local skin friction coefficient and rate of heat transfer are compared with results of available literature as special cases and revealed in good agreement. The influence of pertinent parameters on velocity, temperature profiles, as well as wall shear stress and heat transfer rate is displayed in graphical form and discussed. It is found that fluid velocity increases with increase of Eckert number in case of assisting flow, while it decreases in case of opposing flow. It is also noticed that heat generation/absorption parameter influence fluid velocity and temperature significantly. A significant result obtained from this study is that heat transfer rate reduces with increase of Prandtl number in the presence of viscous dissipation effect. Also, increasing values of Eckert number have no effects on force convection flow.

  7. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  8. Heat buffers improve capacity and exploitation degree of geothermal energy sources

    NARCIS (Netherlands)

    Ooster, A.van t; Wit, J. de; Janssen, E.G.O.N.; Ruigrok, J.

    2008-01-01

    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy

  9. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    OpenAIRE

    T. I. Dolgikh; S. V. Morozov; Yu. P. Orlov; A. B. Reis; A. Yu Yakovlev

    2014-01-01

    The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat suppl...

  10. The moving minimum audible angle is smaller during self motion than during source motion.

    Directory of Open Access Journals (Sweden)

    W. Owen eBrimijoin

    2014-09-01

    Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.

  11. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  12. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  13. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  15. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2015-01-01

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH 3 /H 2 O are inferior to those of NH 3 /LiNO 3 , and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in

  16. Perception by Operators of Approach and Withdrawal of Moving Sound Sources

    Science.gov (United States)

    1999-01-01

    Tucker, 1988; Strybel and Neal, 1994) or between stationary and moving sound sources or auditory images (Perrott and Musikant , 1977; Strybel and Neale...conditions of stimulation (Viskov, 1975; Perrott and Musikant , 1977; Strybel et al., 1989; Sabery and Perrott, 1990; Strybel et al., 1992; Strybel and...noise and its relation to masking and loudness// JASA, 1947. V.19. P. 609-619. 24. Perrott D.R., Musicant A.D. Minimum auditory movement angle: binaural

  17. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources

    International Nuclear Information System (INIS)

    Kaynakli, Omer; Saka, Kenan; Kaynakli, Faruk

    2015-01-01

    Highlights: • Energy and exergy analysis was performed on double effect series flow absorption refrigeration system. • The refrigeration system runs on various heat sources such as hot water, hot air and steam. • A comparative analysis was carried out on these heat sources in terms of exergy destruction and mass flow rate of heat source. • The effect of heat sources on the exergy destruction of high pressure generator was investigated. - Abstract: Absorption refrigeration systems are environmental friendly since they can utilize industrial waste heat and/or solar energy. In terms of heat source of the systems, researchers prefer one type heat source usually such as hot water or steam. Some studies can be free from environment. In this study, energy and exergy analysis is performed on a double effect series flow absorption refrigeration system with water/lithium bromide as working fluid pair. The refrigeration system runs on various heat sources such as hot water, hot air and steam via High Pressure Generator (HPG) because of hot water/steam and hot air are the most common available heat source for absorption applications but the first law of thermodynamics may not be sufficient analyze the absorption refrigeration system and to show the difference of utilize for different type heat source. On the other hand operation temperatures of the overall system and its components have a major effect on their performance and functionality. In this regard, a parametric study conducted here to investigate this effect on heat capacity and exergy destruction of the HPG, coefficient of performance (COP) of the system, and mass flow rate of heat sources. Also, a comparative analysis is carried out on several heat sources (e.g. hot water, hot air and steam) in terms of exergy destruction and mass flow rate of heat source. From the analyses it is observed that exergy destruction of the HPG increases at higher temperature of the heat sources, condenser and absorber, and lower

  18. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-01-01

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  19. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  20. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  1. Application of sorption heat pumps for increasing of new power sources efficiency

    Science.gov (United States)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  2. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    Directory of Open Access Journals (Sweden)

    T. I. Dolgikh

    2014-01-01

    Full Text Available The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat supply of the mobile object (field hospital.

  3. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    Science.gov (United States)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  4. Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux

    Science.gov (United States)

    Kassem, M.

    2006-03-01

    The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential equation governing the flow and the boundary conditions are transformed to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effect of Prandlt number on the velocity and temperature of the boundary-layer is plotted in curves. A comparison with previous work is presented.

  5. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  6. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  7. Thermal modeling of multi-shape heating sources on n-layer electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2017-01-01

    Full Text Available The present work completes the toolbox of analytical solutions that deal with resolving steady-state temperatures of a multi-layered structure heated by one or many heat sources. The problematic of heating sources having non-rectangular shapes is addressed to enlarge the capability of analytical approaches. Moreover, various heating sources could be located on the external surfaces of the sandwiched layers as well as embedded at interface of its constitutive layers. To demonstrate its relevance, the updated analytical solution has been compared with numerical simulations on the case of a multi-layered electronic board submitted to a set of heating source configurations. The comparison shows a high agreement between analytical and numerical calculations to predict the centroid and average temperatures. The promoted analytical approach establishes a kit of practical expressions, easy to implement, which would be cumulated, using superposition principle, to help electronic designers to early detect component or board temperatures beyond manufacturer limit. The ability to eliminate bad concept candidates with a minimum of set-up, relevant assumptions and low computation time can be easily achieved.

  8. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

  9. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions

  10. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    Science.gov (United States)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  11. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  12. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  13. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  14. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  15. The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    Directory of Open Access Journals (Sweden)

    Tkachenko Egor M.

    2016-01-01

    Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.

  16. Heat input properties of hollow cathode arc as a welding heat source

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Shobako, Shinichiro; Ohta, Masashi; Ohji, Takayoshi

    2005-01-01

    In order to clarify whether a hollow cathode arc (HCA) can be used as a welding heat source in space, investigations into the fundamental characteristics of HCA were experimentally performed under low pressure conditions. The HCA method enables an arc discharge to ignite and maintain under low pressure conditions; in contrast, low pressure conditions make it extremely difficult for the conventional gas tungsten arc method to form an arc discharge. In an earlier paper, it was shown that the melting process by HCA is very sensitive to process parameters such as the gas flow rate and arc length, and a deep penetration forms when the arc length is long and the gas flow rate is low. In this paper, the distribution of the arc current on the anode surface and the plasma properties of the HCA under low pressure conditions have been made clear and the total heat energy to the anode has been discussed in order to understand the heat input properties of the HCA. The result shows that the HCA in the case of a low gas flow rate is a high and concentrated energy source, and the high energy input to the anode contributes to the deep penetration

  17. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  18. Ground source geothermal heat. Ground source heat pumps and underground thermal energy storage systems. Proceedings; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the ninth international user forum on shallow geothermal heat on 28th and 29th April, 2009, at BadStaffelstein (Federal Republic of Germany), the following lectures were held: (1) Information system on shallow geothermal heat for Bavaria (Marcellus Schulze); (2) Calculation of the spreading of temperature anomalies in groundwater as an instrument of planning of heat pump systems (Wolfgang Rauch); (3) Comparison of models for simulation of deep geothermal probes (Markus Proell); (4) Impact of the geometry of boreholes and probes on heat transport (Manfred Reuss); (5) Thermal respond tests and temperature depth profiles - Experience from research and practice (Markus Kuebert); (6) A model of simulation for the investigation of the impact of different heat transfer fluids on the efficiency of ground source heat pump devices (Roland Koenigsdorff); (7) The research project EWSplus - Investigations for quality assurance of geothermal probes (Mathieu Riegger); (8) Quality management of plants for the utilization of shallow geothermal heat with geothermal probes - the example of Baden-Wuerttemberg (Bruno Lorinser, Ingrid Stober); (9) Not every heat pump contributes to climate protection (Falk Auer); (10) Field measurements of heat pumps in residential buildings with modern standard and in older buildings (Marek Miara); (11) System technology for a great annual performance factor (Werner Schenk); (12) Modification of older geothermal heat probe devices for use with modern heat pumps (Klaus Friedrich Staerk); (13) Energy-efficient modernisation of a pensioners' condominium from the 1970s with solar-geothermal-air (Michael Guigas); (14) Evaluation and optimization of operation of seasonal storage systems in the foundations of office buildings (Herdis Kipry); (15) Evaluation of an innovative heating and cooling concept with rain water vessels, thermo-active building components and phase change materials in a residential building (Doreen Kalz); (16) Contracts for ground

  19. Heating effects in a liquid metal ion source

    International Nuclear Information System (INIS)

    Mair, G.L.R.; Aitken, K.L.

    1984-01-01

    A reassessment is made of the heating occurring at the anode of a liquid metal ion source, in the light of new microscopic observations. The apex region of the cones is in the form of a cusp, or jet, even at very low currents. The calculation for ohmic heating is conclusive for low currents; no heating occurs at the anode; for high currents (approx. 50-100 μA), substantial heating is conceivable, if a long, very thin, cylindrical jet exists at the apex of the anode. The answer to the problem of external heating, in the form of electrons bombarding the anode, is not quite conclusive; this is because of the impossibility of correctly assessing the electron flux entering the anode. However, it would appear to be a definite conclusion that for reasons of self-consistency field-ionisation of thermally released atoms cannot be a significant ion emission mechanism. (author)

  20. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  1. Heat source component development program. Report for July--December 1978

    International Nuclear Information System (INIS)

    Foster, E.L. Jr.

    1979-01-01

    This is the seventh of a series of reports describing the results of several analytical and experimental programs being conducted at Battelle-Columbus Laboratories to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. Battelle's support of LASL during the current reporting period has been to determine the operational and reentry response of selected heat source trial designs, and their thermal response to a space shuttle solid propellant fire environment. Thermal, ablation, and thermal stress analyses were conducted using two-dimensional modeling techniques previously employed for the analysis of the earlier trial design versions, and modified in part to improve the modeling accuracy. Further modifications were made to improve the modeling accuracy as described herein. Thermal, ablation, and thermal stress analyses were then conducted for the trial design selected by LASL/DOE for more detailed studies using three-dimensional modeling techniques

  2. Heat source component development program, October 1977--February 1978

    International Nuclear Information System (INIS)

    1978-03-01

    The General Purpose Heat Source (GPHS) is being developed by Los Alamos Scientific Laboratory (LASL) for the Department of Energy (DOE) Division of Nuclear Research and Application (DNRA). The first mission scheduled for the GPHS is the NASA Out-of-Ecliptic Flight in January, 1983. During the current reporting period (October--December, 1977, January--February, 1978), activities in this task were conducted as follows: (1) documentation of results of the reentry thermal, ablation, and thermal stress analyses of the conceptual designs; (2) identification and completion of modifications to the thermal and ablation models used to determine the performance response of the heat source modules during reentry; (3) initiation of modifications to the thermal stress model used to determine the performance response of heat source modules during reentry; (4) completion and documentation of the surface chemistry experiments; (5) initiation and completion of activities in support of LASL to define test plans for the trial design phase of the GPHS development program; (6) participation in the GPHS design review meeting held at DOE/Germantown, Maryland, December 19--20, 1977; and (7) initiation of the thermal analysis of Trial Design 1.1

  3. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  4. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  5. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  6. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  7. The ion source development for neutral injection heating at JAERI

    International Nuclear Information System (INIS)

    Shirakata, H.; Itoh, T.; Kondoh, U.; Matsuda, S.; Ohara, Y.; Ohga, T.; Shibata, T.; Sugawara, T.; Tanaka, S.

    1976-01-01

    The neutral beam research and development effort at JAERI has been mainly concentrated on design, construction and testing of ion sources needed for present and planned heating experiments. Fundamental characteristics of the ion sources developed are described

  8. Energy well. Ground-source heat in one-family houses; Energiakaivo. Maalaemmoen hyoedyntaeminen pientaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, J.; Lapinlampi, T.

    2013-08-15

    This guide deals with the legislation, planning, building, usage and maintenance of ground-source heat systems. The guide gives recommendations and instructions on national level on the permit practices and how to carry out the whole ground-source heat system project. The main focus of the guide is on energy wells for one-family houses. The principle is that an action permit is needed to build a ground-source heat system. On ground water areas a permit according to the water act may also be required. To avoid any problems, the placement of the system needs to be planned precisely. This guide gives a comprehension to the orderer on the issues that need to be considered before ordering, during construction, when the system is running and when giving up the use of the ground-source heat system. (orig.)

  9. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  10. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  11. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  12. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  13. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  14. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  15. Current status of ground-source heat pumps in China

    International Nuclear Information System (INIS)

    Yang Wei; Zhou Jin; Xu Wei; Zhang Guoqiang

    2010-01-01

    As a renewable energy technology, the ground-source heat pump (GSHP) technologies have increasingly attracted world-wide attention due to their advantages of energy efficiency and environmental friendliness. This paper presents Chinese research and application on GSHP followed by descriptions of patents. The policies related to GSHP are also introduced and analyzed. With the support of Chinese government, several new heat transfer models and two new GSHP systems (named pumping and recharging well (PRW) and integrated soil cold storage and ground-source heat pump (ISCS and GSHP) system) have been developed by Chinese researchers. The applications of GSHP systems have been growing rapidly since the beginning of the 21st century with financial incentives and supportive government policies. However, there are still several challenges for the application of GSHP systems in large scale. This paper raises relevant suggestions for overcoming the existing and potential obstacles. In addition, the developing and applying prospects of GSHP systems in China are also discussed.

  16. An assessment of dynamic energy conversion systems for terrestrial radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.

    1985-01-01

    The use of dynamic conversion systems to convert to electricity the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source is examined. Brayton Cycle, three Organic Rankine systems (Barber-Nichols/ORMAT, Sundstrand, and TRW concepts), Organic Rankine plus thermoelectrics, and Stirling Engine systems were studied. The systems were ranked for a North Warning System mission using a Los Alamos Multi-Attribute Decision Theory code. Three different heat source designs were used: Case I with a beginning of life (BOL) source temperature of 640 0 C, Case II with a BOL source temperature of 745 0 C, and Case III with a BOL source temperature of 945 0 C. The Stirling Engine system was the top-ranked system for Cases I and II, closely followed by the ORC systems in Case I and ORC and thermoelectrics in Case II. The Brayton-Cycle system was top-ranked for Case III, with the Stirling Engine system a close second

  17. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  18. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  19. Nuclear source of district heating in the north-east region of Russia

    International Nuclear Information System (INIS)

    Dolgov, V.V.

    1998-01-01

    The operation of the Bilibin Nuclear Co-generation Plant (BNCP) as a local district heating source is reviewed in this paper. Specific features of the BNCP power unit are given with special emphases on the components of the technological scheme, which are involved in the heat production and supply to the consumers. The scheme of steam extraction from the turbine, the flow diagram of steam in the turbine, as well as the three circuit heat removal system are described. The numerical characteristics of the nuclear heat supply system in various operating modes are presented. The real information characterizing current radiological conditions in the vicinity of the heat generation and distribution equipment is also presented in the paper. The BNCP technical and economical characteristics are compared with those of conventional energy sources. Both advantages and some problems revealed during the twenty-year experience of the BNCP nuclear heat utilization are generally assessed. Safety and reliability characteristics of the reactor and the heat supply system are also described. (author)

  20. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  1. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  2. Radioisotopes for heat-source applications

    International Nuclear Information System (INIS)

    Hoisington, J.E.

    1982-01-01

    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, ( 90 Sr, 147 Pm, 238 Pu) 90 Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake 90 Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). 90 Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the 90 Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of 90 Sr and 0.15 MW of 147 Pm. SRP could supply an additional 0.15 MW from the production and recovery of 238 Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The 90 Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP 90 Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford 90 Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. 147 Pm and 238 Pu are considerably more expensive heat source materials. 147 Pm recovery costs at SRP are estimated to be $450/watt. As with 90 Sr, the Hanford 147 Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) 238 Pu at SRP from excess 231 Np would cost about $1160/watt, while recovery of low assay (27%) 238 Pu from the waste stream is estimated at $1850/watt

  3. Moving Target Photometry Using WISE and NEOWISE

    Science.gov (United States)

    Wright, Edward L.

    2015-01-01

    WISE band 1 observations have a significant noise contribution from confusion. The image subtraction done on W0855-0714 by Wright et al. (2014) shows that this noise source can be eliminated for sources that move by much more than the beamsize. This paper describes an analysis that includes a pattern of celestially fixed flux plus a source moving with a known trajectory. This technique allows the confusion noise to be modeled with nuisance parameters and removed even for sources that have not moved by many beamwidths. However, the detector noise is magnified if the motion is too small. Examples of the method applied to fast moving Y dwarfs and slow moving planets will be shown.

  4. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  5. Welding simulation of large-diameter thick-walled stainless steel pipe joints. Fast computation of residual stress and influence of heat source model

    International Nuclear Information System (INIS)

    Maekawa, Akira; Serizawa, Hisashi; Nakacho, Keiji; Murakawa, Hidekazu

    2011-01-01

    There are many weld zones in the apparatus and piping installed in nuclear power plants and residual stress generated in the zone by weld process is the most important influence factor for maintaining structural integrity. Though the weld residual stress is frequently evaluated using numerical simulation, fast simulation techniques have been demanded because of the enormous calculation times used. Recently, the fast weld residual stress evaluation based on three-dimensional accurate analysis became available through development of the Iterative Substructure Method (ISM). In this study, the computational performance of the welding simulation code using the ISM was improved to get faster computations and more accurate welding simulation. By adding functions such as parallel processing, the computation speed was much faster than that of the conventional finite element method code. Furthermore, the accuracy of the improved code was validated by measurements. The influence of two different weld heat source models on the simulation results was also investigated and it was found that the moving heat source was effective to achieve accurate weld simulation for multi-pass welds. (author)

  6. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  7. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  8. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  9. Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China

    International Nuclear Information System (INIS)

    Yang, Wei

    2013-01-01

    The DX GSHP (direct-expansion ground source heat pump), which uses a buried copper piping network through which refrigerant is circulated, is one type of GSHP (ground source heat pump). This study investigates the performance characteristics of a vertical U-bend direct-expansion ground source (geothermal) heat pump system (DX GSHPS) for both heating and cooling. Compared with the conventional GCHP (ground coupled heat pump) system, the DX GSHP system is more efficient, with lower thermal resistance in the GHE (ground heat exchanger) and a lower (higher) condensing (evaporating) temperature in the cooling (heating) mode. In addition, the system performance of the whole DX GSHP system is also higher than that of the conventional GCHP system. A DX GSHP system in Xiangtan, China with a U-bend ground heat exchanger 42 m deep with a nominal outside diameter of 12.7 mm buried in a water well was tested and analysed. The results showed that the performance of this system is very high. The maximum (average) COPs of the system were found to be 6.08 (4.73) and 6.32 (5.03) in the heating and cooling modes, respectively. - Highlights: • The reasons for the higher performance of the DX GSHP (direct-expansion ground source heat pump) are analysed theoretically compared with the conventional GCHP (ground coupled heat pump). • The experimental performance of a DX GSHP system is investigated, which makes a valuable contribution to the literature. • The study is helpful in demonstrating the energy efficiency of the DX GSHP system

  10. Melting of a phase change material in a horizontal annulus with discrete heat sources

    Directory of Open Access Journals (Sweden)

    Mirzaei Hooshyar

    2015-01-01

    Full Text Available Phase change materials have found many industrial applications such as cooling of electronic devices and thermal energy storage. This paper investigates numerically the melting process of a phase change material in a two-dimensional horizontal annulus with different arrangements of two discrete heat sources. The sources are positioned on the inner cylinder of the annulus and assumed as constant-temperature boundary conditions. The remaining portion of the inner cylinder wall as well as the outer cylinder wall is considered to be insulated. The emphasis is mainly on the effects of the arrangement of the heat source pair on the fluid flow and heat transfer features. The governing equations are solved on a non-uniform O type mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid and liquid interface. The results are obtained at Ra=104 and presented in terms of streamlines, isotherms, melting phase front, liquid fraction and dimensionless heat flux. It is observed that, depending on the arrangement of heat sources, the liquid fraction increases both linearly and non-linearly with time but will slow down at the end of the melting process. It can also be concluded that proper arrangement of discrete heat sources has the great potential in improving the energy storage system. For instance, the arrangement C3 where the heat sources are located on the bottom part of the inner cylinder wall can expedite the melting process as compared to the other arrangements.

  11. Heat pumps using vertical boreholls as heat source; Varmepumper med lodrette boringer som varmeoptager

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Svend V. [Teknologisk Institut, Aarhus (Denmark); Thoegersen, L.; Soerensen, Inga [VIA University College, Risskov (Denmark)] [and others

    2013-01-15

    This report presents instructions on what to consider when you have to establish vertical wells as energy sources for ground source heating systems. The report provides an introduction into what to be aware of when it comes to sizing vertical ground hoses as heat absorbers for heat pumps. The initial geological assessments, you have to make are described and there are references to the available tools and websites that exist today. A calculation model is developed for the design of vertical ground hoses. This calculation model is intended as a tool for installers and consultants as well as well drillers. The calculation model contains two computational models, one can be used for initial calculations and dimensioning of vertical ground hoses, and the detailed model can be used for costing by well driller. The simple calculation is based on proven design approach from the German standard VDI 4640, and the detailed calculation is based on a known empirical calculation, which assumes that you know the geology in more detail. In the project measurements were carried out on four installations, and the calculations show that there is good agreement between the measurements and the calculation model. (LN)

  12. Flow Conditions in a Mechanically Ventilated Room with a Convective Heat Source

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices.......The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices....

  13. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-03-01

    Full Text Available An investigation of the hydromagnetic boundary layer flow past a moving vertical plate in nanofluids in the presence of a uniform transverse magnetic field and thermal radiation has been carried out. Three different types of water-based nanofluids containing copper, aluminum oxide and titanium dioxide are taken into consideration. The governing equations are solved using Laplace transform technique and the solutions are presented in closed form. The numerical values of nanofluid temperature, velocity, the rate of heat transfer and the shear stress at the plate are presented graphically for several values of the pertinent parameters. The present study finds applications in engineering devices.

  14. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  15. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  16. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  17. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  18. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  19. Quasiballistic heat removal from small sources studied from first principles

    Science.gov (United States)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  20. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  1. Book of presentations of the International Workshop on High Temperature Heat Pumps

    DEFF Research Database (Denmark)

    Modern society moves towards an electrifed energy system based on wind, solarand other renewable sources. Utilizing these sources effciently by heat pumps ishighly attractive and a significant potential for improving the energy system byextensive adaptation of heat pumping technology in all fields...... exists. However, challenges are present for heat pump technology. In particular for high temperature applications like industrial processes and to some extent district heating, heat pumps are not yet commercially available. In some countries the expansion already occurs, but other places the development...... is much more limited. Some obstacles relate to regulations and boundary conditions which may not be favorablefor heat pumps and electrification. But, the level of the technology willprobably also improve with regards to temperature limits, efficiency, capacity, and economy, and hence inherently become...

  2. The radiation and variable viscosity effects on electrically conducting fluid over a vertically moving plate subjected to suction and heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Moghimi, M.A. [Department of Mechanical Engineering, School of Engineering, Shaid Bahonar University, Kerman (Iran, Islamic Republic of); Nickaeen, M. [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} A new application of the differential quadrature method in thermo-fluid fields. {yields} Moving vertical plate with suction and heat flux is considered. {yields} Fluid with variable viscosity subjected to thermal radiation is studied. -- Abstract: In this paper, firstly, the applicability of the differential quadrature method (DQM) as an efficient and accurate numerical method for solving the problem of variable viscosity and thermally radiative unsteady magneto-hydrodynamic (MHD) flow over a moving vertical plate with suction and heat flux is investigated. The spatial as well as the temporal domains are discretized using the DQM. The fast rate of convergence of the method is demonstrated and for the cases that a solution is available, comparison is done. Then, effects of the temperature dependence of viscosity and different fluid parameters on the velocity and temperature of transient MHD flow subjected to the above mentioned boundary condition are studied.

  3. Radioactive heat source and method of making same

    International Nuclear Information System (INIS)

    Elsner, N.B.

    1977-01-01

    A radioactive source of heat which is resistant to cremation conditions is made by encapsulating a radioisotope within a containment vessel and forming a refractory metal silicide diffusion coating exterior thereof. A secondary molybdenum vessel may be provided with a molybdenum silicide coating and then heated in air to oxidize its outer layer. A layer is applied exterior of the diffusion-coating which provides a continuous ceramic oxide layer upon subjection to cremation. This outer layer may be discrete silica carried in a hardenable binder of an organic polymer, and a minor amount of antimony is preferably also included

  4. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Thermal performance and pressure drop of spiral-tube ground heat exchangers for ground-source heat pump

    International Nuclear Information System (INIS)

    Jalaluddin; Miyara, Akio

    2015-01-01

    Thermal performance and pressure drop of the spiral-tube GHE were evaluated in this present work. A numerical simulation tool was used to carry out this research. The heat exchange rates per meter borehole depth of the spiral-tube GHE with various pitches and their pressure drops were compared with that of the U-tube GHE. Furthermore, a comparative analysis between a spiral pipe and straight pipe was performed. In comparison with the straight pipe, using the spiral pipe in the borehole increased the heat exchange rate to the ground per meter borehole depth. However, the pressure drop of water flow also increased due to increasing the length of pipe per meter borehole depth and its spiral geometry. The accuracy of the numerical model was verified for its pressure drop with some pressure drop correlations. The heat exchange rate and pressure drop of the GHEs are presented. As an example, the heat exchange rate per meter borehole depth of spiral pipe with 0.05 m pitch in the turbulent flow increased of 1.5 times. Its pressure drop also increased of 6 times. However, from the view point of energy efficiency, using the spiral pipe in the ground-source heat pump system gives a better performance than using the straight pipe. The heat exchange rate and pressure drop are important parameter in design of the ground-source heat pump (GSHP) system. - Highlights: • Thermal performance and pressure drop of spiral-tube GHE are presented. • Effects of spiral pitch on thermal performance and pressure drop are analyzed. • Using a spiral pipe increases heat exchange rate per meter borehole depth of GHE. • Pressure drop per meter borehole depth also increases in the spiral pipe.

  6. Milliwatt-generator heat source. Progress report, January-June 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1983-01-01

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality

  7. Heat sources for bright-rimmed molecular clouds: CO observations of NGC 7822

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Dickinson, D.F.; Lada, C.J.

    1978-01-01

    Observations of the 2.6 mm carbon monoxide line in the bright rim NGC 7822 reveal that the peak excitation and column density of the molecule lie in a ridge ahead of the ionization front. Several possibilities for the excitation of this ridge are discussed. Cosmic rays are shown to provide an excellent heat source for Bok globules, but they can account for only approx.20% of the required heating in NGC 7822. Direct shock or compressional heating of the gas could be adequate only if the pressure inside the cloud is much larger than the thermal pressure. If, in fact, this internal pressure is determined by the source of line broadening (e.g., magnetic fields or turbulence), then shock or compressional heating could be important, and pressure equilibrium may exist between the neutral cloud and the bright rim. Heating by warm grains or by the photoelectric effect is also considered, but such mechanisms are probably not important if the only source of radiation is external to the cloud. This is primarily a result of the low cloud density (approx.10 3 cm -3 ) inferred from our observations. The extent to which unknown embedded stars may provide the required gaseous heating cannot be estimated from our observations of NGC 7822.An interesting and new heat source is suggested which may have important applications to bright-rimmed clouds or to any other predominantly neutral clouds that may have undergone some recent compression. We suggest that the heat input to neutral gas due to the relaxation of internal magnetic fields will be greatly enhanced during cloud compression (with or without a shock). We show that the power input to the gas will increase more with increasing density than will the cooling rate. As a result, cloud compression can lead to an increase in the gas temperature for a period lasting several million years, which is the decay time of the compressed field. The observed ridge in NGC 7822 may be due to stimulated release of internal magnetic energy

  8. North Village Ground Source Heat Pump Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  9. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  10. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work ...

  11. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities-Second Edition; FINAL

    International Nuclear Information System (INIS)

    Hadley, Donald L

    2001-01-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided

  12. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  13. Heat source component development program. Quarterly report for April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Foster, E.L. Jr. (comp.)

    1977-07-01

    This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. The specific component development efforts which are described include: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. The development of a unitized reentry-impact member (RIM) has been stopped and the efforts are being redirected to the evaluation of materials that could be used in the near term for the module housing of the General Purpose Heat Source (GPHS). This redirection will be particularly felt in the selection of (improved) materials for reentry analysis and in the experimental evaluation of materials in impact tests. Finally thermochemical supporting studies are reported.

  14. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  15. Technical specifications for the provision of heat and steam sources for INPP and Visaginas. Final report

    International Nuclear Information System (INIS)

    2003-01-01

    In October 1999, the National Energy Strategy was approved by the Lithuanian Parliament. The National Energy Strategy included the decision to close Unit-1 of INPP before 2005. Later is has been decided to close Unit 2 before the end of 2009 as well. The closure and decommissioning will have heavy impact on the heat supply for the city of Visaginas. Unit 1 and Unit 2 of INPP supplies hot water and steam to INPP for process purposes and for space heating of residential and commercial buildings. When Unit 1 is permanently shut down, reliable heat and steam sources independent of the power plants own heat and steam generation facilities are required for safety reasons in the event of shutdown of the remaining unit for maintenance or in an emergency. These steam and heat sources must be operational before single unit operation is envisaged. Provision of a reliable independent heat and steam source is therefore urgent. After both reactors are shut down permanently, a steam source will be needed at the plant for radioactive waste storage and disposal. INPP and DEA has performed a feasibility study for the provision of a reliable heat source for Ignalina Nuclear Power Plant and Visaginas, and the modernisation of Visaginas district heating system. The objective of this project is to prepare technical specifications for the provision of new heat and steam sources for INPP and Visaginas, and for rehabilitation of the heat transmission pipeline between INPP, the back-up boiler station and Visaginas City. The results of the study are presented in detail in the reports and technical specifications: 1. Transient analysis for Visaginas DH system, 2. Non-destructive testing of boiler stations, pump stations and transmission lines, 3. Conceptual design, 4. Technical specifications, Package 1 to 6. The study has suggested: 1. Construction of new steam boiler station, 2. Construction of new heat only boiler station, 3. Renovation of existing back-up heat only boiler station, 4

  16. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor

    Directory of Open Access Journals (Sweden)

    Milošević-Mitić Vesna

    2014-01-01

    Full Text Available The subject of the paper is the temperature distribution in the thin metallic ferromagnetic plate influenced by moving linear high frequency induction heater. As a result of high frequency electromagnetic field, conducting currents appear in the part of the plate. Distribution of the eddy-current power across the plate thickness is obtained by use of complex analysis. The influences of the heater frequency, magnetic field intensity and plate thickness on the heat power density were discussed. By treating this power as a moving heat source, differential equations governing distribution of the temperature field are formulated. Temperature across the plate thickness is assumed to be in linear form. Differential equations are analytically solved by using integral-transform technique, Fourier finite-sine and finite-cosine transform and Laplace transform. The influence of the heater velocity to the plate temperature is presented on numerical examples based on theoretically obtained results. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  17. Design evolution and verification of the general-purpose heat source

    International Nuclear Information System (INIS)

    Schock, A.

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900 0 C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources

  18. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  19. Efficient DoA Tracking of Variable Number of Moving Stochastic EM Sources in Far-Field Using PNN-MLP Model

    Directory of Open Access Journals (Sweden)

    Zoran Stanković

    2015-01-01

    Full Text Available An efficient neural network-based approach for tracking of variable number of moving electromagnetic (EM sources in far-field is proposed in the paper. Electromagnetic sources considered here are of stochastic radiation nature, mutually uncorrelated, and at arbitrary angular distance. The neural network model is based on combination of probabilistic neural network (PNN and the Multilayer Perceptron (MLP networks and it performs real-time calculations in two stages, determining at first the number of moving sources present in an observed space sector in specific moments in time and then calculating their angular positions in azimuth plane. Once successfully trained, the neural network model is capable of performing an accurate and efficient direction of arrival (DoA estimation within the training boundaries which is illustrated on the appropriate example.

  20. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  1. Heat source component development program. Report for period March 1978--June 1978

    International Nuclear Information System (INIS)

    1978-07-01

    The General Purpose Heat Source (GPHS) is a radioisotope heat source being developed by LASL. The first intended application for the GPHS is the Solar Polar mission scheduled for 1983. Battelle's support of LASL during the current reporting period is reported. The specific efforts include: (1) analysis of trial designs with emphasis on comparison of performances of trial designs 1 and 2 and their modifications; and (2) helium vent development with emphasis on fabrication and qualification testing of platinum and iridium nonselective vents

  2. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  3. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

    International Nuclear Information System (INIS)

    Vivian, Jacopo; Manente, Giovanni; Lazzaretto, Andrea

    2015-01-01

    Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

  4. Weldability of general purpose heat source new-process iridium

    International Nuclear Information System (INIS)

    Kanne, W.R.

    1987-01-01

    Weldability tests on General Purpose Heat Source (GPHS) iridium capsules showed that a new iridium fabrication process reduced susceptibility to underbead cracking. Seventeen capsules were welded (a total of 255 welds) in four categories and the number of cracks in each weld was measured

  5. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  6. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  7. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  8. Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission

    International Nuclear Information System (INIS)

    Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

    1998-01-01

    General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a 238 Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds

  9. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  10. Ground-source heat pump barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In Europe the ground-source heat pump market contracted for the second year running by 2.9% between 2009 and 2010. Around 103.000 units were sold in 2010, taking the number of installed units over one million. The 3 European countries with the most sales are Sweden (31953 units, +16%), Germany (25516 units, -13%) and France (12250 units, -21%). The drop in sales is generally due to market contraction on the current recession but some specificities exist: for instance the insufficient training of the installers has led to under-performance and to a bad image of this energy in France. The Swedish and German manufacturers are in a very strong position and are increasing their market share in the main European markets. (A.C.)

  11. Air-Source Integrated Heat Pump System Development – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uselton, R. B. [Lennox Industries, Inc., Knoxville, TN (United States)

    2017-07-01

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of the ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.

  12. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  13. Buoyancy induced convective flow in porous media with heat source

    International Nuclear Information System (INIS)

    Hwang, I.T.

    1978-01-01

    An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order

  14. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  15. Comparing costs of power and heat production by prospective and present sources

    International Nuclear Information System (INIS)

    Novak, S.

    1979-01-01

    Capital and running costs are compared of power and heat production from different sources. The lowest capital costs were found for coal-fired power plants followed by light water reactor power plants. The capital costs of other types of power plants, such as wind, geothermal, solar, thermonuclear power plants are significantly higher. The estimated specific cost for electric power production in 1985 for a nuclear power plant is lower than for a fossil-fuel power plant. It is estimated that in 1985 coal will be the cheapest heat source. (Ha)

  16. Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    G. Irvine

    2010-01-01

    Full Text Available An in-vessel tunnel composting facility in Scotland was used to investigate the potential for collection and reuse of compost heat as a source of renewable energy. The amount of energy offered by the compost was calculated and seasonal variations analysed. A heat exchanger was designed in order to collect and transfer the heat. This allowed heated water of 47.3oC to be obtained. The temperature could be further increased to above 60oC by passing it through multiple tunnels in series. Estimated costs for installing and running the system were calculated. In order to analyse these costs alternative solar thermal and ground source heat pump systems were also designed. The levels of supply and economic performance were then compared. A capital cost of £11,662 and operating cost of £1,039 per year were estimated, resulting in a cost of £0.50 per kWh for domestic water and £0.10 per kWh for spatial heat. Using the heat of the compost was found to provide the most reliable level of supply at a similar price to its rivals.

  17. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    Science.gov (United States)

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  18. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  19. General-purpose heat source development. Phase I: design requirements

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.

    1978-09-01

    Studies have been performed to determine the necessary design requirements for a 238 PuO 2 General-Purpose Heat Source (GPHS). Systems and missions applications, as well as accident conditions, were considered. The results of these studies, along with the recommended GPHS design requirements, are given in this report

  20. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  1. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  2. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h....... For the studied geographical location, passive cooling by bypassing the heat pump and using only the ground heat exchanger can provide acceptable room temperatures.......In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low......-temperature heating and high-temperature cooling system. The present work evaluates the performance in relation to thermal comfort and energy consumption of a GSHP with different GHE concepts. The different configurations are analyzed being part of the energy supply system of a low-energy residential house...

  3. Dispersion of traffic exhausts emitted from a stationary line source versus individual moving cars – a numerical comparison

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2016-09-01

    Full Text Available A three-dimensional microscale model was used to study the effects of moving vehicles on air pollution in the close vicinity of a road. The numerical results are compared to general findings from wind tunnel experiments and field observations. It was found that the model is suitable to capture the main flow characteristics within an urban street canyon, in particular the modifications relating to running traffic. A comparison of the results for a stationary line source approach and for multiple single moving sources demonstrates significant differences. For a street in a flat terrain, the near-road concentrations are underestimated by up to a factor of two if the emissions are approximated by a stationary line source. This underestimation decreases with increasing distance, and becomes negligible 30–50 m away from the road. For an urban canyon situation, the line source assumption is a conservative approximation for the concentrations at the leeside of the street, while on the opposite pavement and wall, a systematic underestimation was found. Also, the effects of different traffic situations have been studied and discussed.

  4. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-04-15

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)

  5. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  6. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  7. Barriers for district heating as a source of flexibility for the electricity system

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess; Soysal, Emilie Rosenlund

    2017-01-01

    of wind power. Power-to-heat technologies, electric boilers and heat pumps are blocked by high tariffs and taxes. A calculation of the heat costs of different DH technologies demonstrates that, under the present price and tax conditions in Denmark and Sweden, CHP and power-to-heat are unable to compete......The Scandinavian countries Denmark, Norway and Sweden currently deploy large amounts of variable renewable energy (VRE) sources, especially wind power. This calls for additional flexibility in the power market. The right coupling to the underlying national and local district heating (DH) markets...

  8. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  9. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  10. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  11. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  12. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  13. Optimal Design of ORC Systems with a Low-Temperature Heat Source

    Directory of Open Access Journals (Sweden)

    Nicolas Galanis

    2012-02-01

    Full Text Available A numerical model of subcritical and trans-critical power cycles using a fixed-flowrate low-temperature heat source has been validated and used to calculate the combinations of the maximum cycle pressure (Pev and the difference between the source temperature and the maximum working fluid temperature (DT which maximize the thermal efficiency (ηth or minimize the non-dimensional exergy losses (β, the total thermal conductance of the heat exchangers (UAt and the turbine size (SP. Optimum combinations of Pev and DT were calculated for each one of these four objective functions for two working fluids (R134a, R141b, three source temperatures and three values of the non-dimensional power output. The ratio of UAt over the net power output (which is a first approximation of the initial cost per kW shows that R141b is the better working fluid for the conditions under study.

  14. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    Science.gov (United States)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  15. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  16. 太阳能辅助地源热泵供暖实验研究%Experimental study of a solar assisted ground source heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 丰威仙; 巩学梅; 米浩君; 成华; 云龙

    2014-01-01

    An experimental study is performed to determine the performance of the solar assisted ground source heat pump(SAGSHP)by using a solar-ground source heat pump hybrid system in the city of Ningbo. The result shows that comparing with the ground source heat pump(GSHP),when the ratio of solar energy to the whole en-ergy is 41. 9% ,the coefficient of performance( COP)of the heat pump and system can improve 15. 1% and 7. 7% respectively. Therefore,the solar assisted ground source heat pump has a significant performance advan-tage according to the experimental result.%选取宁波某公用建筑的太阳能-地源热泵复合系统为实验系统,对太阳能辅助地源热泵( solar assisted ground source heat pump,SAGSHP)供暖进行了实验研究.研究结果表明:与单一的地源热泵(ground source heat pump,GSHP)相比,当太阳能承担41.9%负荷时,热泵机组和整个系统的能效比(coefficient of performance,COP)分别提高了15.1%和7.7%, SAGSHP 供暖运行模式具有明显的性能优势.

  17. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  18. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    Science.gov (United States)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  19. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  20. Induction heating of a spherical aluminum moderator vessel for the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Yousuf, A.

    1994-01-01

    This task was to identify and design a heating system to apply 15 kW of heat to a cold source vessel to simulate the Advanced Neutron Source reactor. This research project aims at the analysis of the induction heating of a spherical aluminum moderator vessel. Computer modeling is presented for the design and analysis of the induction heating system. The objective is to apply 15 kW of heat as uniformly as possible to the outer wall of a 410 mm diameter sphere of thickness 1.5 mm. The report also aims at the analysis of a system model which is simulated using the Eddycuff electromagnetic software. The computer model is built with the finite element analysis software Patran. The induction heating system analysis shows that the predicted performance is in close agreement with the computer simulated data. Hardware constraints such as power supplies and matching load are also analyzed in terms of performance and cost. Physical modeling is also suggested, in which the coil and the workpiece are scaled down

  1. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  2. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    Science.gov (United States)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  3. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  4. Experimental Study and Modeling of Ground-Source Heat Pumps with Combi-Storage in Buildings

    Directory of Open Access Journals (Sweden)

    Wessam El-Baz

    2018-05-01

    Full Text Available There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps are not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. The high coefficient of performance and the low cost of heat storages made the heat pumps one of the optimal candidates for the power to heat applications. Thus, several questions are raised about the optimal integration and control of heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3% and 4% for the heat generation and electricity consumption, respectively.

  5. A key review of wastewater source heat pump (WWSHP) systems

    International Nuclear Information System (INIS)

    Hepbasli, Arif; Biyik, Emrah; Ekren, Orhan; Gunerhan, Huseyin; Araz, Mustafa

    2014-01-01

    Highlights: • Comprehensively reviewing WWSHP systems for the first time. • Varying the COP values for heating of the reviewed systems between 1.77 and 10.63. • Ranging the COP values for cooling of the reviewed systems from 2.23 to 5.35. • Being the majority of the performance assessments on the energetic basis. - Abstract: Heat pumps (HPs) are part of the environmentally friendly technologies using renewable energy and have been utilized in the developed countries for years. Wastewater is seen as a renewable heat source for HPs. At the beginning of the 1980s, waste (sewage) water source heat pumps (WWSHPs) were widely applied in North European countries like Sweden and Norway and partially applied in China. In the past two decades, the WWSHP has become increasingly popular due to its advantages of relatively higher energy utilization efficiency and environmental protection. The present study comprehensively reviews WWSHP systems in terms of applications and performance assessments including energetic, exergetic, environmental and economic aspects for the first time to the best of the authors’ knowledge. In this context, a historical development of WWSHPs was briefly given first. Next, wastewater potential and its characteristics were presented while a WWSHP system was introduced. The previously conducted studies on WWSHPs were then reviewed and classified in a tabulated form. Finally, some concluding remarks were listed. The COP values of the reviewed studies ranged from 1.77 to 10.63 for heating and 2.23 to 5.35 for cooling based on the experimental and simulated values. The performance assessments are mostly made using energy analysis methods while the number of exergetic evaluations is very low and has not been comprehensively performed. It is expected that the comprehensive review here will be very beneficial to those dealing with the design, analysis, simulation and performance assessment of WWSHP systems

  6. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  7. Self-optimizing control of air-source heat pump with multivariable extremum seeking

    International Nuclear Information System (INIS)

    Dong, Liujia; Li, Yaoyu; Mu, Baojie; Xiao, Yan

    2015-01-01

    The air-source heat pump (ASHP) is widely adopted for cooling and heating of residential and commercial buildings. The performance of ASHP can be controlled by several operating variables, such as compressor capacity, condenser fan speed, evaporator fan speed and suction superheat. In practice, the system characteristics can be varied significantly by the variations in ambient condition, operation setpoint, internal thermal load and equipment degradation, which makes it difficult to obtain accurate plant models. As consequence, the model based control strategies for ASHP could limit the achievable energy efficiency. Model-free self-optimizing control strategies are thus more preferable. In this study, a multi-input extremum seeking control (ESC) scheme is proposed for both heating and cooling operation of ASHP. The zone temperature is assumed to be regulated by the compressor capacity, while the expansion valve opening is used to regulate the suction superheat at the given setpoint. The total power consumption of the compressor, the condenser fan and the evaporator fan is measured as input to the ESC, while the ESC controls the evaporator fan speed, the condenser fan speed and the suction superheat setpoint. The proposed scheme is evaluated with a Modelica based dynamic simulation model of ASHP under both cooling and heating modes of operation. Simulation results show the effectiveness of the proposed scheme to achieve the maximum achievable efficiency in a nearly model-free manner. - Highlights: • Multi-input ESC. • Air-source heat pump. • Cooling and heating. • Modelica based model

  8. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  9. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  10. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  11. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  12. A novel absorption refrigeration cycle for heat sources with large temperature change

    International Nuclear Information System (INIS)

    Yan, Xiaona; Chen, Guangming; Hong, Daliang; Lin, Shunrong; Tang, Liming

    2013-01-01

    To increase the use efficiency of available thermal energy in the waste gas/water, a novel high-efficient absorption refrigeration cycle regarded as an improved single-effect/double-lift configuration is proposed. The improved cycle using an evaporator/absorber (E/A) promotes the coefficient of performance and reduces the irreversible loss. Water–lithium bromide is used as the working pair and a simulation study under the steady working conditions is conducted. The results show that the temperature of waste gas discharged is about 20 °C lower than that of the conventional single-effect cycle and the novel cycle we proposed can achieve more cooling capacity per unit mass of waste gas/water at the simulated working conditions. -- Graphical abstract: Pressure – temperature diagram for water – lithium bromide. Highlights: ► A novel waste heat-driven absorption refrigeration cycle is presented. ► The novel cycle can reject heat at much lower temperature. ► The available temperature range of heat source of the proposed cycle is wider. ► Multiple heat sources with different temperatures can be used in the novel cycle

  13. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  14. Fabrication of three 2500-watt (thermal) strontium-90 heat sources

    International Nuclear Information System (INIS)

    DeVore, J.R.; Haff, K.W.; Tompkins, J.A.

    1986-08-01

    Three 2500-watt (thermal) heat sources were fabricated by the Oak Ridge National Laboratory (ORNL) for the purpose of fueling a 500-watt (electric) thermoelectric generator as part of the US Department of Energy's Byproducts Utilization Program (BUP). Each of the sources, which are the largest ever assembled, consist of hot-pressed pellets of 90 Sr fluoride, doubly encapsulated in three Haynes-25 inner capsules and in a Hastelloy-S outer capsule. The total 90 Sr inventory of all three sources is 1.12 million curies. The sources were fabricated at the ORNL Fission Product Development Laboratory (FPDL), which is a facility that is capable of processing multi-megacurie quantities of radioactive materials, chiefly 137 Cs and 90 Sr. The source was tested to determine compliance with all of the IAEA Safety Series No. 33 requirements. The source fabrication, assembly, and testing are described in the presentation

  15. Moving gantry method for electron beam dose profile measurement at extended source-to-surface distances.

    Science.gov (United States)

    Fekete, Gábor; Fodor, Emese; Pesznyák, Csilla

    2015-03-08

    A novel method has been put forward for very large electron beam profile measurement. With this method, absorbed dose profiles can be measured at any depth in a solid phantom for total skin electron therapy. Electron beam dose profiles were collected with two different methods. Profile measurements were performed at 0.2 and 1.2 cm depths with a parallel plate and a thimble chamber, respectively. 108cm × 108 cm and 45 cm × 45 cm projected size electron beams were scanned by vertically moving phantom and detector at 300 cm source-to-surface distance with 90° and 270° gantry angles. The profiles collected this way were used as reference. Afterwards, the phantom was fixed on the central axis and the gantry was rotated with certain angular steps. After applying correction for the different source-to-detector distances and incidence of angle, the profiles measured in the two different setups were compared. Correction formalism has been developed. The agreement between the cross profiles taken at the depth of maximum dose with the 'classical' scanning and with the new moving gantry method was better than 0.5 % in the measuring range from zero to 71.9 cm. Inverse square and attenuation corrections had to be applied. The profiles measured with the parallel plate chamber agree better than 1%, except for the penumbra region, where the maximum difference is 1.5%. With the moving gantry method, very large electron field profiles can be measured at any depth in a solid phantom with high accuracy and reproducibility and with much less time per step. No special instrumentation is needed. The method can be used for commissioning of very large electron beams for computer-assisted treatment planning, for designing beam modifiers to improve dose uniformity, and for verification of computed dose profiles.

  16. A flexible and low cost experimental stand for air source heat pump for Smart Buildings

    DEFF Research Database (Denmark)

    Crăciun, Vasile S.; Bojesen, Carsten; Blarke, Morten

    2012-01-01

    Energy systems are faced with the challenges of reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. At the same time, the efficient consumption of energy is vital for avoiding the impacts from increasing fuel...... prices. A significant part of this challenge may be dealt with in the way space heating, space cooling, and domestic hot water production which is provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies for providing building thermal energy...... services; cooling, heating, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps. In result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  17. Annual performance investigation and economic analysis of heating systems with a compression-assisted air source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2015-01-01

    Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period

  18. Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Young Jin; Kim, Min Sung; Chang, Ki Chang; Lee, Young Soo; Ra, Ho Sang [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-01-15

    In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

  19. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  20. Performance analysis of low temperature heat source of organic Rankine cycle for geothermal application

    Science.gov (United States)

    Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.

    2018-02-01

    Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.

  1. Existing climate data sources and Their Use in Heat IslandResearch

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

    1998-10-01

    Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

  2. Ultraviolet light and heat source selection in captive spiny-tailed iguanas (Oplurus cuvieri)

    International Nuclear Information System (INIS)

    Dickinson, H.C.; Fa, J.E.

    1997-01-01

    Three experimental manipulations were conducted to assess the influence of heat source selection and active thermoregulation on ultraviolet (UV) light exposure in captive spiny-tailed iguanas (Oplurus cuvieri) at the Jersey Wildlife Preservation Trust. Four replicates per manipulation were conducted on six individual lizards. All animals were tested in a separate enclosure to which they were acclimated before observations. Data on choice of thermal sources were collected during the first 2 hr of light, when lizards were actively thermoregulating. Animals were allowed to choose between incandescent light, UV light and a non-light heat source (thermotube) in different combinations. Recorded temperatures close to the incandescent light (37°C) were always significantly higher than at the thermotube (33°C) and at the UV light (29°C). Manipulation 1 offered the animals a choice of an UV light and an incandescent light as thermal sources. Manipulation 2 presented animals with the thermal choices in Manipulation 1, but substrates under each source in Manipulation 1 were switched. In Manipulation 3, animals could choose between an incandescent light and the thermotube. All studied lizards were significantly more attracted to the incandescent light than to the UV light or thermotube. Incandescent light elicited a significantly higher proportion of basking behaviors in all individuals than the other sources. A high proportion of time basking was also spent in front of the thermotube but fewer individuals and less time were spent basking under the UV light. Heat source selection was generally found to be independent of substrate. Management applications of this preference are suggested for juvenile diurnal heliothermic iguanids. (author)

  3. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  4. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump

    International Nuclear Information System (INIS)

    Dong Jiankai; Deng Shiming; Jiang Yiqiang; Xia Liang; Yao Yang

    2012-01-01

    For a space heating air source heat pump (ASHP) unit, when its outdoor coil surface temperature is below both the air dew point temperature and the freezing point of water, frost will form on its outdoor coil surface. Frosting affects its operational performance and energy efficiency. Therefore, periodic defrosting is necessary. Currently, the most widely used standard defrosting method for ASHP units is reverse cycle defrost. The energy that should have been used for space heating is used to melt frost, vaporize the melted frost off outdoor coil surface and heat ambient air during defrosting. It is therefore necessary to study the sources of heat supplies and the end-uses of the heat supplied during a reverse cycle defrost operation. In this paper, firstly, an experimental setup is described and experimental procedures are detailed. This is followed by reporting the experimental results and the evaluation of defrosting efficiency for the experimental ASHP unit. Finally, an evaluation of defrosting heat supplies and energy consumptions during a revere cycle defrost operation for the experimental ASHP unit is presented. The experimental and evaluation results indicated that the heat supply from indoor air contributed to 71.8% of the total heat supplied for defrosting and 59.4% of the supplied energy was used for melting frost. The maximum defrosting efficiency could be up to 60.1%. - Highlights: ► Heat supply and consumption during reverse cycle defrost was experimentally studied. ► Indoor air contributed to >70% of total heat supply when indoor fan was turned on. ► ∼60% of the supplied energy was used for melting frost. ► Alternate heat supply other than indoor air should be explored.

  5. Meeting Czechoslovak demands for heat in long-term prospective, especially with regard to nuclear sources

    International Nuclear Information System (INIS)

    Klail, M.

    1988-01-01

    The development was studied of heat demand in the CSSR till the year 2030. The ratio of centralized and decentralized heat supply is currently 60 to 40; in the future a slight increase is expected in the decentralized type of heat supply, mainly as a result of more intensive use of natural gas. In 2030, 710 PU of centralized heat should be produced. A decisive element in meeting the demand will be a growing proportion of combined production of electric power and heat by nuclear power plants. The installed capacity of the nuclear power plants in 2030 should range between 23 and 41 thousand MW, the production of electric power in these plants should be 193 to 238 TWh/y. 109 territorial areas potentially suitable for use of heat from nuclear sources were selected. They were included in 19 regions of which 9 should in the year 2010 be linked to heat supply from nuclear power plants that will be in operation. It is expected that in the year 2030, nuclear sources will supply 250 PU of centralized heat. (Z.M.). 2 tabs., 14 refs

  6. IEA HPP Annex 29 - ground-source heat pumps overcoming technical and market barriers. Status report Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2004-12-01

    Norway is a member of Annex 29, 'Ground-Source Heat Pump Systems Overcoming Technical and Market Barriers' (2004-2006), organized under the umbrella of the International Energy Agency (IEA) and the IEA Heat Pump Programme (HPP). The 7 participating countries are Austria (Operating Agent), Canada, Japan, Norway, Spain, Sweden and the USA. The Norwegian participation is financed by ENOVA SF, and SINTEF Energy Research is responsible for planning and carrying out the Norwegian activities. This report provides a status for ground-source heat pump (GSHP) systems in Norway with regard to state-of-the-art technology, installation examples, geological data, costs and market opportunities. A Norwegian Internet home page for ground-source heat pump systems (www.energy.sintef.no/prosjekt/Annex29) is also presented. GSHP systems in Norway are classified as direct systems (groundwater and soil/ground) and indirect closed-loop systems (vertical-rock and horizontal-soil/ground). The vast majority of the installations are indirect closed-loop systems utilizing vertical boreholes in rock as a heat source, heat sink and thermal energy storage. GSHP systems are relatively capital intensive installations, but they achieve high energy efficiency due to the relatively high and stable heat source temperature and the fact that a considerable share of the cooling demand in non-residential buildings can be covered by means of free cooling. In order to obtain energy efficient and reliable GSHP installations, it is important to implement a total quality concept where focus is on quality and system integration during all stages of the project. A life cycle analysis (LCA) will be an important tool in such a concept, since both the investment costs as well as the lifetime operational and maintenance costs are included (author) (ml) Litt usikker pae tag 620- ikke en vanlig sintef rapportkode

  7. The epoch of cosmic heating by early sources of X-rays

    Science.gov (United States)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  8. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.M., E-mail: hussain.modassir@yahoo.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Jain, J., E-mail: jj.28481@gmail.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Seth, G.S., E-mail: gsseth_ism@yahoo.com [Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004 (India); Rashidi, M.M., E-mail: mm_rashidi@yahoo.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management System, Tongji University, Shanghai 201804 (China)

    2017-01-15

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration. - Highlights: • Magnetic field, Hall current, rotation and chemical reaction play vital role on flow field. • Hall current tends to accelerate secondary fluid velocity in the boundary layer region. • Rotation tends to retard primary fluid velocity throughout the boundary layer region. • Rotation and chemical reaction tend to enhance primary skin friction. • Solutal buoyancy force and permeability of medium reduce primary skin friction.

  9. General-purpose heat source safety verification test series: SVT-11 through SVT-13

    International Nuclear Information System (INIS)

    George, T.G.; Pavone, D.

    1986-05-01

    The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will provide power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first two reports (covering SVT-1 through SVT-10) described the results of flat, side-on, and angular module impacts against steel targets at 54 m/s. This report describes flat-on module impacts against concrete and granite targets, at velocities equivalent to or higher than previous SVTs

  10. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  11. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  12. Milk of the cow as a source [for heat pumps]; Koe als bronsysteem

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, B.

    2012-09-15

    A livestock farm in Joure, the Netherlands, has designed a heat pump system that uses milk as a source. Up to now, three livestock farms in the Netherlands have been equipped with the so-called ECO2000 system that extracts heat from milk, using a heat pump to use this heat elsewhere in the business [Dutch] Een veeteeltbedrijf in Joure, Nederland, heeft een warmtepompsysteem ontworpen dat melk gebruikt als bron. Inmiddels zijn drie melkveehouderijen in Nederland voorzien van het zogenaamde ECO2000 systeem waarbij warmte wordt onttrokken uit melk om via een warmtepomp elders in het bedrijf te worden hergebruikt.

  13. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  14. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  15. Ground source heat pumps (GSHP) for heating and cooling in Greece

    Science.gov (United States)

    Dimera, Nikoletta

    This report presents the results of a theoretical study about the feasibility of closed loop Ground Source Heat Pumps (GSHP) for heating and cooling in Greece in terms of their impact on the capital and running costs of the building services systems of the buildings. The main aim of carrying out this study was to investigate if the heating and cooling potential of the ground could be utilized cost efficiently to serve the buildings energy demand in the Greek region. At first, an existing implementation of a closed loop GSHP system in Greece is presented and its efficiency is discussed. The aim of doing so was to understand the way of sizing such systems and the efficiency of this technology in Greek climatic and ground conditions. In a separate part of this report, the impact of different user behaviour and of various ways of sizing a GSHP system is investigated in terms of the cost impact of the examined different options as well as of their effect on the internal health and comfort conditions. After the building simulation under different scenarios, it was concluded that the user behavior - the operation of windows mostly - can result in great savings on the annual energy bills. The conclusions of this first part of the report about the user behaviour and the way of sizing GSHP systems were utilized in the next part of it, where a GSHP system is proposed for a building currently under construction in central Greece. A simple 30-year cost analysis was used in order to estimate the performance of the proposed GSHP system in economic terms and to compare it with the conventional HVAC system commonly used in Greece. According to the results of the analysis, the capital cost of installing a GSHP system for heating and cooling in buildings in Greece appears higher than the cost of conventional HVAC systems. More specifically, the capital cost of an installation for heating including gas boilers and a cooling system based on air conditioning split units is about the

  16. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  17. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  18. Simultaneous estimation of strength and position of a heat source in a participating medium using DE algorithm

    International Nuclear Information System (INIS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P.M.V.

    2013-01-01

    An inverse heat transfer problem is discussed to estimate simultaneously the unknown position and timewise varying strength of a heat source by utilizing differential evolution approach. A two dimensional enclosure with isothermal and black boundaries containing non-scattering, absorbing and emitting gray medium is considered. Both radiation and conduction heat transfer are included. No prior information is used for the functional form of timewise varying strength of heat source. The finite volume method is used to solve the radiative transfer equation and the energy equation. In this work, instead of measured data, some temperature data required in the solution of the inverse problem are taken from the solution of the direct problem. The effect of measurement errors on the accuracy of estimation is examined by introducing errors in the temperature data of the direct problem. The prediction of source strength and its position by the differential evolution (DE) algorithm is found to be quite reasonable. -- Highlights: •Simultaneous estimation of strength and position of a heat source. •A conducting and radiatively participating medium is considered. •Implementation of differential evolution algorithm for such kind of problems. •Profiles with discontinuities can be estimated accurately. •No limitation in the determination of source strength at the final time

  19. A form of MHD universal equations of unsteady incompressible fluid flow with variable elctroconductivity on heated moving plate

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2005-01-01

    Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.

  20. Optimal design of district heating and cooling pipe network of seawater-source heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang-li; Duanmu, Lin; Shu, Hai-wen [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024 (China)

    2010-01-15

    The district heating and cooling (DHC) system of a seawater-source heat pump is large system engineering. The investments and the operational cost of DHC pipe network are higher than a tradition system. Traditional design methods only satisfy the needs of the technology but dissatisfy the needs of the economy, which not only waste a mass of money but also bring problems to the operation, the maintenance and the management. So we build a least-annualized-cost global optimal mathematic model that comprises all constrict conditions. Furthermore, this model considers the variety of heating load and cooling load, the operational adjustment in different periods of the year. Genetic algorithm (GA) is used to obtain the optimal combinations of discrete diameters. Some operators of GA are selected to reduce the calculation time and obtain good calculation accuracy. This optimal method is used to the design of the DHC network of Xinghai Bay commercial district which is a real engineering. The design optimization can avoid the matter of the hydraulic unbalance of the system, enhance the running efficiency and greatly reduce the annualized-cost comparing with the traditional design method. (author)

  1. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  2. Promising design options for the encapsulated nuclear heat source reactor

    International Nuclear Information System (INIS)

    Conway, L.; Carelli, M.D.; Dzodzo, M.; Hossain, Q.; Brown, N.W.; Wade, D.C.; Sienick, J.J.; Greenspan, E.; Kastenberg, W.E.; Saphier, D.

    2001-01-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  3. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  4. Ground Source Integrated Heat Pump (GS-IHP) Development

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  5. [Preparation and application of cooling bag for heat stroke in wild field].

    Science.gov (United States)

    Li, Hailing; Lu, Qing; Wang, Hongping; Li, Lujia

    2017-05-01

    Cooling bag for heat stroke in wild field was invented in order to fulfill rapid cooling for heat stroke in field environment. The cooling bag is composed of the hood, the body cover (which is made up of the anterior portion, the linking, and the posterior portion), the fixed straps, the handles. The length is 200 cm, the regulative width is 60-70 cm, the folding volume is 26 cm × 20 cm × 9 cm, and the weight is 1.4 kg. There are a number of pockets for the cold sources in the hood and the body cover. Fixed straps are set in the upper, middle and lower of the bag. The handles are set in the hood and the body covers. Usage: put the activated cold sources in the pockets, then put off the patient's clothes, stretch his/her arms into the linking, zipper up and wrapped up by the fixed straps; the amount of cold sources can be adjusted or changed according to the temperature. The patient's temperature, blood pressure, intravenous infusion can be monitored during the cooling course. The handles in the hood and the body cover allow the patient to be easily moved and be transferred in rescue. The cooling bag for heat stroke in field has good cooling effect, and are reusable and easy to be carried, operate, monitor and move, with low cost, which make it popularization and application.

  6. Alternative energy sources for the heating and cooling of a building

    CSIR Research Space (South Africa)

    Strydom, JFS

    1979-11-27

    Full Text Available The objective of two of the studies was to choose the most economical source of heating energy, taking cognizance of the building owner’s particular circumstances; in both cases a suitable alternative to light petroleum oil, which had been used...

  7. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    Science.gov (United States)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  8. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    Directory of Open Access Journals (Sweden)

    A. Sinha

    2016-09-01

    Full Text Available This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of coupled nonlinear differential equations, which have been solved by using similarity transformation and boundary layer approximation. The resulting nonlinear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. Computational results are obtained for the velocity, temperature, the skin-friction coefficient and the rate of heat transfer in the vessel. The estimated results are compared with another analytical study reported earlier in scientific literatures. The present study reveals that the heat transfer rate is enhanced as the value of the unsteadiness parameter increases, but it reduces as the space-dependence parameter for heat source/sink increases.

  9. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  10. Cost of heat from a seasonal source

    Science.gov (United States)

    Reilly, R. W.; Brown, D. R.; Huber, H. D.

    Results are reported of an investigation to estimate the cost of aquifer thermal energy storage (ATES) from a seasonal heat source. The cost of supplying energy (hot water) from an ATES system is estimated. Three types of loads are investigated: point demands, residential developments, and a multidistrict city. Several technical and economic factors are found to control the economic performance of an ATES system. Costs are found to be prohibitive for systems of small size, long transmission distances, and employing expensive purchased thermal energy. ATES is found to be cost-competitive with oil-fired and electric hot water delivery systems under a broad range of potential situations.

  11. A review of the cylindrical heat source method for the design and analysis of vertical ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2000-12-01

    The successful design and analysis of ground-coupled heat pump (GCHP) systems depends in large part on the adequate prediction of ground water heat transfer. The author presented a detailed review of the cylindrical heat source method utilized for the prediction of transient heat transfer in vertical U-tube ground heat exchangers. The physics that underlies the theory applicable to this technology is explained in a step-by-step manner. Explanations are also provided for the equations that govern the determination of design lengths for the cylindrical heat method, as presented in the ASHRAE handbook. Some improvements were recommended by the author, such as the calculation of the effective thermal resistances using the borehole diameter instead of the equivalent U-tube diameter now in use. Annual hour-by-hour building load calculations should be used to calculate ground loads. 8 refs., 2 tabs., 5 figs., 3 appendices.

  12. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  13. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  14. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  15. FRG sealed isotopic heat sources project (C-229) project management plan

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  16. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  17. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  18. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  19. Numerical simulation of heat and mass transfer in unsteady nanofluid between two orthogonally moving porous coaxial disks

    International Nuclear Information System (INIS)

    Ali, Kashif; Iqbal, Muhammad Farooq; Ashraf, Muhammad; Akbar, Muhammad Zubair

    2014-01-01

    The paper deals with the study of heat and mass transfer in an unsteady viscous incompressible water-based nanofluid (containing Titanium dioxide nanoparticles) between two orthogonally moving porous coaxial disks with suction. A combination of iterative (successive over relaxation) and a direct method is employed for solving the sparse systems of linear algebraic equations arising from the FD discretization of the linearized self similar ODEs. It has been noticed that the rate of mass transfer at the disks decreases with the permeability Reynolds number whether the disks are approaching or receding. The findings of the present investigation may be beneficial for the electronic industry in maintaining the electronic components under effective and safe operational conditions

  20. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  1. Heat and mass release for some transient fuel source fires: A test report

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1986-10-01

    Nine fire tests using five different trash fuel source packages were conducted by Sandia National Laboratories. This report presents the findings of these tests. Data reported includes heat and mass release rates, total heat and mass release, plume temperatures, and average fuel heat of combustion. These tests were conducted as a part of the US Nuclear Regulatory Commission sponsored fire safety research program. Data from these tests were intended for use in nuclear power plant probabilistic risk assessment fire analyses. The results were also used as input to a fire test program at Sandia investigating the vulnerability of electrical control cabinets to fire. The fuel packages tested were chosen to be representative of small to moderately sized transient trash fuel sources of the type that would be found in a nuclear power plant. The highest fire intensity encountered during these tests was 145 kW. Plume temperatures did not exceed 820 0 C

  2. An amplitude and phase control system for the TFTR rf heating sources

    International Nuclear Information System (INIS)

    Cutsogeorge, G.

    1989-04-01

    Feedback loops that control the amplitude and phase of the rf heating sources on TFTR are described. The method for providing arc protection is also discussed. Block diagrams and Bode plots are included. 6 figs

  3. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    International Nuclear Information System (INIS)

    Kelly, J. Andrew; Fu, Miao; Clinch, J. Peter

    2016-01-01

    International commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO_2 emissions reduce by over 4 million tonnes per annum and residential PM_2_._5 and NO_X emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs. - Highlights: • Air Source Heat Pumps can offer substantial savings over oil fired central heating. • Significant residential air and climate emission reductions are possible. • Associated health and environmental benefits are estimated up to €100m per annum. • Results can inform policy interventions in the residential market to support change.

  4. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  5. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  6. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  7. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in

  8. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  9. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  10. The application of ground source heat pumps to a subdivision-wide district heating system

    International Nuclear Information System (INIS)

    Ciavaglia, L.

    2005-01-01

    Design guidelines for economic ground source heat pumps (GSHP) in district energy systems were presented. The broad economics of using central GSHP in a community district energy system were examined. Design parameters needed to utilize GSHP in district energy system were outlined. The sensitivity of energy prices and the costs of major capital were reviewed. District heating load duration curves were outlined. It was suggested that varying GSHP capacity from 0 to 100 per cent of load was advisable. In addition, capacity should be balanced with gas boiler technology. The amortizing of capital within energy costs was recommended. It was suggested that the best scenario was a minimum of 50 per cent ground energy. Details of pipings and heat exchanger costs were presented, along with costs for gas boilers and gas costs for the district energy system. Charts of current costing and reduction of piping capital were included. It was concluded that GSHP can be a viable component of a district energy system, as a GSHP based district energy system can provide more stable energy prices than conventional fossil fuel systems. It was suggested that sizing of GSHP at, or near, 40 per cent of peak demand provided optimal conditions with respect to energy cost and use of earth energy. tabs., figs

  11. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  12. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  13. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  14. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  15. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  16. Novel edible oil sources: Microwave heating and chemical properties.

    Science.gov (United States)

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Exposure calculations for the FRG isotopic heat source project environmental assessment

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    The report documents the maximum exposure for transfer of the Federal Republic of Germany (FRG) Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC). These results are to be reported in the Environmental Assessment DOE-EA- 1 21 1

  18. A heat source probe for measuring thermal conductivity in waste rock dumps

    International Nuclear Information System (INIS)

    Blackford, M.G.; Harries, J.R.

    1985-10-01

    The development and use of a heat source probe to measure the thermal conductivity of the material in a waste rock dump is described. The probe releases heat at a constant rate into the surrounding material and the resulting temperature rise is inversely related to the thermal conductivity. The probe was designed for use in holes in the dump which are lined with 50 mm i.d. polyethylene liners. The poor thermal contact between the probe and the liner and the unknown conductivity of the backfill material around the liner necessitated long heating and cooling times (>10 hours) to ensure that the thermal conductivity of the dump material was being measured. Temperature data acquired in the field were analysed by comparing them with temperatures calculated using a two-dimensional cylindrical model of the probe and surrounding material, and the heat transfer code HEATRAN

  19. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    OpenAIRE

    A. Sinha; J.C. Misra; G.C. Shit

    2016-01-01

    This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disor...

  20. System simulation for an untreated sewage source heat pump (USSHP) in winter

    Science.gov (United States)

    Qin, Na; Hao, Peng Z.

    2017-01-01

    The paper discusses the system characteristics of an untreated sewage source heat pump in winter. In this system, the sewage enters into the evaporator directly. The variable parameters to control the system contain the sewage temperature at evaporator inlet and the water temperature at condenser inlet. It is found that most parameters, except the condensation heat transfer coefficient, change in the form of sine wave the same as the sewage temperature at inlet. The heating load and consumed power are 12.9kW and 3.45kW when the sewage temperature at inlet is 13°C. COP is about 3.75 in the range of the sewage temperature at inlet of 12-13°C.

  1. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  2. Method for customizing an organic Rankine cycle to a complex heat source for efficient energy conversion, demonstrated on a Fischer Tropsch plant

    International Nuclear Information System (INIS)

    DiGenova, Kevin J.; Botros, Barbara B.; Brisson, J.G.

    2013-01-01

    Highlights: ► Methods for customizing organic Rankine cycles are proposed. ► A set of cycle modifications help to target available heat sources. ► Heat sources with complex temperature–enthalpy profiles can be matched. ► Significant efficiency improvements can be achieved over basic ORC’s. -- Abstract: Organic Rankine cycles (ORCs) provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources into power, where conventional steam power cycles are known to be inefficient. A large processing plant often has multiple low temperature waste heat streams available for conversion to electricity by a low temperature cycle, resulting in a composite heat source with a complex temperature–enthalpy profile. This work presents a set of ORC design concepts: reheat stages, multiple pressure levels, and balanced recuperators; and demonstrates the use of these design concepts as building blocks to create a customized cycle that matches an available heat source. Organic fluids are modeled using a pure substance database. The pinch analysis technique of forming composite curves is applied to analyze the effect of each building block on the temperature–enthalpy profile of the ORC heat requirement. The customized cycle is demonstrated on a heat source derived from a Fischer Tropsch reactor and its associated processes. Analysis shows a steam Rankine cycle can achieve a 20.6% conversion efficiency for this heat source, whereas a simple organic Rankine cycle using hexane as the working fluid can achieve a 20.9% conversion efficiency. If the ORC building blocks are combined into a cycle targeted to match the temperature–enthalpy profile of the heat source, this customized ORC can achieve 28.5% conversion efficiency.

  3. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  4. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  5. Environmental assessment of general-purpose heat source safety verification testing

    International Nuclear Information System (INIS)

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE's mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned

  6. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  7. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  8. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  9. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  10. Savannah River Laboratory isotopic power and heat sources. Monthly report, June 1966

    International Nuclear Information System (INIS)

    1966-06-01

    Progress in research and development is described for the following: preparation of Tm 2 O 3 ; properties of thulium-171; reduction of Pu-236 in Pu-238; 238 Pu oxide with low neutron emission; and encapsulation of cobalt-60 heat sources

  11. Laser-heating wire bonding on MEMS packaging

    Directory of Open Access Journals (Sweden)

    Yuetao Liu

    2014-02-01

    Full Text Available Making connections is critical in fabrication of MEMS (Micro-Electro-Mechanical Systems. It is also complicated, because the temperature during joining affects both the bond produced and the structure and mechanical properties of the moving parts of the device. Specifications for MEMS packaging require that the temperature not exceed 240 °C. However, usually, temperatures can reach up to 300 °C during conventional thermosonic wire bonding. Such a temperature will change the distribution of dopants in CMOS (Complementary Metal Oxide Semiconductor circuits. In this paper we propose a new heating process. A semiconductor laser (wavelength 808 nm is suggested as the thermal source for wire bonding. The thermal field of this setup was analyzed, and specific mathematical models of the field were built. Experimental results show that the heating can be focused on the bonding pad, and that much lower heat conduction occurs, compared with that during the normal heating method. The bond strength increases with increasing laser power. The bond strengths obtained with laser heating are slightly lower than those obtained with the normal heating method, but can still meet the strength requirements for MEMS.

  12. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  13. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2015-12-01

    Full Text Available A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  14. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał

    2015-12-01

    A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  15. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Zi-ping Zhang

    2013-01-01

    Full Text Available This work describes a large reclaimed water source heat pump system (RWSHPS and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  16. Moving Sources Detection System

    International Nuclear Information System (INIS)

    Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim; Normand, Stephane

    2013-06-01

    To monitor radioactivity passing through a pipe or in a given container such as a train or a truck, radiation detection systems are commonly employed. These detectors could be used in a network set along the source track to increase the overall detection efficiency. However detection methods are based on counting statistics analysis. The method usually implemented consists in trigging an alarm when an individual signal rises over a threshold initially estimated in regards to the natural background signal. The detection efficiency is then proportional to the number of detectors in use, due to the fact that each sensor is taken as a standalone sensor. A new approach is presented in this paper taking into account the temporal periodicity of the signals taken by all distributed sensors as a whole. This detection method is not based only on counting statistics but also on the temporal series analysis aspect. Therefore, a specific algorithm is then developed in our lab for this kind of applications and shows a significant improvement, especially in terms of detection efficiency and false alarms reduction. We also plan on extracting information from the source vector. This paper presents the theoretical approach and some preliminary results obtain in our laboratory. (authors)

  17. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  18. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  19. Wastewater as a Heat Source for Individual Residence Heating: A Techno-economic Feasibility Study in the Brussels Capital Region

    Directory of Open Access Journals (Sweden)

    Jan Spriet

    2017-09-01

    Full Text Available A large part of the thermal energy in buildings is lost through the drain and ends up as warm wastewater in the sewer system. The installation of heat exchangers in the sewer system enables a rise of the source temperature of heat pumps, increasing their coefficient of performance. To investigate the potential of such a technique in the Brussels Capital Region, a test facility named MYRTES has been installed in the sewer network, the starting point of this facility being to have one heat recovery system per residence. To estimate the heat recovery rate, potentially available in the Brussels Capital Region, the data from this test facility have been used as inputs and validation for a predictive model, considering both the heat recovery and its financial and environmental implications. Simulations show a minimum heating power of the heat pump of 6.3 kW, at a hot water temperature of 45 °C. A maximum of 35% of the buildings in the Brussels Capital Region are eligible for the use of such a system. At current tariffs, the levelized cost of energy for these systems, is lower than for traditional air heat pumps, but is higher than for gas boiler systems. The total equivalent warming impact, however, is estimated to be around 49% lower than for gas boiler systems and around 13% lower than for air heat pumps. In conclusion, heating through these types of systems is more expensive than gas boiler systems, but with increased consumption the competitiveness of these systems improves.

  20. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC System

    Directory of Open Access Journals (Sweden)

    Piotr Kolasiński

    2015-04-01

    Full Text Available Organic Rankine Cycle (ORC power systems are nowadays an option for local and domestic cogeneration of heat and electric power. Very interesting are micropower systems for heat recovery from low potential (40–90 °C waste and renewable heat sources. Designing an ORC system dedicated to heat recovery from such a source is very difficult. Most important problems are connected with the selection of a suitable expander. Volumetric machines, such as scroll and screw expanders, are adopted as turbine alternative in small-power ORC systems. However, these machines are complicated and expensive. Vane expanders on the other hand are simple and cheap. This paper presents a theoretical and experimental analysis of the operation of a micro-ORC rotary vane expander under variable heat source temperature conditions. The main objective of this research was therefore a comprehensive analysis of relation between the vane expander output power and the heat source temperature. A series of experiments was performed using the micropower ORC test-stand. Results of these experiments are presented here, together with a mathematical description of multivane expanders. The analysis presented in this paper indicates that the output power of multivane expanders depend on the heat source temperature, and that multivane expanders are cheap alternatives to other expanders proposed for micropower ORC systems.

  1. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating......, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  2. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  3. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  4. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  5. Viscose liquid heat treatment using plate scraper heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work analyzes the use of different types of heat exchangers, depending on the technology of production. It is taken the detail analysis of the ways of applicability of various types of heat exchangers, depending on the viscosity of the processed product. It is posed the problem of the analytical determination of the required area of heat exchange with the use of differential equations of heat transfer in a moving liquid media, written in cylindrical coordinates, for symmetrical temperature distribution, without taking in account the energy dissipation.

  6. Chemical reaction effect on MHD free convective surface over a moving vertical plate through porous medium

    Directory of Open Access Journals (Sweden)

    R.S. Tripathy

    2015-09-01

    Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer flow of an electrically conducting viscous fluid subject to transverse magnetic field past over a moving vertical plate through porous medium in the presence of heat source and chemical reaction. The governing non-linear partial differential equations have been transformed into a two-point boundary value problem using similarity variables and then solved numerically by fourth order Runge–Kutta fourth order method with shooting technique. Graphical results are discussed for non-dimensional velocity, temperature and concentration profiles while numerical values of the skin friction, Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.

  7. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  8. Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry

    International Nuclear Information System (INIS)

    Song, Jian; Li, Yan; Gu, Chun-wei; Zhang, Li

    2014-01-01

    Low-grade waste heat source accounts for a large part of the total industrial waste heat, which cannot be efficiently recovered. The ORC (Organic Rankine Cycle) system has been proved to be a promising solution for the utilization of low-grade heat sources. It is evident that there might be several waste heat sources distributing in different temperature levels in one industry unit, and the entire recovery system will be extremely large and complex if the different heat sources are utilized one by one through several independent ORC subsystems. This paper aims to design and optimize a comprehensive ORC system to recover multi-strand waste heat sources in Shijiazhuang Refining and Chemical Company in China, involving defining suitable working fluids and operating parameters. Thermal performance is a first priority criterion for the system, and system simplicity, technological feasibility and economic factors are considered during optimization. Four schemes of the recovery system are presented in continuous optimization progress. By comparison, the scheme of dual integrated subsystems with R141B as a working fluid is optimal. Further analysis is implemented from the view of economic factors and off-design conditions. The analytical method and optimization progress presented can be widely applied in similar multi-strand waste heat sources recovery. - Highlights: • This paper focuses on the recovery of multi-strand waste heat sources. • ORC technology is used as a promising solution for the recovery. • Thermal performance, system simplicity and economic factors are considered

  9. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  10. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Jacopo Biasetti

    2017-10-01

    Full Text Available Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  11. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    Science.gov (United States)

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  12. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  13. Optimal moving grids for time-dependent partial differential equations

    Science.gov (United States)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  14. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  15. Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns

    OpenAIRE

    Brown, Robert T

    2018-01-01

    Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns Robert Taylor Brown ABSTRACT The curing of flue-cured tobacco (Nicotiana tabacum L.) is an energy intensive process and represents a significant portion of the overall cost of production. Given the goal of the industry to reduce the environmental footprint of tobacco production and the energy demand of curing, attention has been directed to explore options for the use of renewable fuels for heating to...

  16. Entropy Generation Analysis of Natural Convection in Square Enclosures with Two Isoflux Heat Sources

    Directory of Open Access Journals (Sweden)

    S. Z. Nejad

    2017-04-01

    Full Text Available This study investigates entropy generation resulting from natural convective heat transfer in square enclosures with local heating of the bottom and symmetrical cooling of the sidewalls. This analysis tends to optimize heat transfer of two pieces of semiconductor in a square electronic package. In this simulation, heaters are modeled as isoflux heat sources and sidewalls of the enclosure are isothermal heat sinks. The top wall and the non-heated portions of the bottom wall are adiabatic. Flow and temperature fields are obtained by numerical simulation of conservation equations of mass, momentum and energy in laminar, steady and two dimensional flows. With constant heat energy into the cavity, effect of Rayleigh number, heater length, heater strength ratios and heater position is evaluated on flow and temperature fields and local entropy generation. The results show that a minimum entropy generation rate is obtained under the same condition in which a minimum peak heater temperature is obtained.

  17. Low order modelling and closed-loop thermal control of a ventilated plate subject to a heat source disturbance

    International Nuclear Information System (INIS)

    Videcoq, E; Girault, M; Petit, D

    2012-01-01

    A multi-input multi-output (MIMO) thermal control problem in real-time is investigated. An aluminum slab is heated on one side by a radiative heat source and cooled on the other side by a fan panel. Starting from a nominal steady state configuration of heat source power and ventilation level, the objective is to control temperature at 4 chosen locations on the rear side when the thermal system is subject to a perturbation: the heat source power. The 4 actuators are the ventilation levels of 4 fans. The hypothesis of small inputs and temperature responses deviations is made, resulting in the assumption of a linear control problem. The originality of this work is twofold: (i) instead of a (large-sized) classical heat transfer model built from spatial discretization of local partial differential equations governing physics over the system domain, a low order model is identified from experimental data using the Modal Identification Method, (ii) this low order model is used to perform state feedback control in real time through a Linear Quadratic Gaussian (LQG) compensator.

  18. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  19. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  20. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  1. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Mergner, Hanna; Weimer, Thomas

    2015-01-01

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

  2. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells

    Science.gov (United States)

    Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang

    2015-04-01

    Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.

  3. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  4. A-Track: Detecting Moving Objects in FITS images

    Science.gov (United States)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2017-04-01

    A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

  5. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    Science.gov (United States)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  6. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  7. Ground source heat pump retrofit at North Bonneville, WA City Hall

    Energy Technology Data Exchange (ETDEWEB)

    Hughey, M. [Skamania Co. PUD No. 1, Carson, WA (United States)

    1997-12-31

    In 1995, the City of North Bonneville, WA installed a 10-ton Ground Source Heat Pump (GSHP) to replace the electric resistance furnace in its 4,000 square, foot City Hall. North Bonneville is 30 miles east of Portland, Oregon, at river level in the Columbia River Gorge. Funded jointly by the Bonneville Power Administration, the State of Washington and the City, this project has successfully reduced the heating cost of City Hall by nearly one-half while dramatically increasing comfort. It has become a commercial model in the Pacific Northwest for assessing values of commercial GSHP retrofits. This interim report compares estimated savings with actual experience for the first operating year. Projected savings were $1,500; actual savings were $1,390 prior to adjustment for extreme weather. Adjusted savings for Heating Year 1996 were $1,490, a 47 percent decrease. Maintenance savings (not itemized) were in addition to this amount. Monitoring continues in 1997.

  8. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  9. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  10. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  11. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  12. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  13. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  14. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  15. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  16. Moving Divertor Plates in a Tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Zhang, H.

    2009-01-01

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions

  17. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  18. Surface Modification Technology of ODS Alloying Treatment by using Laser Heat Source

    International Nuclear Information System (INIS)

    Kim, H. G.; Kim, I. H.; Choi, B. K.; Park, J. Y.; Koo, Y. H.

    2012-01-01

    The ODS (Oxide Dispersion Strengthed) alloys can be applied as structural materials for components in the core of a nuclear power plants since these components must have a high mechanical strength at high temperature up to 700 .deg. C. This type of alloy was generally manufactured by mechanical alloying from its source metal and Y 2 O 3 powders. The mechanical alloyed powder is subjected to the HIP (Hot Isotatic Pressing) or hot extrusion: and this product is heat treated at target temperature and time. Thus, the Y 2 O 3 particles are dispersed in the metal matrix. These manufacturing process of ODS alloy is very complex and expensive. Also, it is necessary the special techniques to obtain the uniform dispersion and volume control of Y 2 O 3 particles. Another problem is the final product forming such as tube and sheet because the intermediated-product has a high mechanical strength due to the dispersion of Y 2 O 3 particles. The laser cladding techniques was applied on the surface cladding of ceramics and inter-metallic compounds on metal base and ceramic base components to increase corrosion and wear resistance. The laser heat source can be used to the alloying the metal and ceramic materials, because thermally melting of metal and ceramic is possible. So, we are applied on ODS alloy manufacturing by using the laser heat source. The main advantages and disadvantage of this technology can be resumed as follows: · It is possible to apply to the sheet and tube shape component, directly. · Metallurgical damage such as HAZ and severe grain growth is considerably reduced. · Good control of the alloying element of the treated zone · Highly reproducible homogeneous zone · The pores and cracks are suppressed in the treated zone · Oxidation can be prevented during the process. · Good control is possible for the irregular shaped components. · The bulk material alloying is limited by the power of laser source. So, this work is studied on the ODS alloy manufacturing

  19. Moving average rules as a source of market instability

    NARCIS (Netherlands)

    Chiarella, C.; He, X.Z.; Hommes, C.H.

    2006-01-01

    Despite the pervasiveness of the efficient markets paradigm in the academic finance literature, the use of various moving average (MA) trading rules remains popular with financial market practitioners. This paper proposes a stochastic dynamic financial market model in which demand for traded assets

  20. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  1. Seasonal coefficient of performance for ground source heat pump and groundwater one in Białystok

    Science.gov (United States)

    Gajewski, Andrzej

    2017-11-01

    European Economic Area (EEA) states declare to contain greenhouse gases emissions at 20% by 2020, whereas European Union (EU) does 40% before 2030, which result in encouragement to apply low-carbon technologies. Coefficient of Performance (COP) and Seasonal Coefficient of Performance (SCOPnet) are obtained using temperature measurement done by The Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB) at the weather station in Bialystok for ten-year period. The first variant is ground source heat pump (GSHP) and the second one is groundwater source heat pump (WSHP) which can be equipped with separating heat exchanger (SHE) optionally. In both cases heat is generated for heating system only. Ground temperature is determined from Baggs (1983) formula using Oleśkowicz-Popiel et. al. (2002) adaptation to Polish climate and substituting the local constants achieved by Biernacka (2010). Water temperature in a groundwater basin is obtained from Kowalski (2007) equation. Estimation is done in each hour of heating season. All COP values are higher than 3.5 required by EU (2013). SCOPnet are as follows: 6.12, 5.86, 5.03 for WSHP, WSHP+SHE, GSHP respectively. Insomuch as WSHP needs only two boreholes it is recommended to the areas beneath ones a groundwater basin is located.

  2. Seasonal coefficient of performance for ground source heat pump and groundwater one in Białystok

    Directory of Open Access Journals (Sweden)

    Gajewski Andrzej

    2017-01-01

    Full Text Available European Economic Area (EEA states declare to contain greenhouse gases emissions at 20% by 2020, whereas European Union (EU does 40% before 2030, which result in encouragement to apply low-carbon technologies. Coefficient of Performance (COP and Seasonal Coefficient of Performance (SCOPnet are obtained using temperature measurement done by The Institute of Meteorology and Water Management – National Research Institute (IMGW-PIB at the weather station in Bialystok for ten-year period. The first variant is ground source heat pump (GSHP and the second one is groundwater source heat pump (WSHP which can be equipped with separating heat exchanger (SHE optionally. In both cases heat is generated for heating system only. Ground temperature is determined from Baggs (1983 formula using Oleśkowicz-Popiel et. al. (2002 adaptation to Polish climate and substituting the local constants achieved by Biernacka (2010. Water temperature in a groundwater basin is obtained from Kowalski (2007 equation. Estimation is done in each hour of heating season. All COP values are higher than 3.5 required by EU (2013. SCOPnet are as follows: 6.12, 5.86, 5.03 for WSHP, WSHP+SHE, GSHP respectively. Insomuch as WSHP needs only two boreholes it is recommended to the areas beneath ones a groundwater basin is located.

  3. Analysis of ceramic materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Simonen, F.A.; Duckworth, W.H.

    1976-01-01

    Of the available high strength ceramics, silicon nitride offers the most promise followed by silicon carbide and aluminum oxide, and stress analyses show severe limitations on allowable velocities for impact with granite following reentry for these ceramics. Impact velocities in the 100 to 200 fps regime can be achieved only by the addition of an additional layer to distribute the high contact stress. Besides impact limitations, application of ceramic materials in heat sources would present problems both in terms of weight and fabrication. The required thickness of a ceramic impact member would be comparable to that for a carbon-carbon composite material, but the least dense of the high strength ceramics are 2 to 3 times more dense than the carbon-carbon composites. Fabrication of a ceramic heat source would require a high strength bond between the fuel and the impact member if reasonable impact velocities are to be achieved. Formation of such a bond in ceramic materials is a difficult task under normal circumstances, and would be more difficult under the restrictions imposed on the processing and handling of the 238 PuO 2 fuel. 16 fig

  4. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results

  5. Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds

    International Nuclear Information System (INIS)

    Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M.W.; Placr, A.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the 238 PuO 2 fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. copyright 1998 American Institute of Physics

  6. Strategic GHG reduction through the use of ground source heat pump technology

    International Nuclear Information System (INIS)

    Hanova, J; Dowlatabadi, H

    2007-01-01

    Higher energy prices and concern about climate change is drawing increasing attention to ground source heat pump (GSHP) systems. Their clear advantage lies in being able to provide heating using 25 to 30% of the energy consumed by even the most efficient conventional alternatives. Their drawback has been high capital costs and uncertainty about whether the emissions associated with the electric power used to energise the system has higher system-wide emissions than the highest-efficiency furnaces. This study delineates circumstances under which GSHP systems achieve net emission reductions, for different electricity generation methods, heat pump efficiencies, and heating loads. We illustrate the effect of relative fuel prices on annual operating savings using fuel prices in multiple countries. Annual operating savings determine how rapidly the technology achieves payback and then generates return on the initial capital investment. Finally, we highlight the least cost supply curve for using GSHP to reduce greenhouse gas emissions. Using the United States as a base reference case, this study explores the potential of GSHP in cold-climate countries worldwide

  7. 太阳能耦合地源热泵供暖系统的实验研究%Experimental Study on Heating System of Solar Coupled Ground Source Heat Pump

    Institute of Scientific and Technical Information of China (English)

    智超英; 赵宇含

    2017-01-01

    太阳能耦合地源热泵系统的设计以太阳能为辅助、地源热泵为主,最大化地利用太阳能资源,在满足地板采暖制备的情况下,富裕的热量可以补充到生活用水当中.通过实验验证了太阳能耦合地源热泵供暖系统可以有效恢复土壤温度,提高机组性能系数,实现热泵长期稳定的运行.%The design of solar coupled ground source heat pump system is based on solar energy and ground source heat pump.The system can maximize solar energy utilization in the preparation of floor heating.Rich heat can be added to the life water.This paper introduces the solar coupled ground source heat pump heating system.The experiment proves that the system can effectively restore the soil temperature, improve the performance coefficient of the crew, and realize the long-term stable operation of the heat pump.

  8. A thermoelectric-conversion power supply system using a strontium heat source of high-level radioactive nuclear waste

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2011-01-01

    A thermoelectric-conversion power supply system with radioactive strontium in high-level radioactive waste has been proposed. A combination of Alkali Metal Thermo-Electric Conversion (AMTEC) and a strontium fluoride heat source can provide a compact and long-lived power supply system. A heat source design with strontium fluoride pin bundles with Hastelloy cladding and intermediate copper has been proposed. This design has taken heat transportation into consideration, and, in this regard, the feasibility has been confirmed by a three-dimensional thermal analysis using Star-CD code. This power supply system with an electric output of 1 MW can be arranged in a space of 50 m 2 and approximately 1.1 m height and can be operated for 15 years without refueling. This compact and long-lived power supply is suitable for powering sources for remote places and middle-sized ships. From the viewpoint of geological disposal of high-level waste, the proposed power supply system provides a financial base for strontium-cesium partitioning. That is, a combination of minor-actinide recycling and strontium-cesium partitioning can eliminate a large part of decay heat in high-level waste and thus can save much space for geological disposal. (author)

  9. Optimal sizing of a multi-source energy plant for power heat and cooling generation

    International Nuclear Information System (INIS)

    Barbieri, E.S.; Dai, Y.J.; Morini, M.; Pinelli, M.; Spina, P.R.; Sun, P.; Wang, R.Z.

    2014-01-01

    Multi-source systems for the fulfilment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. Therefore, one of the main issues of these kinds of multi-source systems is to find the appropriate size of each technology. Moreover, building energy demands depend on the climate in which the building is located and on the characteristics of the building envelope, which also influence the optimal sizing. This paper presents an analysis of the effect of different climatic scenarios on the multi-source energy plant sizing. For this purpose a model has been developed and has been implemented in the Matlab ® environment. The model takes into consideration the load profiles for electricity, heating and cooling for a whole year. The performance of the energy systems are modelled through a systemic approach. The optimal sizing of the different technologies composing the multi-source energy plant is investigated by using a genetic algorithm, with the goal of minimizing the primary energy consumption only, since the cost of technologies and, in particular, the actual tariff and incentive scenarios depend on the specific country. Moreover economic considerations may lead to inadequate solutions in terms of primary energy consumption. As a case study, the Sino-Italian Green Energy Laboratory of the Shanghai Jiao Tong University has been hypothetically located in five cities in different climatic zones. The load profiles are calculated by means of a TRNSYS ® model. Results show that the optimal load allocation and component sizing are strictly related to climatic data (e.g. external air temperature and solar radiation)

  10. Parameterization of neutron production double-differential cross section above several tens-MeV by the use of moving source model

    International Nuclear Information System (INIS)

    Kitsuki, Hirohiko; Shigyo, Nobuhiro; Ishibashi, Kenji

    2000-01-01

    The moving source model based on the Maxwell-like energy distribution with Gaussian shape terms are employed for analyzing the neutron emission spectra from proton-induced spallation reaction. The parallelization of the double differential cross section is made for the experimental and calculated neutron data in the energy region from several-tens MeV to 3 GeV. (author)

  11. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NARCIS (Netherlands)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources

  12. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  13. A Green's function solution for a rectangular heat source on an infinite plate

    International Nuclear Information System (INIS)

    Bainbridge, B.L.

    1989-01-01

    The applications associated with a rectangular heat source on an infinite plate range from integrated circuits to thin film heat flux sensors on thin substrates. The particular problem from which the solution is developed concerns the use of a resistive strip for monitoring currents generated in circuits exposed to electromagnetic fields. The Green's function formulation is solved by using early and late time approximations for which analytical solutions can be derived. In this paper expressions are developed for three sets of boundary conditions and compared to the experimental performance of a physical device

  14. Influence of heat conducting substrates on explosive crystallization in thin layers

    Science.gov (United States)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  15. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  16. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    Gambill, W.R.; Mochizuki, T.

    1988-01-01

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m 2 , respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m 1 . In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  17. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

    Science.gov (United States)

    Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming

    2018-02-01

    Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.

  18. FY 1986 report on research and development of super heat pump energy accumulation system. R and D of total systems (Surveys on heat sources and heat-utilization systems); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. Total system no kenkyu (netsugen netsu riyokei no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The heat source systems and heat utilization systems are surveyed and studied for the super heat pump energy accumulation systems, in order to clarify effective application and application types of these systems in the domestic and industrial energy areas. These works include surveys on literature, both domestic and foreign, surveys on actual situations of the related facilities and plants and on-the-spot hearing, and numerical simulation to establish the basic data for some items. The FY 1986 program includes the literature surveys on heat source and heat utilization systems and on-the-spot hearing for the domestic energy areas, reviews of heat demand variation patterns, and studies on methodology for applying the data to the areas not investigated so far. For the industrial areas to which super heat pumps are potentially applicable, the chemical, refining, food manufacturing and plastic manufacturing/processing industries are selected, to study problems related to system structures and conditions of the heat pump systems in these areas. (NEDO)

  19. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  20. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

    International Nuclear Information System (INIS)

    Abdulsadda, Ahmad T; Tan, Xiaobo

    2013-01-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (paper)

  1. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  2. High heat load x-ray optics research and development at the Advanced Photon Source -- An overview

    International Nuclear Information System (INIS)

    Lee, Wah-Keat; Mills, D.M.

    1993-09-01

    Insertion devices at third generation synchrotron radiation sources such as the APS are capable of producing x-ray beams with total power in excess of 7 kilowatts or power densities of 150 watts/mm 2 at a typical location of the optical components. Optical elements subjected to these types of heat fluxes will suffer considerably unless carefully designed to withstand these unprecedented power loadings. At the Advanced Photon Source (APS), we have an aggressive R ampersand D program aimed at investigating possible methods to mitigate thermal distortions. The approaches being studied include, improved heat exchangers, use of liquid gallium and liquid nitrogen as coolants, novel crystal geometries, power filtering, and replacement of silicon with diamond for crystal monochromators. This paper will provide an overview of the high heat load x-ray optics program at the APS

  3. Experimental screening of carbon-base materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Bansal, G.K.; Duckworth, W.H.

    1976-11-01

    Fourteen C/C composites and three reentry-grade bulk graphites were evaluated experimentally to determine their applicability for impact member use in radioisotope heat sources. The composites included the following generic types: (1) 2-D cloth lay-ups; (2) 2-D and 3-D felts; (3) 3-D weaves; (4) 3-D pierced fabrics; (5) 7-D weave; and (6) coarse polar weave. Also included was the 2-D randomly wound, resin-impregnated C/C material presently used as the impact member in the MHW RTG and commonly designated ''GIS'' (an acronym for graphite impact shell). The various materials were evaluated as energy absorbing materials. None of the materials in these tests performed appreciably better than the GIS impact member material now used in the MHW heat source, HITCO Pyro Carb 814. Two cloth lay-up composites, HITCO's Pyro Carb 903 and Carborundum's Carbitex 700, were somewhat superior in performance, while the bulk graphites and felt-base composites ranked least effective as energy absorbers. All experimental data and other factors considered to date suggest that Pyro Carb 903 is the best prospect for a bifunctional heat shield and impact member. Its high density (1.80 g/cm 3 ) indicates potentially good ablation resistance to accompany its indicated good performance as an energy absorber

  4. Focus group discussions among owners and non-owners of ground source heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, B.F.

    1988-07-01

    This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

  5. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  6. Breaking and Moving Hotspots in a Large Grain Nb Cavity with a Laser Beam

    International Nuclear Information System (INIS)

    Ciovati, G.; Cheng, G.; Flood, R. J.; Jordan, K.; Kneisel, P.; Morrone, M. L.; Turlington, L.; Wilson, K. M.; Zhang, S.; Anlage, S. M.; Gurevich, A. V.; Nemes, G.; Baldwin, C.

    2011-01-01

    Magnetic vortices pinned near the inner surface of SRF Nb cavities are a possible source of RF hotspots, frequently observed by temperature mapping of the cavities outer surface at RF surface magnetic fields of about 100 mT. Theoretically, we expect that the thermal gradient provided by a 10 W green laser shining on the inner cavity surface at the RF hotspot locations can move pinned vortices to different pinning locations. The experimental apparatus to send the beam onto the inner surface of a photoinjector-type large-grain Nb cavity is described. Preliminary results on the changes in thermal maps observed after applying the laser heating are also reported

  7. Investigation of the problems associated with the Pt-20 Rh clads of the viking heat sources VF-3 and VF-7

    International Nuclear Information System (INIS)

    Zielinski, R.E.

    1975-01-01

    The investigation was undertaken to determine why the emissive coatings of the Viking Heat Sources VF-3 and VF-7 had flaked off the Pt-20 Rh clad material. During the course of the investigation, two additional, unusual phenomena were observed: a surface reaction zone on the uncoated Pt-20 Rh surfaces and grain boundary reactions in the weld zone of the clad. It seems that all three phenomena were the result of a complicated reaction couple that involved the heat source materials, storage container materials, and environment. Vapor transport mechanisms were responsible for the phenomena which were observed. The vapor transport mechanisms were probably initiated because of the impurities that were in both the heat source and storage container materials. The mechanisms resulted in significant changes in these heat sources because vapor transport was allowed to continue in a static environment for an unusually long period of time. (U.S.)

  8. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  9. Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.

    Science.gov (United States)

    Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.

    1973-01-01

    The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.

  10. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  11. Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.

  12. Geothermal heat potential - the source for heating greenhouses in Southestern Europe

    Directory of Open Access Journals (Sweden)

    Urbancl Danijela

    2016-01-01

    Full Text Available The paper presents economically evaluated solutions for heating greenhouses with geothermal potential, if the same greenhouse is placed in two different locations in Southeastern Europe, one in Slovenia and the other in Serbia. The direct geothermal water exploitation using heat exchangers is presented and the remaining heat potential of already used geothermal water is exploited using high temperature heat pumps. Energy demands for heating greenhouses are calculated considering climatic parameters of both locations. Furthermore, different constructions materials are taken into account, and energy demands are evaluated if the same greenhouse is made of 4 mm toughened single glass, double insulated glass or polycarbonate plates. The results show that the geothermal energy usage is economically feasible in both locations, because payback periods are in range from two to almost eight years for different scenarios.

  13. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  14. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  15. Ground source heat pumps versus high efficiency natural gas furnaces in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.

    2003-02-02

    For the past twenty years or so, the heating and cooling of numerous buildings in northern Europe has been accomplished using ground source heat pumps (GSHPs), while in North America they have been in use for approximately ten years. In the Prairies, natural gas furnaces dominate, while GSHP are more popular in eastern Canada. The author noted that natural gas furnaces have an efficiency of 80 per cent or less, while high efficiency natural gas (HENG) furnaces, more expensive, have an efficiency in the 90 per cent range. A brief outline of the principles behind GSHPs was provided. The Coefficient of Performance (COP) of GSHP reaches up to 500 per cent depending whether the unit is cooling or heating. The amount of heat produced by a heating system expressed as a percentage of the energy input required to operate the system is the definition used for the efficiency. In those cases where it is possible to amortize the initial costs, pay now or obtain a subsidy, the installation of GSHP is advantageous. Several factors affect the total cost of heating a building, such as the airtightness of the building and its insulation, the coldness of the climate, and the inside controlled temperature setting. The author then examined the cost of operating a GSHP versus a natural gas furnace. In most examples studied, the cost of operating a GSHP was less than the cost of operating a natural gas furnace. The Total Equivalent Warming Impact (TEWI) of GSHPs and HENG furnaces was examined. The author concluded that the cost of heating by GSHP in Alberta will be lower than the cost of heating by HENG which requires a separate air conditioning unit for the summer months, with additional improvements in efficiency and insulation. 7 refs., 4 tabs.

  16. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  17. RESEARCH OF HYDRODYNAMICS OF HEAT GENERATORS FOR MECHANICAL SYSTEMS AUTONOMOUS HEATING

    Directory of Open Access Journals (Sweden)

    E. M. Derbasova

    2014-01-01

    Full Text Available A design of mechanical heat source, allows direct conversion of mechanical energy of the wind flow into thermal energy due to friction forces in a highly viscous fluid. Obtained theoretical dependence for calculating the heat generated by converting mechanical energy into heat. For laminar flow of a highly viscous, fluid in the gap between the stationary and rotating disk heat source. Based on experimental studies to determine the average thickness of the boundary layer between the rotating and fixed disks. The dependences to identify key structural dimensions of mechanical heat sources for heating systems. 

  18. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  19. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  20. Estimation of heat transfer and heat source in a molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  1. Estimation of heat transfer and heat source in a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  2. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  3. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  4. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  5. Turbulent flow and heat transfer from a slot jet impinging on a moving plate

    International Nuclear Information System (INIS)

    Chattopadhyay, Himadri; Saha, Sujoy K.

    2003-01-01

    The flow field due to an impinging jet over a moving surface at a moderately high Reynolds number, emanating from a rectangular slot nozzle has been computed using the large eddy simulation technique. A dynamic subgrid-scale stress model has been used for the small scales of turbulence. The velocity of the impinging surface perpendicular to the jet velocity has been varied up to two times the jet velocity at the nozzle exit. Turbulence quantities such as kinetic energy, production rate of turbulent kinetic energy and the Reynolds stresses are calculated for different surface velocities. It has been observed that, while the turbulent kinetic energy increases with increasing velocity of the impinging surface, production rate of turbulence initially increases with increasing surface velocity and then comes down. By analyzing the components of turbulent production it was found that P 33 is the dominant term up to the surface velocity of one unit and when the surface velocity is two times the jet velocity at the nozzle exit, the major contribution to turbulence production comes from P 13 and partly from P 11 . Heat transfer from the plate initially increases with non-dimensional surface velocity up to 1.2 and then comes down

  6. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  7. Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Florio, L.A.; Harnoy, A. [Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2007-09-15

    A numerical investigation was conducted into an alternative method of natural convection enhancement by the transverse oscillations of a thin short plate, strategically positioned in close proximity to a rectangular heat source. The heat source is attached to a mounting board in a vertical channel. Two-dimensional laminar flow finite element studies were carried out with the oscillation parameters, the oscillating plate-heat source mean clearance spacing, and the oscillating plate position varied. Significant cooling was found for displacement amplitudes of at least one-third of the mean clearance together with frequencies (Re/{radical}(Gr)) of over 2{pi} with the displacement being more critical to the cooling level. For the parameters investigated, up to a 52% increase in the local heat transfer coefficient relative to standard natural convection was obtained. The results indicate that this method can serve as a feasible, simpler, more energy and space efficient alternative to common methods of cooling for low power dissipating devices operating at conditions just beyond the reach of pure natural convection. (author)

  8. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  9. Slowpoke - a new Canadian heat source

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Lynch, G.F.; Ohta, M.M.

    1987-07-01

    Atomic Energy of Canada Limited now has a new product, the SLOWPOKE Energy System, that provides low temperature heat suitable for building and process heating. The SLOWPOKE Energy System is sized to deliver up to 10 megawatts of hot water at up to 90 degrees C, appropriate for large buildings and industrial processes. It is designed for operation without the full-time attendance of dedicated staff and, because of its inherent safety, for siting close to users. At less than 2 cents/kWh, the heat is competitive with oil, gas and electricity in most regions of Canada and the world

  10. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  11. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  12. Whole planet cooling and the radiogenic heat source contents of the earth and moon

    International Nuclear Information System (INIS)

    Schubert, G.; Stevenson, D.

    1980-01-01

    It is widely believed that the surface heat flows of the earth and moon provide good measures of the total amounts of radioactives in these bodies. Simple thermal evolution models, based on subsolidus whole mantle convection, indicate that this may not be the case. These models have been constructed assuming an initially hot state, but with a wide variety of choices for the parameters characterizing the rheology and convective vigor. All models are constrained to be consistent with present-day surface heat fluxes, and many of the terrestrial models are consistent with the mantle viscosities indicated by post-glacial rebound. For the earth the acceptable models give a radiogenic heat production that is only 65--85% of the surface heat output, the difference being due to secular cooling of the earth (about 50 0 --100 0 C per 10 9 years in the upper mantle). It is argued that the actual heat generation may be substantially less, since the models omit core heat, upward migration of heat sources, possible layering of the mantle, and deviations from steady convection. Geochemical models which are near to chondritic (apart from potassium depletion) are marginally consistent with surface heat flow. In the lunar models, heat generation is typically only 70--80% of the surface heat flow, even with allowance for the strong near-surface enhancement of radioactives. Despite the simplicity of the models the persistence of a significant difference between heat generation and heat output for a wide range of parameter choices indicates that this difference is real and should be incorporated in geochemical modeling of the planets

  13. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  14. Thermodynamic system with a heat machine, that uses renewable energy sources

    International Nuclear Information System (INIS)

    Petkovski, Nikola

    2013-01-01

    In the recent time, the need of utilization of the renewable energy sources within the energy production constantly increases. This master work comprises a textual description and a practical work-out of a thermodynamic system operating by the use of the renewable energy sources, aimed to accomplish a mechanical operation that is being transformed into electricity. The system operates by the use of thermal energy arriving from the Sun and/or the ambient heat. In addition, the system may also operate by the use of thermal energy released from various operations. Cooling of the system is provided mainly by the water evaporation endothermal process. Advantage of this system is seen in the fact that it is readily manufactured. The system may be used, inter alia, in the production of electricity in the regions lacking any electrical network. This work also comprises a simple solar collector and storage unit that may be used as a thermal energy source to be used in the operation of the system. (author)

  15. Atopic dermatitis and indoor use of energy sources in cooking and heating appliances

    Science.gov (United States)

    2012-01-01

    Background Atopic dermatitis (AD) prevalence has considerably increased worldwide in recent years. Studying indoor environments is particularly relevant, especially in industrialised countries where many people spend 80% of their time at home, particularly children. This study is aimed to identify the potential association between AD and the energy source (biomass, gas and electricity) used for cooking and domestic heating in a Spanish schoolchildren population. Methods As part of the ISAAC (International Study of Asthma and Allergies in Childhood) phase III study, a cross-sectional population-based survey was conducted with 21,355 6-to-7-year-old children from 8 Spanish ISAAC centres. AD prevalence, environmental risk factors and the use of domestic heating/cooking devices were assessed using the validated ISAAC questionnaire. Crude and adjusted odds ratios (cOR, aOR) and 95% confidence intervals (CIs) were obtained. A logistic regression analysis was performed (Chi-square test, p-value heating was the only type which obtained a significant aOR (1.13; 95% CI: 1.00-1.27). Finally, the model with all selected confounding variables (sex, BMI, number of siblings, mother’s educational level, smoking habits of parents, truck traffic and geographical area), showed aOR values which were very similar to those obtained in the previous adjusted logistic analysis. None of the results was statistically significant, but the use of electric heating showed an aOR close to significance (1.14; 95% CI: 0.99-1.31). Conclusion In our study population, no statistically significant associations were found between the type of indoor energy sources used and the presence of AD. PMID:23088771

  16. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  17. Comparison of predicted far-field temperatures for discrete and smeared heat sources

    International Nuclear Information System (INIS)

    Ryder, E.E.

    1992-01-01

    A fundamental concern in the design of the potential repository at Yucca Mountain. Nevada is the response of the host rock to the emplacement of heat-generating waste. The thermal perturbation of the rock mass has implications regarding the structural, hydrologic. and geochemical performance of the potential repository. The phenomenological coupling of many of these performance aspects makes repository thermal modeling a difficult task. For many of the more complex, coupled models, it is often necessary to reduce the geometry of the potential repository to a smeared heat-source approximation. Such simplifications have impacts on induced thermal profiles that in turn may influence other predicted responses through one- or two-way thermal couplings. The effect of waste employment layout on host-rock thermal was chosen as the primary emphasis of this study. Using a consistent set of modeling and input assumptions, far-field thermal response predictions made for discrete-source as well as plate source approximations of the repository geometry. Input values used in the simulations are consistent with a design-basis a real power density (APD) of 80 kW/acre as would be achieved assuming a 2010 emplacement start date, a levelized receipt schedule, and a limitation on available area as published in previous design studies. It was found that edge effects resulting from general repository layout have a significant influence on the shapes and extents of isothermal profiles, and should be accounted for in far-field modeling efforts

  18. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  19. The Earth's mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources

    Science.gov (United States)

    Fourel, Loïc; Limare, Angela; Jaupart, Claude; Surducan, Emanoil; Farnetani, Cinzia G.; Kaminski, Edouard C.; Neamtu, Camelia; Surducan, Vasile

    2017-08-01

    Convective motions in silicate planets are largely driven by internal heat sources and secular cooling. The exact amount and distribution of heat sources in the Earth are poorly constrained and the latter is likely to change with time due to mixing and to the deformation of boundaries that separate different reservoirs. To improve our understanding of planetary-scale convection in these conditions, we have designed a new laboratory setup allowing a large range of heat source distributions. We illustrate the potential of our new technique with a study of an initially stratified fluid involving two layers with different physical properties and internal heat production rates. A modified microwave oven is used to generate a uniform radiation propagating through the fluids. Experimental fluids are solutions of hydroxyethyl cellulose and salt in water, such that salt increases both the density and the volumetric heating rate. We determine temperature and composition fields in 3D with non-invasive techniques. Two fluorescent dyes are used to determine temperature. A Nd:YAG planar laser beam excites fluorescence, and an optical system, involving a beam splitter and a set of colour filters, captures the fluorescence intensity distribution on two separate spectral bands. The ratio between the two intensities provides an instantaneous determination of temperature with an uncertainty of 5% (typically 1K). We quantify mixing processes by precisely tracking the interfaces separating the two fluids. These novel techniques allow new insights on the generation, morphology and evolution of large-scale heterogeneities in the Earth's lower mantle.

  20. Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions

    Directory of Open Access Journals (Sweden)

    Ben-Ran Fu

    2014-06-01

    Full Text Available An organic Rankine cycle system comprised of a preheater, evaporator, condenser, turbine, generator, and pump was used to study its off-design performance and the operational control strategy. R245fa was used as the working fluid. Under the design conditions, the net power output is 243 kW and the system thermal efficiency is 9.5%. For an off-design heat source flow rate (mW, the operating pressure was controlled to meet the condition that the R245fa reached the liquid and vapor saturation states at the outlet of the preheater and the evaporator, respectively. The analytical results demonstrated that the operating pressure increased with increasing mW; a higher mW yielded better heat transfer performance of the preheater and required a smaller evaporator heat capacity, and the net power output and system thermal efficiency increased with increasing mW. For the range of mW studied here, the net power output increased by 64.0% while the total heat transfer rate increased by only 9.2%. In summary, off-design operation of the system was examined for a heat source flow rate which varied by –39.0% to +78.0% from the designed rate, resulting in –29.2% to +16.0% and –25.3% to +12.6% variations in the net power output and system thermal efficiency, respectively.

  1. A simulation study on the operating performance of a solar-air source heat pump water heater

    International Nuclear Information System (INIS)

    Xu Guoying; Zhang Xiaosong; Deng Shiming

    2006-01-01

    A simulation study on the operating performance of a new type of solar-air source heat pump water heater (SAS-HPWH) has been presented. The SAS-HPWH used a specially designed flat-plate heat collector/evaporator with spiral-finned tubes to obtain energy from both solar irradiation and ambient air for hot water heating. Using the meteorological data in Nanjing, China, the simulation results based on 150 L water heating capacity showed that such a SAS-HPWH can heat water up to 55 deg. C efficiently under various weather conditions all year around. In this simulation study, the influences of solar radiation, ambient temperature and compressor capacity on the performance of the SAS-HPWH were analyzed. In order to improve the overall operating performance, the use of a variable-capacity compressor has been proposed

  2. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  3. Numerical method of identification of an unknown source term in a heat equation

    Directory of Open Access Journals (Sweden)

    Fatullayev Afet Golayo?lu

    2002-01-01

    Full Text Available A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.

  4. Transient natural ventilation of a room with a distributed heat source

    Science.gov (United States)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  5. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    International Nuclear Information System (INIS)

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four 238 PuO 2 -fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO 2 as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel

  6. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.; Elwardani, Ahmed Elsaid; Gusev, Ivan G.; Xie, Jianfei; Shishkova, Irina N.; Cao, Bingyang; Snegirev, Alexander Yu.; Heikal, Morgan Raymond

    2013-01-01

    and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono

  7. Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    Directory of Open Access Journals (Sweden)

    Peizhi Li

    2018-01-01

    Full Text Available A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers. At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist.

  8. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  9. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  10. Experimental analysis of a diffusion absorption refrigeration system used alternative energy sources

    International Nuclear Information System (INIS)

    Soezen, A.; Oezbas, E.

    2009-01-01

    The continuous-cycle absorption refrigeration device is widely used in domestic refrigerators, and recreational vehicles. It is also used in year-around air conditioning of both homes and larger buildings. The unit consists of four main parts the boiler, condenser, evaporator and the absorber. When the unit operates on kerosene or gas, the heat is supplied by a burner. This element is fitted underneath the central tube. When operating on electricity, the heat is supplied by an element inserted in the pocket. No moving parts are employed. The operation of the refrigerating mechanism is based on Dalton's law. In this study, experimental analysis was performed of a diffusion absorption refrigeration system (DARS) used alternative energy sources such as solar, liquid petroleum gas (LPG) sources. Two basic DAR cycles were set up and investigated: i) In the first cycle (DARS-1), the condensate is sub-cooled prior to the evaporator entrance by the coupled evaporator/gas heat exchanger similar with manufactured by Electrolux Sweden. ii) In the second cycle (DARS-2), the condensate is not sub-cooled prior to the evaporator entrance and gas heat exchanger is separated from the evaporator. (author)

  11. Thermoelastic stress due to an instantaneous finite line heat source in an infinite medium

    International Nuclear Information System (INIS)

    Claesson, J.; Hellstroem, G.

    1995-09-01

    The problem originates from studies of nuclear waste repositories in rock. The problem is by superposition reduced to the case of a single, infinite, antisymmetric, instantaneous line heat source. The dimensionless problem turns out to depend on the dimensionless radial and axial coordinates only, although the original time-dependent problem contains several parameters. An exact analytical solution is derived. The solution is surprisingly handy, considering the complexity of the original problem. The stress and strain field are readily obtained from derivatives of the displacement components. These fields are studied and presented in detail. Asymptotic behaviour, field of principal stresses, regions of compression and tension, and largest values of compression and tension of the components are given as exact formulas. The solution may be used to test numerical models for coupled thermoelastic processes. It may also be used in more detailed numerical simulations of the process near the heat sources as boundary conditions to account for the three-dimensional global process. 7 refs

  12. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  13. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  14. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976. [Heat dissipation from /sup 238/Pu power sources implanted in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt /sup 238/Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq.

  15. The assessment of global thermo-energy performances of existing district heating systems optimized by harnessing renewable energy sources

    Science.gov (United States)

    Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.

    2017-12-01

    Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.

  16. Ground-source heat pump barometer - EurObserv'ER - September 2011

    International Nuclear Information System (INIS)

    2011-09-01

    2,9% slide by the GHSP market in the EU between 2009 and 2010. The double whammy dealt by the economic crisis and housing slump has stifled expansion of the ground-source heat pump market in many European countries. The European Union market contracted for the second year running (by 2.9% between 2009 and 2010), and this despite the fact that more than 100 000 units were sold over the twelve-month period, taking