WorldWideScience

Sample records for moving contact line

  1. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  2. On multiscale moving contact line theory.

    Science.gov (United States)

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  3. Multi-scale strategies for dealing with moving contact lines

    Science.gov (United States)

    Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  4. Moving contact lines: linking molecular dynamics and continuum-scale modelling.

    Science.gov (United States)

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-04

    Despite decades of research, the modelling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily-life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide the link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which govern the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modelling, and highlight the opportunities for future developments in this area.

  5. Response function of a moving contact line

    Science.gov (United States)

    Perrin, H.; Belardinelli, D.; Sbragaglia, M.; Andreotti, B.

    2018-04-01

    The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.

  6. Moving droplets : The measurement of contact lines

    NARCIS (Netherlands)

    Poelma, C.; Franken, M.J.Z.; Kim, H.; Westerweel, J.

    2014-01-01

    Contact lines are the locations where a gas, liquid and a solid meet. From everyday experience we know that such contact lines can be mobile, for example in the case of a water droplet sliding over a glass surface. However, the continuum description of the flow towards or away from a contact line

  7. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng

    2009-10-29

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.

  8. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  9. A finite-element model for moving contact line problems in immiscible two-phase flow

    Science.gov (United States)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  10. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  11. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng; Wu, Congmin; Lei, Siu Long; Wang, Xiao Ping; Sheng, Ping

    2009-01-01

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line

  12. Moving contact lines in partial wetting: bridging the gap across the scales

    Science.gov (United States)

    Pahlavan, Amir; Cueto-Felgueroso, Luis; McKinley, Gareth; Juanes, Ruben

    2017-11-01

    The spreading and dewetting of liquid films on solid substrates is a common phenomenon in nature and industry from a snail secreting a mucosal film to printing and coating processes. A quantitative description of these phenomena, however, requires a detailed understanding of the flow physics at the nanoscale as the intermolecular interactions become important close to the contact line. Classical hydrodynamic theory describes wetting as an interplay between viscous and interfacial forces, neglecting the intermolecular interactions, leading to a paradox known as the moving contact line singularity. By contrast, molecular kinetic theory describes wetting as an activated process, neglecting the bulk hydrodynamics in the spreading viscous fluid film altogether. Here, we show that our recently developed model for thin liquid films in partial wetting, which properly incorporates the role of van der Waals interactions in a thin spreading fluid layer into a height-dependent surface tension, bridges the gap between these two approaches and leads to a unified framework for the description of wetting phenomena. We further use our model to investigate the instability and dewetting of nanometric liquid films, and show that it brings theoretical predictions closer to experimental observations.

  13. Contact Line Dynamics

    Science.gov (United States)

    Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca

    2017-11-01

    The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.

  14. Vorticity dipoles and a theoretical model of a finite force at the moving contact line singularity

    Science.gov (United States)

    Zhang, Peter; Devoria, Adam; Mohseni, Kamran

    2017-11-01

    In the well known works of Moffatt (1964) and Huh & Scriven (1971), an infinite force was reported at the moving contact line (MCL) and attributed to a non-integrable stress along the fluid-solid boundary. In our recent investigation of the boundary driven wedge, a model of the MCL, we find that the classical solution theoretically predicts a finite force at the contact line if the forces applied by the two boundaries that make up the corner are taken into consideration. Mathematically, this force can be obtained by the complex contour integral of the holomorphic vorticity-pressure function given by G = μω + ip . Alternatively, this force can also be found using a carefully defined real integral that incorporates the two boundaries. Motivated by this discovery, we have found that the rate of change in circulation, viscous energy dissipation, and viscous energy flux is also finite per unit contact line length. The analysis presented demonstrates that despite a singular stress and a relatively simple geometry, the no-slip semi-infinite wedge is capable of capturing some physical quantities of interest. Furthermore, this result provides a foundation for other challenging topics such as dynamic contact angle.

  15. Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces

    Science.gov (United States)

    Liu, Ming; Chen, Xiao-Peng

    2017-08-01

    We present a numerical study of a moving contact line (CL) crossing the intersecting region of hydrophilic and hydrophobic patterns on a solid wall using lattice Boltzmann methods (LBMs). To capture the interface between the two phases properly, we applied a phase field model coupled with the LBM. The evolutions of the CL velocity, dynamic contact angle, and apparent contact angle are analyzed for the so-called "stick" and "slip" processes. In the two processes, the evolution of the quantities follows different rules shortly after the initial quick transition, which is probably caused by finite interfacial thickness or non-equilibrium effects. For the stick process, the CL is almost fixed and energy is extracted from the main flow to rebuild the meniscus' profile. The evolution of the meniscus is mainly governed by mass conservation. The CL is depinned after the apparent contact angle surpasses the dynamic one, which implies that the interfacial segment in the vicinity of contact line is bended. For the slip process, the quantities evolve with features of relaxation. In the microscopic scale, the velocity of the CL depends on the balance between unbalanced Young's capillary force and viscous drag. To predict the apparent contact angle evolution, a model following the dynamics of an overdamped spring-mass system is proposed. Our results also show that the capillary flows in a channel with heterogeneous wall can be described generally with the Poiseuille flow superimposed by the above transient one.

  16. Towards a more accurate microscopic description of the moving contact line problem - incorporating nonlocal effects through a statistical mechanics framework

    Science.gov (United States)

    Nold, Andreas; Goddard, Ben; Sibley, David; Kalliadasis, Serafim

    2014-03-01

    Multiscale effects play a predominant role in wetting phenomena such as the moving contact line. An accurate description is of paramount interest for a wide range of industrial applications, yet it is a matter of ongoing research, due to the difficulty of incorporating different physical effects in one model. Important small-scale phenomena are corrections to the attractive fluid-fluid and wall-fluid forces in inhomogeneous density distributions, which often previously have been accounted for by the disjoining pressure in an ad-hoc manner. We systematically derive a novel model for the description of a single-component liquid-vapor multiphase system which inherently incorporates these nonlocal effects. This derivation, which is inspired by statistical mechanics in the framework of colloidal density functional theory, is critically discussed with respect to its assumptions and restrictions. The model is then employed numerically to study a moving contact line of a liquid fluid displacing its vapor phase. We show how nonlocal physical effects are inherently incorporated by the model and describe how classical macroscopic results for the contact line motion are retrieved. We acknowledge financial support from ERC Advanced Grant No. 247031 and Imperial College through a DTG International Studentship.

  17. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min

    2012-02-01

    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  18. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  19. A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems

    KAUST Repository

    Bao, Kai

    2012-10-01

    In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..

  20. A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems

    KAUST Repository

    Bao, Kai; Shi, Yi; Sun, Shuyu; Wang, Xiaoping

    2012-01-01

    In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..

  1. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng

    2010-11-30

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid–gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid–gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid–gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamicequations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid–solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative

  2. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    Science.gov (United States)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  3. Dynamics of the Molten Contact Line

    Science.gov (United States)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    materials- molten wax on solid wax, water on ice, and mercury on frozen mercury- which between them span a considerable range of the deposition/solidification similarity parameters. Correlations are obtained for the spreading velocity, spreading time scales, the spreading factor (i.e. ratio of deposited drop's final footprint radius and the drop's initial radius), post-spreading liquid oscillation amplitudes and time scales, and bulk solidification time scales. Duthaler carried out an experimental and theoretical investigation of the relationship between the liquid's apparent contact angle and the Capillary number Ca=mu U/sigma based on contact line speed, for molten materials spreading over subcooled solids. This relationship is required for modeling of melt spreading. We have adapted Voinov's methodology to the molten contact line and formulated a theoretical model for the Ca vs. contact angle relationship, based Schiaffino and Sonin#s (1997a,b) wedge-like solidification front model. With the solidification front angle taken from Schiaffino and Sonin, the model is in good agreement with the experimental results for Ca vs. contact angle. Duthaler also extended the experimental investigation of droplet deposition and contact line freezing to more materials, including solder on glass, solder on solder, water on ice, and molten microcrystalline wax on wax. The latter also included tests on inclined targets. Deposition tests have also been done with molten octacosane (C28H58) on various targets. An important objective of our program has been the development of micron-scale sensors for measuring the transient temperature at a point on the substrate surface as a molten contact line moves over it. The expectation is that this temperature history will yield a better understanding of the thermal process in the contact line region. The sensors are of the thermistor type, either 2.5 microns or 1.5 microns square, microfabricated with silicon-based technology on either pure silicon or

  4. 3D adaptive finite element method for a phase field model for the moving contact line problems

    KAUST Repository

    Shi, Yi

    2013-08-01

    In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.

  5. An elastic-plastic contact model for line contact structures

    Science.gov (United States)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  6. Contact angle and local wetting at contact line.

    Science.gov (United States)

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  7. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.

    Science.gov (United States)

    Yang, Fan; Cruikshank, Owen; He, Weilue; Kostinski, Alex; Shaw, Raymond A

    2018-02-01

    Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.

  8. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  9. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity

    KAUST Repository

    Gao, Min

    2014-09-01

    In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.

  10. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity

    KAUST Repository

    Gao, Min; Wang, Xiao-Ping

    2014-01-01

    In this paper, we develop an efficient numerical method for the two phase moving contact line problem with variable density, viscosity, and slip length. The physical model is based on a phase field approach, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,5]. To overcome the difficulties due to large density and viscosity ratio, the Navier-Stokes equations are solved by a splitting method based on a pressure Poisson equation [11], while the Cahn-Hilliard equation is solved by a convex splitting method. We show that the method is stable under certain conditions. The linearized schemes are easy to implement and introduce only mild CFL time constraint. Numerical tests are carried out to verify the accuracy, stability and efficiency of the schemes. The method allows us to simulate the interface problems with extremely small interface thickness. Three dimensional simulations are included to validate the efficiency of the method. © 2014 Elsevier Inc.

  11. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Universality in dynamic wetting dominated by contact-line friction.

    Science.gov (United States)

    Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav

    2012-04-01

    We report experiments on the rapid contact-line motion present in the early stages of capillary-driven spreading of drops on dry solid substrates. The spreading data fail to follow a conventional viscous or inertial scaling. By integrating experiments and simulations, we quantify a contact-line friction μ(f) which is seen to limit the speed of the rapid dynamic wetting. A scaling based on this contact-line friction is shown to yield a universal curve for the evolution of the contact-line radius as a function of time, for a range of fluid viscosities, drop sizes, and surface wettabilities.

  13. Flow topology adjacent to a fast moving contact line

    International Nuclear Information System (INIS)

    Royon, A.; Ehrhard, P.

    2001-10-01

    Coating processes are commonly used in industry. In the present report the physical mechanisms involved in such wetting phenomena are investigated (a) by a numerical and (b) by an experimental approach in a plane section perpendicular to the contact line. The problem relates to a tape plunging vertically into a pool of two immiscible fluids. The equations and boundary conditions describing the problem are treated in non-dimensional form. Several simplifications are introduced to obtain a first approximative solution to the problem. The relevant parameters are the viscosity ratio V V , the density ratio D V and the Reynolds number of the heavy fluid, Re 1 . By a variation of the viscosity ratio or of the Reynolds number we demonstrate the existence of three typical flow structures: (1) stagnation point streamline in the light fluid, (2) stagnation point streamline in the heavy fluid or (3) transition flow with stagnation point streamlines in both fluids. The structure changes continuously from a complex flow in the light fluid to a complex flow in the heavy fluid by an increase of the viscosity ratio or by an increase of the Reynolds number in the heavy fluid. The mechanisms of the transitions, involving a thickening of the viscous boundary layer and inertial effects, are discussed in detail. The solution only weakly depends on the density ratio. In the experiment a PE-tape plunges into a pool of (a) silicone oil M1000 and air, (b) water and silicone oil M50 or (c) water and silicone oil M10. The experimental investigations confirm the existence of the two limit structures, namely a stagnation point streamline in air for the combination (a) or a stagnation point streamline in water for the combination (b). Even the transition from one flow structure to the other is observed with an increase of the Reynolds number for the combination (c). (orig.)

  14. A fully discrete energy stable scheme for a phase filed moving contact line model with variable densities and viscosities

    KAUST Repository

    Zhu, Guangpu; Chen, Huangxin; Sun, Shuyu; Yao, Jun

    2018-01-01

    In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation

  15. A contact angle hysteresis model based on the fractal structure of contact line.

    Science.gov (United States)

    Wu, Shuai; Ma, Ming

    2017-11-01

    Contact angle is one of the most popular concept used in fields such as wetting, transport and microfludics. In practice, different contact angles such as equilibrium, receding and advancing contact angles are observed due to hysteresis. The connection among these contact angles is important in revealing the chemical and physical properties of surfaces related to wetting. Inspired by the fractal structure of contact line, we propose a single parameter model depicting the connection of the three angles. This parameter is decided by the fractal structure of the contact line. The results of this model agree with experimental observations. In certain cases, it can be reduced to other existing models. It also provides a new point of view in understanding the physical nature of the contact angle hysteresis. Interestingly, some counter-intuitive phenomena, such as the binary receding angles, are indicated in this model, which are waited to be validated by experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. On a free-surface problem with moving contact line: From variational principles to stable numerical approximations

    Science.gov (United States)

    Fumagalli, Ivan; Parolini, Nicola; Verani, Marco

    2018-02-01

    We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.

  17. Can hydrodynamic contact line paradox be solved by evaporation-condensation?

    Science.gov (United States)

    Janeček, V; Doumenc, F; Guerrier, B; Nikolayev, V S

    2015-12-15

    We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration of partial wetting (liquid wedge on a solid substrate) via evaporation-condensation, when an inert gas is present in the atmosphere above the liquid. The no-slip condition is imposed at the solid-liquid interface and the system is assumed to be isothermal. The mass exchange dynamics is controlled by vapor diffusion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curvature and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate moves at a steady velocity with respect to the liquid wedge. A multi-scale analysis is performed. The liquid dynamics description in the phase-change-controlled microregion and visco-capillary intermediate region is based on the lubrication equations. The vapor diffusion is considered in the gas phase. It is shown that from the mathematical point of view, the phase exchange relieves the contact line singularity. The liquid mass is conserved: evaporation existing on a part of the meniscus and condensation occurring over another part compensate exactly each other. However, numerical estimations carried out for three common fluids (ethanol, water and glycerol) at the ambient conditions show that the characteristic length scales are tiny. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Dynamics of contact line depinning during droplet evaporation based on thermodynamics.

    Science.gov (United States)

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan

    2015-02-17

    For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

  19. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  20. Effects of moving dynamic tyre loads on tyre-pavement contact stresses

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2002-01-01

    Full Text Available The purpose of this paper is to indicate the effect that moving dynamic tyre loads has on the tyre-pavement contact stresses used in pavement analysis. Traditionally tyre loads (in pavement analysis) are modelled as constant loads applied through...

  1. Stokes flow inside an evaporating liquid line for any contact angle

    Science.gov (United States)

    Petsi, A. J.; Burganos, V. N.

    2008-09-01

    Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in (0,π) and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines, the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines and contact angle less than π/2 , the flow is directed towards the center of the droplet, whereas, for strongly hydrophobic substrates it is directed outwards.

  2. Direct measurement of friction of a fluctuating contact line.

    Science.gov (United States)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  3. The microscopic investigation of structures of moving flux lines by ...

    Indian Academy of Sciences (India)

    Abstract. We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low Tc type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the ...

  4. Wetting dynamics at high values of contact line speed

    OpenAIRE

    Пономарев, К. О.; Феоктистов, Дмитрий Владимирович; Орлова, Евгения Георгиевна

    2015-01-01

    Experimental results analyses of dynamic contact angle change under the conditions of substrate wetting by distilled water at high values of the contact line speed was conducted. Three spreading modes for copper substrates with different roughness were selected: drop formation, spreading and equilibrium contact angle formation. Peculiarity of droplet spreading on superhydrophobic surface is found. It consists in a monotonic increase of the advancing dynamic contact angle. The effect of the dr...

  5. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  6. Evaporation-induced flow in an inviscid liquid line at any contact angle

    Science.gov (United States)

    Petsi, A. J.; Burganos, V. N.

    2006-04-01

    The problem of potential flow inside an evaporating liquid line, shaped as an infinitely long cylindrical segment lying on a flat surface, is considered and an analytical solution is obtained for any contact angle in (0,π) . In this way, microflow details inside linear liquid bodies evaporating on hydrophilic, hydrophobic, and strongly hydrophobic substrates can now be obtained. The mathematical formulation employs the velocity potential and stream function formulations in bipolar coordinates and the solution is obtained using the technique of Fourier transform. Both pinned and depinned contact lines are considered. The solution is applicable to any evaporation mechanism but for illustration purposes numerical results are presented here for the particular case of kinetically controlled evaporation. For hydrophilic substrates, the flow inside the evaporating liquid line is directed towards the edges for pinned contact lines, thus, promoting a coffee stain effect. The opposite flow direction is observed for depinned contact lines. However, for strongly hydrophobic substrates, flow is directed outwards for both pinned and depinned contact lines, but owing to its low magnitude compared to that on hydrophilic substrates, a craterlike colloidal deposit should be expected rather than a ringlike deposit, in agreement with experimental observations.

  7. Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle based complex fluids

    Science.gov (United States)

    Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.

    2018-04-01

    Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.

  8. Contact angle hysteresis on doubly periodic smooth rough surfaces in Wenzel's regime: The role of the contact line depinning mechanism.

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina; Iliev, Pavel

    2018-04-01

    We report here on the contact angle hysteresis, appearing when a liquid meniscus is in contact with doubly sinusoidal wavelike patterned surfaces in Wenzel's wetting regime. Using the full capillary model we obtain numerically the contact angle hysteresis as a function of the surface roughness factor and the equilibrium contact angle for a block case and a kink case contact line depinning mechanism. We find that the dependencies of the contact angle hysteresis on the surface roughness factor are different for the different contact line depinning mechanisms. These dependencies are different also for the two types of rough surfaces we studied. The relations between advancing, receding, and equilibrium contact angles are investigated. A comparison with the existing asymptotical, numerical, and experimental results is carried out.

  9. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  10. Interfacial waves generated by electrowetting-driven contact line motion

    Science.gov (United States)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  11. Planning of overhead contact lines and simulation of the pantograph running; Oberleitungsplanung und Simulation des Stromabnehmerlaufes

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerhard [ALPINE-ENERGIE Oesterreich GmbH, Linz (Austria); Hofbauer, Werner

    2009-07-01

    Using the software FLTG all planning steps for overhead contact lines can be carried out based on the parameters of the contact line type and the line data. Contact line supports and individual spans are presented graphically. The geometric interaction of pantograph and contact line can be simulated taking into account the pantograph type, its sway and the wind action. Thus, the suitability of a line for the interoperability of the transEuropean rail system can be demonstrated. (orig.)

  12. Interaction of pantographs and contact lines at Shinkansen

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Mitsuru; Uzuka, Tetsuo [Railway Technical Research Institute (RTRI), Tokyo (Japan)

    2011-07-15

    Tokaido Shinkansen started service between Tokyo and Osaka in 1964. Today, the Shinkansen network comprises 2388 km of lines. The Shinkansen pantograph/contact line system was continuously developed in response to changes in the conditions surrounding railways. Today, there are several unique features. The Auto-transformer feeding system with changeover sections permits electrical connection between pantographs. The Shinkansen train sets are equipped with two pantographs with electrical connection in general. Since due to the electrical connection of pantographs which avoids intense arcing, the mean contact force can be kept low leading to a highly reliable design without serious troubles caused by fatigue. New pantographs achieve very low noise performance, helping the system to be environmental friendly. Today, the Shinkansen network provides stable operation whereby the achievements reported hereafter were implemented. (orig.)

  13. Effect of contact angle hysteresis on moving liquid film integrity.

    Science.gov (United States)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  14. THE DYNAMIC INTERACTION OF THE MOVING CONTACTING SURFACES AT THE EXAMPLE OF THE ELECTRIC ROLLING STOCK CURRENT COLLECTOR

    Directory of Open Access Journals (Sweden)

    M. O. Babiak

    2009-07-01

    Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.

  15. APC senses cell-cell contacts and moves to the nucleus upon their disruption.

    Science.gov (United States)

    Brocardo, M G; Bianchini, M; Radrizzani, M; Reyes, G B; Dugour, A V; Taminelli, G L; Gonzalez Solveyra, C; Santa-Coloma, T A

    2001-06-22

    The adenomatous polyposis coli (APC) tumor suppressor protein is involved in the Wnt/wingless pathway, modulating beta-catenin activity. We report the development of a highly specific, chemically synthesized oligobody (oligonucleotide-based synthetic antibody), directed against the N-terminal region of APC. Using this reagent, we found that within 16 h of disrupting HT-29 cell-cell contacts by harvesting cells with trypsin/EDTA treatment and replating, APC was translocated from the cytoplasm to the nucleus. Five days after plating the cells, when the cells had returned to their normal confluent phenotype and cell-cell contacts were reestablished, APC returned to the cytoplasm. These results suggest that APC functions as part of a "sensor" system, and responds to the loss of cell-cell contacts by moving to the nucleus, and returning to the cytoplasm when the contacts are fully restored. Copyright 2001 Academic Press.

  16. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  17. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    International Nuclear Information System (INIS)

    Yoon, Hong Min; Kondaraju, Sasidhar; Lee, Jung Shin; Suh, Youngho; Lee, Joonho H.; Lee, Joon Sang

    2017-01-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  18. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  19. Piercing the water surface with a blade: Singularities of the contact line

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Mars M. [Kazan Federal University, Kazan 420008 (Russian Federation); Kornev, Konstantin G. [Department of Materials Science & Engineering, Clemson University, Clemson, South Carolina 29634 (United States)

    2016-01-15

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade.

  20. Piercing the water surface with a blade: Singularities of the contact line

    International Nuclear Information System (INIS)

    Alimov, Mars M.; Kornev, Konstantin G.

    2016-01-01

    An external meniscus on a narrow blade with a slit-like cross section is studied using the hodograph formulation of the Laplace nonlinear equation of capillarity. On narrow blades, the menisci are mostly shaped by the wetting and capillary forces; gravity plays a secondary role. To describe a meniscus in this asymptotic case, the model of Alimov and Kornev [“Meniscus on a shaped fibre: Singularities and hodograph formulation,” Proc. R. Soc. A 470, 20140113 (2014)] has been employed. It is shown that at the sharp edges of the blade, the contact line makes a jump. In the wetting case, the contact line sitting at each side of the blade is lifted above the points where the meniscus first meets the blade edges. In the non-wetting case, the contact line is lowered below these points. The contours of the constant height emanating from the blade edges generate unusual singularities with infinite curvatures at some points at the blade edges. The meniscus forms a unique surface made of two mirror-symmetric sheets fused together. Each sheet is supported by the contact line sitting at each side of the blade

  1. A fully discrete energy stable scheme for a phase filed moving contact line model with variable densities and viscosities

    KAUST Repository

    Zhu, Guangpu

    2018-01-26

    In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.

  2. Droplets move over viscoelastic substrates by surfing a ridge

    NARCIS (Netherlands)

    Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J.H.

    2015-01-01

    Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a

  3. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  4. Analysis of on-line learning when a moving teacher goes around a true teacher

    OpenAIRE

    Miyoshi, Seiji; Okada, Masato

    2005-01-01

    In the framework of on-line learning, a learning machine might move around a teacher due to the differences in structures or output functions between the teacher and the learning machine or due to noises. The generalization performance of a new student supervised by a moving machine has been analyzed. A model composed of a true teacher, a moving teacher and a student that are all linear perceptrons with noises has been treated analytically using statistical mechanics. It has been proven that ...

  5. Finite Element Analysis of a 3D Moving Vacuum Arc for Transverse Magnetic Field Contacts Based on Gundlach's Formula

    International Nuclear Information System (INIS)

    Kwak, Chang-Seob; Kim, Hong-Kyu; Kim, Tae-Hoon; Lee, Se-Hee

    2017-01-01

    A systematic numerical method for analyzing a 3D moving vacuum arc was proposed and tested in this research by using a transverse magnetic field (TMF) contact. The analysis was carried out by employing the finite element method and the experimental energy equation defined by Gundlach's formula. In the literature, the vacuum interrupter has been widely applied to medium-voltage switching circuits. TMF-type contacts use the Lorentz force density to move a high-temperature arc so as to prevent the contacts from being melted and damaged. The material erosion caused by the arc on the electrode's surface is an important process that results in the interruptive capabilities of these vacuum interrupters. In a classical arc model, to move the vacuum arc, it is required that the magneto-hydrodynamics be analyzed in the arc region at each step. However, with this approach convergence is difficult, resulting in a very time-consuming. Therefore, we propose a new technique to predict the behaviors of vacuum arc between two electrodes. This new approach adopts the experimental arc voltage equation between two electrodes defined by Gundlach's formula. We verify our proposed model by comparing its results with the arcing behaviors obtained from earlier experiments.

  6. An effective means for damage detection of bridges using the contact-point response of a moving test vehicle

    Science.gov (United States)

    Zhang, Bin; Qian, Yao; Wu, Yuntian; Yang, Y. B.

    2018-04-01

    To further the technique of indirect measurement, the contact-point response of a moving test vehicle is adopted for the damage detection of bridges. First, the contact-point response of the vehicle moving over the bridge is derived both analytically and in central difference form (for field use). Then, the instantaneous amplitude squared (IAS) of the driving component of the contact-point response is calculated by the Hilbert transform, making use of its narrow-band feature. The IAS peaks serve as the key parameter for damage detection. In the numerical simulation, a damage (crack) is modeled by a hinge-spring unit. The feasibility of the proposed method to detect the location and severity of a damage or multi damages of the bridge is verified. Also, the effects of surface roughness, vehicle speed, measurement noise and random traffic are studied. In the presence of ongoing traffic, the damages of the bridge are identified from the repeated or invariant IAS peaks generated for different traffic flows by the same test vehicle over the bridge.

  7. The Communication System using One Communication Line during a Physical Contact

    OpenAIRE

    平田, 隆幸; 大場, 公隆

    2009-01-01

    The communication system during a physical contact for swarm robots was modified. An algorithm for the contact communication system using one communication line was proposed. Although we don't aim to make the perfect communication system free from a miss in data transmission, the success rate of communication is an important factor for the design of communication system. We tested the performance of of our modified communication system. The success rate of communication was considerably impro...

  8. Dynamic behaviour of the contact line for 350 km/h on the new line Wuhan - Guangzhou; Dynamisches Verhalten der Oberleitung fuer 350 km/h auf der neuen Strecke Wuhan - Guangzhou

    Energy Technology Data Exchange (ETDEWEB)

    Zimmert, Gerhard [Balfour Beatty Rail, Beijing (China)

    2010-04-15

    Only after four and a half years of construction activities regular services started on the approximately 1 000 km long new high-speed line Wuhan - Guangzhou in the People's Republic of China. Achieving 320 to 330 km/h commercial speed, this line is the fastest railway connection in the world. The dynamic interaction between contact line and pantograph determines the maximally possible speed to an increasing extent. Worldwide, there is only low experience on the contact line dynamic behavior at this speed level. Balfour Beatty Rail designed the contact line for this installation, participated essentially in the implementation and, therefore, was in charge of proving the contact line quality. A series of test runs concerning the geometrical requirements and the contact force behaviour eventually proved the suitability of the system. (orig.)

  9. Measurement of contact-line dissipation in a nanometer-thin soap film.

    Science.gov (United States)

    Guo, Shuo; Lee, Chun Huen; Sheng, Ping; Tong, Penger

    2015-01-01

    We report a direct measurement of the friction coefficient ξ(c) of two fluctuating contact lines formed on a fiber surface when a long glass fiber intersects the two water-air interfaces of a thin soap film. The glass fiber of diameter d in the range of 0.4-4 μm and length 100-300 μm is glued onto the front end of a rectangular cantilever used for atomic force microscopy. As a sensitive mechanical resonator, the hanging fiber probe can accurately measure a minute change of its viscous damping caused by the soap film. By measuring the broadening of the resonant peak of the hanging fiber probe with varying viscosity η of the soap film and different surface treatments of the glass fiber, we confirm that the contact line dissipation obeys a universal scaling law, ξ(c)=απdη, where the coefficient α=1.1±0.3 is insensitive to the change of liquid-solid contact angle. The experimental result is in good agreement with the numerical result based on the phase field model under the generalized Navier boundary conditions.

  10. Learning to push and learning to move: The adaptive control of contact forces

    Directory of Open Access Journals (Sweden)

    Maura eCasadio

    2015-11-01

    Full Text Available To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in compatible pairs connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e. when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and

  11. A thermodynamic model of contact angle hysteresis.

    Science.gov (United States)

    Makkonen, Lasse

    2017-08-14

    When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.

  12. The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines

    Directory of Open Access Journals (Sweden)

    Enrico Pagano

    2013-03-01

    Full Text Available The paper aims to contribute to the use of electric double layer capacitor (EDLC sets for boosting voltages of contact lines in urban and suburban railway traction systems. Different electrical configurations of contact lines are considered and investigated. For each of them, proper mathematical models are suggested to evaluate the electrical performances of the contact lines. They give rise, also, to sample design procedures for the sizing of the most appropriate energy storage systems, to be distributed along the lines, for boosting line voltages and avoiding undesired voltage drops. A numerical example based on the “Cumana” suburban Naples railway network is presented to give an idea of the weights and sizes of electric double layer capacitors needed to boost the voltage of a sample contact line. In particular, three different EDLC systems, for a overall installed energy of 9.6 kWh, have been placed nearby the stations presenting the highest voltage drops during the most representative situation of trains’ service. The new voltage drop is equal to 32% of that obtained in absence of EDLCs.

  13. The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines

    Energy Technology Data Exchange (ETDEWEB)

    Iannuzzi, Diago [University of Federico II, Naples (Italy). Electrical Engineering Department; Pagano, Enrico [University of Federico II, Naples (Italy). Electrical Engineering Department; Tricoli, Pietro [University of Birmingham (United Kingdom). School of Electronic, Electrical and Computer Engineering

    2013-04-15

    The paper aims to contribute to the use of electric double layer capacitor (EDLC) sets for boosting voltages of contact lines in urban and suburban railway traction systems. Different electrical configurations of contact lines are considered and investigated. For each of them, proper mathematical models are suggested to evaluate the electrical performances of the contact lines. They give rise, also, to sample design procedures for the sizing of the most appropriate energy storage systems, to be distributed along the lines, for boosting line voltages and avoiding undesired voltage drops. A numerical example based on the “Cumana” suburban Naples railway network is presented to give an idea of the weights and sizes of electric double layer capacitors needed to boost the voltage of a sample contact line. In particular, three different EDLC systems, for a overall installed energy of 9.6 kWh, have been placed nearby the stations presenting the highest voltage drops during the most representative situation of trains’ service. The new voltage drop is equal to 32% of that obtained in absence of EDLCs.

  14. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    Science.gov (United States)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  15. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2010-01-01

    -slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics

  16. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Science.gov (United States)

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration

  17. Visualization of the contact line during the water exit of flat plates

    Science.gov (United States)

    Tassin, A.; Breton, T.; Forest, B.; Ohana, J.; Chalony, S.; Le Roux, D.; Tancray, A.

    2017-08-01

    We investigate experimentally the time evolution of the wetted surface during the lifting of a body initially floating at the water surface. This phenomenon is referred to as the water exit problem. The water exit experiments were conducted with transparent (PMMA) mock-ups of two different shapes: a circular disc and a square flat plate. Two different lighting systems were used to diffuse light in the mock-up material: a central high-power LED light normal to the surface and an edge-lighting system featuring an array of LED lights. These setups make it possible to illuminate the contact line, which delimits the surface of contact between the mock-up and the water. The characteristic size of the mock-ups is about 20 cm and the acceleration of the mock-up oscillates between 0 and 25 m/s^2. We show that the central light setup gives satisfactory results for the circular disc and that the edge lighting technique makes it possible to follow a contact line with a time-evolving complex shape (strong changes of convexity) up to 1000 fps. The observations presented in the paper support the possibility of extending this promising technique to more general three-dimensional bodies with arbitrary motion (e.g., including pitch motion).

  18. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  19. Obtaining macroscopic quantities for the contact line problem from Density Functional Theory using asymptotic methods

    Science.gov (United States)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2015-11-01

    Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  20. Statistical Mechanics of On-line Learning When a Moving Teacher Goes around an Unlearnable True Teacher

    Science.gov (United States)

    Urakami, Masahiro; Miyoshi, Seiji; Okada, Masato

    2007-04-01

    In the framework of on-line learning, a learning machine might move around a teacher due to the differences in structures or output functions between the teacher and the learning machine. In this paper we analyze the generalization performance of a new student supervised by a moving machine. A model composed of a fixed true teacher, a moving teacher, and a student is treated theoretically using statistical mechanics, where the true teacher is a nonmonotonic perceptron and the others are simple perceptrons. Calculating the generalization errors numerically, we show that the generalization errors of a student can temporarily become smaller than that of a moving teacher and can reach the lowest value, even if the student only uses examples from the moving teacher. However, the generalization error of the student eventually becomes the same value with that of the moving teacher. This behavior is qualitatively different from that of a linear model.

  1. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  2. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  3. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?

    Science.gov (United States)

    Das, Subir K; Egorov, Sergei A; Virnau, Peter; Winter, David; Binder, Kurt

    2018-06-27

    Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle [Formula: see text] on the droplet radius [Formula: see text] of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on 'thermodynamic' observables, e.g. chemical potential, excess density due to the droplet, etc, is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation [Formula: see text], [Formula: see text] being the contact angle in the thermodynamic limit ([Formula: see text]). The possibility to use such results to estimate the excess free energy related to the contact line of the droplet, namely the line tension, at the wall, is discussed. Various problems that hamper this approach and were not fully recognized in previous attempts to extract the line tension are identified. It is also found that the dependence of wall tensions on the difference of chemical potential of the droplet from that at the bulk coexistence provides effectively a change of the contact angle of similar magnitude. The simulation approach yields precise estimates for the excess density due to wall-attached droplets and the corresponding free energy excess, relative to a system without a droplet at the same chemical potential. It is shown that this information suffices to estimate nucleation barriers, not affected by ambiguities on droplet shape, contact angle and line tension.

  4. Reduction of Ag–Si electrical contact resistance by selective RF heating

    International Nuclear Information System (INIS)

    De Wijs, W-J A; Ljevar, S; Van de Sande, M J; De With, G

    2016-01-01

    Fast and selective inductive heating of pre-sintered silver lines on silicon as present in solar cells using 27 MHz radio-frequency inductive fields is shown. IR measurements of silicon substrates show that above 450 °C the heating rate of the samples increases sharply, indicating that both the silver and the silicon are heated. By moving the substrate with respect to the RF antenna and modulation of the RF field, silicon wafers were heated reproducibly above 450 °C with heating rates in excess of 200 °C s −1 . Furthermore, selective heating of lines of pre-sintered silver paste was shown below the 450 °C threshold on silicon substrates. The orientation of the silver tracks relative to the RF antenna appeared to be crucial for homogeneity of heating. Transmission line measurements show a clear effect on contact formation between the silver lines and the silicon substrate. To lower the contact resistance sufficiently for industrial feasibility, a high temperature difference between the Si substrate and the Ag tracks is required. The present RF heating process does not match the time scale needed for contact formation between silver and silicon sufficiently, but the significantly improved process control achieved shows promise for applications requiring fast heating and cooling rates. (paper)

  5. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.

    Science.gov (United States)

    Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric

    2015-07-14

    The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.

  6. Counting on the mental number line to make a move: Sensorimotor ('pen') control and numerical processing

    NARCIS (Netherlands)

    Sheridan, R.; Rooijen, M. van; Giles, O.; Mushtaq, F.; Steenbergen, B.; Mon-Williams, M.; Waterman, A.H.

    2017-01-01

    Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor 'pen' control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1-9), where number colour indicated

  7. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  8. Meniscal Tear Film Fluid Dynamics Near Marx’s Line

    KAUST Repository

    Zubkov, V. S.

    2013-07-03

    Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx\\'s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line. © 2013 Society for Mathematical Biology.

  9. Method and system of measuring ultrasonic signals in the plane of a moving web

    Science.gov (United States)

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  10. 30 CFR 57.14107 - Moving machine parts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving machine parts. 57.14107 Section 57.14107... Equipment Safety Devices and Maintenance Requirements § 57.14107 Moving machine parts. (a) Moving machine parts shall be guarded to protect persons from contacting gears, sprockets, chains, drive, head, tail...

  11. Dispersion of traffic exhausts emitted from a stationary line source versus individual moving cars – a numerical comparison

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2016-09-01

    Full Text Available A three-dimensional microscale model was used to study the effects of moving vehicles on air pollution in the close vicinity of a road. The numerical results are compared to general findings from wind tunnel experiments and field observations. It was found that the model is suitable to capture the main flow characteristics within an urban street canyon, in particular the modifications relating to running traffic. A comparison of the results for a stationary line source approach and for multiple single moving sources demonstrates significant differences. For a street in a flat terrain, the near-road concentrations are underestimated by up to a factor of two if the emissions are approximated by a stationary line source. This underestimation decreases with increasing distance, and becomes negligible 30–50 m away from the road. For an urban canyon situation, the line source assumption is a conservative approximation for the concentrations at the leeside of the street, while on the opposite pavement and wall, a systematic underestimation was found. Also, the effects of different traffic situations have been studied and discussed.

  12. Apparent contact angle and contact angle hysteresis on liquid infused surfaces.

    Science.gov (United States)

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-12-21

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.

  13. Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs

    Science.gov (United States)

    Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.

    2018-02-01

    High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.

  14. Moving vertices to make drawings plane

    NARCIS (Netherlands)

    Goaoc, X.; Kratochvil, J.; Okamoto, Y.; Shin, C.S.; Wolff, A.; Hong, S.K.; Nishizeki, T.; Quan, W.

    2008-01-01

    In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of

  15. The U-line line balancing problem

    NARCIS (Netherlands)

    Miltenburg, G.J.; Wijngaard, J.

    1994-01-01

    The traditional line balancing (LB) problem considers a production line in which stations are arranged consecutively in a line. A balance is determined by grouping tasks into stations while moving forward (or backward) through a precedence network. Recently many production lines are being arranged

  16. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  17. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

    International Nuclear Information System (INIS)

    Abdulsadda, Ahmad T; Tan, Xiaobo

    2013-01-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (paper)

  18. Current contact device for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Hieronymus, H.

    1987-01-01

    The invention concerns a current supply device for a superconducting magnet coil to be shortcircuited, with a separating device per coil end, which contains a fixed cooled contact and a moving contact connected to a power supply device and a mechanical actuating device for closing and opening the contacts. When closing the heated contact on to the cooled contact, relatively large quantities of heat can be transferred to the cooled contact and therefore to the connected superconducting coil end and can cause normal conduction there. The invention therefore provides that the mass ratio of the cooled contact to the moving contact is at least 5:1, preferably at least 10:1, and that the cooled contact part is provided, at the end away from the contact area, with means for increasing the area, for example cooling fins and is connected to the coil end has a thermal resistance between the contact area and the coil end of at least 0.2 k/W, preferably at least 0.5 k/W per 1000 A of current to be transmitted. (orig.) [de

  19. Counting on the mental number line to make a move: sensorimotor ('pen') control and numerical processing.

    Science.gov (United States)

    Sheridan, Rebecca; van Rooijen, Maaike; Giles, Oscar; Mushtaq, Faisal; Steenbergen, Bert; Mon-Williams, Mark; Waterman, Amanda

    2017-10-01

    Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor 'pen' control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1-9), where number colour indicated whether the line ran left-right ('normal') or vice versa ('reversed'). The task could be simplified through the use of a 'mental number line' (MNL). Many modern societies use number lines in mathematical education and the brain's representation of number appears to follow a culturally determined spatial organisation (so better task performance is associated with this culturally normal orientation-the MNL effect). Participants (counter-balanced) completed two consistent blocks of trials, 'normal' and 'reversed', followed by a mixed block where line direction varied randomly. Experiment 1 established that the MNL effect was robust, and showed that the cognitive load associated with reversing the MNL not only affected response selection but also the actual movement execution (indexed by duration) within the mixed trials. Experiment 2 showed that an individual's motor abilities predicted performance in the difficult (mixed) condition but not the easier blocks. These results suggest that numerical processing is not isolated from motor capabilities-a finding with applied consequences.

  20. A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.

    1999-01-29

    To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

  1. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology.

    Science.gov (United States)

    Wang, Zhixiang; Jones, Gordon R; Spencer, Joseph W; Wang, Xiaohua; Rong, Mingzhe

    2017-03-06

    Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs). On-line monitoring the contacts' erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper-tungsten (28 wt % and 72 wt %) arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  2. Electrical contact arrangement for a coating process

    Science.gov (United States)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  3. Crossing ethnic lines? The impact of in-group favouritism and acculturation preferences on inter-ethnic contacts

    Directory of Open Access Journals (Sweden)

    Joachim Brüb

    2014-11-01

    Full Text Available Starting from the notion that making individuals in-teract across ethnic lines seems to be a major difficulty (Amir,1976, this comparative field study offers two explanations for the differences in inter-ethnic contacts among German, Turkish and Aussiedler (Resettler adolescents. One assumption is based on Social Identity Theory research with its central proposition that in group affiliation is likely to trigger out-group rejection. Thus in group favouritism is expected to decrease the frequency of inter-ethnic encounters. The other assumption is built on acculturation research and argues that certain dispositions towards acculturation facilitate or inhibit inter-ethnic contacts considerably. A preference for interaction is supposed to function as a facilitating factor where as assimilation is likely to prevent inter-ethnic encounters.On the whole the findings of this field study corroborate the assumptionsfor in-group favouritism and acculturation preferences.Further, young men tend more often to approve of in-group favouritism which prohibits inter-ethnic contact, while in contrast, young women more often agree with notions of dissimilation orinteraction which facilitate encounters with out-group members.Finally, subgroup analyses point to the importance of religious affiliation sand their consequences for inter-ethnic contacts under certain conditions.

  4. Spectroscopic On-Line Monitoring of Cu/W Contacts Erosion in HVCBs Using Optical-Fibre Based Sensor and Chromatic Methodology

    Directory of Open Access Journals (Sweden)

    Zhixiang Wang

    2017-03-01

    Full Text Available Contact erosion is one of the most crucial factors affecting the electrical service lifetime of high-voltage circuit breakers (HVCBs. On-line monitoring the contacts’ erosion degree is increasingly in demand for the sake of condition based maintenance to guarantee the functional operation of HVCBs. A spectroscopic monitoring system has been designed based upon a commercial 245 kV/40 kA S F 6 live tank circuit breaker with copper–tungsten (28 wt % and 72 wt % arcing contacts at atmospheric S F 6 pressure. Three optical-fibre based sensors are used to capture the time-resolved spectra of arcs. A novel approach using chromatic methods to process the time-resolved spectral signal has been proposed. The processed chromatic parameters have been interpreted to show that the time variation of spectral emission from the contact material and quenching gas are closely correlated to the mass loss and surface degradation of the plug arcing contact. The feasibility of applying this method to online monitoring of contact erosion is indicated.

  5. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  6. Dynamic contact angle of water-based titanium oxide nanofluid

    Science.gov (United States)

    2013-01-01

    This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071

  7. Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly.

    Science.gov (United States)

    Lao, Zhao-Xin; Hu, Yan-Lei; Pan, Deng; Wang, Ren-Yan; Zhang, Chen-Chu; Ni, Jin-Cheng; Xu, Bing; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-06-01

    Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Non-LTE hydrogen-line formation in moving prominences

    Science.gov (United States)

    Heinzel, P.; Rompolt, B.

    1986-01-01

    The behavior of hydrogen-line brightness variations, depending on the prominence-velocity changes were investigated. By solving the NON-Local thermodynamic equilibrium (LTE) problem for hydrogen researchers determine quantitatively the effect of Doppler brightening and/or Doppler dimming (DBE, DDE) in the lines of Lyman and Balmer series. It is demonstrated that in low-density prominence plasmas, DBE in H alpha and H beta lines can reach a factor of three for velocities around 160 km/sec, while the L alpha line exhibits typical DDE. L beta brightness variations follow from a combined DBE in the H alpha and DDE in L alpha and L beta itself, providing that all relevant multilevel interlocking processes are taken into account.

  9. A study on non-contact ultrasonic technique for on-line inspection of CFRP

    International Nuclear Information System (INIS)

    Lee, Seung-Joon; Park, Won-Su; Lee, Joon-Hyun; Byun, Joon-Hyung

    2007-01-01

    The advantages of carbon fiber reinforced plastic materials (CFRP) are: they are light structure materials, they have corrosion resistance, and higher specific strength and elasticity. The recently developed 3-dimentional fiber placement system is able to produce a more complex and various shaped structures due to less limitations of a product shape according to the problem in conventional fabrication process. This fiber placement system stacks the narrow prepreg tape on the mold according to the designed sequence and thickness. Non-destructive evaluation was rquired for these composites to evaluate changes in strength caused by defects such as delamination and porosity. Additionally, the expectent quality should be satisfied for the high cost fabrication process using the fiber placement system. Therefore, an on line non-destructive evaluation system is required and real-time complement is needed when the defects are detected [1]. Defect imaging by the ultrasonic C-scan method is a useful technique for defect detection in CFRP. However, the conventional ultrasonic C-scan technique cannot be applied during the fabrication process because the test piece should be immersed into the water. Therefore, non-contact ultrasonic techniques should be applied during the fabricating process. For the development of non-contact ultrasonic techniques available in non-destructive evaluation of CFRP, a recent laser-generated ultrasonic technique and an air-coupled transducer that transmit and receive ultrasounds in the air are studied [2-3]. In this study, generating and receiving techniques of laser-generated ultrasound and the characteristics of received signals upon the internal defects of CFRO were studied for non-contact inspection

  10. Sliding three-phase contact line of printed droplets for single-crystal arrays

    International Nuclear Information System (INIS)

    Kuang, Minxuan; Wu, Lei; Li, Yifan; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-01-01

    Controlling the behaviours of printed droplets is an essential requirement for inkjet printing of delicate three-dimensional (3D) structures or high-resolution patterns. In this work, molecular deposition and crystallization are regulated by manipulating the three-phase contact line (TCL) behaviour of the printed droplets. The results show that oriented single-crystal arrays are fabricated based on the continuously sliding TCL. Owing to the sliding of the TCL on the substrate, the outward capillary flow within the evaporating droplet is suppressed and the molecules are brought to the centre of the droplet, resulting in the formation of a single crystal. This work provides a facile strategy for controlling the structures of printed units by manipulating the TCL of printed droplets, which is significant for realizing high-resolution patterns and delicate 3D structures. (paper)

  11. Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells

    Directory of Open Access Journals (Sweden)

    Vinay Budhraja

    2017-01-01

    Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.

  12. Contact lines are unstable even under non-splashing droplets

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Sun, Ying

    2017-11-01

    Drop impact is fundamental to natural and industrial processes such as rain-induced soil erosion and spray coating technologies. In this study, we elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on atomically smooth, viscous silicone oil films of constant thickness with varying droplet velocity, viscosity, surface tension, and ambient pressures. A high-speed total internal reflection microscopy technique accounting for the Fresnel relations at the droplet interface allowed for in-situ measurements of an entrained air rim at the wetting front. The growth of the air rim is a prerequisite to the instability which is formed when the gas pressure balances the capillary pressure near the wetting front. A critical capillary number, which inversely scales as the ambient pressure, is predicted and the result agrees well with the experiments. The wavenumber in the instability is shown to increase with viscosity and velocity but decrease with surface tension of the impacting drop. We thus conclude that the instability mechanism is in qualitative agreement with the Saffman-Taylor instability - where the low viscosity air is displacing the higher viscosity droplet. The low We contact line instabilities observed in this study provide a paradigm shift in the conventional understanding of hydrodynamic instabilities under drop impact which usually require We >>10.

  13. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  14. Point-point and point-line moving-window correlation spectroscopy and its applications

    Science.gov (United States)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  15. Optimization of Rear Local Al-Contacts on High Efficiency Commercial PERC Solar Cells with Dot and Line Openings

    Directory of Open Access Journals (Sweden)

    Peisheng Liu

    2014-01-01

    Full Text Available Crystalline silicon PERCs with dot or line openings on rear surface were studied here. By measuring the minor carrier lifetimes of the PERCs with dot and line openings, passivation effects of rear surface with dot and line openings were discussed. The performance affected by dot and line openings was analyzed in detail by testing the open-circuit voltages, short-circuit current densities, fill factors, and conversion efficiencies of the PERCs. The results show that the wider space resulted in better minor carrier lifetimes on the rear surface. And the cells with a line opening space of 0.5 mm had an average of 0.22% improvement of conversion efficiency, compared with the cells with full-area Al-BSF. On the other hand, the dot opening PERCs exhibited only a conversion efficiency of 17.4%, although there had been good rear surface reflectivity. The bad Al-Si alloy layer and large hollow densities in dot Al-contacts resulted in bad performance of the PERCs with dot openings.

  16. A-Track: Detecting Moving Objects in FITS images

    Science.gov (United States)

    Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.

    2017-04-01

    A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

  17. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    Science.gov (United States)

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  18. Theoretical Analysis of Moving Reference Planes Associated with Unit Cells of Nonreciprocal Lossy Periodic Transmission-Line Structures

    Directory of Open Access Journals (Sweden)

    S. Lamultree

    2017-04-01

    Full Text Available This paper presents a theoretical analysis of moving reference planes associated with unit cells of nonreciprocal lossy periodic transmission-line structures (NRLSPTLSs by the equivalent bi-characteristic-impedance transmission line (BCITL model. Applying the BCITL theory, only the equivalent BCITL parameters (characteristic impedances for waves propagating in forward and reverse directions and associated complex propagation constants are of interest. An infinite NRLSPTLS is considered first by shifting a reference position of unit cells along TLs of interest. Then, a semi-infinite terminated NRLSPTLS is investigated in terms of associated load reflection coefficients. It is found that the equivalent BCITL characteristic impedances of the original and shifted unit cells are mathematically related by the bilinear transformation. In addition, the associated load reflection coefficients of both unit cells are mathematically related by the bilinear transformation. However, the equivalent BCITL complex propagation constants remain unchanged. Numerical results are provided to show the validity of the proposed theoretical analysis.

  19. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  20. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...

  1. Assessment of the U937 cell line for the detection of contact allergens

    International Nuclear Information System (INIS)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2007-01-01

    The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1β and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times. Test item-specific modulations of the chosen activation markers (CD86, IL-1β and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals

  2. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.

    Science.gov (United States)

    Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A

    2016-02-21

    This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.

  3. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  4. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.

    Science.gov (United States)

    Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow

    2014-08-12

    Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.

  5. Lithium in the Hyades, the Hyades moving group, and Praesepe

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Budge, K.G.

    1988-01-01

    High-resolution spectra of 35 F main-sequence stars have been obtained at high SNRs in the region of the Li I resonance line at 6708 A. Fourteen of the stars are members of the Hyades, six are members of Praesepe, and the remaining 15 stars are members of the Hyades Moving Group. Equivalent widths of the Li resonance line and of Fe lines in the same spectral region were measured and Li and Fe abundances were calculated from spectral synthesis using Kurucz model atmospheres. A mean metallicity of (Fe/H) = + 0.17 + or - 0.06 for the Hyades, + 0.13 + or - 0.07 for Praesepe, and + 0.11 + or - 0.09 for the Hyades Moving Group is obtained. The Li abundance patterns are consistent with those found previously for the Hyades stars and for the Praesepe stars, but some of the Hyades Moving Group members do not fit this Li-temperature profile well. The possibility exists that the Hyades Moving Group is not coeval and that its members have little in common other than kinematics. 29 references

  6. Resonance-line transfer with partial redistribution. VIII. Solution in the comoving frame for moving atmospheres

    International Nuclear Information System (INIS)

    Mihalas, D.; Shine, R.A.; Kunasz, P.B.; Hummer, D.G.

    1976-01-01

    An analysis of the effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres has been performed using a flexible and general method which allows solutions of the transfer equation in the comoving frame of the gas. As a specific example, we consider the same chromospheric and atomic model, with the same velocity field, that was studied by Cannon and Vardavas. We find that the large changes in the profiles obtained by those authors, between the cases of complete and partial redistribution are spurious effects of angle averaging in the observer's frame instead of the comoving frame. Our results support fully the conclusion by Magnan that these changes are, in fact, unreal, at least for this particular model and redistribution function. Future work with other redistribution functions and with nonmonotone velocity fields will be possible using the techniques developed in this paper

  7. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  8. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  9. Homotopy classification of contact foliations on open contact manifolds

    Indian Academy of Sciences (India)

    64

    Let ξt, t ∈ [0, 1] be a continuous family of contact structures defined by the ... here is based on ideas that can be found in [5] and [8] and may be known to experts. ..... the bigger rectangle represents the set U ×Iε1 and the central dotted line.

  10. Contact Estimation in Robot Interaction

    Directory of Open Access Journals (Sweden)

    Filippo D'Ippolito

    2014-07-01

    Full Text Available In the paper, safety issues are examined in a scenario in which a robot manipulator and a human perform the same task in the same workspace. During the task execution, the human should be able to physically interact with the robot, and in this case an estimation algorithm for both interaction forces and a contact point is proposed in order to guarantee safety conditions. The method, starting from residual joint torque estimation, allows both direct and adaptive computation of the contact point and force, based on a principle of equivalence of the contact forces. At the same time, all the unintended contacts must be avoided, and a suitable post-collision strategy is considered to move the robot away from the collision area or else to reduce impact effects. Proper experimental tests have demonstrated the applicability in practice of both the post-impact strategy and the estimation algorithms; furthermore, experiments demonstrate the different behaviour resulting from the adaptation of the contact point as opposed to direct calculation.

  11. Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results

    Science.gov (United States)

    Usui, Norihisa; Ishizaki, Shiro; Fujii, Yosuke; Tsujino, Hiroyuki; Yasuda, Tamaki; Kamachi, Masafumi

    The Meteorological Research Institute multivariate ocean variational estimation (MOVE) System has been developed as the next-generation ocean data assimilation system in Japan Meteorological Agency. A multivariate three-dimensional variational (3DVAR) analysis scheme with vertical coupled temperature salinity empirical orthogonal function modes is adopted. The MOVE system has two varieties, the global (MOVE-G) and North Pacific (MOVE-NP) systems. The equatorial Pacific and western North Pacific are analyzed with assimilation experiments using MOVE-G and -NP, respectively. In each system, the salinity and velocity fields are well reproduced, even in cases without salinity data. Changes in surface and subsurface zonal currents during the 1997/98 El Niño event are captured well, and their transports are reasonably consistent with in situ observations. For example, the eastward transport in the upper layer around the equator has 70 Sv in spring 1997 and weakens in spring 1998. With MOVE-NP, the Kuroshio transport has 25 Sv in the East China Sea, and 40 Sv crossing the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line south of Japan. The variations in the Kuroshio transports crossing the ASUKA line agree well with observations. The Ryukyu Current System has a transport ranging from 6 Sv east of Taiwan to 17 Sv east of Amami. The Oyashio transport crossing the OICE (Oyashio Intensive observation line off Cape Erimo) line south of Hokkaido has 14 Sv southwestward (near shore) and 11 Sv northeastward (offshore). In the Kuroshio Oyashio transition area east of Japan, the eastward transport has 41 Sv (32 36°N) and 12 Sv (36 39°N) crossing the 145°E line.

  12. Group cohesion in foraging meerkats: follow the moving 'vocal hot spot'.

    Science.gov (United States)

    Gall, Gabriella E C; Manser, Marta B

    2017-04-01

    Group coordination, when 'on the move' or when visibility is low, is a challenge faced by many social living animals. While some animals manage to maintain cohesion solely through visual contact, the mechanism of group cohesion through other modes of communication, a necessity when visual contact is reduced, is not yet understood. Meerkats ( Suricata suricatta ), a small, social carnivore, forage as a cohesive group while moving continuously. While foraging, they frequently emit 'close calls', soft close-range contact calls. Variations in their call rates based on their local environment, coupled with individual movement, produce a dynamic acoustic landscape with a moving 'vocal hotspot' of the highest calling activity. We investigated whether meerkats follow such a vocal hotspot by playing back close calls of multiple individuals to foraging meerkats from the front and back edge of the group simultaneously. These two artificially induced vocal hotspots caused the group to spatially elongate and split into two subgroups. We conclude that meerkats use the emergent dynamic call pattern of the group to adjust their movement direction and maintain cohesion. Our study describes a highly flexible mechanism for the maintenance of group cohesion through vocal communication, for mobile species in habitats with low visibility and where movement decisions need to be adjusted continuously to changing environmental conditions.

  13. Body Contact and Body Language: Moments of Personal Development and Social and Cultural Learning Processes in Movement Psychology and Education

    Directory of Open Access Journals (Sweden)

    Helle Winther

    2008-05-01

    Full Text Available Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based on the Dance Therapy Form Dansergia. The author, who is a practi­tioner-researcher, is methodologically inspir­ed by phenomenology, performative methods and a narrative and auto-ethnographic approach. The project will be presented in an organic, cre­at­ive and performative way. Through a moving dia­logue between a written text and a visceral on-line performance involving photographs and music, the reader/audience has the possibility to be touched both sensually and intellectually, although through communication is in cyberspace, missing the liveliness of direct body language. See online performance: http://www.viddler.com/player/c3c7a343/. URN: urn:nbn:de:0114-fqs0802637

  14. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  15. 29 CFR 779.242 - Goods that “have been moved in” commerce.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Goods that âhave been moved inâ commerce. 779.242 Section... Commerce by Any Person § 779.242 Goods that “have been moved in” commerce. For the purpose of section 3(s), goods will be considered to “have been moved * * * in commerce” when they have moved across State lines...

  16. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  17. A moving experience !

    CERN Document Server

    2005-01-01

    The Transport Service pulled out all the stops and, more specifically, its fleet of moving and lifting equipment for the Discovery Monday on 6 June - a truly moving experience for all the visitors who took part ! Visitors could play at being machine operator, twiddling the controls of a lift truck fitted with a jib to lift a dummy magnet into a wooden mock-up of a beam-line.They had to show even greater dexterity for this game of lucky dip...CERN-style.Those with a head for heights took to the skies 20 m above ground in a telescopic boom lift.Children were allowed to climb up into the operator's cabin - this is one of the cranes used to move the LHC magnets around. Warm thanks to all members of the Transport Service for their participation, especially B. Goicoechea, T. Ilkei, R. Bihery, S. Prodon, S. Pelletier, Y. Bernard, A.  Sallot, B. Pigeard, S. Guinchard, B. Bulot, J. Berrez, Y. Grandjean, A. Bouakkaz, M. Bois, F. Stach, T. Mazzarino and S. Fumey.

  18. The Influence of Dynamic Contact Angle on Wetting Dynamics

    Science.gov (United States)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  19. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.

    Science.gov (United States)

    Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye

    2013-10-01

    Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

  20. Exchange of tears under a contact lens is driven by distortions of the contact lens.

    Science.gov (United States)

    Maki, Kara L; Ross, David S

    2014-12-01

    We studied the flow of the post-lens tear film under a soft contact lens to understand how the design parameters of contact lenses can affect ocular health. When a soft contact lens is inserted, the blinking eyelid causes the lens to stretch in order to conform to the shape of the eye. The deformed contact lens acts to assume its un-deformed shape and thus generates a suction pressure in the post-lens tear film. In consequence, the post-lens tear fluid moves; it responds to the suction pressure. The suction pressure may draw in fresh fluid from the edge of the lens, or it may eject fluid there, as the lens reassumes its un-deformed shape. In this article, we develop a mathematical model of the flow of the post-lens tear fluid in response to the mechanical suction pressure of a deformed contact lens. We predict the amount of exchange of fluid exchange under a contact lens and we explore the influence of the eye's shape on the rate of exchange of fluid. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  2. Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.

    Science.gov (United States)

    Janeček, V; Nikolayev, V S

    2013-01-01

    This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.

  3. A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Pechstein, Astrid, E-mail: astrid.pechstein@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@accm.co.at [Austrian Center of Competence in Mechatronics (Austria)

    2013-10-15

    In the scope of this paper, a finite-element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange-Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli-Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.

  4. Modification of the U-line of the RHIC injection line

    International Nuclear Information System (INIS)

    Xu, Jianming.

    1991-09-01

    The parameters of the U-line of the RHIC injection line with low β waist are described. In that lattice, the location of SA is not dispersion free and 14 quadrupoles are needed. This line has been modified to move SA to a dispersion free region (after the 8-degree bend), the length and maximum gradient of quadrupoles have been adjusted to fit the existing quadrupole parameters and the number of quadrupoles is reduced to 12. 2 refs., 3 tabs

  5. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  6. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets

    Science.gov (United States)

    Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren

    2014-01-01

    The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292

  7. Time-to-contact estimation modulated by implied friction.

    Science.gov (United States)

    Yamada, Yuki; Sasaki, Kyoshiro; Miura, Kayo

    2014-01-01

    The present study demonstrated that friction cues for target motion affect time-to-contact (TTC) estimation. A circular target moved in a linear path with a constant velocity and was gradually occluded by a static rectangle. The target moved with forward and backward spins or without spin. Observers were asked to respond at the time when the moving target appeared to pass the occluder. The results showed that TTC was significantly longer in the backward spin condition than in the forward and without-spin conditions. Moreover, similar results were obtained when a sound was used to imply friction. Our findings indicate that the observer's experiential knowledge of motion coupled with friction intuitively modulated their TTC estimation.

  8. Real time radial and tangential tomosynthesis system dedicated to on line x-ray examination of moving objects

    International Nuclear Information System (INIS)

    Antonakios, M.; Rizo, Ph.; Lamarque, P.

    2000-01-01

    This presentation describes a system able to compute and display in real time a reconstructed image of a moving object using tomosynthesis methods. The object being moved on a known trajectory between the x-ray source and a detector, the tomosynthesis is focused on a given surface of the object and allows to reconstruct a sharp image of the structure on the surface superimposed to a blurred image of the surrounding plane. The developed tomosynthesis algorithm is based on a set of look up tables which provide for each position of the object on the trajectory, the projection of a given point of the imaged surface of the object on the detector. Several hundreds of frames can be combined to compute the tomosynthesis image. The signal-to-noise ratio obtained on processed images is equivalent to the one obtained by averaging images with a static object. In order to speed up the tomosynthesis reconstruction and to reach the video frame rate, we integrated a DSP based hardware in a PC host. The geometric calibration parameters and the look up tables are pre-computed on the PC. The on-line tomosynthesis calculation is carried out by the multi DSP architecture which manages in real time, frame acquisition, parallel tomosynthesis calculation and output image display. On this particular implementation of tomosynthesis, up to hundred video frames can be combined. We illustrate the potential of this system on an application of the tomosynthesis to solid rocket motor examination

  9. Statistical contact angle analyses; "slow moving" drops on a horizontal silicon-oxide surface.

    Science.gov (United States)

    Schmitt, M; Grub, J; Heib, F

    2015-06-01

    Sessile drop experiments on horizontal surfaces are commonly used to characterise surface properties in science and in industry. The advancing angle and the receding angle are measurable on every solid. Specially on horizontal surfaces even the notions themselves are critically questioned by some authors. Building a standard, reproducible and valid method of measuring and defining specific (advancing/receding) contact angles is an important challenge of surface science. Recently we have developed two/three approaches, by sigmoid fitting, by independent and by dependent statistical analyses, which are practicable for the determination of specific angles/slopes if inclining the sample surface. These approaches lead to contact angle data which are independent on "user-skills" and subjectivity of the operator which is also of urgent need to evaluate dynamic measurements of contact angles. We will show in this contribution that the slightly modified procedures are also applicable to find specific angles for experiments on horizontal surfaces. As an example droplets on a flat freshly cleaned silicon-oxide surface (wafer) are dynamically measured by sessile drop technique while the volume of the liquid is increased/decreased. The triple points, the time, the contact angles during the advancing and the receding of the drop obtained by high-precision drop shape analysis are statistically analysed. As stated in the previous contribution the procedure is called "slow movement" analysis due to the small covered distance and the dominance of data points with low velocity. Even smallest variations in velocity such as the minimal advancing motion during the withdrawing of the liquid are identifiable which confirms the flatness and the chemical homogeneity of the sample surface and the high sensitivity of the presented approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, S.-L.

    2006-01-01

    This paper uses molecular dynamics simulation based on the Lennard-Jones potential to study the effects that temperature and velocity have on, the nanojet droplet ejection process, when the droplet is ejected at an angle onto a moving plate's surface. According to the analysis, it was found that the width of the spreading droplet increased as the temperature and the time were increased. Also found was an energy wave phenomenon. The contact angle of the droplet deposited on the plate decreased as the temperature was increased. Furthermore, the layer phenomena became apparent when the atoms were deposited on a moving plate. Thinner film layers were obtained as the velocity of the moving plate was increased. The contact angle on the left side of the droplet was larger than that on the right side when the plate was moving from right to left

  11. Experimental methodology of contact edge roughness on sub-100-nm pattern

    Science.gov (United States)

    Lee, Tae Yong; Ihm, Dongchul; Kang, Hyo Chun; Lee, Jun Bum; Lee, Byoung-Ho; Chin, Soo-Bok; Cho, Do-Hyun; Kim, Yang Hyong; Yang, Ho Dong; Yang, Kyoung Mo

    2004-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. However, most of the features are limited by the applicable pattern types. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. The edge roughness is more critical in contact process. However the measurement of contact edge roughness (CER) or contact space roughness (CSR) is more complicated than that of LER or LWR. So far, no formal standard measurement algorithm or definition of contact roughness measurement exists. In this article, currently available features are investigated to assess their representability for CER or CSR. Some new ideas to quantify CER and CSR were also suggested with preliminary experimental results.

  12. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  13. Teaching Braille Line Tracking Using Stimulus Fading

    Science.gov (United States)

    Scheithauer, Mindy C.; Tiger, Jeffrey H.

    2014-01-01

    Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only…

  14. How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage

    NARCIS (Netherlands)

    Li, F.; Li, F.; Mugele, Friedrich Gunther

    2008-01-01

    Contact angle hysteresis caused by random pinning forces is a major obstacle in moving small quantities of liquid on solid surfaces. Here, we demonstrate that the contact angle hysteresis for sessile drops in electrowetting almost disappears with increasing alternating voltage, whereas for direct

  15. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Directory of Open Access Journals (Sweden)

    Kiesha Prem

    2017-09-01

    Full Text Available Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school, and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for

  16. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Science.gov (United States)

    Prem, Kiesha; Cook, Alex R; Jit, Mark

    2017-09-01

    Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which

  17. Veterans Crisis Line: Videos About Reaching out for Help

    Medline Plus

    Full Text Available ... Live Chat Military Live Chat Deaf - Hard of Hearing Contact Us About About the Veterans Crisis Line ... Live Chat Military Live Chat Deaf - Hard of Hearing Contact Us About About the Veterans Crisis Line ...

  18. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    Science.gov (United States)

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  20. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  1. A Study on the Effect of the Contact Point and the Contact Force of a Glass Fiber under End-Face Polishing Process

    Directory of Open Access Journals (Sweden)

    Ying-Chien Tsai

    2015-01-01

    Full Text Available The offset between the center lines of the polished end-face and the fiber core has a significant effect on coupling efficiency. The initial contact point and the contact force are two of the most important parameters that induce the offset. This study proposes an image assistant method to find the initial contact point and a mathematical model to estimate the contact force when fabricating the double-variable-curvature end-face of single mode glass fiber. The repeatability of finding the initial contact point via the vision assistant program is 0.3 μm. Based on the assumption of a large deflection, a mathematical model is developed to study the relationship between the contact force and the displacement of the lapping film. In order to verify the feasibility of the mathematical model, experiments, as well as DEFORM simulations, are carried out. The results show that the contact forces are alomst linearly proportional to the feed amounts of the lapping film and the errors are less than 9%. By using the method developed in this study, the offset between the grinding end-face and the center line of the fiber core is within 0.15 to 0.35 μm.

  2. An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to free-surface flow

    DEFF Research Database (Denmark)

    Bach, P; Hassager, Ole

    1985-01-01

    , with the use of just bilinear isoparametric elements. Moving contact lines are modelled with a small amount of slip near the contact lines. The contact angle boundary condition is included in the form of a net interfacial force specified at the contact line. Simulations of measurements in a parallel......-plate geometry show that the measured apparent contact angle is not the true angle, and that the true angle is always very close to the equilibrium value....

  3. Isogeometric frictionless contact analysis with the third medium method

    Science.gov (United States)

    Kruse, R.; Nguyen-Thanh, N.; Wriggers, P.; De Lorenzis, L.

    2018-01-01

    This paper presents an isogeometric formulation for frictionless contact between deformable bodies, based on the recently proposed concept of the third medium. This concept relies on continuum formulations not only for the contacting bodies but also for a fictitious intermediate medium in which the bodies can move and interact. Key to the formulation is a suitable definition of the constitutive behavior of the third medium. In this work, based on a number of numerical tests, the role of the material parameters of the third medium is systematically assessed. We also assess the rate of spatial convergence for higher-order discretizations, stemming from the regularization of the non-smooth contact problem inherent to the third medium approach. Finally, problems with self contact are considered and turn out to be an attractive application of the method.

  4. The effect of facial expressions on respirators contact pressures.

    Science.gov (United States)

    Cai, Mang; Shen, Shengnan; Li, Hui

    2017-08-01

    This study investigated the effect of four typical facial expressions (calmness, happiness, sadness and surprise) on contact characteristics between an N95 filtering facepiece respirator and a headform. The respirator model comprised two layers (an inner layer and an outer layer) and a nose clip. The headform model was comprised of a skin layer, a fatty tissue layer embedded with eight muscles, and a skull layer. Four typical facial expressions were generated by the coordinated contraction of four facial muscles. After that, the distribution of the contact pressure on the headform, as well as the contact area, were calculated. Results demonstrated that the nasal clip could help make the respirator move closer to the nose bridge while causing facial discomfort. Moreover, contact areas varied with different facial expressions, and facial expressions significantly altered contact pressures at different key areas, which may result in leakage.

  5. Scatterometry measurement of nested lines, dual space, and rectangular contact CD on phase-shift masks

    Science.gov (United States)

    Lee, Kyung M.; Yedur, Sanjay; Henrichs, Sven; Tavassoli, Malahat; Baik, Kiho

    2007-03-01

    Evaluation of lithography process or stepper involves very large quantity of CD measurements and measurement time. In this paper, we report on a application of Scatterometry based metrology for evaluation of binary photomask lithography. Measurements were made on mask level with ODP scatterometer then on wafer with CD-SEM. 4 to 1 scaling from mask to wafer means 60nm line on wafer translates to 240nm on mask, easily measurable on ODP. Calculation of scatterometer profile information was performed by a in-situ library-based analysis (5sec/site). We characterized the CD uniformity, linearity, and metal film thickness uniformity. Results show that linearity measured from fixed-pitch, varying line/space ratio targets show good correlation to top-down CD-SEM with R2 of more than 0.99. ODP-SEM correlation results for variable pitch shows that careful examination of scatterometer profile results in order to obtain better correlation to CD SEM, since both tools react differently to the target profile variation. ODP results show that global CD distribution is clearly measurable with less outliers compared to CD SEM data. This is thought to be due to 'averaging' effect of scatterometer. The data show that Scatterometry provides a nondestructive and faster mean of characterizing lithography stepper performanceprofiles. APSM 1st level (before Cr removal) 'dual-space' CDs and EPSM rectangular contacts were also measured with and results demonstrates that Scatterometer is capable of measuring these targets with reasonable correlation to SEM.

  6. CONSUMER PROTECTION: Federal Actions Are Needed to Improve Oversight of the Household Goods Moving Industry

    National Research Council Canada - National Science Library

    2001-01-01

    The ICC Termination Act of 1995 transferred federal responsibilities for protecting consumers who move their household goods across state lines using commercial moving companies to the Department of Transportation...

  7. A Cryptographic Moving-Knife Cake-Cutting Protocol

    Directory of Open Access Journals (Sweden)

    Yoshifumi Manabe

    2012-02-01

    Full Text Available This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife achieves simple fairness, all players must execute the protocol synchronously. Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be executed asynchronously by a discrete protocol using a secure auction protocol. The number of cuts is n-1 where n is the number of players, which is the minimum.

  8. Lattice Boltzmann simulations of the contact angle in a liquid-gas system

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The shape of a moving droplet is difficult to investigate analytically because the classical continuum hydrodynamic equations of motion with the usual no-slip condition at the surface predict a singularity in the stress at the contact line. Briant et al. have proposed a wetting boundary condition by using the wetting potential. In this study, we introduce the wetting boundary condition into the LBM proposed by Zheng et al. The static contact angle of a droplet onto a wall in order to validate the method is calculated. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made small in the wall surface. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  9. Camouflage, detection and identification of moving targets.

    Science.gov (United States)

    Hall, Joanna R; Cuthill, Innes C; Baddeley, Roland; Shohet, Adam J; Scott-Samuel, Nicholas E

    2013-05-07

    Nearly all research on camouflage has investigated its effectiveness for concealing stationary objects. However, animals have to move, and patterns that only work when the subject is static will heavily constrain behaviour. We investigated the effects of different camouflages on the three stages of predation-detection, identification and capture-in a computer-based task with humans. An initial experiment tested seven camouflage strategies on static stimuli. In line with previous literature, background-matching and disruptive patterns were found to be most successful. Experiment 2 showed that if stimuli move, an isolated moving object on a stationary background cannot avoid detection or capture regardless of the type of camouflage. Experiment 3 used an identification task and showed that while camouflage is unable to slow detection or capture, camouflaged targets are harder to identify than uncamouflaged targets when similar background objects are present. The specific details of the camouflage patterns have little impact on this effect. If one has to move, camouflage cannot impede detection; but if one is surrounded by similar targets (e.g. other animals in a herd, or moving background distractors), then camouflage can slow identification. Despite previous assumptions, motion does not entirely 'break' camouflage.

  10. Contact angle hysteresis on superhydrophobic stripes.

    Science.gov (United States)

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  11. pressure analysis and fluid contact prediction for alpha reservoir

    African Journals Online (AJOL)

    HOD

    a pressure gradient profile such that the oil gradient line will intersect the hydrostatic line above the Water-Up-To. (WUT) line to define the OWC if present. The model was also calibrated with data from reservoirs with established contacts in the field. 3. RESULTS AND DISCUSSION. In the field, pressure typically increases ...

  12. The broken escalator phenomenon. Aftereffect of walking onto a moving platform.

    Science.gov (United States)

    Reynolds, R F; Bronstein, A M

    2003-08-01

    We investigated the physiological basis of the 'broken escalator phenomenon', namely the sensation that when walking onto an escalator which is stationary one experiences an odd sensation of imbalance, despite full awareness that the escalator is not going to move. The experimental moving surface was provided by a linear motor-powered sled, moving at 1.2 m/s. Sled velocity, trunk position, trunk angular velocity, EMG of the ankle flexors-extensors and foot-contact signals were recorded in 14 normal subjects. The experiments involved, initially, walking onto the stationary sled (condition Before). Then, subjects walked 20 times onto the moving sled (condition Moving), and it was noted that they increased their walking velocity from a baseline of 0.60 m/s to 0.90 m/s. After the moving trials, subjects were unequivocally warned that the platform would no longer move and asked to walk onto the stationary sled again (condition After). It was found that, despite this warning, subjects walked onto the stationary platform inappropriately fast (0.71 m/s), experienced a large overshoot of the trunk and displayed increased leg electromyographic (EMG) activity. Subjects were surprised by their own behaviour and subjectively reported that the 'broken escalator phenomenon', as experienced in urban life, felt similar to the experiment. By the second trial, most movement parameters had returned to baseline values. The findings represent a motor aftereffect of walking onto a moving platform that occurs despite full knowledge of the changing context. As such, it demonstrates dissociation between the declarative and procedural systems in the CNS. Since gait velocity was raised before foot-sled contact, the findings are at least partly explained by open-loop, predictive behaviour. A cautious strategy of limb stiffness was not responsible for the aftereffect, as revealed by no increase in muscle cocontraction. The observed aftereffect is unlike others previously reported in the

  13. Inserting Phase Change Lines into Microsoft Excel® Graphs.

    Science.gov (United States)

    Dubuque, Erick M

    2015-10-01

    Microsoft Excel® is a popular graphing tool used by behavior analysts to visually display data. However, this program is not always friendly to the graphing conventions used by behavior analysts. For example, adding phase change lines has typically been a cumbersome process involving the insertion of line objects that do not move when new data is added to a graph. The purpose of this article is to describe a novel way to add phase change lines that move when new data is added and when graphs are resized.

  14. Enhanced expression of IL-8 in normal human keratinocytes and human keratinocyte cell line HaCaT in vitro after stimulation with contact sensitizers, tolerogens and irritants.

    Science.gov (United States)

    Mohamadzadeh, M; Müller, M; Hultsch, T; Enk, A; Saloga, J; Knop, J

    1994-12-01

    To investigate the interleukin-8 production of keratinocytes after stimulation in vitro we have used various agents: (i) contact sensitizer (2,4-dinitrofluorobenzene, 3-n-pentadecylcatechol); (ii) tolerogen (5-methyl-3-n-pentadecylcatechol); (iii) irritant (sodium lauryl sulfate). Interleukin-8 gene expression was assessed by northern blot hybridization of the total cytoplasmic RNA extracted from subconfluent normal human keratinocyte cultures and the keratinocyte cell line HaCaT using a radiolabeled DNA probe specific for human interleukin-8. Interleukin-8 gene expression was markedly increased upon in vitro stimulation after 1-6 h with contact sensitizers, tolerogen and the irritant. In contrast, interleukin-8 production was not detectable in unstimulated normal human keratinocytes or the HaCaT keratinocyte cell line. These results suggest that the induction and production of interleukin-8 is a response to nonspecific stimuli and may play a critical role in the early response to immunogenic or inflammatory signals in man.

  15. Visual method for detecting critical damage in railway contact strips

    Science.gov (United States)

    Judek, S.; Skibicki, J.

    2018-05-01

    Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.

  16. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2012-01-01

    In this paper, we derive a modified Cassie's equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie's state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  17. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  18. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  19. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    Science.gov (United States)

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  20. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin

    2012-08-29

    In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  1. Experimental study of contact edge roughness on sub-100 nm various circular shapes

    Science.gov (United States)

    Lee, Tae Y.; Ihm, Dongchul; Kang, Hyo C.; Lee, Jum B.; Lee, Byoung H.; Chin, Soo B.; Cho, Do H.; Song, Chang L.

    2005-05-01

    The measurement of edge roughness has become a hot issue in the semiconductor industry. Especially the contact roughness is being more critical as design rule shrinks. Major vendors offer a variety of features to measure the edge roughness in their CD-SEMs. For the line and space patterns, features such as Line Edge Roughness (LER) and Line Width Roughness (LWR) are available in current CD-SEMs. However the features currently available in commercial CD-SEM cannot provide a proper solution in monitoring the contact roughness. We had introduced a new parameter R, measurement algorithm and definition of contact edge roughness to quantify CER and CSR in previous paper. The parameter, R could provide an alternative solution to monitor contact or island pattern roughness. In this paper, we investigated to assess optimum number of CD measurement (1-D) and fitting method for CER or CSR. The study was based on a circular contact shape. Some new ideas to quantify CER or CSR were also suggested with preliminary experimental results.

  2. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  3. Clinical measurement of the height of the interproximal contact area in maxillary anterior teeth.

    Science.gov (United States)

    Sghaireen, Mohd G; Al-Zarea, Bader K; Al-Shorman, Hisham M; Al-Omiri, Mahmoud K

    2013-11-01

    To clinically quantify the apicoincisal height of interproximal areas directly in patients' mouths. Thirty participants (11 females and 9 males, mean age=26±1.5 years) were recruited into this study. Measurement of interproximal contact areas was carried out directly in patients' mouths using digital caliper (TERENSA, USA) with measuring accuracy of 0.01 mm. The interproximal contact areas that were measured are: central incisor to central incisor, central incisor to lateral incisor, lateral incisor to canine, and canine to first premolar on both sides of the jaw. Statistical significance was based on probability values less than 0.05 (pcontact point was the one present between central incisors and it ranged from 2.9 to 6.5 mm. On the other hand, the contact point between canine and first premolar was the smallest on both sides of the arch and ranged from 0.6 to 2.5 mm. The dimensions of the contact points declined as we move from anterior area backwards. Statistical analysis using t-test showed that there were significant differences between the measurements of interproximal points of each tooth (Pcontact point decreased as we moved from anterior to posterior teeth. The contact area between the central incisors was largest and the one between canine and premolar was the smallest. This study is the first to report direct intra-oral clinical measurement of contact points. Clinical evaluation of contact point dimensions using digital caliber is a viable, quick and accurate method to use.

  4. Influence of tyre-road contact model on vehicle vibration response

    Science.gov (United States)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  5. Estimation of bearing contact angle in-situ by X-ray kinematography

    Science.gov (United States)

    Fowler, P. H.; Manders, F.

    1982-01-01

    The mounted, preloaded contact angle of the structural bearings in the assembled design mechanical assembly was measured. A modification of the Turns method is presented, based upon the clarity and definition of moving parts achieved with X-ray technique and cinematic display. Contact angle is estimated by counting the number of bearings passing a given point as a function of number of turns of the shaft. Ball and pitch diameter variations are discussed. Ball train and shaft angle uncertainties are also discussed.

  6. In Vivo Patellar Tracking and Patellofemoral Cartilage Contacts during Dynamic Stair Ascending

    Science.gov (United States)

    Suzuki, Takashi; Hosseini, Ali; Li, Jing-Sheng; Gill, Thomas J; Li, Guoan

    2012-01-01

    The knowledge of normal patellar tracking is essential for understanding of the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with the knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9 mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13 mm of the patella was measured at the early 80% of the activity and then slightly moved posteriorly by about 2 mm at the last 20% of the activity. The path of the cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2 mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3 mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5 mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorder symptoms. PMID:22840488

  7. Slip-mediated dewetting of polymer microdroplets

    Science.gov (United States)

    McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin

    2016-01-01

    Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903

  8. Heat and Mass Transfer Remote Control in Bioreactors of Technological Lines

    Directory of Open Access Journals (Sweden)

    Viktorija M. Mel’nick

    2017-10-01

    Full Text Available Background. The main problems that arise when using equipment for cultivation are to ensure the heat and mass transfer processes in devices, presence of turbulent and stagnant zones, high-energy consumption, low heat transfer coefficients when working with viscous fluids. Objective. The aim of the paper is the experimental determination of the remote control heat transfer advantages in production line bioreactors using ultrasonic beam compared to contact methods. Methods. An experimental study of the heat and mass transfer process in a bioreactor on the stand with UZP-6-1 immersion unit of the ultrasonic radiator with radiation frequency 42 kHz is carried out. Results. Sound waves emitted into a liquid form a concentration zone of passable sound energy in the confocal vessel form of a cylindrical surface and force the liquid to move along the inner surface of the glass along the ascending cylindrical spiral, forming a motive flow throughout the volume, causing peripheral layers of liquid and bottom layers to move in a horizontal and vertical planes, without leaving stagnant zones. The closer to the coincidence angle is the directed ultrasonic beam the greater is the effectiveness of the driving flow. Conclusions. The use of sound waves allows obtaining a high-quality product in technological lines based on bioreactors with minimal risk for the technological process. Radiation parameters and working volume physic-mechanical properties change allow fully using the properties of resonant manifestations of the sound wave influence on the working liquid with minimal costs.

  9. X-Inactivation: Xist RNA Uses Chromosome Contacts to Coat the X

    OpenAIRE

    Leung, Karen N.; Panning, Barbara

    2014-01-01

    The mechanisms by which Xist RNA associates with the X chromosome to mediate alterations in chromatin structure remain mysterious. Recent genome-wide Xist RNA distribution studies suggest that this long noncoding RNA uses 3-dimensional chromosome contacts to move to its sites of action.

  10. ALLERGIC CONTACT DERMATITIS

    Directory of Open Access Journals (Sweden)

    Trisna Yuliharti Tersinanda

    2013-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Allergic contact dermatitis is an immunologic reaction that tends to involve the surrounding skin and may even spread beyond affected sites. This skin disease is one of the more frequent, and costly dermatologic problems. Recent data from United Kingdom and United States suggest that the percentage of occupational contact dermatitis due to allergy may be much higher, thus raising the economic impact of occupational allergic contact dermatitis. There is not enough data about the epidemiology of allergic contact dermatitis in Indonesia, however based on research that include beautician in Denpasar, about 27,6 percent had side effect of cosmetics, which is 25,4 percent of it manifested as allergic contact dermatitis. Diagnosis of allergic contact dermatitis is based on anamnesis, physical examination, patch test, and this disease should be distinguished from other eczematous skin disease. The management is prevention of allergen exposure, symptomatic treatment, and physicochemical barrier /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  11. Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

    NARCIS (Netherlands)

    van Marle, A. -J; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind–interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock

  12. Use of Contact Lenses in Eyes with Severe Keratoconus: Long-term Results

    Directory of Open Access Journals (Sweden)

    Zerrin Tuncer

    2012-05-01

    Full Text Available Pur po se: To evaluate the long-term results of rigid gas permeable (RGP contact lenses in severe keratoconic eyes. Ma te ri al and Met hod: Severe keratoconic eyes with RGP contact lenses were evaluated retrospectively. Re sults: Long-term follow-up results of RGP contact lenses applied to 59 eyes of 42 patients (25 women, 17 men with a diagnosis of severe keratoconus were analyzed. Follow-up period was 3 to 12 years (mean: 6.57±3.60. The mean age at first exam was 25.88±9.10 years, the mean corneal curve K1 was 6.49±0.40 mm and K2 was 5.91±0.40 mm. Mean visual acuities with spectacles and contact lenses were 0.26±0.10 lines (0.63±0.20 logMAR and 0.66±0.20 lines (0.20±0.10 logMAR, respectively. The difference between both visual acuities was statistically significant (p=0.0001. At the last visit, the mean visual acuity with RGP contact lenses was 0.68±0.20 lines (0.19±0.10 logMAR. There was no statistically significant difference in visual acuity between first and last examinations with contact lenses (p=0.32. During the long-term follow-up period, apical scarring developed in 17 eyes. Only the 2 eyes of one patient needed penetrating keratoplasty after 6 years of RGP contact lens use. Dis cus si on: Use of RGP contact lenses should be considered before penetrating keratoplasty in cases of severe keratoconus. (Turk J Ophthalmol 2012; 42: 202-6

  13. Superfluid compressibility and the inertial mass of a moving singularity

    International Nuclear Information System (INIS)

    Duan, J.

    1993-01-01

    The concept of finite compressibility of a Fermi superfluid is used to reconsider the problem of inertial mass of vortex lines in both neutral and charged superfluids at T=0. For the charged case, in contrast to previous works where perfect screening was assumed, we take proper account of electromagnetic screening and solve the bulk charge distribution caused by a moving vortex line. A similar problem for a superconducting thin film is also considered

  14. Modeling and calculation of impact friction caused by corner contact in gear transmission

    Science.gov (United States)

    Zhou, Changjiang; Chen, Siyu

    2014-09-01

    Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.

  15. Power operated contact apparatus for superconductive circuit

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.C.; Efferson, K.R.

    1989-10-10

    This patent describes a power operated contact apparatus for extending and retracting one or more electrical leads into and out of a cryostat for making and breaking, at a cryogenic temperature, electrical contact with a superconductive circuit. It comprises at least one rigid elongated lead for extending into a cold space of the cryostat which is at or near a cryogenic temperature. The lead having an inner end and a outer end; a connector fixed at the inner end of the lead for making electrical contact in the cold space with a connector of the superconductive circuit; guide means journaling the lead for allowing the lead to move axially relative to the guide means and sealing against the lead; a foundation for sealed attachment to the cryostat and to the guide means so that the connector on the inner end of the lead is extendable into making electrical contact with the connector of the superconductive circuit in the cold space; power operated means mounted on the foundation and fixed to the outer end of the lead for extending and retracting the lead to and from making electrical contact with the superconductive circuit in the cold space; and means for de-icing the exterior of the leads and guide means when the leads are connected to the superconducting circuit.

  16. SAF line analytical chemistry system

    International Nuclear Information System (INIS)

    Gerber, E.W.; Sherrell, D.L.

    1983-10-01

    An analytical chemistry system dedicated to supporting the Secure Automated Fabrication (SAF) line is discussed. Several analyses are required prior to the fuel pellets being loaded into cladding tubes to assure certification requirements will be met. These analyses, which will take less than 15 minutes, are described. The automated sample transport system which will be used to move pellets from the fabriction line to the chemistry area is also described

  17. Occupational irritant contact dermatitis due to petroleum naphtha

    OpenAIRE

    Aslı Aytekin; Arzu Karataş Toğral

    2014-01-01

    Irritant contact dermatitis (ICD) is responsible for the vast majority of occupational contact dermatitis and usually seen in professional groups working with wet hand. However, today, with the increasing business lines, employees are exposed to a variety of irritants. Occupational exposure to many chemicals and toxic irritants affect not only the skin, but also the other systems. Therefore, this situation resulting with loss of work and changes in business may become a public health problem....

  18. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  19. Ti/Al Ohmic Contacts to n-Type GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Gangfeng Ye

    2011-01-01

    Full Text Available Titanium/aluminum ohmic contacts to tapered n-type GaN nanowires with triangular cross-sections were studied. To extract the specific contact resistance, the commonly used transmission line model was adapted to the particular nanowire geometry. The most Al-rich composition of the contact provided a low specific contact resistance (mid 10−8 Ωcm2 upon annealing at 600 °C for 15 s, but it exhibited poor thermal stability due to oxidation of excess elemental Al remaining after annealing, as revealed by transmission electron microscopy. On the other hand, less Al-rich contacts required higher annealing temperatures (850 or 900 °C to reach a minimum specific contact resistance but exhibited better thermal stability. A spread in the specific contact resistance from contact to contact was tentatively attributed to the different facets that were contacted on the GaN nanowires with a triangular cross-section.

  20. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.

    Science.gov (United States)

    Finnegan, Laura; Pigeon, Karine E; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B

    2018-01-01

    Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural

  1. Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2017-01-01

    Full Text Available Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

  2. Detection of Moving Targets Using Soliton Resonance Effect

    Science.gov (United States)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  3. Image-based non-contact monitoring of skin texture changed by piloerection for emotion estimation

    Science.gov (United States)

    Uchida, Mihiro; Akaho, Rina; Ogawa, Keiko; Tsumura, Norimichi

    2018-02-01

    In this paper, we find the effective feature values of skin textures captured by non-contact camera to monitor piloerection on the skin for emotion estimation. Recently, emotion estimation is required for service robots to interact with human more naturally. There are a lot of researches of estimating emotion and additional methods are required to improve emotion estimation because using only a few methods may not give enough information for emotion estimation. In the previous study, it is necessary to fix a device on the subject's arm for detecting piloerection, but the contact monitoring can be stress itself and distract the subject from concentrating in the stimuli and evoking strong emotion. So, we focused on the piloerection as the object obtained with non-contact methods. The piloerection is observed as goose bumps on the skin when the subject is emotionally moved, scared and so on. This phenomenon is caused by contraction of arrector pili muscles with the activation of sympathetic nervous system. This piloerection changes skin texture. Skin texture is important in the cosmetic industry to evaluate skin condition. Therefore, we thought that it will be effective to evaluate the condition of skin texture for emotion estimation. The evaluations were performed by extracting the effective feature values from skin textures captured with a high resolution camera. The effective feature values should have high correlation with the degree of piloerection. In this paper, we found that standard deviation of short-line inclination angles in the texture is well correlated with the degree of piloerection.

  4. Contact lens rehabilitation following repaired corneal perforations

    Science.gov (United States)

    Titiyal, Jeewan S; Sinha, Rajesh; Sharma, Namrata; Sreenivas, V; Vajpayee, Rasik B

    2006-01-01

    Background Visual outcome following repair of post-traumatic corneal perforation may not be optimal due to presence of irregular keratometric astigmatism. We performed a study to evaluate and compare rigid gas permeable contact lens and spectacles in visual rehabilitation following perforating corneal injuries. Method Eyes that had undergone repair for corneal perforating injuries with or without lens aspiration were fitted rigid gas permeable contact lenses. The fitting pattern and the improvement in visual acuity by contact lens over spectacle correction were noted. Results Forty eyes of 40 patients that had undergone surgical repair of posttraumatic corneal perforations were fitted rigid gas permeable contact lenses for visual rehabilitation. Twenty-four eyes (60%) required aphakic contact lenses. The best corrected visual acuity (BCVA) of ≥ 6/18 in the snellen's acuity chart was seen in 10 (25%) eyes with spectacle correction and 37 (92.5%) eyes with the use of contact lens (p < 0.001). The best-corrected visual acuity with spectacles was 0.20 ± 0.13 while the same with contact lens was 0.58 ± 0.26. All the patients showed an improvement of ≥ 2 lines over spectacles in the snellen's acuity chart with contact lens. Conclusion Rigid gas permeable contact lenses are better means of rehabilitation in eyes that have an irregular cornea due to scars caused by perforating corneal injuries. PMID:16536877

  5. Adaptive method of lines

    CERN Document Server

    Saucez, Ph

    2001-01-01

    The general Method of Lines (MOL) procedure provides a flexible format for the solution of all the major classes of partial differential equations (PDEs) and is particularly well suited to evolutionary, nonlinear wave PDEs. Despite its utility, however, there are relatively few texts that explore it at a more advanced level and reflect the method''s current state of development.Written by distinguished researchers in the field, Adaptive Method of Lines reflects the diversity of techniques and applications related to the MOL. Most of its chapters focus on a particular application but also provide a discussion of underlying philosophy and technique. Particular attention is paid to the concept of both temporal and spatial adaptivity in solving time-dependent PDEs. Many important ideas and methods are introduced, including moving grids and grid refinement, static and dynamic gridding, the equidistribution principle and the concept of a monitor function, the minimization of a functional, and the moving finite elem...

  6. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  7. Impact of the shape of geological contact on mining losses in the process of near-contact zone development

    Directory of Open Access Journals (Sweden)

    Г. С. Курчин

    2017-03-01

    Full Text Available In Russia development of mineral resources is carried out on a truly grand scale, and mining industry is in its essence a basic sector, supporting and facilitating the development of national economy. It predetermines the need of safe and responsible attitude towards riches of our subsoil – mineral resources. With this in mind, one of the key requirements to extraction technologies is minimization of mining losses and ore dilution.The biggest ore losses in the mining block take place in the process of development of contact areas between the ore body and surrounding rocks, due to differences between development pattern and surface of geological contact. Complexity of the contact between ore and surrounding rocks is traditionally characterized by so called «stochastic contact zone». Technological difficulty of extracting ore from the ore – wallrock contact is determined by volatility of geometric parameters in «stochastic contact zone» in the plane of geological contact.Current paper focuses on the issues of standard-setting for mining losses and ore dilution in the process of near-contact zone development. A method is suggested to estimate standard values of losses and ore dilution in stochastic zones. Authors have developed an algorithm of defining the shape of the contact. In the stochastic zone the contact can have a rectangular, sinusoidal, serrate and straight-line shapes. Research has established a relation between the contact shape and amounts of mining losses and ore dilution, formulas to calculate standard values are presented. Using suggested method, standard values for contact ore losses can be obtained in a quicker and more reliable way.

  8. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    Science.gov (United States)

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  9. X-inactivation: Xist RNA uses chromosome contacts to coat the X.

    Science.gov (United States)

    Leung, Karen N; Panning, Barbara

    2014-01-20

    The mechanisms by which Xist RNA associates with the X chromosome to mediate alterations in chromatin structure remain mysterious. Recent genome-wide Xist RNA distribution studies suggest that this long noncoding RNA uses 3-dimensional chromosome contacts to move to its sites of action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evidence for an anisotropic contact shift. Proton NMR study of line shapes in uranocene and (C5H5)3UCl powders

    International Nuclear Information System (INIS)

    McGarvey, B.R.; Nagy, S.

    1987-01-01

    The proton NMR spectra of solid powders of uranocene and (C 5 H 5 ) 3 UCl were measured from 90 to 298 K. The line shapes of both systems became increasingly anisotropic as the temperature was lowered. The cyclooctatetraene rings in uranocene were found to be rotating at a frequency greater than 100 kHz down to 90 K. The (C 5 H 5 ) 3 UCl molecules were found to be reorienting rapidly above 220 K, but below 140 K the NMR spectra were characteristic of a rigid lattice with no rotation of the cyclopentadienyl rings. The spectra of both compounds could be simulated by assuming an axial paramagnetic shift tensor and an orientation-dependent line width. Comparison of the experimental shift tensor with that calculated for a point dipolar interaction revealed a large and very anisotropic paramagnetic shift for uranocene due to unpaired spin transferred into the ligand orbitals. The shift was large when the magnetic field was along the 8-fold symmetry axis of the molecule and nearly zero perpendicular to the axis. It appears conclusive that the contact shift in uranocene is not isotropic at all. A similar anisotropy in the contact shift associated with the cyclopentadienyl rings is evident also in the results for (C 5 H 5 )UCl. The average solid-state shift of uranocene agreed with the solution shift, within experimental error, but the solid state shift of (C 5 H 5 ) 3 UCl was 42 ppm greater than the solution shift at 298 K, indicating a difference in molecular geometry between the crystalline state and solution. 32 references, 8 figures, 3 tables

  11. Tribological coatings: contact mechanisms and selection

    International Nuclear Information System (INIS)

    Matthews, A; Franklin, S; Holmberg, K

    2007-01-01

    This paper, which forms part of a special issue of this journal marking a 25th year anniversary in tribology, aims to provide an appraisal of key issues in coating tribology over that period. Two main inter-related strands are emphasized. One is the continuing move down the length scale in terms of the fundamental understanding of tribological contacts. This has been particularly useful in aiding the development of new coatings by identifying their property requirements at different scale levels. A second strand relates to the ongoing imperative to be able to design and select coatings to meet practical friction and wear requirements. This selection problem requires a robust methodology, and one such is elaborated in the paper, which takes account of the requirements of different types of tribological contacts and uses a combination of theoretical and empirical information. Challenges still remain in this regard, and the paper seeks to provide a basis for further developments to improve coatings and to ensure their effective selection

  12. Contact analysis and experimental investigation of a linear ultrasonic motor.

    Science.gov (United States)

    Lv, Qibao; Yao, Zhiyuan; Li, Xiang

    2017-11-01

    The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Moved range monitor of a refueling machine

    International Nuclear Information System (INIS)

    Nakajima, Masaaki; Sakanaka, Tadao; Kayano, Hiroyuki.

    1976-01-01

    Purpose: To incorporate light receiving and emitting elements in a face monitor to thereby increase accuracy and reliability to facilitate handling in the refueling of a BWR power plant. Constitution: In the present invention, a refueling machine and a face monitoring light receiving and emitting elements are analogously coupled whereby the face monitoring light receiving and emitting elements may be moved so as to be analogous to a route along which the refueling machine has moved. A shielding plate is positioned in the middle of the light receiving and emitting elements, and the shielding plate is machined so as to be outside of action. The range of action of the refueling machine may be monitored depending on the light receiving state of the light receiving element. Since the present invention utilizes the permeating light as described above, it is possible to detect positions more accurately than the mechanical switch. In addition, the detection section is of the non-contact system and the light receiving element comprises a hot cell, and therefore the service life is extended and the reliability is high. (Nakamura, S.)

  14. A new method of measurement of tension on a moving magnetic tape

    Science.gov (United States)

    Kurtinaytis, A. K.; Lauzhinskas, Y. S.

    1973-01-01

    The possibility of no-contact measurement of the tension on a moving magnetic tape, assuming the tape is uniform, is discussed. A scheme for calculation of the natural frequency of transverse vibrations of magnetic tape is shown. Mathematical models are developed to show the relationships of the parameters. The method is applicable to the analysis of accurate tape feed mechanisms design.

  15. Consumer protection : Federal actions are needed to improve oversight of the household goods moving industry : report to congressional committees

    Science.gov (United States)

    2001-03-01

    The ICC Termination Act of 1995 transferred federal responsibilities for protecting consumers who move their household goods across state lines using commercial moving companies to the Department of Transportation. A 1998 congressional hearing brough...

  16. On the non-proportionality between wheel/rail contact forces and speed during wheelset passage over specific welds

    Science.gov (United States)

    Correa, Nekane; Vadillo, Ernesto G.; Santamaria, Javier; Blanco-Lorenzo, Julio

    2018-01-01

    This study investigates the influence on the wheel-rail contact forces of the running speed and the shape and position of weld defects along the track. For this purpose, a vertical dynamic model in the space domain is used. The model is obtained from the transformation between the domains of frequency and space using a Rational Fraction Polynomials (RFP) method, which is modified with multiobjective genetic algorithms in order to improve the fitting of track receptance and to assist integration during simulations. This produces a precise model with short calculation times, which is essential to this study. The wheel-rail contact is modelled using a non-linear Hertz spring. The contact forces are studied for several types of characteristic welds. The way in which forces vary as a function of weld position and running speed is studied for each type of weld. This paper studies some of the factors that affect the maximum forces when the vehicle moves over a rail weld, such as weld geometry, parametric excitation and contact stiffness. It is found that the maximum force in the wheel-rail contact when the vehicle moves over a weld is not always proportional to the running speed. The paper explains why it is not proportional in specific welds.

  17. Moving liquid droplets with inertia : Experiment, simulation, and theory

    NARCIS (Netherlands)

    Kim, H.

    2013-01-01

    This thesis is a work on a contact line instability at a finite Reynolds number, 0 < Re < O(100). This problem corresponds to an immersion droplet applied in a liquid- immersion lithography machine. We perform extensive works to understand this instability problem by means of experimental,

  18. Computerized Modeling and Loaded Tooth Contact Analysis of Hypoid Gears Manufactured by Face Hobbing Process

    Science.gov (United States)

    Nishino, Takayuki

    The face hobbing process has been widely applied in automotive industry. But so far few analytical tools have been developed. This makes it difficult for us to optimize gear design. To settle this situation, this study aims at developing a computerized tool to predict the running performances such as loaded tooth contact pattern, static transmission error and so on. First, based upon kinematical analysis of a cutting machine, a mathematical description of tooth surface generation is given. Second, based upon the theory of gearing and differential geometry, conjugate tooth surfaces are studied. Then contact lines are generated. Third, load distribution along contact lines is formulated. Last, the numerical model is validated by measuring loaded transmission error and loaded tooth contact pattern.

  19. The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers

    International Nuclear Information System (INIS)

    Azam, Philippe; Peiffer, Jean-Luc; Chamousset, Delphine; Tissier, Marie-Helene; Bonnet, Pierre-Antoine; Vian, Laurence; Fabre, Isabelle; Ourlin, Jean-Claude

    2006-01-01

    Langerhans cells (LC) are key mediators of contact allergenicity in the skin. However, no in vitro methods exist which are based on the activation process of LC to predict the sensitization potential of chemicals. In this study, we have evaluated the performances of MUTZ-3, a cytokine-dependent human monocytic cell line, in its response to sensitizers. First, we compared undifferentiated MUTZ-3 cells with several standard human cells such as THP-1, KG-1, HL-60, K-562, and U-937 in their response to the strong sensitizer DNCB and the irritant SDS by monitoring the expression levels of HLA-DR, CD54, and CD86 by flow cytometry. Only MUTZ-3 and THP-1 cells show a strong and specific response to sensitizer, while other cell lines showed very variable responses. Then, we tested MUTZ-3 cells against a wider panel of sensitizers and irritants on a broader spectrum of cell surface markers (HLA-DR, CD40, CD54, CD80, CD86, B7-H1, B7-H2, B7-DC). Of these markers, CD86 proved to be the most reliable since it detected all sensitizers, including benzocaine, a classical false negative in local lymph node assay (LLNA) but not irritants. We confirmed the MUTZ-3 response to DNCB by real-time PCR analysis. Taken together, our data suggest that undifferentiated MUTZ-3 cells may represent a valuable in vitro model for the screening of potential sensitizers

  20. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  1. Vibration analysis of continuous maglev guideways with a moving distributed load model

    International Nuclear Information System (INIS)

    Teng, N G; Qiao, B P

    2008-01-01

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed

  2. The Telecom Lab is moving to the Building 2, in front of the Main Building

    CERN Multimedia

    IT Department

    2011-01-01

      As of 28 September 2011, the Telecom Lab will move to the Building 2/1-046. Please note that the Telecom Lab desk will be closed on 28 of September due to the move. However, for all urgent matters, please contact the Telecom Lab by mail or by phone. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged. New location:                Building 2/1-046 Opening hours:              From Monday to Friday, from 8 a.m. to 6 p.m. Phone number:      ...

  3. Drop shape analysis for determination of dynamic contact angles by double sided elliptical fitting method

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2017-01-01

    Contact angle measurements are a fast and simple way to measure surface properties and is therefore widely used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common praxis contact angle measurements are done with sessile drops on a horizontal surface...... fitted to a drop profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present a fitting technique capable of determining the contact angle of asymmetric drops...

  4. Steady-state response of periodically supported structures to a moving load

    NARCIS (Netherlands)

    Metrikine, A.V.; Wolfert, A.R.M.; Vrouwenvelder, A.C.W.M.

    1999-01-01

    Steady-state vibrations of periodically supported structures under a moving load are analytically investigated. The following three structures are considered: an overhead power line for a train, a long suspended bridge and a railway track. The study is based on the application of so-called

  5. Toward full-chip prediction of yield-limiting contact patterning failure: correlation of simulated image parameters to advanced contact metrology metrics

    Science.gov (United States)

    Sturtevant, John L.; Chou, Dyiann

    2006-03-01

    Electrical failure due to incomplete contacts or vias has arisen as one of the primary modes of yield loss for 130 nm and below designs in manufacturing. Such failures are generally understood to arise from both random and systematic sources. The addition of redundant vias, where possible, has long been an accepted DFM practice for mitigating the impact of random defects. Incomplete vias are often characterized by having a diameter near the target dimension but a depth of less than 100% of target. As such, it is a difficult problem to diagnose and debug in-line, since bright and dark field optical inspection systems cannot typically distinguish between a closed, partially open and fully open contact. Advanced metrology systems have emerged in recent years to meet this challenge, but no perfect manufacturing solution has yet been identified for full field verification of all contacts. Voltage Contrast (VC) SEM metrology biases the wafer to directly measure electrical conductivity after fill / polish, and can therefore easily discern a lack of electrical connection to the underlying conductor caused by incomplete photo, etch, or fill processing. While an entire wafer can in principal be VC scanned, throughput limitations dictate very sparse sampling in manufacturing. SEM profile grading (PG) leverages the rich content of the secondary electron waveform to decipher information about the bottom of the contact. Several authors have demonstrated an excellent response of the Profile Grade to intentional defocus vectors. However, the SEM can only target discreet or single digit groupings of contacts, and therefore requires intelligent guidance to identify those contacts which are most prone to failure, enabling protection of the fab WIP. An a-priori knowledge of which specific contacts in a layout are most likely to fail would prove very useful for proactive inspection in manufacturing. Model based pre-manufacturing verification allows for such knowledge to be communicated

  6. Indexing of Network-Constrained Moving Objects

    DEFF Research Database (Denmark)

    Pfoser, Dieter; Jensen, Christian Søndergaard

    2003-01-01

    With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space....... Further, the movements are typically represented as trajectories, sequences of connected line segments. In certain cases, movement is restricted, and specifically in this paper, we aim at exploiting that movements occur in transportation networks to reduce the dimensionality of the data. Briefly, the idea...

  7. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  8. EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES

    KAUST Repository

    Xu, Xinpeng

    2013-03-20

    A continuum hydrodynamic model is presented for one-component liquid-gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid-gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster. © 2013 World Scientific Publishing Company.

  9. The study of sliding contact in railgun with metal armature

    International Nuclear Information System (INIS)

    Kondratenko, A.K.; Bykov, M.A.; Schastnykh, B.S.; Glinov, A.P.; Poltanov, A.E.

    1997-01-01

    An experimental technique for the study of the current distribution in the rails and a moving metal armature is developed. The work was carried out on a special experimental railgun with a capacitor power supply. The set of small dB/dt probes as well as wire contact probes were arranged in close vicinity of the rail and armature contact surface. For interpretation of dB/dt measurements the computation technique and program of restoration of current density distribution along the armature was developed. The size and the location of the current concentration zone in the contact area are obtained for several combinations of rail and armature materials; bronze and copper rails, Al and Ti alloy armature. A stationary armature tests with resistive stainless steel and graphite layers were also made to estimate the influence of the layer material resistivity on the current distribution

  10. Effects of a moving X-line in a time-dependent reconnection model

    Directory of Open Access Journals (Sweden)

    S. A. Kiehas

    2007-02-01

    Full Text Available In the frame of magnetized plasmas, reconnection appears as an essential process for the description of plasma acceleration and changing magnetic field topology. Under the variety of reconnection regions in our solar system, we focus our research onto the Earth's magnetotail. Under certain conditions a Near Earth Neutral Line (NENL is free to evolve in the current sheet of the magnetotail. Reconnection in this region leads to the formation of Earth- and tailward propagating plasma bulges, which can be detected by the Cluster or Geotail spacecraft. Observations give rise to the assumption that the evolved reconnection line does not provide a steady state behavior, but is propagating towards the tail (e.g., Baker et al., 2002. Based on a time-dependent variant of the Petschek model of magnetic reconnection, we present a method that includes an X-line motion and discuss the effects of such a motion. We focus our main interest on the shock structure and the magnetic field behavior, both for the switch-on and the switch-off phase.

  11. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2008-02-15

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  12. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  13. Move Closer: Towards Design Patterns To Support Initiating Social Encounters

    DEFF Research Database (Denmark)

    Mitchell, Robb; Boer, Laurens

    2017-01-01

    This paper offers four inspirational design patterns concerned with reducing inhibitions for unacquainted co-located people to interact. These patterns identify impediments to interpersonal contact in relation to the distances between people and present diverse examples of how these challenges may...... be addressed. Each inspirational design pattern offers strategies to make social interaction more likely through enabling, encouraging or excusing people to move closer together. The patterns are "Feel For Fun", "Conjoining Self Images", "Eye To Eye", and "Nudge People Together". Articulating possible...

  14. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in-line

  15. Investigation of contact line dynamics under a vapor bubble at boiling on the transparent heater

    Science.gov (United States)

    Surtaev, A. S.; Serdyukov, V. S.

    2018-01-01

    The paper presents the results of an experimental study of dynamics of vapor bubble growth and departure at pool boiling, obtained with the use of high-speed video recording and IR thermography. The study was carried out at saturated water boiling under the atmospheric pressure in the range of heat fluxes of 30-150 kW/m2. To visualize the process and determine the growth rates of the outer bubble diameter, microlayer region and dry spot area, transpa-rent thin film heater with the thickness of 1 μm deposited on sapphire substrate was used in the experiments, and video recording was performed from the bottom side of the heating surface. To study integral heat transfer as well as local non-stationary thermal characteristics, high-speed infrared thermography with a frequency of up to 1000 FPS was used. High-speed video recording showed that after formation of vapor bubble and microlayer region, dry spot appears in a short time (up to 1 ms) under the vapor bubble. Various stages of contact line boundary propagation were ob-served. It was shown that at the initial stage before the development of small-scale perturbations, the dry spot propaga-tion rate is constant. It was also showed that the bubble departure stage begins after complete evaporation of liquid in the microlayer region.

  16. Moving In, Moving Through, and Moving Out: The Transitional Experiences of Foster Youth College Students

    Science.gov (United States)

    Gamez, Sara I.

    2017-01-01

    The purpose of this qualitative study was to explore the transitional experiences of foster youth college students. The study explored how foster youth experienced moving into, moving through, and moving out of the college environment and what resources and strategies they used to thrive during their college transitions. In addition, this study…

  17. A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line

    KAUST Repository

    He, Qiaolin

    2011-06-01

    In this article we discuss the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient. © 2011 Elsevier Inc.

  18. Arduino Based RFID Line Switching Using SSR

    Directory of Open Access Journals (Sweden)

    Michael E.

    2017-10-01

    Full Text Available The importance of line switching cannot be overemphasized as they are used to connect and disconnect substations to and from a distribution grid. At the cradle of technology line switching was achieved via the use of manual switches or fuses which could endanger life as a result of electrocution when expose during maintenance. This ill prompted the development of automated line switching using relays and contactors. With time this tends to fail as a result of wearing of the contact which is as a result of arcing and low voltage. To avert all these ills this paper presents Arduino based Radio Frequency Identification RFID line switching using Solid State Relay SSR. This is to ensure the safety of operators or technologist and to also avert the problem associated with relays and contactors using SSR. This was achieved using RFID RC-522 reader ardriuno Uno SSR and other discrete components. The system was tested and worked perfectly reducing the risk of electrocution and eliminating damage wearing of the contacts common with contactors and relays.

  19. On Ni/Au Alloyed Contacts to Mg-Doped GaN

    Science.gov (United States)

    Sarkar, Biplab; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Rounds, Robert; Kirste, Ronny; Mita, Seiji; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2018-01-01

    Ni/Au contacts to p-GaN were studied as a function of free hole concentration in GaN using planar transmission line measurement structures. All contacts showed a nonlinear behavior, which became stronger for lower doping concentrations. Electrical and structural analysis indicated that the current conduction between the contact and the p-GaN was through localized nano-sized clusters. Thus, the non-linear contact behavior can be well explained using the alloyed contact model. Two contributions to the contact resistance were identified: the spreading resistance in the semiconductor developed by the current crowding around the electrically active clusters, and diode-type behavior at the interface of the electrically active clusters with the semiconductor. Hence, the equivalent Ni/Au contact model consists of a diode and a resistor in series for each active cluster. The reduced barrier height observed in the measurements is thought to be generated by the extraction of Ga from the crystalline surface and localized formation of the Au:Ga phase. The alloyed contact analyses presented in this work are in good agreement with some of the commonly observed behavior of similar contacts described in the literature.

  20. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Yang, Xinjun; Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian; Yang, Lijun; Xie, Hui

    2017-01-01

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  1. Atomistic simulations on the axial nanowelding configuration and contact behavior between Ag nanowire and single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Yang, Xinjun [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Mei, Xuesong; Wang, Wenjun; Jiang, Gedong; Wang, Kedian [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Lijun; Xie, Hui [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    As for the interesting new building blocks, the Ag nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) as the interesting new building blocks are viewed as the promising candidates for the next-generation interconnects due to their most remarkable electrical, thermal, optical, mechanical, and other properties. The axial nanowelding of head-to-head style and side-to-side style is relatively simulated with the molecular dynamics method. As for the head-to-head structural style, SWNTs will move toward the AgNWs and contact with the head of AgNWs. And, the part of the Ag nanowire may be subsequently encapsulated in SWNT with the core-filling Ag atom chain as the final atomic contact configuration during nanowelding, which is related to the nanowelding temperature. When the SWNTs and AgNWs are arranged by the side-to-side contact style, the SWNTs will move along the SWNT surface and may eventually catch up with the AgNW being neck and neck. Aiming at the final axial atomic configurations and the contact behavior during nanowelding process, the related dominant mechanism is revealed in this paper.

  2. Diminution of contact angle hysteresis under the influence of an oscillating force.

    Science.gov (United States)

    Manor, Ofer

    2014-06-17

    We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.

  3. Job Surfing: Move On to Move Up.

    Science.gov (United States)

    Martin, Justin

    1997-01-01

    Looks at the process of switching jobs and changing careers. Discusses when to consider options and make the move as well as the need to be flexible and open minded. Provides a test for determining the chances of promotion and when to move on. (JOW)

  4. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  5. Refractive surgery or contact lenses – how and when to decide?

    Directory of Open Access Journals (Sweden)

    Xu K

    2011-11-01

    Full Text Available Kunyong Xu1, Vishal Jhanji2 1Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; 2Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Abstract: Correction of refractive errors can be achieved with spectacles, contact lenses, and refractive surgery. The past decade has seen a surge in the availability of alternatives for patients and surgeons in terms of both surgical and nonsurgical options for the management of refractive errors. Newer generation contact lenses provide enhanced safety and better handling, whereas modern-day refractive surgery presents a plethora of choices based on the clinical characteristics and requirements of patients. We have moved from an era of "one size fits all" to a purely customized way of treating patients with refractive errors. This review presents the background, advantages, and disadvantages of the two most commonly used options for correction of ametropia, ie, contact lenses and refractive surgery. Keywords: laser-assisted in situ keratomileusis, contact lens, patient selection, complications, outcomes

  6. Experimental Investigations on Microshock Waves and Contact Surfaces

    Science.gov (United States)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  7. Down-flow moving-bed gasifier with catalyst recycle

    Science.gov (United States)

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  8. Drop deposition on surfaces with contact-angle hysteresis: Liquid-bridge stability and breakup

    OpenAIRE

    Akbari, Amir; Hill, Reghan J.

    2015-01-01

    We study the stability and breakup of liquid bridges with a free contact line on a surface with contact-angle hysteresis under zero-gravity conditions. Theoretical predictions of the stability limits are validated by experimental measurements. Experiments are conducted in a water-methanol-silicon oil system where the gravity force is offset by buoyancy. We highlight cases where stability is lost during the transition from a pinned-pinned to pinned-free interface when the receding contact angl...

  9. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  10. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min; Wang, Xiao-Ping

    2012-01-01

    [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under

  11. Moving through time: the role of personality in three real-life contexts.

    Science.gov (United States)

    Duffy, Sarah E; Feist, Michele I; McCarthy, Steven

    2014-01-01

    In English, two deictic space-time metaphors are in common usage: the Moving Ego metaphor conceptualizes the ego as moving forward through time and the Moving Time metaphor conceptualizes time as moving forward toward the ego (Clark, 1973). Although earlier research investigating the psychological reality of these metaphors has typically examined spatial influences on temporal reasoning (e.g., Boroditsky & Ramscar, 2002), recent lines of research have extended beyond this, providing initial evidence that personality differences and emotional experiences may also influence how people reason about events in time (Duffy & Feist, 2014; Hauser, Carter, & Meier, 2009; Richmond, Wilson, & Zinken, 2012). In this article, we investigate whether these relationships have force in real life. Building on the effects of individual differences in self-reported conscientiousness and procrastination found by Duffy and Feist (2014), we examined whether, in addition to self-reported conscientiousness and procrastination, there is a relationship between conscientious and procrastinating behaviors and temporal perspective. We found that participants who adopted the Moving Time perspective were more likely to exhibit conscientious behaviors, while those who adopted the Moving Ego perspective were more likely to procrastinate, suggesting that the earlier effects reach beyond the laboratory. Copyright © 2014 Cognitive Science Society, Inc.

  12. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  13. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.

    Science.gov (United States)

    Grice, Phillip M; Killpack, Marc D; Jain, Advait; Vaish, Sarvagya; Hawke, Jeffrey; Kemp, Charles C

    2013-06-01

    Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.g., a wheelchair or bed). Using geometric simulations, we first show that an assistive robot can achieve a much larger percentage of end-effector poses near the care-receiver's body if its arm is allowed to make contact. Second, we present a novel system with a custom controller and whole-arm tactile sensor array that enables a Willow Garage PR2 to regulate contact forces across its entire arm while moving its end effector to a commanded pose. We then describe tests with two people with motor impairments, one of whom used the system to grasp and pull a blanket over himself and to grab a cloth and wipe his face, all while in bed at his home. Finally, we describe a study with eight able-bodied users in which they used the system to place objects near their bodies. On average, users perceived the system to be safe and comfortable, even though substantial contact occurred between the robot's arm and the user's body.

  14. Dynamic Contact Angle at the Nanoscale: A Unified View.

    Science.gov (United States)

    Lukyanov, Alex V; Likhtman, Alexei E

    2016-06-28

    Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.

  15. Lienard-Wiechert field as covariant dynamics of electric lines of force

    International Nuclear Information System (INIS)

    Arutyunyan, S.G.

    1989-01-01

    The Lienard-Wiechert field of an arbitrarily moving charge is presented as a system of Lorentz-covariant moving electric lines of force. It is shown that the 4-vector describing these lines is written as a sum of the 4-vector of the charge and the isotropic 4-vector directed to the observation point. The motion of this 4-vector is described by the equation coinciding with the equation of motion for magnetic moment in external fields provided that the intrinsic magnetic moment is zero. By the system of lines that corresponds to the complete equation of magnetic moment in external fields the electromagnetic field is restored. It turned out that the spatial magnetic current proportional to the isotropic 4-vector directed to the observation point corresponds to this field. 8 refs

  16. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  17. Micro-Particles Motion in an Evaporating Droplet

    International Nuclear Information System (INIS)

    Jung, Jung Yeul; Yoo, Jung Yul; Kim, Young Won

    2007-01-01

    Nano-particles (on the order of 1 to 100 nm) contained within the droplet are moved by liquid flow and stacked at the contact line. The self-pinned contact line under the evaporating droplet is very interesting in the field of patterning and separation of particles and biocells. Models accounting for the nano-particles' flow and deposit patterns have been reported and verified by various experiments. Here, we report for the first time a phenomenon where micro-particles (on the order of 1 μm) in the colloid droplet flow to the center of droplet. There are three modes of fluid and particle flow in the evaporating droplet. In the first mode, a self-pinned contact line is maintained and the fluid and micro/nano-particles flow to the contact line. In the second mode, micro/nano-particles self-assemble at the near contact line, as reported by Jung and Kwak. In the final mode, only micro-particles are adverted to the center of the droplet due to movement of the contact line

  18. Thermal effect on the thermomechanical behavior of contacts in a Traveling Wave Tube

    Directory of Open Access Journals (Sweden)

    Chbiki Mounir

    2016-01-01

    Full Text Available A new elasto-plastic study of the contact between the helix and the rods of the delay line of Traveling Waves Tubes (TWT was realized. Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In order to maximize the contact area and to homogenize the contact pressure, a soft thermal conductive material is coated on the helix: copper was chosen for this study. In the present work, an analytical model is used to identify the properties of the copper coating at a given temperature. We focused on the mechanical properties in order to improve the assembly process with a better numerical study. Experimental method have been made to validate the proposed model. The first comparison results seem to indicate that the model represents the reality with a good agreement. It is very clearly shown that the temperature decreases the mechanical properties. (Young’s modulus, yield strength, tensile strength…. And the thickness of the coating increases the contact area. This last point is less important at room temperature (6% of increase than at 140°C (22%.

  19. Inspecting rapidly moving surfaces for small defects using CNN cameras

    Science.gov (United States)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  20. The use of contact lens telescopic systems in low vision rehabilitation.

    Science.gov (United States)

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Moving related to separation : who moves and to what distance

    NARCIS (Netherlands)

    Mulder, Clara H.; Malmberg, Gunnar

    We address the issue of moving from the joint home on the occasion of separation. Our research question is: To what extent can the occurrence of moves related to separation, and the distance moved, be explained by ties to the location, resources, and other factors influencing the likelihood of

  2. Translocation of Soil Particles during Secondary Soil Tillage along Contour Lines

    Directory of Open Access Journals (Sweden)

    Novák Petr

    2018-04-01

    Full Text Available A high percentage of arable land and erosion risk on agricultural land are typical of current agriculture. While tillage erosion is a less frequently studied issue, it impacts vast areas of agricultural land. Not all relationships between cultivation equipment, the gradient of the plot and other factors have been known until now. Intensive soil tillage can be a crucial erosive factor mainly when the cultivation equipment moves in a fall line direction. Nevertheless, even when the equipment moves along contour lines, soil particles can be translocated perpendicular to the direction of the equipment movement (in a fall line direction. This phenomenon has not yet been adequately studied. For measurements, a field trial with secondary tillage of soil was laid out (a seedbed preparation implement was used. The objective of the trial was to evaluate the effect of the working tools of the cultivation equipment on the crosswise and lengthwise translocation of soil particles during soil tillage. Aluminium cubes, with a side length of 16 mm, were used as tracers. Before the operation, the tracers were inserted in a row perpendicular (at a right angle to a direction of the equipment passes. After the equipment passes, position of tracers was evaluated within a two-axis grid. The trial was performed at three gradients of the plot (2°, 6° and 11°. For each gradient, the 1-pass, 2-pass and 3-pass treatments were tested. The equipment always moved along the plot contour line. After the equipment passes in all treatments, all tracers were localized on an orthogonal grid. The results of the trial demonstrate the effect of the slope gradient on the crosswise translocation of particles during secondary tillage of soil in the slope direction. The tillage equipment translocated particles in the fall line direction even if it passed along the contour line. With the increasing intensity of passes, the effect of the equipment on crosswise translocation increases

  3. Inspection of complex geometry pieces with an intelligent contact transducer

    International Nuclear Information System (INIS)

    Chatillon, S.; Roy, O.; Mahaut, St.

    2000-01-01

    A new multi-element contact transducer has been developed to improve the inspection of components with complex geometry. The emitting surface is flexible in order to optimize the contact with pieces. An algorithm, based on a simplified geometric model, has been used to determine the delays law which allows to control the focal characteristics of the transmitted field. Acquisition data lead in transmission with an articulated transducer validate the behavior provided by simulation. Thus the optimization of the delays law ensures the transmission of a beam which is homogeneous and controlled during the moving of the transducer. Inspections in echo-pulse mode are implemented on a sample simulating a component controlled on site. Results show that the dynamical adaptation of the delays law to the geometry of the piece leads to very good performances

  4. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  5. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  6. Solving conformal contacts using multi-Hertzian techniques

    Science.gov (United States)

    Pascal, Jean-Pierre; Soua, Brahim

    2016-06-01

    Recently, publications aiming at wheel-rail contact surveys let readers think that multi-Hertzian methods present severe drawbacks with respect to 'virtual penetration' methods. These surveys criticise multi-Hertzian solutions mainly because presenting 'larger contacts overlaps' and 'frequent secondary contacts near the border of the first contact', both obvious geometric possibilities of which the practical occurrence and eventual inconvenience would remain purely theoretical unless established over definite methods demonstrating poor practical results. Recent surveys all quote Piotrowski-Chollet 2005 survey of wheel-rail contact models that attempted to illustrate defective multi-Hertzian techniques by concentrating on the method initiated by Sauvage in the 1990s and further developed by Pascal. The 2005 paper not only gives no evidence of practical inconveniences of Sauvage's method but also confuses static geometric contact overlaps with the dynamical overlapping of forces. In reality it mixes Sauvage method up with a quite different technique. Thus a clarification is now necessary by reminding what the proper Sauvage technique really is and by showing some of its practical successful applications. The present paper, focusing on determination of normal contact forces in conformal situations, intends to explain clearly the advantages of the unequivocal localisation of secondary ellipses in that multi-Hertzian method which has been developed in INRETS VOCO codes in the 1990s and successfully used by SNCF and ALSTOM in the INRETS-SNCF code, VOCODYM, and later in Pascal's online calculation of railway elastic contacts code. It proved its effectiveness for studying freight wagons derailments as well as rail wear and head-check, unrounded wheels wear, high-speed lines' deformations or TGV comfort. While simulating American ACELA trainsets' behaviour on the US North-East Corridor tracks, prior to actual tests, as part of the commercial contract. It has been also a

  7. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  8. A Procedure for 3-D Contact Stress Analysis of Spiral Bevel Gears

    Science.gov (United States)

    Kumar, A.; Bibel, G.

    1994-01-01

    Contact stress distribution of spiral bevel gears using nonlinear finite element static analysis is presented. Procedures have been developed to solve the nonlinear equations that identify the gear and pinion surface coordinates based on the kinematics of the cutting process and orientate the pinion and the gear in space to mesh with each other. Contact is simulated by connecting GAP elements along the intersection of a line from each pinion point (parallel to the normal at the contact point) with the gear surface. A three dimensional model with four gear teeth and three pinion teeth is used to determine the contact stresses at two different contact positions in a spiral bevel gearset. A summary of the elliptical contact stress distribution is given. This information will be helpful to helicopter and aircraft transmission designers who need to minimize weight of the transmission and maximize reliability.

  9. Contact refusal by children following acrimonious separation: therapeutic approaches with children and parents.

    Science.gov (United States)

    Dejong, Margaret; Davies, Hilary

    2013-04-01

    This paper aims to build on the existing literature, by presenting some thoughts based on clinical experience with nine families of children referred for intractable contact refusal with one parent following marital separation. This particular group of high-conflict divorce cases engenders an inordinate amount of frustration both within the courts and therapeutic agencies. We outline here our assessment process and therapeutic strategies, as well as consideration of the role of the wider professional system and the courts. We conclude that whether or not direct contact with the rejected parent is achieved, useful therapeutic work can be carried out to assist children in moving on with their lives.

  10. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  11. Low resistive edge contacts to CVD-grown graphene using a CMOS compatible metal

    Energy Technology Data Exchange (ETDEWEB)

    Shaygan, Mehrdad; Otto, Martin; Sagade, Abhay A.; Neumaier, Daniel [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany); Chavarin, Carlos A. [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany); Innovations for High Performance Microelectronics, IHP GmbH, Frankfurt (Oder) (Germany); Bacher, Gerd; Mertin, Wolfgang [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany)

    2017-11-15

    The exploitation of the excellent intrinsic electronic properties of graphene for device applications is hampered by a large contact resistance between the metal and graphene. The formation of edge contacts rather than top contacts is one of the most promising solutions for realizing low ohmic contacts. In this paper the fabrication and characterization of edge contacts to large area CVD-grown monolayer graphene by means of optical lithography using CMOS compatible metals, i.e. Nickel and Aluminum is reported. Extraction of the contact resistance by Transfer Line Method (TLM) as well as the direct measurement using Kelvin Probe Force Microscopy demonstrates a very low width specific contact resistance down to 130 Ωμm. The contact resistance is found to be stable for annealing temperatures up to 150 C enabling further device processing. Using this contact scheme for edge contacts, a field effect transistor based on CVD graphene with a high transconductance of 0.63 mS/μm at 1 V bias voltage is fabricated. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Contact Resistance Reduction of ZnO Thin Film Transistors (TFTs) with Saw-Shaped Electrode

    KAUST Repository

    Park, Woojin

    2018-05-15

    We report a saw-shaped electrode architecture ZnO thin film transistor (TFT) for effectively increase channel width. Such a saw-shaped electrode has ~2 times longer contact line at the contact metal/ZnO channel junction. We experimentally observed an enhancement in the output drive current by 50% and reduction in the contact resistance by over 50%, when compared to a typical shaped electrode ZnO TFT consuming the same chip area. This performance enhancement is attributed to extension of channel width. This technique can contribute to device performance enhancement and especially reduction in the contact resistance which is a serious challenge.

  13. Occupational irritant contact dermatitis due to petroleum naphtha

    Directory of Open Access Journals (Sweden)

    Aslı Aytekin

    2014-12-01

    Full Text Available Irritant contact dermatitis (ICD is responsible for the vast majority of occupational contact dermatitis and usually seen in professional groups working with wet hand. However, today, with the increasing business lines, employees are exposed to a variety of irritants. Occupational exposure to many chemicals and toxic irritants affect not only the skin, but also the other systems. Therefore, this situation resulting with loss of work and changes in business may become a public health problem. The diagnosis of occupational contact dermatitis should not be limited only with tests for allergens, detailed history of exposure to workplace substances and careful examination of product safety forms are necessary. In addition, by establishing close relationship between occupational physicians and employers, preventive measures should be taken before similar diseases occur in other workers in the same work place. In order to highlight this issue, a 32-year-old male patient working in an invitation card fabric is presented in this case report. Irritant contact dermatitis secondary to “petroleum naphta” was present in the patient’s arms. Another important feature of this case, as far as we know, this is the first case of irritant contact dermatitis due to naphtha in the literature.

  14. The Kerr geometry, complex world lines and hyperbolic strings

    International Nuclear Information System (INIS)

    Burinskii, A.Ya.

    1994-01-01

    In the Lind-Newman representation the Kerr geometry is created by a source moving along an analytical complex world line. An equivalence of the complex world line and complex (hyperbolic) string is considered. Therefore the hyperbolic string may play the role of the complex source of the Kerr geometry. The Kerr solution with the complex string source acquires Regge behavior of the angular momentum. (orig.)

  15. Move up,Move out

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2007-01-01

    @@ China has already become the world's largest manufacturer of cement,copper and steel.Chinese producers have moved onto the world stage and dominated the global consumer market from textiles to electronics with amazing speed and efficiency.

  16. On ruled surface in 3-dimensional almost contact metric manifold

    Science.gov (United States)

    Karacan, Murat Kemal; Yuksel, Nural; Ikiz, Hasibe

    In this paper, we study ruled surface in 3-dimensional almost contact metric manifolds by using surface theory defined by Gök [Surfaces theory in contact geometry, PhD thesis (2010)]. We also studied the theory of curves using cross product defined by Camcı. In this study, we obtain the distribution parameters of the ruled surface and then some results and theorems are presented with special cases. Moreover, some relationships among asymptotic curve and striction line of the base curve of the ruled surface have been found.

  17. The Grid Method in Estimating the Path Length of a Moving Animal

    NARCIS (Netherlands)

    Reddingius, J.; Schilstra, A.J.; Thomas, G.

    1983-01-01

    (1) The length of a path covered by a moving animal may be estimated by counting the number of times the animal crosses any line of a grid and applying a conversion factor. (2) Some factors are based on the expected distance through a randomly crossed square; another on the expected crossings of a

  18. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    Science.gov (United States)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  19. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  20. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    2012-06-01

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  1. Orthopedic Surgery Applicants: What They Want in an Interview and How They Are Influenced by Post-Interview Contact.

    Science.gov (United States)

    Camp, Christopher L; Sousa, Paul L; Hanssen, Arlen D; Karam, Matthew D; Haidukewych, George J; Oakes, Daniel A; Turner, Norman S

    2016-01-01

    Common strategies for orthopedic residency programs to attract competitive applicants include optimizing the interview day and contacting favorably ranked applicants postinterview. The purpose of this work was to determine (1) applicants' perspectives on the ideal interview day, (2) how frequently applicants are contacted postinterview, and (3) the influence of this contact on rank order lists (ROL). Prospective Comparative Survey Mayo Clinic Department of Orthopedic Surgery, Rochester, MN, USA PARTICIPANTS: A survey was completed by 312 successfully matched orthopedic surgery residency applicants following the 2015 match regarding their views of the ideal interview day, components they valued most, post-interview contact, and how that contact influenced their ROL. Applicants stated they preferred interviews that lasted 15 (55%) minutes, a mean of 1.7 (range: 1-5) interviewers present per interview, 5 total interviews (range: 1-10) in a day, an interview with residents (96%), and interviews days lasting only a half day (88%). The majority (94%) desire a social event attended by only residents (54%) or staff and residents (46%). Few wanted an assessment of surgical skills (36%) or orthopedic knowledge (23%). The interview day was rated very valuable in determining their ROL (4.4 out of 5.0). Applicants told a mean of 1.7 (range: 0-11) programs they were "ranking the program highly" and 0.8 (range: 0-5) programs they were "going to rank them #1." Of the 116 (40%) applicants contacted by programs following interviews, 24 (21%) moved programs higher and 3 (3%) moved programs lower on their ROL. Orthopedic Surgery applicants have clear preferences for what they consider to be the ideal interview day and many alter their ROL following post-interview contact. These data may be beneficial to programs looking to optimize the interview experience for applicants. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-03-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  3. Role of moving planes and moving spheres following Dupin cyclides

    KAUST Repository

    Jia, Xiaohong

    2014-01-01

    We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.

  4. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  5. Automatic Moving Object Segmentation for Freely Moving Cameras

    Directory of Open Access Journals (Sweden)

    Yanli Wan

    2014-01-01

    Full Text Available This paper proposes a new moving object segmentation algorithm for freely moving cameras which is very common for the outdoor surveillance system, the car build-in surveillance system, and the robot navigation system. A two-layer based affine transformation model optimization method is proposed for camera compensation purpose, where the outer layer iteration is used to filter the non-background feature points, and the inner layer iteration is used to estimate a refined affine model based on the RANSAC method. Then the feature points are classified into foreground and background according to the detected motion information. A geodesic based graph cut algorithm is then employed to extract the moving foreground based on the classified features. Unlike the existing global optimization or the long term feature point tracking based method, our algorithm only performs on two successive frames to segment the moving foreground, which makes it suitable for the online video processing applications. The experiment results demonstrate the effectiveness of our algorithm in both of the high accuracy and the fast speed.

  6. Moving event and moving participant in aspectual conceptions

    Directory of Open Access Journals (Sweden)

    Izutsu Katsunobu

    2016-06-01

    Full Text Available This study advances an analysis of the event conception of aspectual forms in four East Asian languages: Ainu, Japanese, Korean, and Ryukyuan. As earlier studies point out, event conceptions can be divided into two major types: the moving-event type and the moving-participant type, respectively. All aspectual forms in Ainu and Korean, and most forms in Japanese and Ryukyuan are based on that type of event conception. Moving-participant oriented Ainu and movingevent oriented Japanese occupy two extremes, between which Korean and Ryukyuan stand. Notwithstanding the geographical relationships among the four languages, Ryukyuan is closer to Ainu than to Korean, whereas Korean is closer to Ainu than to Japanese.

  7. Transition radiation excited by a load moving over the interface of two elastic layers

    NARCIS (Netherlands)

    Van Dalen, K.N.; Metrikine, A.; Tsouvalas, A.

    2014-01-01

    Transition radiation is emitted when a perturbation source (e.g., electric charge, mechanical load), which does not possess an inherent frequency, moves along a straight line at a constant velocity in or near an inhomogeneous medium. The phenomenon was described for the first time in

  8. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  9. Development of a new lines of sight analyzer while playing sport

    Directory of Open Access Journals (Sweden)

    Shinya Mochiduki

    2017-01-01

    Full Text Available The Olympics will be held in Tokyo in 2020, and the training of the athlete using technology has been gaining attention. In an effort to refine the competitive ability of top athletes by evaluating their performance objectively, we have focused on eye movement and head movement. Since the field of view moves according to the athlete’s head movement, which is a problem for the conventional method of measuring eye movement, we proposed a new method of analysis of lines of sight which can record head movement during a competition and make it easier to analyze by superimposing the lines of sight on an externally recorded fixed image. With the goal of measuring the lines of sight of an athlete during an actual competition, we made a video during a competition and had an athlete observe the video in a laboratory. First we compared the video in which only the eye movement was measured and the field-of-view image moved according to the head movement with another video in which the head movement and eye movement were measured and the image did not move in spite of the occurrence of head movement. The results of the experiment, which involved baseball as the competitive sport, showed the effectiveness of our proposed system. Furthermore, we showed the difference between the lines of sight of an experienced and an inexperienced catcher.

  10. In vivo cartilage contact deformation in the healthy human tibiofemoral joint.

    Science.gov (United States)

    Bingham, J T; Papannagari, R; Van de Velde, S K; Gross, C; Gill, T J; Felson, D T; Rubash, H E; Li, G

    2008-11-01

    In vivo cartilage contact deformation is instrumental for understanding human joint function and degeneration. This study measured the total deformation of contacting articular cartilage in the human tibiofemoral joint during in vivo weight-bearing flexion. Eleven healthy knees were magnetic resonance (MR) scanned and imaged with a dual fluoroscopic system while the subject performed a weight-bearing single-leg lunge. The tibia, femur and associated articulating cartilage were constructed from the MR images and combined with the dual fluoroscopic images to determine in vivo cartilage contact deformation from full extension to 120 degrees of flexion. In both compartments, minimum peak compartmental contact deformation occurred at 30 degrees of flexion (24 +/- 6% medial, 17 +/- 7% lateral) and maximum peak compartmental deformation occurred at 120 degrees of flexion (30 +/- 13% medial, 30 +/- 10% lateral) during the weight-bearing flexion from full extension to 120 degrees. Average medial contact areas and peak contact deformations were significantly greater than lateral compartment values (P In addition, cartilage thickness in regions of contact was on average 1.4- and 1.1-times thicker than the average thickness of the tibial and femoral cartilage surfaces, respectively (P line knowledge for investigating the effects of various knee injuries on joint contact biomechanics and the aetiology of cartilage degeneration.

  11. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  12. QED as the tensionless limit of the spinning string with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P., E-mail: J.P.Edwards@durham.ac.uk; Mansfield, Paul, E-mail: P.R.W.Mansfield@durham.ac.uk

    2015-06-30

    QED with spinor matter is argued to correspond to the tensionless limit of spinning strings with contact interactions. The strings represent electric lines of force with charges at their ends. The interaction is constructed from a delta-function on the world-sheet which, although off-shell, decouples from the world-sheet metric. Integrating out the string degrees of freedom with fixed boundary generates the super-Wilson loop that couples spinor matter to electromagnetism in the world-line formalism. World-sheet and world-line, but not spacetime, supersymmetry underpin the model.

  13. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    Science.gov (United States)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  14. Optimal contact definition for reconstruction of Contact Maps

    Directory of Open Access Journals (Sweden)

    Stehr Henning

    2010-05-01

    Full Text Available Abstract Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a to what accuracy does a contact map represent its corresponding 3D structure, b what is the best contact map representation with regard to reconstructability and c what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through

  15. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    Science.gov (United States)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  16. Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Clare, Loren P.

    2013-01-01

    Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.

  17. Linux command line and shell scripting bible

    CERN Document Server

    Blum, Richard

    2014-01-01

    Talk directly to your system for a faster workflow with automation capability Linux Command Line and Shell Scripting Bible is your essential Linux guide. With detailed instruction and abundant examples, this book teaches you how to bypass the graphical interface and communicate directly with your computer, saving time and expanding capability. This third edition incorporates thirty pages of new functional examples that are fully updated to align with the latest Linux features. Beginning with command line fundamentals, the book moves into shell scripting and shows you the practical application

  18. [Sport injuries in full contact and semi-contact karate].

    Science.gov (United States)

    Greier, K; Riechelmann, H; Ziemska, J

    2014-03-01

    Karate enjoys great popularity both in professional and recreational sports and can be classified into full, half and low contact styles. The aim of this study was the analysis of sports injuries in Kyokushinkai (full contact) and traditional Karate (semi-contact). In a retrospective study design, 215 active amateur karateka (114 full contact, 101 semi-contact) were interviewed by means of a standardised questionnaire regarding typical sport injuries during the last 36 months. Injuries were categorised into severity grade I (not requiring medical treatment), grade II (single medical treatment), grade III (several outpatient medical treatments) and grade IV (requiring hospitalisation). In total, 217 injuries were reported in detail. 125 injuries (58%) occurred in full contact and 92 (42%) in semi-contact karate. The time related injury rate of full contact karateka was 1.9/1000 h compared to 1.3/1000 h of semi-contact karateka (p injuries were musculoskeletal contusions (33% full contact, 20% semi-contact), followed by articular sprains with 19% and 16%. The lower extremity was affected twice as often in full contact (40%) as in semi-contact (20%) karate. Training injuries were reported by 80% of the full contact and 77% of the semi-contact karateka. Most injuries, both in training and competition, occurred in kumite. 75% of the reported injuries of full contact and 70% of semi-contact karateka were classified as low grade (I or II). The high rate of injuries during training and kumite (sparring) points to specific prevention goals. The emphasis should be put on proprioceptive training and consistent warm-up. In the actual competition the referees play a vital role regarding prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Nanoscale View of Dewetting and Coating on Partially Wetted Solids.

    Science.gov (United States)

    Deng, Yajun; Chen, Lei; Liu, Qiao; Yu, Jiapeng; Wang, Hao

    2016-05-19

    There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.

  20. SPIRES I: on-line search guide

    International Nuclear Information System (INIS)

    Addis, L.

    1975-06-01

    SPIRES I is the first generation of the on-line Stanford Public Information Retrieval System. Designed as a prototype system, SPIRES I was later moved to the SLAC computing facility where it has been routinely available to SLAC users in the field of high-energy physics. The scope and use of the SPIRES I system are described in this manual

  1. Moving forward: response to "Studying eyewitness investigations in the field".

    Science.gov (United States)

    Ross, Stephen J; Malpass, Roy S

    2008-02-01

    Field studies of eyewitness identification are richly confounded. Determining which confounds undermine interpretation is important. The blind administration confound in the Illinois study is said to undermine it's value for understanding the relative utility of simultaneous and sequential lineups. Most criticisms of the Illinois study focus on filler identifications, and related inferences about the importance of the blind confound. We find no convincing evidence supporting this line of attack and wonder at filler identifications as the major line of criticism. More debilitating problems impede using the Illinois study to address the simultaneous versus sequential lineup controversy: inability to estimate guilt independent of identification evidence, lack of protocol compliance monitoring, and assessment of lineups quality. Moving forward requires removing these limitations.

  2. Spatio-temporal flow maps for visualizing movement and contact patterns

    Directory of Open Access Journals (Sweden)

    Bing Ni

    2017-03-01

    Full Text Available The advanced telecom technologies and massive volumes of intelligent mobile phone users have yielded a huge amount of real-time data of people’s all-in-one telecommunication records, which we call telco big data. With telco data and the domain knowledge of an urban city, we are now able to analyze the movement and contact patterns of humans in an unprecedented scale. Flow map is widely used to display the movements of humans from one single source to multiple destinations by representing locations as nodes and movements as edges. However, it fails the task of visualizing both movement and contact data. In addition, analysts often need to compare and examine the patterns side by side, and do various quantitative analysis. In this work, we propose a novel spatio-temporal flow map layout to visualize when and where people from different locations move into the same places and make contact. We also propose integrating the spatiotemporal flow maps into existing spatiotemporal visualization techniques to form a suite of techniques for visualizing the movement and contact patterns. We report a potential application the proposed techniques can be applied to. The results show that our design and techniques properly unveil hidden information, while analysis can be achieved efficiently. Keywords: Spatio-temporal data, Flow map, Urban mobility

  3. Dancing in the 'Contact Zone'

    Directory of Open Access Journals (Sweden)

    Monica Wulff

    2006-09-01

    Full Text Available In October 2002 I performed and exhibited Troppo Obscura: A Peepshow of Historical Perversity at the Performance Space as part of the multicultural Arts festival, Carnivale, in Sydney, Australia. Troppo Obscura is a multimedia installation that explores some aspects of the complex relationships between the West and Asia. The work looks at a large range of possibilities, from the colonial gaze through to personal relationships forged through artistic endeavor. This paper—the first of two extended mediations on the topic—focuses on one such personal relationship addressed in the installation, namely that between traditional master mask dancer Ibu Sawitri from Cirebon on the West coast of Java, Indonesia and myself, a Sydney based contemporary dancer and performance artist. Between 1992 and 1999, the year Ibu Sawitri passed away, I spent many long-term visits learning dance and living in Ibu Sawitri’s house in Losari. This essay focuses on Ibu Sawitri’s family and dance background and how she, the younger generation of dancers, the dance context, and the dance itself, have been transformed over time as a result of rapidly changing socio-historical conditions. In the second half of this paper I move the discussion to the broader issues of cross-cultural encounters in what Pratt terms the ‘contact zone’ (1992. This includes looking at dance as an embodied practice and its function in the ‘contact zone’ as well as dealing with Spivak’s debates about the subaltern voice in reference to my telling of Ibu Sawitri’s story, both in the installation and in text. A closer analysis of the dynamics of my dance with Ibu Sawitri in the ‘contact zone’ is addressed here.

  4. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  5. Making the most of on-line recruiting.

    Science.gov (United States)

    Cappelli, P

    2001-03-01

    Ninety percent of large U.S. companies are already recruiting via the Internet. By simply logging on to the Web, company recruiters can locate vast numbers of qualified candidates for jobs at every level, screen them in minutes, and contact the most promising ones immediately. The payoffs can be enormous: it costs substantially less to hire someone on-line, and the time saved is equally great. In this article, Peter Cappelli examines some of the emerging service providers and technologies--matchmakers, job boards, hiring management systems software, and applicant-screening mechanisms that test skills and record interests. He also looks at some of the strategies companies are adopting as they enter on-line labor markets. Recruiting needs to be refashioned to resemble marketing, he stresses. Accordingly, smart companies are designing Web pages, and even product ads, with potential recruits in mind. They're giving line managers authority to hire so that candidates in cyberspace aren't lost. They're building internal on-line job networks to retain talent. Integrating recruiting efforts with overall marketing campaigns, especially through coordination and identification with the company's brand, is the most important thing companies can do to ensure success in on-line hiring. Along the way, Cappelli sounds two cautionary notes. First, a human touch, not electronic contact, is vital in the last steps of a successful hiring process. Second, companies must make sure that on-line testing and hiring criteria do not discriminate against women, disabled people, workers over 40, or members of minority groups. When competition for talent is fierce, companies that master the art and science of on-line recruiting will be the ones that attract and keep the best people.

  6. Calculation of Equivalent Resistance for Ground Wires Twined with Armor Rods in Contact Terminals

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available Ground wire breakage accidents can destroy the stable operation of overhead lines. The excessive temperature increase arising from the contact resistance between the ground wire and armor rod in the contact terminal is one of the main reasons causing the breakage of ground wires. Therefore, it is necessary to calculate the equivalent resistance for ground wires twined with armor rods in contact terminals. According to the actual distribution characteristics of the contact points in the contact terminal, a three-dimensional electromagnetic field simulation model of the contact terminal was established. Based on the model, the current distribution in the contact terminal was obtained. Subsequently, the equivalent resistance of a ground wire twined with the armor rod in the contact terminal was calculated. The effects of the factors influencing the equivalent resistance were also discussed. The corresponding verification experiments were conducted on a real ground wire on a contact terminal. The measurement results of the equivalent resistance for the armor rod segment showed good agreement with the electromagnetic modeling results.

  7. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ... differentiate among cell lines, as described in Designation: ASN-0002 Authentication of Human Cell Lines... NIST (contact information above). III. Data OMB Control Number: None. Form Number: None. Type of Review...

  8. Repulsion-based model for contact angle saturation in electrowetting.

    Science.gov (United States)

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  9. Perceptions Towards On-line Banking Security: An Empirical Investigation of a Developing Country`s Banking Sector, how secure is On-line Banking

    OpenAIRE

    Bongani Ngwenya; Khanyisa Malufu

    2012-01-01

    The increase in computer crime has led to scepticism about themove made by the banks to introduce on-line banking. Someview this as a noble move which has made the banking systemmore efficient, reliable and secure, while others view it as arisky and insecure way of banking. The aim of this study wasto assess whether on-line banking in the developing countriesis secure or not. The researcher chose a descriptive-quantitativeresearch design. Data was collected using a self constructedquestionnai...

  10. A comparison of moving object detection methods for real-time moving object detection

    Science.gov (United States)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  11. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  12. Numerical Simulation of A Right-moving Storm Over France

    Science.gov (United States)

    Chancibault, K.; Ducrocq, V.; Lafore, J.-Ph.

    A three-dimensional non-hydrostatic mesoscale model is used to simulate the right- moving storm produced through storm splitting, on 30 may 1999, over northern France. The initial state is provided by the French 3D-var ARPEGE analysis and the simuation is performed with two interactive nested domains. The aim of this study is to improve our understanding of such storm dynamics. A vor- ticity analysis has been carried out, with emphasis on stretching and tilting terms of the vertical vorticity equation, thanks to the backward trajectories. The baroclinic produc- tion and stretching terms of the horizontal vorticity equation have also been studied to understand the interaction between the horizontal vorticity and a mesoscale thermal line. Finally, the spatial and temporal variation of the Storm Relative Environmental Helicity has been examined. Most of the results compare well with previous results on right-moving storms ob- tained from theoritical or numerical studies from idealized homogeneous base state.

  13. Mechanoluminescent Contact Type Sensor

    Directory of Open Access Journals (Sweden)

    A. K. Yefremov

    2017-01-01

    Full Text Available Mechanoluminescent sensing elements convert mechanical stress into optical radiation. Advantages of such sensors are the ability to generate an optical signal, solid-state, simple structure, and resistance to electromagnetic interference. Mechanoluminescent sensor implementations can possess the concentrated and distributed sensitivity, thereby allowing us to detect the field of mechanical stresses distributed across the area and in volume. Most modern semiconductor photo-detectors can detect mechanoluminescent radiation, so there are no difficulties to provide its detection when designing the mechanoluminescent sensing devices. Mechanoluminescent substances have especial sensitivity to shock loads, and this effect can be used to create a fuse the structure of which includes a target contact type sensor with a photosensitive actuator. The paper briefly describes the theoretical basics of mechanoluminiscence: a light signal emerges from the interaction of crystalline phosphor luminescence centers with electrically charged dislocations, moving due to the deformation of the crystal. A mathematical model of the mechanoluminescent conversion is represented as a functional interaction between parameters of the mechanical shock excitation and the sensor light emission. Examples of computing the optical mechanoluminescent output signal depending on the duration and peak level of impulse load are given. It is shown that the luminous flux, generated by mechanoluminescent sensing element when there is an ammunition-target collision causes the current emerging in photo-detector (photodiode that is sufficient for a typical actuator of the fuse train to operate. The potential possibility to create a contact target type sensor based on the light-sensitive mechanoluminescent sensor was proved by the calculation and simulation results.

  14. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  15. Modeling operational behavior of a disassembly line

    Science.gov (United States)

    Kizilkaya, Elif A.; Gupta, Surendra M.

    2004-12-01

    In this paper we present a dynamic kanban (pull) system specifically developed for disassembly lines. This type of kanban system is much more complex than the traditional kanban system used in assembly lines. For instance, unlike the assembly line where the external demand occurs only at the last station, the demands in the disassembly case also occur at any of the intermittent stations. The reason is that as a product moves on the disassembly line, various parts are disassembled at every station and accumulated at that station. Therefore, there are as many demand sources as there are number of parts. We consider a case example involving the end-of-life products. Based on the precedence relationships and other criteria such as hazardous properties of the parts, we balance the disassembly line. The results of the disassembly line-balancing problem (DLBP) are used as input to the proposed dynamic kanban system for disassembly line (DKSDL). We compare the performance of the DKSDL to the modified kanban system for disassembly line (MKSDL), which was previously introduced by the authors. We show, via simulation, that the DKSDL is far superior to MKSDL considered.

  16. On the electrical contact and long-term behavior of compression-type connections with conventional and high-temperature conductor ropes with low sag

    International Nuclear Information System (INIS)

    Hildmann, Christian

    2016-01-01

    In Germany and in Europe it is due to the ''Energiewende'' necessary to transmit more electrical energy with existing overhead transmission lines. One possible technical solution to reach this aim is the use of high temperature low sag conductors (HTLS-conductors). Compared to the common Aluminium Conductor Steel Reinforced (ACSR), HTLS-conductors have higher rated currents and rated temperatures. Thus the electrical connections for HTLS-conductors are stressed to higher temperatures too. These components are most important for the safe and reliable operation of an overhead transmission line. Besides other connection technologies, hexagonal compression connections with ordinary transmission line conductors have proven themselves since decades. From the literature, mostly empirical studies with electrical tests for compression connections are known. The electrical contact behaviour, i.e. the quality of the electrical contact after assembly, of these connections has been investigated insufficiently. This work presents and enhances an electrical model of compression connections, so that the electrical contact behaviour can be determined more accurate. Based on this, principal considerations on the current distribution in the compression connection and its influence on the connection resistance are presented. As a result from the theoretical and the experimental work, recommendations for the design of hexagonal compression connections for transmission line conductors were developed. Furthermore it is known from the functional principle of compression type connections, that the electrical contact behaviour can be influenced from their form fit, force fit and cold welding. In particular the forces in compression connections have been calculated up to now by approximation. The known analytical calculations simplify the geometry and material behaviour and do not consider the correct mechanical load during assembly. For these reasons the joining process

  17. Second-line treatments: moving towards an opportunity to improve survival in advanced gastric cancer?

    Science.gov (United States)

    Salati, Massimiliano; Di Emidio, Katia; Tarantino, Vittoria; Cascinu, Stefano

    2017-01-01

    Gastric cancer is the third leading cause of cancer-related death globally with approximately 723 000 deaths every year. Most patients present with advanced unresectable or metastatic disease, only amenable to palliative systemic treatment and a median survival uncommonly exceeding 12 months. Over the last years, the efficacy of chemotherapy combination has plateaued and the introduction of the anti-human epidermal growth factor receptor 2 trastuzumab has resulted in a limited survival gain in the upfront setting. After this positive experience, first-line treatment with new targeted therapies failed to improve the outcome of advanced gastric cancer. On the contrary, second-line options, including monochemotherapy with taxanes or irinotecan and the anti-vascular endothelial growth factor receptor 2 ramucirumab, either alone or combined with paclitaxel, opened new therapeutic rooms for an ever-increasing number of patients who maintain an acceptable performance status across multiple lines. This article provides an updated overview on the current management of advanced gastric cancer and discusses how the different treatment options available may be best combined to favourably impact the outcome of patients following the logic of a treatment strategy.

  18. Effect of contact angle and contact angle hysteresis on the floatability of spheres at the air-water interface.

    Science.gov (United States)

    Feng, Dong-Xia; Nguyen, Anh V

    2017-10-01

    The floatability of solid particles on the water surface governs many natural phenomena and industrial processes including film flotation and froth flotation separation of coal and valuable minerals. For many years, the contact angle (CA) has been postulated as the key factor in determining the particle floatability. Indeed, the maximum force (tenacity) supporting the flotation of fine spheres was conjectured to occur when the apical angle of the contact circle is equal to the contact angle. In this paper, the model predictions are reviewed and compared with experimental results. It is shown that CA can be affected by many physical and chemical factors such as surface roughness and chemical heterogeneity and can have a range of values known as the CA hysteresis. This multiple-valued CA invalidates the available theories on the floatability of spheres. Even the intuitive replacement of CA by the advancing (maximum) CA in the classical theories can be wrong. A few new examples are also reviewed and analyzed to demonstrate the significance of CA variation in controlling the particle floatability. They include the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, and the nearby interaction among floating particles, known as lateral inter-particle interaction. It is concluded that our quantitative understanding of the floatability of real particles being irregular and heterogeneous both morphologically and chemically is still far from being satisfactory. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Moving Horizon Control and Estimation of Livestock Ventilation Systems and Indoor Climate

    DEFF Research Database (Denmark)

    Wu, Z.; Stoustrup, Jakob; Jørgensen, John Bagterp

    2008-01-01

    In this paper, a new control strategy involves exploiting actuator redundancy in a multivariable system is developed for rejecting the covariance of the fast frequency disturbances and pursuing optimum energy solution. This strategy enhances the resilience of the control system to disturbances...... beyond its bandwidth and reduce energy consumption through on-line optimization computation. The moving horizon estimation and control (also called predictive control) technology is applied and simulated. The design is based on a coupled mathematical model which combines the hybrid ventilation system...... and the associated indoor climate for poultry in barns. The comparative simulation results illustrate the significant potential and advancement of the moving horizon methodologies in estimation and control for nonlinear Multiple Input and Multiple Output system with unknown noise covariance and actuator saturation....

  20. Drop rebound after impact: the role of the receding contact angle.

    Science.gov (United States)

    Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M

    2013-12-31

    Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° contact angles 89° contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.

  1. Contact angle change during evaporation of near-critical liquids

    Science.gov (United States)

    Nikolayev, Vadim; Hegseth, John; Beysens, Daniel

    1998-11-01

    An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling". We report the preliminary results of the numerical simulation of the liquid evaporation by the Boundary Element method.

  2. 30 CFR 56.12071 - Movement or operation of equipment near high-voltage power lines.

    Science.gov (United States)

    2010-07-01

    ...-voltage power lines. 56.12071 Section 56.12071 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... NONMETAL MINES Electricity § 56.12071 Movement or operation of equipment near high-voltage power lines. When equipment must be moved or operated near energized high-voltage powerlines (other than trolley...

  3. Study of the four identical particle spectrum moving in one dimension

    International Nuclear Information System (INIS)

    Conceicao, E.M.F. da.

    1986-01-01

    Technical details of the application of the hyperspherical harmonics method are investigated for the problem of four identical particles moving in one line. First of all, the states of the system are classified according theirs invariance properties, following the S 4 group and parity. As follows, the structure of the radial differential equations is investigated in lower order. From the result of this investigation, becauses clear how to treat with higher orders. (L.C.) [pt

  4. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    Science.gov (United States)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  5. Probing the nanoscale: the first contact of an impacting drop

    KAUST Repository

    Li, Erqiang

    2015-11-16

    When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular glass we observe a ring of microbubbles, due to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet, thereby leaving behind a ring of microbubbles marking the original air-disc diameter. On the other hand, no microbubbles are left behind when the drop impacts onto molecularly smooth mica sheets. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface, and the presence of the microbubbles can therefore distinguish between glass with 10 nm roughness and perfectly smooth glass. We contrast this entrapment topology with the initial contact of a drop impacting onto a film of extremely viscous immiscible liquid, where the initial contact appears to be continuous along the ring. Here, an azimuthal instability occurs during the rapid contraction at the triple line, also leaving behind microbubbles. For low impact velocities the nature of the initial contact changes to one initiated by ruptures of a thin lubricating air film.

  6. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  7. Tracing contacts of TB patients in Malaysia: costs and practicality.

    Science.gov (United States)

    Atif, Muhammad; Sulaiman, Syed Azhar Syed; Shafie, Asrul Akmal; Ali, Irfhan; Asif, Muhammad

    2012-01-01

    Tuberculin skin testing (TST) and chest X-ray are the conventional methods used for tracing suspected tuberculosis (TB) patients. The purpose of the study was to calculate the cost incurred by Penang General Hospital on performing one contact tracing procedure using an activity based costing approach. Contact tracing records (including the demographic profile of contacts and outcome of the contact tracing procedure) from March 2010 until February 2011 were retrospectively obtained from the TB contact tracing record book. The human resource cost was calculated by multiplying the mean time spent (in minutes) by employees doing a specific activity by their per-minute salaries. The costs of consumables, Purified Protein Derivative vials and clinical equipment were obtained from the procurement section of the Pharmacy and Radiology Departments. The cost of the building was calculated by multiplying the area of space used by the facility with the unit cost of the public building department. Straight-line deprecation with a discount rate of 3% was assumed for the calculation of equivalent annual costs for the building and machines. Out of 1024 contact tracing procedures, TST was positive (≥10 mm) in 38 suspects. However, chemoprophylaxis was started in none. Yield of contact tracing (active tuberculosis) was as low as 0.5%. The total unit cost of chest X-ray and TST was MYR 9.23 (2.90 USD) & MYR 11.80 (USD 3.70), respectively. The total cost incurred on a single contact tracing procedure was MYR 21.03 (USD 6.60). Our findings suggest that the yield of contact tracing was very low which may be attributed to an inappropriate prioritization process. TST may be replaced with more accurate and specific methods (interferon gamma release assay) in highly prioritized contacts; or TST-positive contacts should be administered 6H therapy (provided that the chest radiography excludes TB) in accordance with standard protocols. The unit cost of contact tracing can be significantly

  8. Visualizing special relativity: the field of an electric dipole moving at relativistic speed

    International Nuclear Information System (INIS)

    Smith, Glenn S

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly illustrated by these graphics and explained with simple calculations; these include the constancy of the speed of light in inertial frames, the Doppler effect, the headlight effect, and the concentration of field lines. In addition, the energy and linear momentum of the radiated field are determined and shown to satisfy the transformation and invariance required by special relativity.

  9. A survey of exposures related to recognized occupational contact dermatitis in Denmark in 2010

    DEFF Research Database (Denmark)

    Carøe, Tanja Korfitsen; Ebbehøj, Niels; Agner, Tove

    2014-01-01

    BACKGROUND: Skin diseases are the most commonly recognized occupational diseases in Denmark, and occupational contact dermatitis (OCD) comprises ∼95% of all cases. OBJECTIVES: To prevent occupational contact dermatitis, it is important to specifically identify exposures and work routines related...... to outbreak of the disease. The aim of this study was to give an overview of exposures for patients with occupational contact dermatitis in Denmark in 2010, and relate this to line of work and disease severity. MATERIAL AND METHODS: The study was a descriptive, register-based study including patients......, 1020 women and 484 men, were included in the study. Irritant contact dermatitis accounted for 70% of all cases; 68% of these were caused by wet work. Forty-six per cent of all patients were employed either in the healthcare sector, in cleaning, or as kitchen workers. Among contact allergies, the most...

  10. Numerical analysis of droplet impingement using the moving particle semi-implicit method

    International Nuclear Information System (INIS)

    Xiong, Jinbiao; Koshizuka, Seiichi; Sakai, Mikio

    2010-01-01

    Droplet impingement onto a rigid wall is simulated in two and three dimensions using the moving particle semi-implicit method. In two-dimensional calculations, the convergence is achieved and the propagation of a shockwave in a droplet is captured. The average pressure on the contact area decreases gradually after the maximum value. The numerically obtained maximum average impact pressure agrees with the Heymann correlation. A large shear stress appears at the contact edge due to jetting. A parametric study shows that the droplet diameter has only a minor effect on the pressure load due to droplet impingement. When the impingement takes place from an impact angle of π/4 rad, the pressure load and shear stress show a dependence only on the normal velocity to the wall. A comparison between the three-dimensional and two-dimensional results shows that consideration of the three-dimensional effect can decrease the average impact pressure by about 12%. (author)

  11. Dense flow around a sphere moving into a cloud of grains

    Directory of Open Access Journals (Sweden)

    Gondret Philippe

    2017-01-01

    Full Text Available A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular “cluster” zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10−2 and 10−1. The influence of sidewalls is then investigated on the flow and the forces.

  12. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    Science.gov (United States)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  13. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  14. Line lessons: Enbridge's Northern Line provides valuable information

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2000-02-01

    Experiences gained from the 14-year old Norman Wells crude oil pipeline in the Northwest Territories may provide operators with valuable insights in natural gas pipeline developments in northern Canada. The Norman Wells line is the first and only long-distance pipeline in North America buried in permafrost and has proven to be a veritable laboratory on pipeline behaviour in extremely cold climates which also happen to be discontinuous at the same time. The line was built by Enbridge with a 'limit state' design, i e. it was built to move within the permafrost within certain limits, the amount of movement depending upon the area in which the line was built. This technology, which is still cutting edge, allows the pipeline to react to the freeze-thaw cycle without being affected by the heaving and resettling. The knowledge gained from the Norman Wells Line has come in very useful in the more recent AltaGas Services project transporting natural gas from a nearby well into the the town of Inuvik. Enbridge also contributed to the development of various pipeline inspection tools such as the 'Geopig' which travels within the pipeline and can pinpoint the location of problems practically within a matter of inches, and the 'Rolligon' an amphibious vehicle with five-foot diameter rubber tires that displaces only two pounds per square inch, leaving barely a track as it travels along the right-of-way during times other than winter.

  15. Fulltext PDF

    Indian Academy of Sciences (India)

    0005881

    Reconfiguration on nanocrossbar using material implication ... Thermal comfort analysis of hostels in National Institute of Technology Calicut,. India. G K Kumar .... Newtonian liquid bridge with a moving contact line phase field method. Kishore ...

  16. Thermal analysis of a transmission line for Traveling Wave Tube TWT

    International Nuclear Information System (INIS)

    Chbiki, Mounir; Laraqi, Najib; Jarno, Jean-François; Herrewyn, Jacques; Silva Botelho, Tony da

    2012-01-01

    A new analytical method has been developed to study the delay line of Traveling Waves Tubes (TWT). Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In this work, we highlight the influence of the macro-constriction on the heat transfer rate in the various parts of a TWT the geometry of which is also relatively complex. We propose in this work an analytical study of the thermal behavior of a transmission line in established regime. First, we determine the individual thermal resistance of each component. Secondly, we estimate the global resistance of the device according to the geometrical parameters and the respective conductivities of the various elements of this line. In this analytical model, we proceed to parametric studies in order to determine the geometrical configurations that will provide the lowest global thermal resistance. We will emphasize the potential gain according to the used materials and the increase of contact areas.

  17. Producing optical (contact) lenses by a novel low cost process

    Science.gov (United States)

    Skipper, Richard S.; Spencer, Ian D.

    2005-09-01

    The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.

  18. Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us GETDB Expression image data of Drosophila GAL4 enhancer trap lines Data detail Data name Exp...ta contents 3,075 expression image data by developmental stages of Drosophila Images are classified into the...escription Download License Update History of This Database Site Policy | Contact Us Expression image data of Drosophila GAL4 enhancer trap lines - GETDB | LSDB Archive ... ...ression image data of Drosophila GAL4 enhancer trap lines DOI 10.18908/lsdba.nbdc00236-004 Description of da

  19. Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body

    Science.gov (United States)

    Selivanov, M. F.

    2017-11-01

    An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.

  20. Embodied affectivity: On moving and being moved

    Directory of Open Access Journals (Sweden)

    Thomas eFuchs

    2014-06-01

    Full Text Available There is a growing body of research indicating that bodily sensation and behaviour strongly influences one’s emotional reaction towards certain situations or objects. On this background, a framework model of embodied affectivity is suggested: we regard emotions as resulting from the circular interaction between affective qualities or affordances in the environment and the subject’s bodily resonance, be it in the form of sensations, postures, expressive movements or movement tendencies. Motion and emotion are thus intrinsically connected: one is moved by movement (perception; impression; affection and moved to move (action; expression; e-motion. Through its resonance, the body functions as a medium of emotional perception: it colours or charges self-experience and the environment with affective valences while it remains itself in the background of one’s own awareness. This model is then applied to emotional social understanding or interaffectivity which is regarded as an intertwinement of two cycles of embodied affectivity, thus continuously modifying each partner’s affective affordances and bodily resonance. We conclude with considerations of how embodied affectivity is altered in psychopathology and can be addressed in psychotherapy of the embodied self.

  1. Mechanical Implementation and Simulation of MoboLab, A Mobile Robot for Inspection of Power Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mahmud Saadat Foumani

    2008-11-01

    Full Text Available This paper describes the first phase in development of a mobile robot that can navigate aerial power transmission lines completely unattended by human operator. Its ultimate purpose is to automate inspection of power transmission lines and their equipments. The authors have developed a scaled functional model of such a mobile robot with a preliminary simple computer based on-off controller. MoboLab (Mobile Laboratory navigates a power transmission line between two strain towers. It can maneuver over obstructions created by line equipments such as insulators, warning spheres, dampers, and spacer dampers. It can also easily negotiate the towers by its three flexible arms. MoboLab has an internal main screw which enables the robot to move itself or its two front and rear arms independently through changing gripped points. When the front arm gets close to an obstacle, the arm detaches from the line and goes down, the robot moves forward, the arm passes the obstacle and grippes the line again. In a same way another arms pass the obstacle.

  2. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    Science.gov (United States)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  3. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  4. Reducing contact resistance in graphene devices through contact area patterning.

    Science.gov (United States)

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  5. A frictional contact problem with wear involving elastic-viscoplastic materials with damage and thermal effects

    Directory of Open Access Journals (Sweden)

    Abdelmoumene Djabi

    2015-05-01

    Full Text Available We consider a mathematical problem for quasistatic contact between a thermo-elastic-viscoplastic body with damage and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the thermo-elasticviscoplastic with damage constitutive law for the material. The damage of the material caused by elastic deformations. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a coupled system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and the heat equation for the temperature. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  6. Who Is Spreading Avian Influenza in the Moving Duck Flock Farming Network of Indonesia?

    Directory of Open Access Journals (Sweden)

    Joerg Henning

    Full Text Available Duck populations are considered to be a reservoir of Highly pathogenic avian influenza (HPAI virus H5N1 in some agricultural production systems, as they are able to shed the virus for several days without clinical signs. Countries endemically affected with HPAI in Asia are characterised by production systems where ducks are fed on post-harvest spilled rice. During this scavenging process it is common for ducks to come into contact with other duck flocks or wild birds, thereby providing opportunities for virus spread. Effective risk management for HPAI has been significantly compromised by a limited understanding of management of moving duck flocks in these countries, despite of a small number of recent investigations. Here, for the first time, we described the management of moving duck flocks and the structure of the moving duck flock network in quantitative terms so that factors influencing the risk of HPAIV transmission can be identified. By following moving duck flock farmers over a period of 6 months in Java, Indonesia, we were able to describe the movement of flocks and to characterise the network of various types of actors associated with the production system. We used these data to estimate the basic reproductive number for HPAI virus spread. Our results suggest that focussing HPAI prevention measures on duck flocks alone will not be sufficient. Instead, the role of transporters of moving duck flocks, hatcheries and rice paddy owners, in the spread of the HPAI virus needs to be recognised.

  7. Unevenness of Sliding Surface of Overhead Rigid Conductor Lines and Method for Reducing Unevenness

    Science.gov (United States)

    Aboshi, Mitsuo; Shimizu, Masashi

    Rigid conductor lines are used in many subways, because the use of such conductor lines reduces the risk of accidents and because less space is required for their installation. However, as the unevenness of the sliding surface of the rigid conductor lines significantly influences the fluctuations in the contact force between pantographs and contact lines, it is necessary to decrease the unevenness at the construction as well as the maintenance stages. In order to investigate the installation accuracy of overhead rigid conductor lines, we have developed a device that accurately and continuously measures the unevenness of the sliding surface. By using this measuring device, we have confirmed that the unevenness of the sliding surface depends on various factors such as the sag between the support points, the deformation of the aluminum base or the conductive rail in the case of a long wavelength, the slight sagging unevenness between the bolts of the long ear, the undulating wear etc. This paper describes the actual unevenness conditions and the technical methods for decreasing the unevenness of the sliding surface of overhead rigid conductor lines.

  8. Inspection Method for Contact Condition of Soil on the Surface of Underground Pipe Utilizing Resonance of Transverse Lamb Wave

    Science.gov (United States)

    Tanigawa, Hiroshi; Seno, Hiroaki; Watanabe, Yoshiaki; Nakajima, Koshiro

    1998-05-01

    A nondestructive inspection method to estimate the contact condition of soil on the surface of an underground pipe, utilizing the resonance of a transverse Lamb wave circulating along the pipe wall is proposed.The Q factor of the resonance is considered and measured under some contact conditions by sweeping the vibrating frequency in a 150-mm-inner diameter Fiberglass Reinforced Plastic Mortar (FRPM) pipe. It is confirmed that the Q factor shows a clear response to the change in the contact conditions. For example, the Q factor is 8.4 when the pipe is in ideal contact with the soil plane and goes up to 19.2 when a 100-mm-diameter void is located at the contact surface of the soil.The spatial resolution of the proposed inspection method is also measured by moving the sensing point along the direction of laying the length of the pipe into a 85-mm-diameter void. The resolution of the proposed method is estimated at about 50 mm.

  9. Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System

    International Nuclear Information System (INIS)

    Kim, Yon Lae; Park, Byung Moon; Bae, Yong Ki; Kang, Min Young; Bang, Dong Wan; Lee, Gui Won

    2006-01-01

    Few researches have been performed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of 1.14 g/cm 3 , 0.32 g/cm 3 respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose distributions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distributions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles

  10. A novel MEMS inertial switch with a reinforcing rib structure and electrostatic power assist to prolong the contact time

    Science.gov (United States)

    Li, Jian; Wang, Yan; Yang, Zhuoqing; Ding, Guifu; Zhao, Xiaolin; Wang, Hong

    2018-03-01

    The MEMS inertial switch is widely used in various industries owing to its advantage of small size, high integration, low power consumption and low costs, especially in the timing of Internet of things, such as toys, handheld devices, accessories and vibration testing. This paper provided a novel inertial switch with a reinforcing rib structure and electrostatic power assist. The designed inertial switch can reduce the complexity of the post-processing circuit and broaden its application prospect. The continuous electrostatic force can extend the contact time of the designed inertia switch before the leakage of electricity ends. The moving electrode with a reinforcing rib structure can effectively restrain the bending of the lower surface of moving electrode caused by residual stress. The array-type fixed electrode can ensure stable contact between the electrodes when the device is sensitive to external shocks. The dynamic displacement-time curve can be simulated by the COMSOL finite element simulation software. The laminated plating process is used to produce the designed inertial switch and the drop hammer acceleration monitoring system is used to test the fabricated device. The results indicate that, compared with the traditional design, the bouncing phenomenon can be prevented and extend the contact time to 336μs.

  11. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  12. A direct reading on-line flowrate meter for use in radiochemical plant

    International Nuclear Information System (INIS)

    Shah, B.V.; Kaimal, C.K.R.; Siddiqui, I.A.; Kumar, S.V.

    1987-01-01

    A device for measurement and remote direct reading display of the flowrates of streams in a radiochemical plant is described. The device is interposed in the measured stream and consists of a syphon pot with a specially developed attachment on the discharge line. Differential pressure switches are used to trigger a timer device at set levels in the pot and the time required for filling the pot during each cycle is measured and is used to compute and display the flowrate. The device is accurate and reliable and is simple to fabricate and install. It is maintenance-free since it has no moving parts. It is also suggested that a manometer with conductive contacts could be used in place of the d.p. switches. The background and various stages of development of the device are described. The operating data is tabulated and parameters required for plant applications are indicated in detail. A simple method to detect and correct for errors due to drift in d.p. switch setting is also outlined. Sketches of typical syphon pot, the schematic of the apparatus and suggested layout for application in radiochemical plant are also included. (author). 11 figures, 6 tables

  13. American Contact Dermatitis Society Contact Allergy Management Program: An Epidemiologic Tool to Determine Relative Prevalence of Contact Allergens.

    Science.gov (United States)

    Scheman, Andrew; Severson, David

    2016-01-01

    Data on the prevalence of contact allergy in North America are currently reported by groups of academic contact allergy specialists at select academic centers. Sampling of data from numerous centers across North America, including practices performing more limited patch testing, would provide a broader perspective of contact allergen prevalence in North America. The American Contact Dermatitis Society Contact Allergy Management Program is an ideal tool for collection of epidemiologic data regarding contact allergy prevalence in North America. The aim of the study was to identify the relative prevalence of contact allergy to common contact allergens in North America. Mapping of Contact Allergy Management Program (CAMP) data was performed to allow analysis of how frequently searches were performed for various contact allergens. The number of searches performed for specific allergens provides a measure of the relative prevalence of contact allergy to these allergens. The top 35 allergens for the period from November 18, 2012 to November 18, 2013 are reported. Although these data are useful, specific recommendations for minor alterations to CAMP are discussed, which will allow future CAMP data to be stratified and more powerful. With minor modifications, CAMP can provide a quantum leap in the reporting of contact allergy epidemiologic data in North America.

  14. Non-ideal magnetohydrodynamics on a moving mesh

    Science.gov (United States)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  15. Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing

    Science.gov (United States)

    Lee, James S. J.; Nguyen, Dziem D.; Lin, C.

    1989-03-01

    A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.

  16. Overview of The Pulse Line Ion Accelerator

    International Nuclear Information System (INIS)

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-01-01

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication

  17. Thermal degradation of ohmic contacts on semipolar (11-22) GaN films grown on m-plane (1-100) sapphire substrates

    International Nuclear Information System (INIS)

    Kim, Doo Soo; Kim, Deuk Young; Seo, Yong Gon; Kim, Ji Hoon; Hwang, Sung Min; Baik, Kwang Hyeon

    2012-01-01

    Semipolar (11-22) GaN films were grown on m-plane (1-100) sapphire substrates by using metalorganic chemical vapor deposition. The line widths of the omega rocking curves of the semipolar GaN films were 498 arcsec along the [11-23] GaN direction and 908 arcsec along the [10-10] GaN direction. The properties of the Ti/Al/Ni/Au metal contact were investigated using transmission-line-method patterns oriented in both the [11-23] GaN and the [10-10] GaN directions of semipolar (11-22) GaN. The minimum specific contact resistance of ∼3.6 x 10 -4 Ω·cm -2 was obtained on as-deposited metal contacts. The Ohmic contact properties of semipolar (11-22) GaN became degraded with increasing annealing temperature above 400 .deg. C. The thermal degradation of the metal contacts may be attributed to the surface property of N-polarity on the semipolar (11-22) GaN films. Also, the semipolar (11-22) GaN films did not show clear anisotropic behavior of the electrical properties for different azimuthal angles.

  18. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  19. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au

    Directory of Open Access Journals (Sweden)

    Patrick H. Carey IV

    2017-09-01

    Full Text Available AZO interlayers between n-Ga2O3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 300°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga2O3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10-5 Ω-cm2 were achieved after a relatively low temperature 400°C annealing. The conduction band offset between AZO and Ga2O3 is 0.79 eV and provides a favorable pathway for improved electron transport across this interface.

  20. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au

    Science.gov (United States)

    Carey, Patrick H.; Yang, Jiancheng; Ren, F.; Hays, David C.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito; Kravchenko, Ivan I.

    2017-09-01

    AZO interlayers between n-Ga2O3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 30 0°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga2O3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10-5 Ω-cm2 were achieved after a relatively low temperature 40 0°C annealing. The conduction band offset between AZO and Ga2O3 is 0.79 eV and provides a favorable pathway for improved electron transport across this interface.

  1. A tangent subsolar merging line

    International Nuclear Information System (INIS)

    Crooker, N.U.; Siscoe, G.L.; Toffoletto, F.R.

    1990-01-01

    The authors describe a global magnetospheric model with a single subsolar merging line whose position is determined neither locally by the relative orientations and strengths of the merging fields nor globally by the orientation of a separator line--the governing parameters of most previous models--but by the condition of tangential contact between the external field and the magnetopause. As in previous models, the tilt of the merging line varies with IMF orientation, but here it also depends upon the ratio of Earth's magnetic flux that leaks out of the magnetopause to IMF flux that penetrates in. In the limiting case treated by Alekseyev and Belen'kaya, with no leakage of Earth's field and total IMF penetration, the merging line forms a great circle around a spherical magnetosphere where undeviated IMF lines lie tangent to its surface. This tangent merging line lies perpendicular to the IMF. They extend their work to the case of finite leakage and partial penetration, which distort the IMF into a draped pattern, thus changing the locus of tangency to the sphere. In the special case where the penetrating IMF flux is balanced by an equal amount of Earth flux leakage, the tangent merging line bisects the angle between the IMF and Earth's northward subsolar field. This result is identical to the local merging line model result for merging fields with equal magnitude. Here a global flux balance condition replaces the local equal magnitude condition

  2. Modeling of On-Line Catalyst Addition Effects in a Short Contact Time Reactor

    National Research Council Canada - National Science Library

    Zerkle, David K; Allendorf, Mark Donald; Wolf, Markus; Deutschmann, Olaf

    2000-01-01

    ... operating ( on-line catalyst addition). Our simulations indicate that the fundamental behavior of the ethane SCTR prepared with catalyst added online is the result of coupled heterogeneous and homogeneous chemical processes...

  3. Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations

    Science.gov (United States)

    Roussel-Dupre, D.; Shine, R. A.

    1982-01-01

    Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.

  4. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    Energy Technology Data Exchange (ETDEWEB)

    Tortello, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino 10129 (Italy); Park, W. K., E-mail: wkpark@illinois.edu; Ascencio, C. O.; Saraf, P.; Greene, L. H. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-06-15

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  6. Detection of moving objects from a moving platform in urban scenes

    NARCIS (Netherlands)

    Haar, F.B. ter; Hollander, R.J.M. den; Dijk, J.

    2010-01-01

    Moving object detection in urban scenes is important for the guidance of autonomous vehicles, robot navigation, and monitoring. In this paper moving objects are automatically detected using three sequential frames and tracked over a longer period. To this extend we modify the plane+parallax,

  7. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization

    Science.gov (United States)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin

    2017-08-01

    Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.

  8. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  9. Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaohui; Cho, Eou-Sik [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of); Kwon, Sang Jik, E-mail: sjkwon@kyungwon.ac.kr [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of)

    2011-09-01

    In this paper, we reported the effect of the power and the working pressure on the molybdenum (Mo) films deposited using an in-line direct current (DC) magnetron sputtering system. The electrical and the structural properties of Mo film were improved by increasing DC power from 1 to 3 kW. On the other side, the resistivity of the Mo films became higher with the increasing working pressure. However, the adhesion property was improved when the working pressure was higher. In this work, in order to obtain an optimal Mo film as a back metal contact of Cu(In,Ga)Se{sub 2} (CIGS) solar cells, a bilayer Mo film was formed through the different film structures depending on the working pressure. The first layer was formed at a high pressure of 12 mTorr for a better adhesion and the second layer was formed at a low pressure of 3 mTorr for a lower resistivity.

  10. Moving the implementation line

    DEFF Research Database (Denmark)

    Carugati, Andrea; Giangreco, A.; Sebastiano, A.

    2011-01-01

    of a typical Western nursing home that, in the past 12 years, has aimed to internally develop a healthcare provision and management system to support its evolving needs. Our analysis shows that four factors enable this concurrent change: (1) the internal appreciation of change, (2) the external appreciation...

  11. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  12. Transport mechanisms in capillary condensation of water at a single-asperity nanoscopic contact.

    Science.gov (United States)

    Sirghi, Lucel

    2012-02-07

    Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.

  13. Philanthropic Discourse vs Promotional Genre: To Study the Rhetorical Choices of Promotion and Structural Moves of Two Appeal Letters in Hong Kong

    Directory of Open Access Journals (Sweden)

    Patrick Chi-wai LEE

    2016-09-01

    Full Text Available Based on two appeal letters from (i Oxfam Hong Kong and (ii Hong Kong Committee For United Nations Children's Fund (UNICEF, this paper aims to study the rhetorical choices of promotion and structural moves of two appeal letters, exploring whether the philanthropic discourse can be viewed in line with the promotional genre. The findings appear to reveal that there is a hybrid form of promotional genre in philanthropic discourse, with reference to Bhatia’s (1998 generic patterns in fund-raising discourse framework. There are similar structural moves of advertising, although the move sequences could vary. However, the move of “introducing the cause” is always found at the very beginning because the readers are more interested to realise what the main theme of the appeal letter is. In addition, appeal letters are found to be modelled in promotional genre, in which they are rhetorical choices of promotion attracting attention from readers – by using “you” and marked devices of attention getters. The findings in this study appear to be in line with the argument that promotional concerns have influenced the nature of philanthropic discourse.

  14. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  15. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  16. Segmentation of Moving Object Using Background Subtraction Method in Complex Environments

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-06-01

    Full Text Available Background subtraction is an extensively used approach to localize the moving object in a video sequence. However, detecting an object under the spatiotemporal behavior of background such as rippling of water, moving curtain and illumination change or low resolution is not a straightforward task. To deal with the above-mentioned problem, we address a background maintenance scheme based on the updating of background pixels by estimating the current spatial variance along the temporal line. The work is focused to immune the variation of local motion in the background. Finally, the most suitable label assignment to the motion field is estimated and optimized by using iterated conditional mode (ICM under a Markovian framework. Performance evaluation and comparisons with the other well-known background subtraction methods show that the proposed method is unaffected by the problem of aperture distortion, ghost image, and high frequency noise.

  17. Evaluation of anti-tuberculosis antibodies in healthy contact and non-contacts persons

    International Nuclear Information System (INIS)

    Aziz, N; Bukhari, M.H; Muneer, M; Tayyab, M; Chaudhry, N.A.

    2006-01-01

    This study was conducted to see the presence of the antimycobacterial antibodies in healthy household contacts of tuberculosis patients and healthy normal subjects who have never been in contact with tuberculosis patients. A total of 200 subjects, 120 with history of household contact and 80 without such history were included in the study. Routine Haematological investigations were performed and all the sera of 200 subjects were tested who 19M, 19G and IgA anti tuberculosis antibodies using ELISA technique. There was no difference in the average age of the household contacts and non-contacts. The complaints of pyrexia, night sweats and loss of weight was more in house hold contacts as compared to non-contacts. The awareness about BCG vaccination was equal among the household contacts and non-contacts. The combined serological positivity of the household contacts was 65.8% and the combined serological positivity for non-contacts was 34.1%. There was no statistically significant difference in the presence of 19M among household contacts as compared to non-contacts. However both IgG and 19A were present in significantly higher number of household contacts as compared to non contacts. This study concludes that the persons living in the house with a patient suffering from active pulmonary tuberculosis (household contact) have more chances of being infected with Mycobacterium tuberculosis as compared to the healthy non-contacts. (author)

  18. An Efficient and Robust Moving Shadow Removal Algorithm and Its Applications in ITS

    Directory of Open Access Journals (Sweden)

    Shou Yu-Wen

    2010-01-01

    Full Text Available We propose an efficient algorithm for removing shadows of moving vehicles caused by non-uniform distributions of light reflections in the daytime. This paper presents a brand-new and complete structure in feature combination as well as analysis for orientating and labeling moving shadows so as to extract the defined objects in foregrounds more easily in each snapshot of the original files of videos which are acquired in the real traffic situations. Moreover, we make use of Gaussian Mixture Model (GMM for background removal and detection of moving shadows in our tested images, and define two indices for characterizing non-shadowed regions where one indicates the characteristics of lines and the other index can be characterized by the information in gray scales of images which helps us to build a newly defined set of darkening ratios (modified darkening factors based on Gaussian models. To prove the effectiveness of our moving shadow algorithm, we carry it out with a practical application of traffic flow detection in ITS (Intelligent Transportation System—vehicle counting. Our algorithm shows the faster processing speed, 13.84 ms/frame, and can improve the accuracy rate in 4%~10% for our three tested videos in the experimental results of vehicle counting.

  19. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  20. MOVES regional level sensitivity analysis

    Science.gov (United States)

    2012-01-01

    The MOVES Regional Level Sensitivity Analysis was conducted to increase understanding of the operations of the MOVES Model in regional emissions analysis and to highlight the following: : the relative sensitivity of selected MOVES Model input paramet...

  1. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  2. Chromate dermatitis from a boiler lining.

    Science.gov (United States)

    Rycroft, R J; Calnan, C D

    1977-08-01

    Chromate dermatitis is described in a mechanical fitter working inside boiler combustion chambers. A source of hexavalent chromate is traced to the action of the heat and alkaline fuel ash on trivalent chrome ore in parts of the refractory lining. Removal of the patient from this contact has resulted in almost complete clearing of his dermatitis, without any relapse, during a 9-month follow-up period.

  3. Moving Field Guides

    Science.gov (United States)

    Cassie Meador; Mark Twery; Meagan. Leatherbury

    2011-01-01

    The Moving Field Guides (MFG) project is a creative take on site interpretation. Moving Field Guides provide an example of how scientific and artistic endeavors work in parallel. Both begin with keen observations that produce information that must be analyzed, understood, and interpreted. That interpretation then needs to be communicated to others to complete the...

  4. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  5. Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2013-12-01

    Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.

  6. Physical, experimental and numerical study of fundamental mechanisms involved in two-phase flows

    International Nuclear Information System (INIS)

    Mathieu, Benoit

    2003-01-01

    In this work, small-scale phenomena in two-phase flows with phase change are studied. First, some fundamental phenomena related to the heat and mass transfer at small scale are recalled. A physical model is then built in order to describe moving contact lines with phase change. In the second part, a numerical simulation method is built, that is able to describe the growth of a single bubble on a heated wall. Compared to existing methods, major improvements are obtained with respect to the conservation of the mass, the spurious currents related to interfacial forces and the physical description of the contact lines. Finally, an experimental investigation of the singular heat and mass transfer at the contact line is carried out. Preliminary results obtained on a simplified configuration are presented. (author) [fr

  7. Footwear contact dermatitis from dimethyl fumarate.

    Science.gov (United States)

    Švecová, Danka; Šimaljakova, Maria; Doležalová, Anna

    2013-07-01

    Dimethyl fumarate (DMF) is an effective inhibitor of mold growth. In very low concentrations, DMF is a potent sensitizer that can cause severe allergic contact dermatitis (ACD). It has been identified as the agent responsible for furniture contact dermatitis in Europe. The aim of this study was to evaluate patients in Slovakia with footwear ACD associated with DMF, with regard to clinical manifestations, patch test results, and results of chemical analysis of their footwear. Nine patients with suspected footwear contact dermatitis underwent patch testing with the following allergens: samples of their own footwear, commercial DMF, the European baseline, shoe screening, textile and leather dye screening, and industrial biocides series. The results were recorded according to international guidelines. The content of DMF in footwear and anti-mold sachets was analyzed using gas chromatography and mass spectrometry. Acute ACD was observed in nine Caucasian female patients. All patients developed delayed sensitization, as demonstrated by positive patch testing using textile footwear lining. Seven patients were patch tested with 0.1% DMF, and all seven were positive. Chemical analysis of available footwear showed that DMF was present in very high concentrations (25-80 mg/Kg). Dimethyl fumarate is a new footwear allergen and was responsible for severe ACD in our patients. To avoid an increase in the number of cases, the already approved European preventive measures should be accepted and commonly employed. © 2013 The International Society of Dermatology.

  8. Surfactant modified clays’ consistency limits and contact angles

    Directory of Open Access Journals (Sweden)

    S Akbulut

    2012-07-01

    Full Text Available This study was aimed at preparing a surfactant modified clay (SMC and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine were used as surfactants in this study. The experimental results indicated that SMC consistency limits (liquid and plastic limits changedsignificantly compared to those of natural clay. Plasticity index and liquid limit (PI-LL values representing soil class approached the A-line when zwitterion, nonionic, and anionic surfactant percentageincreased. However, cationic SMC became transformed from CH (high plasticity clay to MH (high plasticity silt class soils, according to the unified soil classification system (USCS. Clay modifiedwith cationic and anionic surfactants gave higher and lower contact angles than natural clay, respectively.

  9. Experimental study of tyre/road contact forces in rolling conditions for noise prediction

    Science.gov (United States)

    Cesbron, Julien; Anfosso-Lédée, Fabienne; Duhamel, Denis; Ping Yin, Hai; Le Houédec, Donatien

    2009-02-01

    This paper deals with the experimental study of dynamical tyre/road contact for noise prediction. In situ measurements of contact forces and close proximity noise levels were carried out for a slick tyre rolling on six different road surfaces between 30 and 50 km/h. Additional texture profiles of the tested surfaces were taken on the wheel track. Normal contact stresses were measured at a sampling frequency of 10752 Hz using a line of pressure sensitive cells placed both along and perpendicular to the rolling direction. The contact areas obtained during rolling were smaller than in static conditions. This is mainly explained by the dynamical properties of tyre compounds, like the viscoelastic behaviour of the rubber. Additionally the root-mean-square of the resultant contact forces at various speeds was in the same order for a given road surface, while their spectra were quite different. This is certainly due to a spectral influence of bending waves propagating in the tyre during rolling, especially when the wavelength is small in comparison with the size of the contact patch. Finally, the levels of contact forces and close proximity noise measured at 30 km/h were correlated. Additional correlations with texture levels were performed. The results show that the macro-texture generates contact forces linearly around 800 Hz and consequently noise levels between 500 and 1000 Hz via the vibrations transmitted to the tyre.

  10. Characterisation of silica surfaces III: Characterisation of aerosil samples through ethanol adsorption and contact angle studies

    Directory of Open Access Journals (Sweden)

    M.S. Nadiye–Tabbiruka

    2009-12-01

    Full Text Available Aerosil samples, heat treated and then silylated with various silanes at various temperatures have been characterised by adsorption of ethanol at 293 K. Adsorption isotherms were plotted and the BET specific surface areas were determined. Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the concentration of residual silanols and that of surface silyl groups.

  11. Nasca Lines: A Mystery wrapped in an Enigma

    OpenAIRE

    Pita, J. R. Castrejon; Pita, A. A. Castrejon; Galan, A. Sarmiento; Garcia, R. Castrejon

    2003-01-01

    We analyze the geometrical structure of the astonishing Nasca geoglyphs in terms of their fractal dimension with the idea of dating these manifestations of human cultural engagements in relation to one another. Our findings suggest that the first delineated images consist of straight, parallel lines and that having sophisticated their abilities, Nasca artist moved on to the design of more complex structures.

  12. Nasca lines: A mystery wrapped in an enigma

    Science.gov (United States)

    Castrejón-Pita, J. R.; Castrejón-Pita, A. A.; Sarmiento-Galán, A.; Castrejón-García, R.

    2003-09-01

    We analyze the geometrical structure of the astonishing Nasca geoglyphs in terms of their fractal dimension with the idea of dating these manifestations of human cultural engagements in relation to one another. Our findings suggest that the first delineated images consist of straight, parallel lines and that having sophisticated their abilities, the Nasca artists moved on to the design of more complex structures.

  13. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

    Science.gov (United States)

    Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee

    2012-10-23

    Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect

  14. Contextualizing Intergroup Contact: Do Political Party Cues Enhance Contact Effects?

    DEFF Research Database (Denmark)

    Sønderskov, Kim Mannemar; Thomsen, Jens Peter Frølund

    2015-01-01

    This article examines intergroup contact effects in different political contexts. We expand on previous efforts of social psychologists by incorporating the messages of political parties as a contextual trigger of group membership awareness in contact situations. We argue that the focus among...... political parties on us-them categorizations heightens the awareness of group memberships. This focus in turn enhances the positive intergroup contact effect by stimulating majority members to perceive contacted persons as prototypical outgroup members. A multilevel analysis of 22 countries and almost 37......,000 individuals confirms that the ability of intergroup contact to reduce antiforeigner sentiment increases when political parties focus intensively on immigration issues and cultural differences. Specifically, both workplace contact and interethnic friendship become more effective in reducing antiforeigner...

  15. Carrier Transport of Silver Nanowire Contact to p-GaN and its Influence on Leakage Current of LEDs

    Science.gov (United States)

    Oh, Munsik; Kang, Jae-Wook; Kim, Hyunsoo

    2018-03-01

    The authors investigated the silver nanowires (AgNWs) contact formed on p-GaN. Transmission line model applied to the AgNWs contact to p-GaN produced near ohmic contact with a specific contact resistance (ρ sc) of 10-1˜10-4 Ω·cm2. Noticeably, the contact resistance had a strong bias-voltage (or current-density) dependence associated with a local joule heating effect. Current-voltage-temperature (I-V-T) measurement revealed a strong temperature dependence with respect to ρ sc, indicating that the temperature played a key role of an enhanced carrier transport. The local joule heating at AgNW/GaN interface, however, resulted in a generation of leakage current of light-emitting diodes (LEDs) caused by degradation of AgNW contact.

  16. Measuring contact area in a sliding human finger-pad contact.

    Science.gov (United States)

    Liu, X; Carré, M J; Zhang, Q; Lu, Z; Matcher, S J; Lewis, R

    2018-02-01

    The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. 3D adaptive finite element method for a phase field model for the moving contact line problems

    KAUST Repository

    Shi, Yi; Bao, Kai; Wang, Xiaoping

    2013-01-01

    variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.

  18. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  19. A new method of making ohmic contacts to p-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Gutierrez, C.A., E-mail: chernandez@fis.cinvestav.mx [DNyN, Cinvestav-IPN, México, DF, 07360 (Mexico); Kudriavtsev, Yu. [Departamento Ingeniería Eléctrica – SEES, Cinvestav-IPN, México, DF, 07360 (Mexico); Mota, Esteban [ESIME, Instituto Politécnico Nacional, México, DF, 07738 (Mexico); Hernández, A.G.; Escobosa-Echavarría, A.; Sánchez-Resendiz, V. [Departamento Ingeniería Eléctrica – SEES, Cinvestav-IPN, México, DF, 07360 (Mexico); Casallas-Moreno, Y.L.; López-López, M. [Departamento Física, Cinvestav-IPN, México, DF, 07360 (Mexico)

    2016-12-01

    Highlights: • Low resistance Ohmic contacts preparation is based on low energy high dose In{sup +} ion implantation into Metal/p-GaN to achieve a thin layer of In{sub x}Ga{sub 1-x}N just at the interface. • The specific ohmic contact was reduced from 10{sup −2} Ωcm{sup 2} to 2.5 × 10{sup −4} Ωcm{sup 2}. - Abstract: The structural, chemical, and electrical characteristics of In{sup +} ion-implanted Au/Ni, Au/Nb and Au/W ohmic contacts to p-GaN were investigated. After the preparation of Ni, Nb and W electrode on the surface of p-GaN, the metal/p-GaN contact interface was implanted by 30 keV In{sup +} ions with an implantation dose of 5 × 10{sup 15} ions/cm{sup 2} at room temperature to form a thin layer of In{sub x}Ga{sub 1-x}N located at the metal-semiconductor interface, achieved to reduce the specific contact resistance due to the improving quantum tunneling transport trough to the structure. The characterization was carried out by high-resolution X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectrometry to investigate the formation of ternary alloy, re-crystallization by rapid thermal annealing process after In{sup +} implantation, and the redistribution of elements. The specific contact resistance was extracted by current-voltage (I-V) curves using transmission line method; the lowest specific contact resistance of 2.5 × 10{sup −4} Ωcm{sup 2} was achieved for Au/Ni/p-In{sub x}Ga{sub 1-x}N/p-GaN ohmic contacts.

  20. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng

    2012-06-26

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  1. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2012-01-01

    Using a continuum model capable of describing the one-component liquid-gas hydrodynamics down to the contact line scale, we carry out numerical simulation and physical analysis for the droplet motion driven by thermal singularity. For liquid droplets in one-component fluids on heated or cooled substrates, the liquid-gas interface is nearly isothermal. Consequently, a thermal singularity occurs at the contact line and the Marangoni effect due to temperature gradient is suppressed. Through evaporation or condensation in the vicinity of the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. This effect on the contact angle can be used to move the droplets on substrates with thermal gradients. Our numerical results for this kind of droplet motion are explained by a simple fluid dynamical model at the droplet length scale. Since the mechanism for droplet motion is based on the change of contact angle, a separation of length scales is exhibited through a comparison between the droplet motion induced by a wettability gradient and that by a thermal gradient. It is shown that the flow field at the droplet length scale is independent of the statics or dynamics at the contact line scale.

  2. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    Science.gov (United States)

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  3. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  4. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  5. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    Science.gov (United States)

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  6. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  7. Interacting active elastic dimers: Two cells moving on a rigid track

    Science.gov (United States)

    Das, Moumita; Mayett, David; Schwarz, J. M.

    2015-03-01

    Cell migration in morphogenesis and cancer metastasis typically involves an interplay between different cell types. The rules governing such interplay remain largely unknown, however, a recent experiment studying the interaction between neural crest (NC) cells and placodal cells reveals an example of such rules. The study found that NC cells chase the placodal cells by chemotaxis, while placodal cells run away from NC cells when contacted by them. Motivated by this observation, we construct and study a minimal one-dimensional cell-cell model comprised of two cells with each cell represented by two-beads-connected-by-an-active spring. The active spring for each moving cell models the stress fibers with their myosin-driven contractility (and alpha-actinin extendability), while the friction coefficients of the beads describe the catch/slip bond behavior of the integrins in focal adhesions. We also include a dynamic contact interaction between the two cells, as well as a chemotactic potential, to decipher the chase-and-run dynamics observed in the experiment. We then use our modeling to further generalize the rules governing the interplay between different cell types during collective cell migration.

  8. ASSEMBLY LINE BALANCING in a CLOTHING COMPANY

    Directory of Open Access Journals (Sweden)

    HASNALCACI Kubra

    2017-05-01

    Full Text Available Assembly lines take the attention of researchers and companies because of its great effect on efficiency. Efficiency in assembly lines has an important role on cost and quality which are the basic fundamentals of competition. Assembly lines contain a number of workstations and tasks (jobs are processed in these stations and are moved from station to station. The tasks are assigned to each station regarding a cycle time. The cycle time is the maximum available time for the production of a job at any workstation. The assingning of jobs to workstations is based on the objective of minimizing the workflow among the workstations, reducing the throughput time as well as the work in progress and thus increasing productivity. If the jobs are not allocated in balance, this will cause idle workstations and waste of workforce besides the loss of overall efficiency. In this study, an assebly line balancing problem was examined for a five pocket denim trousers in a clothing company. Firstly, priority associations and standard durations of operations of denim trousers were determined. Then, assembly line balancing study was carried out by using ranked positional weights assembly line balancing method developed by Helgeson and Birnie to increase the production in a clothing company manufacturing five pocket denim trousers.

  9. Interprofessional Teamwork Education: Moving Toward the Patient-Centered Approach.

    Science.gov (United States)

    Moradi, Kamran; Najarkolai, Atena Rahmati; Keshmiri, Fatemeh

    2016-10-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ISSUE Instructions: 1.3 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded after you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. In order to obtain contact hours you must: 1. Read the article, "Interprofessional Teamwork Education: Moving Toward the Patient-Centered Approach," found on pages 449-460, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website to register for contact hour credit. You will be asked to provide your name, contact information, and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until September 30, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. OBJECTIVES Explain the recommended framework in teaching and implementing interprofessional competencies. Identify

  10. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles

    Science.gov (United States)

    Hu, Xuemin; Chen, Long; Tang, Bo; Cao, Dongpu; He, Haibo

    2018-02-01

    This paper presents a real-time dynamic path planning method for autonomous driving that avoids both static and moving obstacles. The proposed path planning method determines not only an optimal path, but also the appropriate acceleration and speed for a vehicle. In this method, we first construct a center line from a set of predefined waypoints, which are usually obtained from a lane-level map. A series of path candidates are generated by the arc length and offset to the center line in the s - ρ coordinate system. Then, all of these candidates are converted into Cartesian coordinates. The optimal path is selected considering the total cost of static safety, comfortability, and dynamic safety; meanwhile, the appropriate acceleration and speed for the optimal path are also identified. Various types of roads, including single-lane roads and multi-lane roads with static and moving obstacles, are designed to test the proposed method. The simulation results demonstrate the effectiveness of the proposed method, and indicate its wide practical application to autonomous driving.

  11. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development

    International Nuclear Information System (INIS)

    Wieringa, Paul; Micera, Silvestro; Tonazzini, Ilaria; Cecchini, Marco

    2012-01-01

    The F11 hybridoma, a dorsal root ganglion-derived cell line, was used to investigate the response of nociceptive sensory neurons to nanotopographical guidance cues. This established this cell line as a model of peripheral sensory neuron growth for tissue scaffold design. Cells were seeded on substrates of cyclic olefin copolymer (COC) films imprinted via nanoimprint lithography (NIL) with a grating pattern of nano-scale grooves and ridges. Different ridge widths were employed to alter the focal adhesion formation, thereby changing the cell/substrate interaction. Differentiation was stimulated with forskolin in culture medium consisting of either 1 or 10% fetal bovine serum (FBS). Per medium condition, similar neurite alignment was achieved over the four day period, with the 1% serum condition exhibiting longer, more aligned neurites. Immunostaining for focal adhesions found the 1% FBS condition to also have fewer, less developed focal adhesions. The robust response of the F11 to guidance cues further builds on the utility of this cell line as a sensory neuron model, representing a useful tool to explore the design of regenerative guidance tissue scaffolds. (paper)

  12. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  13. Development of 3D online contact measurement system for intelligent manufacturing based on stereo vision

    Science.gov (United States)

    Li, Peng; Chong, Wenyan; Ma, Yongjun

    2017-10-01

    In order to avoid shortcomings of low efficiency and restricted measuring range exsited in traditional 3D on-line contact measurement method for workpiece size, the development of a novel 3D contact measurement system is introduced, which is designed for intelligent manufacturing based on stereo vision. The developed contact measurement system is characterized with an intergarted use of a handy probe, a binocular stereo vision system, and advanced measurement software.The handy probe consists of six track markers, a touch probe and the associated elcetronics. In the process of contact measurement, the hand probe can be located by the use of the stereo vision system and track markers, and 3D coordinates of a space point on the workpiece can be mearsured by calculating the tip position of a touch probe. With the flexibility of the hand probe, the orientation, range, density of the 3D contact measurenent can be adptable to different needs. Applications of the developed contact measurement system to high-precision measurement and rapid surface digitization are experimentally demonstrated.

  14. Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle.

    Science.gov (United States)

    Jiang, Youhua; Sun, Yujin; Drelich, Jaroslaw W; Choi, Chang-Hwan

    2018-05-01

    Spontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions. Results show that a droplet cannot spread spontaneously on pillared surfaces regardless of their shapes or dimensions because of the solid discontinuity. On the contrary, a droplet on pored surfaces can undergo spontaneous spreading whose force increases with a decrease in the advancing contact angle. Theoretical models based on both the system free energy and capillary force along the contact line validate the direct and universal dependency of the spontaneous spreading force on the advancing contact angle.

  15. Moving toroidal limiter

    International Nuclear Information System (INIS)

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  16. Wetting Transition and Line Tension of Oil on Water

    Science.gov (United States)

    Matsubara, H.; Aratono, M.

    Wetting has attracted wide attention in the field of applied chemistry because of its crucial importance in industrial operations such as coating, painting, and lubrication. Here, we summarize our fundamental understandings of surfactant-assisted wetting transitions which we have found and studied for the last ten years. The difference between the surfactant-assisted wetting transitions and existing ones is discussed. Moreover, the relation between wetting transitions and the stability of the three-phase contact line is examined in terms of the line tension of oil lenses.

  17. Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Meltem Önder

    2009-03-01

    Full Text Available Allergic contact dermatitis is the delayed type hypersensitivity reaction to exogenous agents. Allergic contact dermatitis may clinically present acutely after allergen exposure and initial sensitization in a previously sensitized individual. Acute phase is characterized by erythematous, scaly plaques. In severe cases vesiculation and bullae in exposed areas are very characteristic. Repeated or continuous exposure of sensitized individual with allergen result in chronic dermatitis. Lichenification, erythematous plaques, hyperkeratosis and fissuring may develop in chronic patients. Allergic contact dermatitis is very common dermatologic problem in dermatology daily practice. A diagnosis of contact dermatitis requires the careful consideration of patient history, physical examination and patch testing. The knowledge of the clinical features of the skin reactions to various contactans is important to make a correct diagnosis of contact dermatitis. It can be seen in every age, in children textile product, accessories and touch products are common allergens, while in adults allergic contact dermatitis may be related with topical medicaments. The contact pattern of contact dermatitis depends on fashion and local traditions as well. The localization of allergic reaction should be evaluated and patients’ occupation and hobbies should be asked. The purpose of this review is to introduce to our collaques up dated allergic contact dermatitis literatures both in Turkey and in the World.

  18. 'Now she has become my daughter': parents' early experiences of skin-to-skin contact with extremely preterm infants.

    Science.gov (United States)

    Maastrup, Ragnhild; Weis, Janne; Engsig, Anne B; Johannsen, Kirsten L; Zoffmann, Vibeke

    2017-08-29

    Based on the Family-Centred Care philosophy, skin-to-skin contact is a key activity in neonatal care, and use of this practice is increasing also with extremely preterm infants. Little is known about parents' immediate experiences of and readiness for skin-to-skin contact, while their fragile infant may still not be 'on safe ground'. Knowledge about parents' experiences might reduce doubt and reluctance among healthcare professionals to use skin-to-skin contact with extremely preterm infants and thus increase its dissemination in practice. To explore parents' immediate experiences of skin-to-skin contact with extremely preterm infants parents after skin-to-skin contact with their extremely preterm infants analysed using inductive thematic analysis. Parents' experiences were related to the process before, during and after skin-to-skin contact and moved from ambivalence to appreciating skin-to-skin contact as beneficial for both parents and infant. The process comprised three stages: (i) overcoming ambivalence through professional support and personal experience; (ii) proximity creating parental feelings and an inner need to provide care; (iii) feeling useful as a parent and realising the importance of skin-to-skin contact. Having repeatedly gone through stages 2 and 3, parents developed an overall confidence in the value of bonding, independent of the infant's survival. Parents progressed from ambivalence to a feeling of fundamental mutual needs for skin-to-skin contact. Parents found the bonding facilitated by skin-to-skin contact to be valuable, regardless of the infant's survival. © 2017 Nordic College of Caring Science.

  19. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    Science.gov (United States)

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  20. Experimental investigation on the electrical contact behavior of rolling contact connector

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  1. Surface tension and contact angles: Molecular origins and associated microstructure

    Science.gov (United States)

    Davis, H. T.

    1982-01-01

    Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.

  2. Moving Matters: The Causal Effect of Moving Schools on Student Performance. Working Paper #01-15

    Science.gov (United States)

    Schwartz, Amy Ellen; Stiefel, Leanna; Cordes, Sarah A.

    2015-01-01

    The majority of existing research on mobility indicates that students do worse in the year of a school move. This research, however, has been unsuccessful in isolating the causal effects of mobility and often fails to distinguish the heterogeneous impacts of moves, conflating structural moves (mandated by a school's terminal grade) and…

  3. Residential mobility of populations near UK power lines and implications for childhood leukaemia

    International Nuclear Information System (INIS)

    Swanson, John

    2013-01-01

    Epidemiological studies suggest associations between childhood leukaemia and living near high-voltage power lines, but the most obvious potential causative agent, the magnetic fields produced by the power lines, is not supported by laboratory studies or a known mechanism. An alternative hypothesised explanation is if there is greater population mobility near power lines, linking to the findings of Kinlen that population mixing increases leukaemia rates. We used the names recorded in electoral registers to see whether people near power lines move house more often than the population as a whole. We did find variations, but only small ones, and not such as to support the hypothesis. (note)

  4. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR.

    Science.gov (United States)

    Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu

    2016-11-01

    On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Biocompatibility and Bioactivity of Biodentine in Contact with Cementoblast Cells

    Science.gov (United States)

    2016-07-18

    and counting by inverted reflected light microscopy and software analysis . Error bars are SEM. The straight line shows a linear regression analysis...Biodentine® in Contact with Cementoblast Cells ABSTRACT Introduction : Biodentine® is a dental material used for perforation repairs, root-end fillings...pH and calcium ion levels, suggesting surface topology could have a negative effect on cells. INTRODUCTION An ideal endodontic

  6. CONTACT RESISTANCE MODELING

    Directory of Open Access Journals (Sweden)

    S. V. LOSKUTOV

    2018-05-01

    Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

  7. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    Science.gov (United States)

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the

  8. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    International Nuclear Information System (INIS)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T.; Worsley, D.A.; Deganello, D.

    2012-01-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz–Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: ► Color change of a nanoparticle silver coating was measured during sintering ► Color change was correlated to the electrical performance of the coating. ► Potential in-line non-contact measurement method for roll-to-roll printed electronics

  9. Friction and universal contact area law for randomly rough viscoelastic contacts.

    Science.gov (United States)

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  10. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis

    DEFF Research Database (Denmark)

    Koppes, Sjors A.; Engebretsen, Kristiane A.; Agner, Tove

    2017-01-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant...... and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include...... genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet...

  11. Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact

    International Nuclear Information System (INIS)

    Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.

    1998-01-01

    We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance (ωapproximately0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region

  12. Coordinate transformation in the model of long Josephson contacts: geometrically equivalent contacts

    International Nuclear Information System (INIS)

    Semerdzhieva, E.G.; Boyadzhiev, T.L.; ); Shukrinov, Yu.M.; Physical Technical Institute Dushanbe, 734063

    2005-01-01

    The transition from model of long Josephson variable-width contact to the contact model with coordinate-dependent Josephson current amplitude is realized by transforming the coordinates. This sets up a correspondence between Josephson contacts of variable width and quasi-one-dimensional contacts of variable thickness barrier layer. It is shown, that for contacts of exponentially varying width the barrier layer of the corresponding quasi-one-dimensional contact contains the distributed resistive inhomogeneity which is an attractor to magnetic flux vortices. With numerical experiments, a 'critical current-magnetic field' dependence for a resistive microinhomogeneity Josephson contact was plotted, and its comparison with the critical curve for a contact of exponentially varying width was made. Thus, this demonstrates that the distributed inhomogeneity may be replaced by a local one at the JC end what technologically, may offer definite advantages

  13. Fringe periods of color moirés in contact-type 3-D displays.

    Science.gov (United States)

    Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon; Son, Jung-Young; Chernyshov, Oleksii O

    2016-06-27

    A mathematical formula of calculating the fringe periods of the color moirés appearing at the contact-type 3-D displays is derived. It is typical that the color moirés are chirped and the period of the line pattern in viewing zone forming optics is more than two times of that of the pixel pattern in the display panel. These make impossible to calculate the fringe periods of the color moirés with the conventional beat frequency formula. The derived formula work very well for any combination of two line patterns having either a same line period or different line periods. This is experimentally proved. Furthermore, it is also shown that the fringe period can be expressed in terms of the viewing distance and focal length of the viewing zone forming optics.

  14. A Cassie-Like Law Using Triple Phase Boundary Line Fractions for Faceted Droplets on Chemically Heterogeneous Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Taboryski, Rafael Jozef

    2009-01-01

    We present experimental contact angle data for surfaces, which were surface-engineered with a hydrophobic micropattern of hexagonal geometry. The chemically heterogeneous surface of the same hexagonal pattern of defects resulted in faceted droplets of hexagonal shape. When measuring the advancing...... contact angles with a viewing position aligned parallel to rows of defects, we found that an area averaged Cassie-law failed in describing the data. By replacing the area fractions by line fractions of the triple phase boundary Line segments in the Cassie equation, we found excellent agreement with data....

  15. Case studies in contact burns caused by exhaust pipes of motorcycles.

    Science.gov (United States)

    Lai, Chung-Sheng; Lin, Tsai-Ming; Lee, Su-Shin; Tu, Chao-Hung; Chen, I-Heng; Chang, Kao-Ping C; Tsai, Chih-Cheng; Lin, Sin-Daw

    2002-06-01

    Contact burns caused by the exhaust pipe of motorcycles are rarely reported. We performed retrospective studies of such cases in 78 patients with complete records. The majority of victims were unmarried (75.7%), young (exhaust pipe and its outside cover on moving motorcycles showed that the temperature reached 170-250 and 40-60 degrees C, respectively. For the prevention of these injuries, our suggestions include well-designed external shield with adequate separation from the exhaust pipe, motorcycle parking lots of adequate width (>120cm), the wearing of trousers by motorcyclists, decrease of the density of motorcycle traffic, and development of the electric assisted cycle in place of the fuel-driven motorcycle.

  16. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance

    Science.gov (United States)

    Basiricò, L.; Lanzara, G.

    2012-08-01

    In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease).

  17. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance

    International Nuclear Information System (INIS)

    Basiricò, L; Lanzara, G

    2012-01-01

    In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease). (paper)

  18. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Giacalone, J. [Department of Planetary Sciences, University of Arizona, Tucson, AZ (United States)

    2017-10-20

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean and an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.

  19. First contact diagnosis and management of contact lens-related complications.

    Science.gov (United States)

    Fagan, Xavier J; Jhanji, Vishal; Constantinou, Marios; Amirul Islam, F M; Taylor, Hugh R; Vajpayee, Rasik B

    2012-08-01

    To describe the spectrum of contact lens-related problems in cases presenting to a tertiary referral eye hospital. A retrospective case record analysis of 111 eyes of 97 consecutive patients was undertaken over a period of five months at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia. Contact lens-related complications (CLRC) were classified into microbial keratitis, sterile corneal infiltrates, corneal epitheliopathy and contact lens-related red eye (CLARE). Main parameters examined were nature of the first contact, clinical diagnosis, and management pattern. Forty-two percent of the initial presentations were to health care practitioners (HCPs) other than ophthalmologists. Mean duration from the onset of symptoms to presentation was 6.3 ± 10.9 days. Forty-nine percent (n = 54) of patients had an associated risk factor, most commonly overnight use of contact lenses (n = 14, 13 %). Most common diagnosis at presentation was corneal epitheliopathy (68 %) followed by sterile infiltrates (10 %), CLARE (8 %) and microbial keratitis (6 %). No significant differences were found in the pattern of treatment modalities administered by ophthalmologists and other HCPs. HCPs other than ophthalmologists are the first contact for contact lens-related problems in a significant proportion of patients. These HCPs manage the majority of CLRC by direct treatment or immediate referral.

  20. Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG.

    Science.gov (United States)

    Chen, Chunyan; Wang, Jie; Loch, Cheryl L; Ahn, Dongchan; Chen, Zhan

    2004-02-04

    In this paper, the feasibility of monitoring molecular structures at a moving polymer/liquid interface by sum frequency generation (SFG) vibrational spectroscopy has been demonstrated. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATM, NH2(CH2)2NH(CH2)3Si(OCH3)3) has been brought into contact with a deuterated poly(methyl methacrylate) (d-PMMA) film, and the interfacial silane structure has been monitored using SFG. Upon initial contact, the SFG spectra can be detected, but as time progresses, the spectral intensity changes and finally disappears. Additional experiments indicate that these silane molecules can diffuse into the polymer film and the detected SFG signals are actually from the moving polymer/silane interface. Our results show that the molecular order of the polymer/silane interface exists during the entire diffusion process and is lost when the silane molecules traverse through the thickness of the d-PMMA film. The loss of the SFG signal is due to the formation of a new disordered substrate/silane interface, which contributes no detectable SFG signal. The kinetics of the diffusion of the silane into the polymer have been deduced from the time-dependent SFG signals detected from the AATM molecules as they diffuse through polymer films of different thickness.

  1. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  2. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    Science.gov (United States)

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Micropatterning of poly(4-hydroxystyrene) by ion beam contact lithography for the control of cell adhesion

    International Nuclear Information System (INIS)

    Hwang, In Tae; Jung, Chan Hee; Choi, Jae Hak; Nho, Young Chang; Lee, Byoung Min; Hong, Sung Kwon

    2009-01-01

    In this study, we report on a simple method of micropatterning of cells by using ion beam contact lithography. Thin poly(4-hydroxystyrene) (Phds) films spin-coated on a silicon wafer were irradiated through a pattern mask in a contact mode with proton ions and then developed to generate the patterns of the Phds. Well-defined 50 μm line (pitch 150 μm) patterns were obtained without using any additives. The remaining thickness after development was increased with an increasing fluence up to 3 x 10 14 ions cm -2 after which it leveled off. The in-vitro cell culture test revealed that the cells were preferentially adhered to and proliferated only on the space regions between the Phds line patterns. Inhibition of cell adhesion on the Phds patterns could be due to antifouling property of the irradiated PHS

  4. Phase Error Caused by Speed Mismatch Analysis in the Line-Scan Defect Detection by Using Fourier Transform Technique

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2015-01-01

    Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.

  5. Effects of plasma treatment on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-AlGaN

    International Nuclear Information System (INIS)

    Cao, X. A.; Piao, H.; LeBoeuf, S. F.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2006-01-01

    The effects of surface treatment using Cl 2 /BCl 3 and Ar inductive coupled plasmas on the Ohmic characteristics of Ti/Al/Ti/Au contacts to n-type Al x Ga 1-x N (x=0-0.5) were investigated. Plasma treatment significantly increased the surface conductivity of GaN and Al 0.1 Ga 0.9 N, leading to improved Ohmic behaviors of the contacts. However, it reduced the surface doping level in Al x Ga 1-x N (x≥0.3) and degraded the contact properties. Following a 900-1000 deg. C anneal, the Ti/Al/Ti/Au contacts to Al x Ga 1-x N (x=0-0.3) became truly Ohmic, with specific contact resistances of (3-7)x10 -5 Ω cm 2 , whereas the contact to Al 0.5 Ga 0.5 N remained rectifying even without the plasma treatment. X-ray photoelectron spectroscopy measurements confirmed that the Fermi level moved toward the conduction band in GaN after the plasma treatment, but it was pinned by plasma-induced deep-level states in Al 0.5 Ga 0.5 N. This study emphasizes the need to mitigate plasma damage introduced during the mesa etch step for AlGaN-based deep-UV emitters and detectors

  6. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  7. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  8. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-01-01

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  9. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong

    2018-05-20

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  10. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    Science.gov (United States)

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  11. Quantifying drag on wellbore casings in moving salt sheets

    Science.gov (United States)

    Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.

    2014-08-01

    Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.

  12. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis.

    Science.gov (United States)

    Koppes, Sjors A; Engebretsen, Kristiane A; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M; Khnykin, Denis; Molin, Sonja; Holm, Jan O; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F; Thyssen, Jacob P

    2017-07-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem

    CERN Document Server

    Ivanov, Stefan; Vassilev, Dimiter

    2014-01-01

    A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.

  14. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  15. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.

  16. The Moving image

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner.......Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner....

  17. Moving to Jobs?

    OpenAIRE

    Dave Maré; Jason Timmins

    2003-01-01

    This paper examines whether New Zealand residents move from low-growth to high-growth regions, using New Zealand census data from the past three inter-censal periods (covering 1986-2001). We focus on the relationship between employment growth and migration flows to gauge the strength of the relationship and the stability of the relationship over the business cycle. We find that people move to areas of high employment growth, but that the probability of leaving a region is less strongly relate...

  18. Raptor nest management on power lines

    Energy Technology Data Exchange (ETDEWEB)

    Harness, R.E. [EDM International Inc., Fort Collins, CO (United States)

    2005-07-01

    Many utilities in South Africa are now implementing labor-intensive methods to combat raptor nesting on power transmission lines. Methods have typically included direct nest removal and trimming of nest materials. However, the process is often unsuccessful, and utilities are now learning to accommodate the raptor nests. This paper argued that managing nests on utility structures has solved many operational problems and has resulted in positive publicity for many line operators. Nest management options included the use of stick deflectors to prevent nest material from accumulating during initial nest construction, as well as encouraging raptors to shift their efforts to a more suitable location. Raptors will often accept alternative nesting platforms, and taller, surrogate nesting poles can be placed next to distribution line structures. Elevated platforms can also be placed on problematic distribution structures, but may result in birds coming into contact with unprotected equipment. It was concluded that a successful nest management program includes plans to make nearby lines safe for raptors and to prevent their electrocution. Providing nests with bird-friendly utility configurations can result in electric facilities enhancing wild raptor populations without impacting power reliability. 14 refs., 9 figs.

  19. Effects of Volar Tilt, Wrist Extension, and Plate Position on Contact Between Flexor Pollicis Longus Tendon and Volar Plate.

    Science.gov (United States)

    Wurtzel, Caroline N Wolfe; Burns, Geoffrey T; Zhu, Andy F; Ozer, Kagan

    2017-12-01

    Volar plates positioned at, or distal to, the watershed line have been shown to have a higher incidence of attritional rupture of the flexor pollicis longus (FPL). In this study, we aimed to evaluate the effect of wrist extension and volar tilt on the contact between the plate and the FPL tendon in a cadaver model. We hypothesized that, following volar plate application, loss of native volar tilt increases the contact between the FPL and the plate at lower degrees of wrist extension. A volar locking plate was applied on 6 fresh-frozen cadavers. To determine the contact between the plate and the FPL tendon, both structures were wrapped with copper wire and circuit conductivity was monitored throughout wrist motion. A lateral wrist radiograph was obtained at each circuit closure, indicating tendon-plate contact. Baseline measurements were obtained with plate positioned at Soong grades 0, 1, and 2. An extra-articular osteotomy was made and contact was recorded at various volar tilt angles (+5°, 0°, -5°, -10°, -15°, and -20°) in 3 different plate positions. A blinded observer measured the degree of wrist extension on all lateral radiographs. Data were analyzed using linear mixed-effects regression model. Plates placed distal to the watershed line had the most contact throughout wrist range of motion. Significantly, less wrist extension was required for contact in wrists with neutral or dorsal tilt and in distally placed volar plates. Volar tilt, wrist extension, and plate position were 3 independent risk factors determining contact between plate and tendon. Loss of volar tilt, increased wrist extension, and higher Soong grade plate position result in greater contact between wire-wrapped FPL tendon and plate. The FPL/plate contact chart generated in this study may be used to assess the risk of rupture in the clinical setting. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Contact allergy and allergic contact dermatitis in adolescents: prevalence measures and associations

    DEFF Research Database (Denmark)

    Mørtz, Charlotte G; Lauritsen, Jens Martin; Bindslev-Jensen, Carsten

    2002-01-01

    The aims of this cross-sectional study were to establish the prevalence measures of contact allergy and allergic contact dermatitis in 8th grade schoolchildren (aged 12-16 years) in Odense, Denmark, and to examine the associations with atopic dermatitis, inhalant allergy and hand eczema. Contact...... allergy to a standard series allergen was found in 15.2% of schoolchildren. The point prevalence of allergic contact dermatitis was 0.7% and the lifetime prevalence 7.2%, predominantly in girls. The most common contact allergens were nickel (8.6%) and fragrance mix (1.8%). Nickel allergy was clinically...... relevant in 69% and fragrance allergy in 29% of cases. A significant association was found between contact allergy and hand eczema while no association was found between contact allergy and atopic dermatitis or inhalant allergy. In the future this cohort of schoolchildren will be followed with regard...

  1. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis

    NARCIS (Netherlands)

    Koppes, Sjors A.; Engebretsen, Kristiane A.; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M.; Khnykin, Denis; Molin, Sonja; Holm, Jan O.; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F.; Thyssen, Jacob P.

    2017-01-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and

  2. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  3. Relationship between the real contact area and contact force in pre-sliding regime

    International Nuclear Information System (INIS)

    Song Baojiang; Yan Shaoze

    2017-01-01

    The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper. With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu’s method is used for measurement. Through an experimental study performed on polymethyl methacrylate (PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge. (paper)

  4. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  5. Solitary waves on vortex lines in Ginzburg-Landau models for the example of Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Berloff, Natalia G.

    2005-01-01

    Axisymmetric disturbances that preserve their form as they move along the vortex lines in uniform Bose-Einstein condensates are obtained numerically by the solution of the Gross-Pitaevskii equation. A continuous family of such solitary waves is shown in the momentum (p)-substitution energy (E-circumflex) plane with p→0.09ρκ 3 /c 2 , E-circumflex→0.091ρκ 3 /c as U→c, where ρ is the density, c is the speed of sound, κ is the quantum of circulation, and U is the solitary wave velocity. It is shown that collapse of a bubble captured by a vortex line leads to the generation of such solitary waves in condensates. The various stages of collapse are elucidated. In particular, it is shown that during collapse the vortex core becomes significantly compressed, and after collapse two solitary wave trains moving in opposite directions are formed on the vortex line

  6. Contact Lens Risks

    Science.gov (United States)

    ... There is a risk of eye infection from bacteria in swimming pool water, hot tubs, lakes and the ocean Replace your contact lens storage case every 3 months or as directed by your eye care professional. Other Risks of Contact Lenses Other risks of contact lenses include pink eye ( ...

  7. Noneczematous Contact Dermatitis

    Science.gov (United States)

    Foti, Caterina; Vestita, Michelangelo; Angelini, Gianni

    2013-01-01

    Irritant or allergic contact dermatitis usually presents as an eczematous process, clinically characterized by erythematoedematovesicous lesions with intense itching in the acute phase. Such manifestations become erythematous-scaly as the condition progresses to the subacute phase and papular-hyperkeratotic in the chronic phase. Not infrequently, however, contact dermatitis presents with noneczematous features. The reasons underlying this clinical polymorphism lie in the different noxae and contact modalities, as well as in the individual susceptibility and the various targeted cutaneous structures. The most represented forms of non-eczematous contact dermatitis include the erythema multiforme-like, the purpuric, the lichenoid, and the pigmented kinds. These clinical entities must obviously be discerned from the corresponding “pure” dermatitis, which are not associated with contact with exogenous agents. PMID:24109520

  8. Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts

    Science.gov (United States)

    Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu

    2018-02-01

    Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.

  9. Approach to equilibrium in models of a system in contact with a heat bath

    International Nuclear Information System (INIS)

    Goldstein, S.; Lebowitz, J.L.; Ravishankar, K.

    1986-01-01

    We investigate simple model systems in contact with an infinite heat bath. The former consists of a finite number of particles in a bounded region Λ of R/sup d/, d = 1, 2. The heat baths are infinite particle systems which can penetrate Λ and interact with the system via elastic collisions. Outside Λ the particles move freely and have a Gibbs probability measure prior to entering Λ. We show that starting from almost any initial configuration, the system approaches, as t → ∞, the appropriate Gibbs distribution. The combined system plus bath is Bernoulli

  10. Nuclear reactor shutdown control rod assembly

    International Nuclear Information System (INIS)

    Bilibin, K.

    1988-01-01

    This patent describes a nuclear reactor having a reactor core and a reactor coolant flowing therethrough, a temperature responsive, self-actuated nuclear reactor shutdown control rod assembly, comprising: an upper drive line terminating at its lower end with a substantially cylindrical wall member having inner and outer surfaces; a lower drive line having a lower end adapted to be attached to a neutron absorber; a ring movable disposed about the outer surface of the wall member of the upper drive line; thermal actuation means adapted to be in heat exchange relationship with coolant in an associated reactor core and in contact with the ring, and balls located within the openings in the upper drive line. When reactor coolant approaches a predetermined design temperature the actuation means moves the ring sufficiently so that the balls move radially out from the recess and into the space formed by the second portion of the ring thereby removing the vertical support for the lower drive line such that the lower drive line moves downwardly and inserts an associated neutron absorber into an associated reactor core resulting in automatic reduction of reactor power

  11. Measurement of stress distributions in truck tyre contact patch in real rolling conditions

    Science.gov (United States)

    Anghelache, Gabriel; Moisescu, Raluca

    2012-12-01

    Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.

  12. The solution of certain loss of contact between a plate and unilateral supports

    Directory of Open Access Journals (Sweden)

    Sompornjaroensuk Yos

    2007-01-01

    Full Text Available This paper examines the loss of contact between a square plate and the unilateral supports under uniformly distributed load. Since the plate is rested on the unilateral supports, it will have the regions of lost contact between a plate and the supports due to the absence of restraining corner force at the plate corners. This leads to the mixed boundary conditions and these conditions are then written in the form of dual-series equations which can further be reduced to a Fredholm integral equation by taking advantage of finite Hankel transform technique. Numerical results are given for the deflections of free edge and deflections along the middle line of the plate with deferent values of the Poisson’s ratio. In addition, the deflection surface is also presented. From the investigation, it can be indicated that the loss of contact is decreased upon the increasing Poisson’s ratio.

  13. Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces

    OpenAIRE

    Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim

    2016-01-01

    We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...

  14. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-11-09

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  15. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-01-08

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  16. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong; Sundaramoorthi, Ganesh

    2017-01-01

    We present a general framework and method for detection of an object in a video based on apparent motion. The object moves relative to background motion at some unknown time in the video, and the goal is to detect and segment the object as soon it moves in an online manner. Due to unreliability of motion between frames, more than two frames are needed to reliably detect the object. Our method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  17. Minimum Delay Moving Object Detection

    KAUST Repository

    Lao, Dong

    2017-05-14

    This thesis presents a general framework and method for detection of an object in a video based on apparent motion. The object moves, at some unknown time, differently than the “background” motion, which can be induced from camera motion. The goal of proposed method is to detect and segment the object as soon it moves in an online manner. Since motion estimation can be unreliable between frames, more than two frames are needed to reliably detect the object. Observing more frames before declaring a detection may lead to a more accurate detection and segmentation, since more motion may be observed leading to a stronger motion cue. However, this leads to greater delay. The proposed method is designed to detect the object(s) with minimum delay, i.e., frames after the object moves, constraining the false alarms, defined as declarations of detection before the object moves or incorrect or inaccurate segmentation at the detection time. Experiments on a new extensive dataset for moving object detection show that our method achieves less delay for all false alarm constraints than existing state-of-the-art.

  18. Spontaneous Marangoni Mixing of Miscible Liquids at a Liquid-Liquid-Air Contact Line.

    Science.gov (United States)

    Kim, Hyoungsoo; Lee, Jeongsu; Kim, Tae-Hong; Kim, Ho-Young

    2015-08-11

    We investigate the flow patterns created when a liquid drop contacts a reservoir liquid, which has implications on various physicochemical and biochemical reactions including mixing in microfluidic systems. The localized vortical flow spontaneously triggered by the difference of surface tension between the two liquids is studied, which is thus termed the Marangoni vortex. To quantitatively investigate the strength of vortices, we performed particle image velocimetry (PIV) experiments by varying the surface tension difference, the gap of the flow cell, the density and viscosity of the reservoir liquid, and the size of the drop. A scaling law that balances the interfacial energy of the system with the kinetic energy of the vortical flows allows us to understand the functional dependence of the Marangoni vortex strength on various experimental parameters.

  19. A two-stage approach for improved prediction of residue contact maps

    Directory of Open Access Journals (Sweden)

    Pollastri Gianluca

    2006-03-01

    Full Text Available Abstract Background Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts, the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps. In order to alleviate these problems and achieve improved contact map predictions, in this paper we split the task into two stages: the prediction of a map's principal eigenvector (PE from the primary sequence; the reconstruction of the contact map from the PE and primary sequence. Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task is less complex than mapping vectors directly into two-dimensional matrices since the size of the problem is drastically reduced and so is the scale length of interactions that need to be learned. Results We develop architectures composed of ensembles of two-layered bidirectional recurrent neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor, tested on a non redundant set of 2171 proteins, achieves classification performances of up to 72.6%, 16% above a base-line statistical predictor. We design a system for the prediction of contact maps from the predicted PE. Our results show that predicting maps through the PE yields sizeable gains especially for long-range contacts which are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a non-redundant set of 327 targets is 35

  20. Error Analysis of Fast Moving Target Geo-location in Wide Area Surveillance Ground Moving Target Indication Mode

    Directory of Open Access Journals (Sweden)

    Zheng Shi-chao

    2013-12-01

    Full Text Available As an important mode in airborne radar systems, Wide Area Surveillance Ground Moving Target Indication (WAS-GMTI mode has the ability of monitoring a large area in a short time, and then the detected moving targets can be located quickly. However, in real environment, many factors introduce considerable errors into the location of moving targets. In this paper, a fast location method based on the characteristics of the moving targets in WAS-GMTI mode is utilized. And in order to improve the location performance, those factors that introduce location errors are analyzed and moving targets are relocated. Finally, the analysis of those factors is proved to be reasonable by simulation and real data experiments.

  1. Effect of acute and chronic MK-801 administration on extracellular glutamate and ascorbic acid release in the prefrontal cortex of freely moving mice on line with open-field behavior.

    Science.gov (United States)

    Zuo, Dai-Ying; Zhang, Ya-Hong; Cao, Yue; Wu, Chun-Fu; Tanaka, Masatoshi; Wu, Ying-Liang

    2006-04-04

    The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.

  2. Studying the TEM response of a 3-D conductor at a geological contact using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Tripp, A.C.; Hohmann, G.W. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics

    1995-07-01

    Many mineral targets are located near contact zones. Since the change of resistivity across the contact can distort or obscure the transient electromagnetic (TEM) response of the target, it is important to understand the possible effects. Previous investigators have examined similar problems using scale models. For example, Spies and Parker (1984) studied the TEM responses of fixed-loop and moving-loop configurations to geological contacts with lateral resistivity variations. More recently, Wilt (1991) systematically studied TEM soundings near a geological contact and observed that different survey systems respond to the contact in different ways. This paper will illustrate the use of the finite-difference, time-domain (FDTD) algorithm of Wang and Hohmann (1993) for calculating the TEM response of a 3-D conductive body at a geological contact. The algorithm is based on the Yee staggered grid FDTD method for solving the transient electrical nonmagnetic field responses of a 3-D model. On a suitable computer, a wide range of model responses can be readily calculated, a versatility that scale modeling does not share. This study uses a fixed transmitter loop, roving-receiver configuration. Many other configurations can be regarded as special cases of this survey. It is commonly employed, for instance, by the Newmont EMP (Body and Wiles, 1984), UTEM (West et al., 1984), and Geonics EM37 systems. The configuration also facilitates finite-difference, time-domain modeling because it does not require frequent movement of the source.

  3. 30 CFR 56.14107 - Moving machine parts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving machine parts. 56.14107 Section 56.14107... Safety Devices and Maintenance Requirements § 56.14107 Moving machine parts. (a) Moving machine parts... takeup pulleys, flywheels, couplings, shafts, fan blades, and similar moving parts that can cause injury...

  4. Contact with turf algae alters the coral microbiome: contact versus systemic impacts

    Science.gov (United States)

    Pratte, Zoe A.; Longo, Guilherme O.; Burns, Andrew S.; Hay, Mark E.; Stewart, Frank J.

    2018-03-01

    Coral reefs are degrading to algae-dominated reefs worldwide, with alterations of coral microbiomes commonly co-occurring with reef demise. The severe thermal anomaly during the 2016 El Niño event in the South Pacific killed many corals and stressed others. We examined the microbiome of turf algae and of the coral Porites sp. in contact with turf during this thermal event to investigate algal turf effects on the coral microbiome during a period of environmental stress. The microbial composition of turf did not differ between coral-contacted and non-contacted turfs. However, microbiomes of corals in direct contact with turf were similar to those of the turf microbiome, but differed significantly from coral portions 5 cm from the point of turf/coral contact and from portions of the coral that looked most healthy, regardless of location. Although the majority of significant differences occurred in coral samples at the point of contact, a small subset of microbial taxa was enriched in coral tissues taken 5 cm from turf contact compared to all other sample types, including samples from areas of the coral that appeared most healthy. These results suggest that the coral microbiome is susceptible to colonization by microbes from turf, but not vice versa. Results also suggest that algal contact elicits a subtle shift in the coral microbiome just beyond the contact site. The combination of turf microbiome stability and coral microbiome vulnerability at areas of contact may contribute to the continued decline in coral cover and increase in algal cover associated with coral-algae phase shifts.

  5. Patients with multiple contact allergies

    DEFF Research Database (Denmark)

    Carlsen, Berit Christina; Andersen, Klaus Ejner; Menné, Torkil

    2008-01-01

    Patients with multiple contact allergies, also referred to as polysensitized, are more frequent than predicted from prevalence of single sensitivities. The understanding of why some people develop multiple contact allergies, and characterization of patients with multiple contact allergies...... of developing multiple contact allergies. Evidence of allergen clusters among polysensitized individuals is also reviewed. The literature supports the idea that patients with multiple contact allergies constitute a special entity within the field of contact allergy. There is no generally accepted definition...... of patients with multiple contact allergies. We suggest that contact allergy to 3 or more allergens are defined as multiple contact allergies....

  6. A Simple Approach for Local Contact Angle Determination on a Heterogeneous Surface

    KAUST Repository

    Wu, Jinbo

    2011-05-17

    We report a simple approach for measuring the local contact angle of liquids on a heterogeneous surface consisting of intersected hydrophobic and hydrophilic patch arrays, specifically by employing confocal microscopy and the addition of a very low concentration of Rhodamine-B (RB) (2 × 10 -7 mol/L). Interestingly, RB at that concentration was found to be aggregated at the air-liquid and solid (hydrophobic patch only)-liquid interfaces, which helps us to distinguish the liquid and solid interfaces as well as hydrophobic and hydrophilic patches by their corresponding fluorescent intensities. From the measured local contact angles, the line tension can be easily derived and the value is found to be (-2.06-1.53) × 10-6 J/m. © 2011 American Chemical Society.

  7. People on the Move

    Science.gov (United States)

    Mohan, Audrey

    2018-01-01

    The purpose of this 2-3 day lesson is to introduce students in Grades 2-4 to the idea that people move around the world for a variety of reasons. In this activity, students explore why people move through class discussion, a guided reading, and interviews. The teacher elicits student ideas using the compelling question (Dimension 1 of the C3…

  8. Straight-Line Target Tracking for Unmanned Surface Vehicles

    Directory of Open Access Journals (Sweden)

    Morten Breivik

    2008-10-01

    Full Text Available This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs. Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

  9. Skills Associated with Line Breaks in Elite Rugby Union

    Directory of Open Access Journals (Sweden)

    Steve den Hollander, James Brown, Michael Lambert, Paul Treu, Sharief Hendricks

    2016-09-01

    Full Text Available The ability of the attacking team to break through the defensive line is a key indicator of success as it creates opportunities to score tries. The aim of this study was to analyse line breaks and identify the associated skills and playing characteristics. The 2013 Super Rugby season (125 games was analysed, in which 362 line breaks were identified and coded using variables that assessed team patterns and non-contact attacking skills in the phases preceding the line break. There was an average of 3 line breaks per game, with 39% of line breaks resulting in a try. Line breaks occurred when the ball-carrier was running fast [61%, x2(4 = 25.784, p = 0.000, Cramer’s v = 0.1922, weak]. At a moderate distance, short lateral passes (19% and skip passes (15% attributed to the highest percentage of line breaks [x2(26 = 50.899, p = 0.036, Cramer’s v = 0.2484, moderate]. Faster defensive line speeds resulted in more line breaks [x2(12 = 61.703, p < 0.001, Cramer’s v = 0.3026, moderate]. Line breaks are associated with overall team success and try scoring opportunities. Awareness of the defenders line speed and depth, fast running speed when receiving the ball and quick passing between attackers to the outside backs creates line break opportunities. During training, coaches should emphasise the movement speed of the ball between attackers and manipulate the speed and distance of the defenders.

  10. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    Science.gov (United States)

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  11. An approximate JKR solution for a general contact, including rough contacts

    Science.gov (United States)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  12. Device for welding a connection line to an electrode of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1976-08-05

    A method with associated device for welding connection lines to the electrodes of solar cells is described. To improve the weldability of the contacts usually consisting of silver, a weld-receiving device is vibrated with respect to the welding electrode, whereby disturbing surface layers are destroyed with a certain application pressure of the welding electrode. The method shows better results than, for example, a previous chemical cleaning of the contacts and is also more easy to handle.

  13. HTSC-Josephson step contacts

    International Nuclear Information System (INIS)

    Herrmann, K.

    1994-03-01

    In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)

  14. Moving and Being Moved: Implications for Practice.

    Science.gov (United States)

    Kretchmar, R. Scott

    2000-01-01

    Uses philosophical writings, a novel about baseball, and a nonfiction work on rowing to analyze levels of meaning in physical activity, showing why three popular methods for enhancing meaning have not succeeded and may have moved some students away from deeper levels of meaning. The paper suggests that using hints taken from the three books could…

  15. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T. [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Worsley, D.A. [SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation Centre, Central Avenue, Baglan Energy Park, Port Talbot, SA12 7AX (United Kingdom); Deganello, D., E-mail: d.deganello@swansea.ac.uk [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2012-11-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz-Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: Black-Right-Pointing-Pointer Color change of a nanoparticle silver coating was measured during sintering Black-Right-Pointing-Pointer Color change was correlated to the electrical performance of the coating. Black-Right-Pointing-Pointer Potential in-line non-contact measurement method for roll-to-roll printed electronics.

  16. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf

    Directory of Open Access Journals (Sweden)

    L. Favier

    2012-01-01

    Full Text Available The West Antarctic ice sheet is confined by a large area of ice shelves, fed by inland ice through fast flowing ice streams. The dynamics of the grounding line, which is the line-boundary between grounded ice and the downstream ice shelf, has a major influence on the dynamics of the whole ice sheet. However, most ice sheet models use simplifications of the flow equations, as they do not include all the stress components, and are known to fail in their representation of the grounding line dynamics. Here, we present a 3-D full Stokes model of a marine ice sheet, in which the flow problem is coupled with the evolution of the upper and lower free surfaces, and the position of the grounding line is determined by solving a contact problem between the shelf/sheet lower surface and the bedrock. Simulations are performed using the open-source finite-element code Elmer/Ice within a parallel environment. The model's ability to cope with a curved grounding line and the effect of a pinning point beneath the ice shelf are investigated through prognostic simulations. Starting from a steady state, the sea level is slightly decreased to create a contact point between a seamount and the ice shelf. The model predicts a dramatic decrease of the shelf velocities, leading to an advance of the grounding line until both grounded zones merge together, during which an ice rumple forms above the contact area at the pinning point. Finally, we show that once the contact is created, increasing the sea level to its initial value does not release the pinning point and has no effect on the ice dynamics, indicating a stabilising effect of pinning points.

  17. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  18. Radiosensitivity of four human tumor xenografts. Influence of hypoxia and cell-cell contact

    International Nuclear Information System (INIS)

    Guichard, M.; Dertinger, H.; Malaise, E.P.

    1983-01-01

    Contact effect (CE) and hypoxia have been studied in human tumor cell lines transplanted in athymic nude mice. Four cell lines - one melanoma (Bell) and three colorectal adenocarcinomas (HT29, HRT18, and HCT8) - were studied. Cell survival was determined with an in vivo in vitro colony-forming assay. Survival curves were obtained under three different conditions: (1) tumor cells irradiated in air-breathing mice, (2) tumor cells irradiated in animals asphyxiated for 10 min, and (3) tumor cells plated and irradiated either immediately or 5 hr later. For all cell lines, radiosensitivity appeared to be lower when cells were irradiated in vivo than when they were irradiated in vitro. Only in the case of the HCT8 tumor did the relative in vivo radioresistance seem to be linked to hypoxia; in the other cell lines, hypoxia alone could not account for the lower in vivo radiosensitivity. Our results suggest that a CE plays an important role in the response of human xenografts to irradiation

  19. Rearrangement moves on rooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine

    2017-08-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for

  20. Rearrangement moves on rooted phylogenetic networks.

    Directory of Open Access Journals (Sweden)

    Philippe Gambette

    2017-08-01

    Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide