WorldWideScience

Sample records for moving coil magnetometers

  1. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  2. The Search-Coil Magnetometer for MMS

    Science.gov (United States)

    Le Contel, O.; Leroy, P.; Roux, A.; Coillot, C.; Alison, D.; Bouabdellah, A.; Mirioni, L.; Meslier, L.; Galic, A.; Vassal, M. C.; Torbert, R. B.; Needell, J.; Rau, D.; Dors, I.; Ergun, R. E.; Westfall, J.; Summers, D.; Wallace, J.; Magnes, W.; Valavanoglou, A.; Olsson, G.; Chutter, M.; Macri, J.; Myers, S.; Turco, S.; Nolin, J.; Bodet, D.; Rowe, K.; Tanguy, M.; de la Porte, B.

    2016-03-01

    The tri-axial search-coil magnetometer (SCM) belongs to the FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission (Torbert et al. in Space Sci. Rev. (2014), this issue). It provides the three magnetic components of the waves from 1 Hz to 6 kHz in particular in the key regions of the Earth's magnetosphere namely the subsolar region and the magnetotail. Magnetospheric plasmas being collisionless, such a measurement is crucial as the electromagnetic waves are thought to provide a way to ensure the conversion from magnetic to thermal and kinetic energies allowing local or global reconfigurations of the Earth's magnetic field. The analog waveforms provided by the SCM are digitized and processed inside the digital signal processor (DSP), within the Central Electronics Box (CEB), together with the electric field data provided by the spin-plane double probe (SDP) and the axial double probe (ADP). On-board calibration signal provided by DSP allows the verification of the SCM transfer function once per orbit. Magnetic waveforms and on-board spectra computed by DSP are available at different time resolution depending on the selected mode. The SCM design is described in details as well as the different steps of the ground and in-flight calibrations.

  3. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  4. Vector Magnetometer Application with Moving Carriers

    Directory of Open Access Journals (Sweden)

    Andrii Prystai

    2016-12-01

    magnetometers and it was concluded that the parameters of these magnetometers allow their using for the magnetic survey with moving platforms.

  5. A Tool for Simulating Rotating Coil Magnetometers

    CERN Document Server

    Bottura, L; Schnizer, P; Smirnov, N

    2002-01-01

    When investigating the quality of a magnetic measurement system, one observes difficulties to identify the "trouble maker" of such a system as different effects can yield similar influences on the measurement results.We describe a tool in this paper that allows to investigate numerically the effects produced by different imperfections of components of such a system, including, but not limited to vibration and movements of the rotating coil, influence of electrical noise on the system, angular encoder imperfections. This system can simulate the deterministic and stochastic parts of those imperfections. We outline the physical models used that are generally based on experience or first principles. Comparisons to analytical results are shown. The modular structure of the general design of this tool permits to include new modules for new devices and effects.

  6. CLUSTER STAFF search coils magnetometer calibration - comparisons with FGM

    Science.gov (United States)

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; de Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, B.; Alison, D.; Canu, P.

    2013-12-01

    The main part of Cluster Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC) and the second by an onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from EFW experiment) in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signal of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units, across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Flux Gate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.

  7. CLUSTER-STAFF search coil magnetometer calibration - comparisons with FGM

    Science.gov (United States)

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; de Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, B.; Alison, D.; Canu, P.

    2014-09-01

    The main part of the Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment consists of triaxial search coils allowing the measurements of the three magnetic components of the waves from 0.1 Hz up to 4 kHz. Two sets of data are produced, one by a module to filter and transmit the corresponding waveform up to either 10 or 180 Hz (STAFF-SC), and the second by the onboard Spectrum Analyser (STAFF-SA) to compute the elements of the spectral matrix for five components of the waves, 3 × B and 2 × E (from the EFW experiment), in the frequency range 8 Hz to 4 kHz. In order to understand the way the output signals of the search coils are calibrated, the transfer functions of the different parts of the instrument are described as well as the way to transform telemetry data into physical units across various coordinate systems from the spinning sensors to a fixed and known frame. The instrument sensitivity is discussed. Cross-calibration inside STAFF (SC and SA) is presented. Results of cross-calibration between the STAFF search coils and the Cluster Fluxgate Magnetometer (FGM) data are discussed. It is shown that these cross-calibrations lead to an agreement between both data sets at low frequency within a 2% error. By means of statistics done over 10 yr, it is shown that the functionalities and characteristics of both instruments have not changed during this period.

  8. CLUSTER STAFF search coils magnetometer calibration – comparisons with FGM

    Czech Academy of Sciences Publication Activity Database

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; De Conchy, Y.; Lacombe, C.; Bouzid, V.; Grison, Benjamin; Alison, D.; Canu, P.

    2013-01-01

    Roč. 3, č. 2 (2013), s. 679-751 ISSN 2193-0872 Institutional support: RVO:68378289 Keywords : instrumentation * search coils * space physics * calibration Subject RIV: BL - Plasma and Gas Discharge Physics http://www.geosci-instrum-method-data-syst-discuss.net/3/679/2013/gid-3-679-2013.pdf

  9. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    Science.gov (United States)

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  10. Integrated induction coil and fluxgate magnetometers for EM analysis and monitoring

    Science.gov (United States)

    Hanstein, T.; Strack, K.; Jiang, J.

    2013-12-01

    The concept of a full field array electromagnetic system is an ideal tool to support hydrocarbon and geothermal E & P as well as various engineering monitoring applications. Some of the key questions are defining the reservoir, mapping of the fractures and reservoir depletion monitoring. The reservoirs are all too often relative thin and give an anomalous electromagnetic (EM) response, which is often small in amplitude and challenging for the EM measuring system. A digital fluxgate magnetometer (32-bit) is connected to the KMS magnetotelluric acquisition system with analogue induction coils and electrodes to extend the range of application of a single recording site. Since the noise level is above that of the induction coil for periods shorter than 20 s, the apparent resistivity is biased. For longer periods the apparent resistivity is consistent and eventually better than the induction coil. However, phase and tipper are not biased and agree well with the induction data even for shorter periods. This allows us to develop algorithms that significantly extend the range of application of the fluxgate beyond what was done in the past. The highest frequency of the fluxgate magnetometer is about 180 Hz and the hightest sampling of the FG-board is 4 kHz.The different induction coils and fluxgate magnetometer have intensively been tested in the magnetic chamber and at the field test site near Houston for noise performance by parallel recordings. They show that even in an environment with high cultural noise, the specification can be met. In Northeast China, a 30-day monitoring test with MT was carried out for seismologic applications. Acquisitition schedule included different recordings times and sampling rates. Daily, the data was collected and processed via the internet from either Europe or the US. Even with long recording, we still had to select the time windows for data averaging and coherences are not a good threshhold criteria in this case. During another MT

  11. Modeling of Lossy Inductance in Moving-Coil Loudspeakers

    DEFF Research Database (Denmark)

    Kong, Xiao-Peng; Agerkvist, Finn T.; Zeng, Xin-Wu

    2015-01-01

    The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented. The electr......The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented...

  12. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized for actu......This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...... designs requires approximately 20 W on average and may be realized in 20 mm × Ø 22.5 mm (height × diameter) for a 20 kW pressure chamber. The optimization is carried out using the multi-objective Generalized Differential Evolu-tion optimization algorithm GDE3 which successfully handles constrained multi-objective...

  13. CalMagNet – an array of search coil magnetometers monitoring ultra low frequency activity in California

    Directory of Open Access Journals (Sweden)

    C. Dunson

    2008-04-01

    Full Text Available The California Magnetometer Network (CalMagNet consists of sixty-eight triaxial search-coil magnetometer systems measuring Ultra Low Frequency (ULF, 0.001–16 Hz, magnetic field fluctuations in California. CalMagNet provides data for comprehensive multi-point measurements of specific events in the Pc 1–Pc 5 range at mid-latitudes as well as a systematic, long-term study of ULF signals in active fault regions in California. Typical events include geomagnetic micropulsations and spectral resonant structures associated with the ionospheric Alfvén resonator. This paper provides a technical overview of the CalMagNet sensors and data processing systems. The network is composed of ten reference stations and fifty-eight local monitoring stations. The primary instruments at each site are three orthogonal induction coil magnetometers. A geophone monitors local site vibration. The systems are designed for future sensor expansion and include resources for monitoring four additional channels. Data is currently sampled at 32 samples per second with a 24-bit converter and time tagged with a GPS-based timing system. Several examples of representative magnetic fluctuations and signals as measured by the array are given.

  14. Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Bu Hyun; Lee, Jeong Woo; Shim, Hyun Ho; Park, Sang Goo [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Seung Yop [Sogang Univ., Seoul (Korea, Republic of)

    2016-01-15

    A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

  15. A method for combining search coil and fluxgate magnetometer data to reveal finer structures in reconnection physics

    Science.gov (United States)

    Argall, M. R.; Caide, A.; Chen, L.; Torbert, R. B.

    2012-12-01

    Magnetometers have been used to measure terrestrial and extraterrestrial magnetic fields in space exploration ever since Sputnik 3. Modern space missions, such as Cluster, RBSP, and MMS incorporate both search coil magnetometers (SCMs) and fluxgate magnetometers (FGMs) in their instrument suites: FGMs work well at low frequencies while SCMs perform better at high frequencies. In analyzing the noise floor of these instruments, a cross-over region is apparent around 0.3-1.5Hz. The satellite separation of MMS and average speeds of field convection and plasma flows at the subsolar magnetopause make this a crucial range for the upcoming MMS mission. The method presented here combines the signals from SCM and FGM by taking a weighted average of both in this frequency range in order to draw out key features, such as narrow current sheet structures, that would otherwise not be visible. The technique is applied to burst mode Cluster data for reported magnetopause and magnetotail reconnection events to demonstrate the power of the combined data. This technique is also applied to data from the the EMFISIS instrument on the RBSP mission. The authors acknowledge and thank the FGM and STAFF team for the use of their data from the CLUSTER Active Archive.

  16. Investigation of Global Lightning using Schumann Resonances measured by High Frequency Induction Coil Magnetometers in the UK

    Science.gov (United States)

    Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.

    2012-12-01

    In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.

  17. Development of Search-Coil Magnetometer for Ultra Low Frequency (ULF) Wave Observations at Jang Bogo Station in Antarctica

    Science.gov (United States)

    Lee, J. K.; Shin, J.; Kim, K. H.; Jin, H.; Kim, H.; Kwon, J.; Lee, S.; Jee, G.; Lessard, M.

    2016-12-01

    A ground-based bi-axial search-coil magnetometer (SCM) has been devloped for observation of time-varying magnetic fields (dB/dt) in the Ultra Low Frequency (ULF) range (a few mHz up to 5 Hz) to understand magnetosphere-ionosphere coupling processes. The SCM consists of magnetic sensors, analog electronics, cables and data acquisition system (DAQ). The bi-axial magnetic sensor has coils of wire wound around a mu-metal cores, each of which measures magnetic field pulsations in the horizontal components, geomagnetic north-south and east-west, respectively. The analog electronics is designed to control the cut-off frequency of the instrument and to amplify detected signals. The DAQ has a 16 bit analog to digital converter (ADC) at the user defined rate of 10 Hz. It is also equipped with the Global Positioning System (GPS) and Network Time Protocol (NTP) for time synchronization and accuracy. We have carried out in-lab performance tests (e.g., frequency response, noise level, etc) using a magnetically shielded case and a field-test in a magnetically quiet location in South Korea. During the field test, a ULF Pi 2 event has been observed clearly. We also confirmed that it was a substorm activity from a fluxgate magnetometer data at Mineyama (35°57.3'N, 135°05'E, geographic). The SCM will be installed and operated at Jang Bogo Antarctic Research Station (74°37.4'S, 164°13.7'E, geographic) on Dec. 2016. The geomagnetic latitude of the station is similar to that of the US McMurdo station (77°51'S, 166°40'E, geographic), both of which are typically near the cusp region. Thus, we expect that the SCM can provide useful information to understand ULF wave propagation characteristics.

  18. Design and operation of a novel Faraday-magnetometer using superconducting coils

    International Nuclear Information System (INIS)

    Koebler, U.; Deloie, F.

    1976-06-01

    This report gives a detailed description of the construction and operating procedures of a novel Faraday balance system which uses separate superconducting coils for field and field gradient. Special attention is given to all calibration problems, and hence to the limitations of accuracy with which magnetization measurements can be performed. (orig./WBU) [de

  19. Iron-free moving coil high temperature displacement transducer

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, A

    1976-07-01

    A unique, iron free, moving coil linear displacement transducer system is described, which is suitable for continuously monitoring linear movements, at varying temperatures up to 750/sup 0/C, in operational nuclear reactors. Although this device has been primarily developed for Advanced Gas Cooled Reactor Systems, it also has uses where long term measurements on conventional high temperature plant are required. Furthermore it could be particularly useful in material creep laboratories where precise linear changes in specimen length need to be monitored at elevated temperatures, over several years. Since individual transducer installations demand specific mounting arrangements to suit particular component geometries, evaluations have been made only on standard operational modules or capsules which are designed for containment in a range of housing or fixtures to suit particular applications. The behaviour of these devices has been studied at temperatures up to 750/sup 0/C for periods of over 10,000 h. An evaluation is also included of a commercially designed sensor assembly employing the same principle, for monitoring the boiler-shield wall movement at Hinkley Point 'B' AGR Station.

  20. Forces on a magnet moving past figure-eight coils

    International Nuclear Information System (INIS)

    Mulcahy, T.H.; He, Jianliang; Rote, D.M.; Rossing, T.D.

    1993-01-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays

  1. Magnetic field fluctuations measurement onboard ESA/JUICE mission by search-coil magnetometer: SCM instrument as a part of RPWI consortium

    Science.gov (United States)

    Retinò, A.; Chust, T.; Mansour, M.; Canu, P.; Sahraoui, F.; Le Contel, O.; Alison, D.; Sou, G.; Varizat, L.; Techer, J.-D.; Jeandet, A.; Geyskens, N.; Chariet, M.; Cecconi, B.; Bergman, J.; Wahlund, J.-E.; Santolik, O.; Soucek, J.; Dougherty, M.

    2017-09-01

    The JUpiter ICy moons Explorer (JUICE) mission is planned for launch in 2022 with arrival at Jupiter in 2029 and will spend at least three years making detailed observations of Jupiter's system. The Radio and Plasma Wave Investigation (RPWI) consortium will carry the most advanced set of electric and magnetic fields sensors ever flown therein, which will allow to characterize the plasma wave environment and the radio emission of Jupiter and its icy moons in great detail. The Search Coil Magnetometer (SCM) will provide high-quality measurements of the magnetic field fluctuations' vector for RPWI. Here we present the technical features of the SCM instrument and we discuss its scientific objectives.

  2. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which......The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...

  3. High accuracy velocity control method for the french moving-coil watt balance

    International Nuclear Information System (INIS)

    Topcu, Suat; Chassagne, Luc; Haddad, Darine; Alayli, Yasser; Juncar, Patrick

    2004-01-01

    We describe a novel method of velocity control dedicated to the French moving-coil watt balance. In this project, a coil has to move in a magnetic field at a velocity of 2 mm s -1 with a relative uncertainty of 10 -9 over 60 mm. Our method is based on the use of both a heterodyne Michelson's interferometer, a two-level translation stage, and a homemade high frequency phase-shifting electronic circuit. To quantify the stability of the velocity, the output of the interferometer is sent into a frequency counter and the Doppler frequency shift is recorded. The Allan standard deviation has been used to calculate the stability and a σ y (τ) of about 2.2x10 -9 over 400 s has been obtained

  4. A Simple and Robust Sliding Mode Velocity Observer for Moving Coil Actuators in Digital Hydraulic Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Schmidt, Lasse; Bech, Michael Møller

    2016-01-01

    This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture...... and the position is estimated by integrating the estimated velocity. The binary operation of digi-valves enables limiting and resetting the position estimate since the moving member is switched between the mechanical end-stops of the valve. This enables accurate tracking since drifting effects due to measurement...... noise and integration of errors in the velocity estimate may be circumvented. The proposed observer architecture is presented along with stability proofs and initial experimental results. To reveal the optimal observer performance, an optimization of the observer parameters is carried out. Subsequently...

  5. The Pulse Azimuth effect as seen in induction coil magnetometers located in California and Peru 2007–2010, and its possible association with earthquakes

    Directory of Open Access Journals (Sweden)

    J. C. Dunson

    2011-07-01

    Full Text Available The QuakeFinder network of magnetometers has recorded geomagnetic field activity in California since 2000. Established as an effort to follow up observations of ULF activity reported from before and after the M = 7.1 Loma Prieta earthquake in 1989 by Stanford University, the QuakeFinder network has over 50 sites, fifteen of which are high-resolution QF1005 and QF1007 systems. Pairs of high-resolution sites have also been installed in Peru and Taiwan.

    Increases in pulse activity preceding nearby seismic events are followed by decreases in activity afterwards in the three cases that are discussed here. In addition, longer term data is shown, revealing a rich signal structure not previously known in QuakeFinder data, or by many other authors who have reported on pre-seismic ULF phenomena. These pulses occur as separate ensembles, with demonstrable repeatability and uniqueness across a number of properties such as waveform, angle of arrival, amplitude, and duration. Yet they appear to arrive with exponentially distributed inter-arrival times, which indicates a Poisson process rather than a periodic, i.e., stationary process.

    These pulses were observed using three-axis induction coil magnetometers that are buried 1–2 m under the surface of the Earth. Our sites use a Nyquist frequency of 16 Hertz (25 Hertz for the new QF1007 units, and they record these pulses at amplitudes from 0.1 to 20 nano-Tesla with durations of 0.1 to 12 s. They are predominantly unipolar pulses, which may imply charge migration, and they are stronger in the two horizontal (north-south and east-west channels than they are in the vertical channels. Pulses have been seen to occur in bursts lasting many hours. The pulses have large amplitudes and study of the three-axis data shows that the amplitude ratios of the pulses taken from pairs of orthogonal coils is stable across the bursts, suggesting a similar source.

    This paper presents three

  6. Low Cost, Low Power, High Sensitivity Magnetometer

    Science.gov (United States)

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  7. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  8. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time...... is designed for such valves using transient finite-element analysis of the electromagnetic circuit. The valve dynamics are coupled to the fluid restrictive forces, which significantly influence the effective actuator force. Fluid forces are modeled based on transient computational fluid dynamics models....... The electromagnetic finite-element model is verified against experimental measurement, and used to design an optimum moving coil actuator for the application considering different voltage-current ratios of the power supply. Results show that the optimum design depends on the supply voltage-current ratio, however...

  9. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  10. THOR Fluxgate Magnetometer (MAG)

    Science.gov (United States)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Carr, Christopher, M.; O'Brien, Helen, L.; Narita, Yasuhito; K, Chen, Christopher H.; Berghofer, Gerhard; Valavanoglou, Aris; Delva, Magda; Plaschke, Ferdinand; Cupido, Emanuele; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The fluxgate Magnetometer (MAG) measures the background to low frequency magnetic field. The high sensitivity measurements of MAG enable to characterize the nature of turbulent fluctuations as well as the large-scale context. MAG will provide the reference system for determining anisotropy of field fluctuations, pitch-angle and gyro-phase of particles. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two- sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy. We discuss the role of MAG in THOR key science questions and present the new developments during Phase A such as the finalised instrument design, MAG relevant requirement, and new calibraion schemes.

  11. [Observation on therapeutic effect of chronic fatigue syndrome treated with coiling dragon needling and moving cupping on back].

    Science.gov (United States)

    Xu, Wei; Zhou, Ri-Hua; Li, Lei; Jiang, Ming-Wei

    2012-03-01

    To compare the differences of therapeutic effect of chronic fatigue syndrome treated with the combined therapy of coiling dragon needling and cupping on back and the western medicine therapy with Prednisone. Seventy-two cases were randomly divided into an acupuncture and cupping group (37 cases) and a Prednisone group (35 cases). In acupuncture and cupping group, Jiaji (EX-B 2) points of T1--L5 were applied with coiling dragon needling (once a day), combined with moving cupping on back (once every two days); in Prednisone group, Prednisone tablets were orally taken for 10 mg at 8:00 am. Seven days made one course, and 2 courses were carried on totally. FS-14 scale and BELL's chronic fatigue syndrome integral table were applied to evaluate the fatigue degree of patients before and after treatment, and the therapeutic effects of both groups were compared. After one course of treatment, the BELL's scores of both groups were obviously improved (both P 0.05); after two courses of treatment, the BELL's score in acupuncture and cupping group improved more obviously than that in Prednisone group, and the total effective rate of 91.9% (34/37) in acupuncture and cupping group was superior to that of 71.4% (25/35) in Prednisone group (P cupping on back is positive, superior to that of Prednisone with oral administration.

  12. Reducing systematic errors in measurements made by a SQUID magnetometer

    International Nuclear Information System (INIS)

    Kiss, L.F.; Kaptás, D.; Balogh, J.

    2014-01-01

    A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly

  13. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    Science.gov (United States)

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  14. Magnetic Test Facility - Sensor and Coil Calibrations

    Science.gov (United States)

    2013-08-01

    amplitude of signals induced into the sensor. 2.1.1.2 Fluxgate magnetometers Fluxgate sensors consist of a ferromagnetic core, around which drive and sense...kHz range to be measured. Fluxgate magnetometers do not have a lower limit to their fre- quency response, and hence can be used to measure...placed within a larger triaxial coil which is used in conjunction with a fluxgate magnetometer to cancel earth’s field at the cen- tre of the coil. A

  15. Induction Magnetometers – Design Peculiarities

    Directory of Open Access Journals (Sweden)

    Valeriy KOREPANOV

    2010-09-01

    Full Text Available Induction or search-coil magnetometers (IM are widely used in many branches of science and industry. The frequency range and dynamic range of IMs are probably the widest of all existing magnetometers: they are used for the measurement of magnetic field variations in the frequency band from ~10-4 till ~106 Hz with the intensities from fractions of femtotesla till tens of tesla. This explains the permanent interest to IM design and the attempts to construct the IMs with best possible parameters. The present paper deals with the peculiarities of IM design. An attempt to re-establish the correctness of priorities in the field is made and the approaches to the IM optimization and their quality estimation are described.

  16. The Pioneer XI high field fluxgate magnetometer

    Science.gov (United States)

    Acuna, M. A.; Ness, N. F.

    1975-01-01

    The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.

  17. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  18. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.

    Science.gov (United States)

    Leung, Chung Ming; Wang, Ya; Chen, Wusi

    2016-11-01

    In this letter, the airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and trajectory matching multi-pole magnets was investigated. The magnets were aligned in an alternatively magnetized formation of 6 magnets to explore enhanced power density. In particular, the magnet array was positioned in parallel to the trajectory of the tip coil within its tip deflection span. The finite element simulations of the magnetic flux density and induced voltages at an open circuit condition were studied to find the maximum number of alternatively magnetized magnets that was required for the proposed energy harvester. Experimental results showed that the energy harvester with a pair of 6 alternatively magnetized linear magnet arrays was able to generate an induced voltage (V o ) of 20 V, with an open circuit condition, and 475 mW, under a 30 Ω optimal resistance load operating with the wind speed (U) at 7 m/s and a natural bending frequency of 3.54 Hz. Compared to the traditional electromagnetic energy harvester with a single magnet moving through a coil, the proposed energy harvester, containing multi-pole magnets and parallel array motion, enables the moving coil to accumulate a stronger magnetic flux in each period of the swinging motion. In addition to the comparison made with the airfoil-based piezoelectric energy harvester of the same size, our proposed electromagnetic energy harvester generates 11 times more power output, which is more suitable for high-power-density energy harvesting applications at regions with low environmental frequency.

  19. Design of a Low-Cost 2-Axes Fluxgate Magnetometer for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Su-Jeoung Kim

    2005-03-01

    Full Text Available This paper addresses the design and analysis results of a 2-axes magnetometer for attitude determination of small satellite. A low-cost and efficient 2-axes fluxgate magnetometer was selected as the most suitable attitude sensor for LEO microsatellites which require a low-to-medium level pointing accuracy. An optimization trade-off study has been performed for the development of 2-axes fluxgate magnetometer. All the relevant parameters such as permeability, demagnetization factor, coil diameter, core thickness, and number of coil turns were considered for the sizing of a small satellite magnetometer. The magnetometer which is designed, manufactured, and tested in-house as described in this paper satisfies linearity requirement for determining attitude position of small satellites. On the basis of magnetometer which is designed in Space System Research Lab. (SSRL, commercial magnetometer will be developed.

  20. Magnetic field `flyby' measurement using a smartphone's magnetometer and accelerometer simultaneously

    Science.gov (United States)

    Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2017-12-01

    The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take advantage of the smartphone capabilities to get simultaneous measures with the built-in accelerometer and magnetometer and to obtain the spatial dependence of magnetic fields. We consider a simple setup consisting of a smartphone mounted on a track whose direction coincides with the axis of a coil. While the smartphone is moving on the track, both the magnetic field and the distance from the center of the coil (integrated numerically from the acceleration values) are simultaneously obtained. This methodology can easily be extended to more complicated setups.

  1. The MASCOT Magnetometer

    Science.gov (United States)

    Herčík, David; Auster, Hans-Ulrich; Blum, Jürgen; Fornaçon, Karl-Heinz; Fujimoto, Masaki; Gebauer, Kathrin; Güttler, Carsten; Hillenmaier, Olaf; Hördt, Andreas; Liebert, Evelyn; Matsuoka, Ayako; Nomura, Reiko; Richter, Ingo; Stoll, Bernd; Weiss, Benjamin P.; Glassmeier, Karl-Heinz

    2017-07-01

    The Mobile Asteroid Scout (MASCOT) is a small lander on board the Hayabusa2 mission of the Japan Aerospace Exploration Agency to the asteroid 162173 Ryugu. Among the instruments on MASCOT is a fluxgate magnetometer, the MASCOT Magnetometer (MasMag). The magnetometer is a lightweight (˜280 g) and low power (˜0.5 W) triaxial fluxgate magnetometer. Magnetic field measurements during the landing period and during the surface operational phase shall provide information about any intrinsic magnetic field of the asteroid and its remanent magnetization. This could provide important constraints on planet formation and the thermal and aqueous evolution of primitive asteroids.

  2. Mathematical model of a fluxgate magnetometer

    OpenAIRE

    Baranov Pavel F.; Baranova Vitalia E.; Nesterenko Tamara G.

    2018-01-01

    In paper analytical equations for calculate the electromotive force in the measuring coil of the fluxgate magnetometer independent of the drive signal frequency content are presented. Also, the equations for es-timation of the fluxgate sensitivity at any harmonic and for study fluxgates operation with a glance to the waveform and the polynomial approximation of the mean magnetization curve of the core are provided.

  3. Mathematical model of a fluxgate magnetometer

    Directory of Open Access Journals (Sweden)

    Baranov Pavel F.

    2018-01-01

    Full Text Available In paper analytical equations for calculate the electromotive force in the measuring coil of the fluxgate magnetometer independent of the drive signal frequency content are presented. Also, the equations for es-timation of the fluxgate sensitivity at any harmonic and for study fluxgates operation with a glance to the waveform and the polynomial approximation of the mean magnetization curve of the core are provided.

  4. Tuned cavity magnetometer sensitivity.

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Schwindt, Peter

    2009-09-01

    We have developed a high sensitivity (magnetometer that utilizes a novel optical (interferometric) detection technique. Further miniaturization and low-power operation are key advantages of this magnetometer, when compared to systems using SQUIDs which require liquid Helium temperatures and associated overhead to achieve similar sensitivity levels.

  5. General theory of detection of signal induced in vibrating magnetometer

    International Nuclear Information System (INIS)

    Pacyna, A.W.

    1980-01-01

    Assuming the point dipole approximation only and making use of the vectorial notation, signal (EMF) induced in a single-turn pick-up coil of the vibrating magnetometer are calculated for the case of any orientation of the coil, of vibration axis and of the magnetic moment of the sample. On the basis of formula obtained, three types of measurement geometries have been distinquished and for these the qualitative analysis is made. (author)

  6. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  7. GOES Space Environment Monitor, Magnetometer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three orthogonal flux-gate magnetometer elements, (spinning twin fluxgate magnetometer prior to GOES-8) provide magnetic field measurements in three mutually...

  8. Scalar magnetometers for space applications

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    A survey of existing instrumentation and developments is presented emphasizing instrumentation for in-flight calibration of vector magnetometers on magnetic mapping missions. Proton free or forced precession magnetometers are at the focus as calibration references, because the proton gyromagnetic...

  9. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  10. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  11. The Magnetospheric Multiscale Magnetometers

    Science.gov (United States)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  12. The IRM fluxgate magnetometer

    Science.gov (United States)

    Luehr, H.; Kloecker, N.; Oelschlaegel, W.; Haeusler, B.; Acuna, M.

    1985-01-01

    This report describes the three-axis fluxgate magnetometer instrument on board the AMPTE IRM spacecraft. Important features of the instrument are its wide dynamic range (0.1-60,000 nT), a high resolution (16-bit analog to digital conversion) and the capability to operate automatically or via telecommand in two gain states. In addition, the wave activity is monitored in all three components up to 50 Hz. Inflight checkout proved the nominal functioning of the instrument in all modes.

  13. Cryostats for SQUID magnetometers

    International Nuclear Information System (INIS)

    Testard, O.A.; Locatelli, M.

    1982-05-01

    A non metallic and non magnetic cryostat, with a very low thermal budget and a container type autonomy was developed, to condition S.Q.U.I.D. magnetometers which maximum sensitivity reaches 10 -14 Tesla Hertzsup(-1/2). This instrumentation puts in hand new concepts of composite materials, thermal shock and vibration resistant, multilayer thermal radiative insulation also to the prouve of vibrations with thermal equivalent emissivity lower than 10 -3

  14. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  15. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an appa...... on the distribution and motion of interplanetary (>μm sized) dust....

  16. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  17. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    OpenAIRE

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-01-01

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. P...

  18. High Accuracy Vector Helium Magnetometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  19. Optical Magnetometer Incorporating Photonic Crystals

    Science.gov (United States)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  20. A broadband two axis flux-gate magnetometer

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available A broadband two axis flux-gate magnetometer was developed to obtain high sensitivity in magnetotelluric measurements. In magnetotelluric sounding, natural low frequency electromagnetic fields are used to estimate the conductivity of the Earth's interior. Because variations in the natural magnetic field have small amplitude(10-100 pT in the frequency range 1 Hz to 100 Hz, highly sensitive magnetic sensors are required. In magnetotelluric measurements two long and heavy solenoids, which must be installed, in the field station, perpendicular to each other (north-south and east-west and levelled in the horizontal plane are used. The coil is a critical component in magnetotelluric measurements because very slight motions create noise voltages, particularly troublesome in wooded areas; generally the installation takes place in a shallow trench. Moreover the coil records the derivative of the variations rather than the magnetic field variations, consequently the transfer function (amplitude and phase of this sensor is not constant throughout the frequency range 0.001-100 Hz. The instrument, developed at L'Aquila Geomagnetic Observatory, has a flat response in both amplitude and phase in the frequency band DC-100 Hz, in addition it has low weight, low power, small volume and it is easier to install in the field than induction magnetometers. The sensivity of this magnetometer is 10 pT rms.

  1. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    Science.gov (United States)

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  2. A theoretical and experimental investigation of the proton magnetometer

    International Nuclear Information System (INIS)

    Hancke, G.P.

    1987-01-01

    This study comprises the investigation of the properties of the proton magnetometer based on the free precession of protons. The basic principle of the free precession of protons in the earth's magnetic field is described and the most important factors affecting this free precession are examined. It is shown that very important parameters to keep in mind are the polarization time and the magnitude of the polarization field. A discussion of the errors of a proton magnetometer built on the periodometer principles is given and it is shown that the error in counting of the number of precession periods during the time of measurement contributes most to the total error. The magnitude of this error depends on the signal-to-noise ratio, the instability of the operating threshold of the discriminator of the period counter, it's operating time and the tuning accuracy of the sensor to the precession frequency. The penetration to a magnetometer input of variable magnetic and electric interferences, their influence on the phase of the useful signal, and the resulting measurement errors are examined and methods of reducing the effects of interferences are discussed. The optimization of sensor design is very important in the development of proton magnetometers. The coil geometry, physical size, the working substance and the polarization design are important parameters. The selection of a method for processing the precession signal of a proton magnetometer is examined, given a sensor and signal amplifier with fixed parameters. A method is proposed and compared with known methods. Measurement errors are computed for various signal-to-noise ratios and times of observation of the precession signal, and it is shown that the proposed method is superior to conventional methods found in commercial instruments

  3. Magnetogama: an open schematic magnetometer

    Science.gov (United States)

    Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius

    2017-09-01

    Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.

  4. Magnetogama: an open schematic magnetometer

    Directory of Open Access Journals (Sweden)

    Wahyudi

    2017-09-01

    Full Text Available Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV. Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM and Kakadu (KDU and the response of magnetic substance.

  5. Digital fluxgate magnetometer: design notes

    International Nuclear Information System (INIS)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-01-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed. (paper)

  6. Digital fluxgate magnetometer: design notes

    Science.gov (United States)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2015-12-01

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

  7. Considerations Regarding the Opportunity of Using Psychological Techniques to Stimulate Solutions Characterized by Novelty and Inventive Step in TISR Transformers and Electric Motors with Shorted Moving Coil

    Directory of Open Access Journals (Sweden)

    Georgescu Daniel Ștefan

    2014-09-01

    Full Text Available This paper presents the appreciations and contributions regarding the use of psychological techniques to stimulate technical creativity with special reference to consonant association technique and inversion technique. The study is performed in the field of TISR transformers and electric motors with limited movement, starting from the analogy between a transformer and an electric motor with shorted coil. It approached a particular aspect of inversion technique in relation with the transformation of negative effects and results of laws, phenomena and processes into useful applications. The matter reffered to is related to the question: ,,why disadvantages and no advantages ?". At the end of the paper are presented and discussed some experimental models produced and studied by the authors in the Research Laboratory of Machines, Equipment and Drives at the University of Suceava and are exposed conclusions drawn from the experimental study and directions for future research.

  8. Comparison of a triaxial fluxgate magnetometer and Toftness sensometer for body surface EMF measurement.

    Science.gov (United States)

    Zhang, John; Toftness, Dave; Snyder, Brian; Nosco, Dennis; Balcavage, Walter; Nindl, Gabi

    2004-12-01

    The use of magnetic fields to treat disease has intrigued mankind since the time of the ancient Greeks. More recently it has been shown that electromagnetic field (EMF) treatment aids bone healing, and repetitive transcranial magnetic stimulation (rTMS) appears to be beneficial in treating schizophrenia and depression. Since external EMFs influence internal body processes, we hypothesized that measurement of body surface EMFs might be used to detect disease states and direct the course of subsequent therapy. However, measurement of minute body surface EMFs requires use of a sensitive and well documented magnetometer. In this study we evaluated the sensitivity and frequency response of a fluxgate magnetometer with a triaxial probe for use in detecting body surface EMF and we compared the magnetometer readings with a signal from a Toftness Sensometer, operated by an experienced clinician, in the laboratory and in a clinical setting. A Peavy Audio Amplifier and variable power output Telulex signal generator were used to develop 50 microT EMFs in a three coil Merritt coil system. A calibrated magnetometer was used to set a 60 Hz 50 microT field in the coil and an ammeter was used to measure the current required to develop the 50 microT field. At frequencies other than 60 Hz, the field strength was maintained at 50 microT by adjusting the Telulex signal output to keep the current constant. The field generated was monitored using a 10 turn coil connected to an oscilloscope. The oscilloscope reading indicated that the field strength was the same at all frequencies tested. To determine if there was a correspondence between the signals detected by a fluxgate magnetometer (FGM1) and the Toftness Sensometer both devices were placed in the Merritt coil and readings were recorded from the FGM1 and compared with the ability of a highly experienced Toftness operator to detect the 50 microT field. Subsequently, in a clinical setting, FGM1 readings made by an FGM1 technician and

  9. An Arduino-Based Magnetometer

    Science.gov (United States)

    McCaughey, Mike

    2017-01-01

    An Arduino-based system with a triple axis magnetometer chip may be used to plot both the strength and direction of the magnetic field of a magnet directly on a sheet of paper. Before taking measurements, it is necessary either to correct for or to eliminate soft and hard iron effects. The same sensor may be used to determine the presence of soft…

  10. Magnetometer calibration and test procedure

    International Nuclear Information System (INIS)

    Squier, D.M.

    1997-01-01

    Nuclear waste has been sluiced and pumped from storage tank 241-AX-104, leaving a contaminated heel volume. These operations did not include measurements of the removed waste volume leaving an unknown heel volume in the tank. A magnetometer transducer will be lowered through tank riser ports to rest on the heel's surface. The heel thickness will control the distance between the transducer and the tank's bottom The instrument's output varies with the distance from a magnetic mass, such as the tank's steel bottom, thereby enabling a measurement of the heel depth. Measurements at several tank locations will permit an estimate of the tank's heel volume. The magnetometer's output is influenced by adjacent magnetic materials, such as the tank walls, air lift circulators or other equipment installed in the tank. An adjacent vertical steel surface produces a voltage offset in the instrument's output. Measurements near a tank wall or other tank components may be corrected by noting the offset before the instrument's output is influenced by the tank bottom. An unlevel or uneven heel surface could orient the magnetometer transducer so that it is not vertically level. The magnetometer readings are influenced by these skewed transducer orientations. The magnitude of these errors and offsets must be characterized to bound the heel volume estimate range. The data collected by this activity will be statistically analyzed by SESC to state the confidence level of the heel volume estimates. A test report will document the results of the measurements

  11. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  12. Through-barrier electromagnetic imaging with an atomic magnetometer.

    Science.gov (United States)

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  13. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  14. Vector magnetometer design study: Analysis of a triaxial fluxgate sensor design demonstrates that all MAGSAT Vector Magnetometer specifications can be met

    Science.gov (United States)

    Adams, D. F.; Hartmann, U. G.; Lazarow, L. L.; Maloy, J. O.; Mohler, G. W.

    1976-01-01

    The design of the vector magnetometer selected for analysis is capable of exceeding the required accuracy of 5 gamma per vector field component. The principal elements that assure this performance level are very low power dissipation triaxial feedback coils surrounding ring core flux-gates and temperature control of the critical components of two-loop feedback electronics. An analysis of the calibration problem points to the need for improved test facilities.

  15. Multi-flux-transformer MRI detection with an atomic magnetometer.

    Science.gov (United States)

    Savukov, Igor; Karaulanov, Todor

    2014-12-01

    Recently, anatomical ultra-low field (ULF) MRI has been demonstrated with an atomic magnetometer (AM). A flux-transformer (FT) has been used for decoupling MRI fields and gradients to avoid their negative effects on AM performance. The field of view (FOV) was limited because of the need to compromise between the size of the FT input coil and MRI sensitivity per voxel. Multi-channel acquisition is a well-known solution to increase FOV without significantly reducing sensitivity. In this paper, we demonstrate twofold FOV increase with the use of three FT input coils. We also show that it is possible to use a single atomic magnetometer and single acquisition channel to acquire three independent MRI signals by applying a frequency-encoding gradient along the direction of the detection array span. The approach can be generalized to more channels and can be critical for imaging applications of non-cryogenic ULF MRI where FOV needs to be large, including head, hand, spine, and whole-body imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Atomic magnetometer for human magnetoencephalograpy.

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  17. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  18. Vector Fluxgate Magnetometer (VMAG) Development for DSX

    Science.gov (United States)

    2010-06-03

    AFRL-RV-HA-TR-2010-1056 Vector Fluxgate Magnetometer (VMAG) Development for DSX Mark B. Moldwin UCLA Institute of Geophysics... Fluxgate Magnetometer (VMAG) Development for DSX 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Mark B. Moldwin 5d. PROJECT...axis fluxgate magnetometer for the AFRL-mission. The instrument is designed to measure the medium-Earth orbit geomagnetic field with precision of 0.1

  19. DSCOVR Magnetometer Level 2 One Minute Averages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-minute average of Level 1 data

  20. DSCOVR Magnetometer Level 2 One Second Averages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-second average of Level 1 data

  1. Digitalization of highly precise fluxgate magnetometers

    DEFF Research Database (Denmark)

    Cerman, Ales; Kuna, A.; Ripka, P.

    2005-01-01

    This paper describes the theory behind all three known ways of digitalizing the fluxgate magnetometers: analogue magnetometers with digitalized output using high resolution ADC, application of the delta-sigma modulation to the sensor feedback loop and fully digital signal detection. At present time...... the Delta-Sigma ADCs are mostly used for the digitalization of the highly precise fluxgate magnetorneters. The relevant part of the paper demonstrates some pitfalls of their application studied during the design of the magnetometer for the new Czech scientific satellite MIMOSA. The part discussing...... the application of the A-E modulation to the sensor feedback loop theoretically derives the main advantage of this method-increasing of the modulation order and shows its real potential compared to the analog magnetometer with consequential digitalization. The comparison is realized on the modular magnetometer...

  2. Magnetogate: Using an iPhone Magnetometer for Measuring Kinematic Variables

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2016-01-01

    This paper presents a method to measure the movement of an object from specific locations on a straight line using an iPhone's magnetometer. In this method, called "magnetogate," an iPhone is placed on a moving object (in this case a toy car) and small neodymium magnets are arranged at equal intervals on one side of a straight line. The…

  3. A simple fluxgate magnetometer using amorphous alloys

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Mitra, A.

    1992-01-01

    A simple fluxgate magnetometer is developed using low magnetostrictive ferromagnetic amorphous alloy acting as a sensing element. It uses the fact that the magnetization of sensing element symmetrically magnetized by a sinusoidal field contains even harmonic components in presence of dc signal field H and the amplitude of the second harmonic component of magnetization is proportional to H. The sensitivity and linearity of the magnetometer with signal field are studied for parallel configuration and the field ranging from 10 nT to 10 μT can be measured. The functioning of the magnetometer is demonstrated by studying the shielding and flux-trapping phenomena in high-Tc superconductor. (orig.)

  4. The simple procedure for the fluxgate magnetometers calibration

    Science.gov (United States)

    Marusenkov, Andriy

    2014-05-01

    The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the

  5. All optical vector magnetometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research project will investigate a novel method of operating an atomic magnetometer to simultaneously measure total magnetic fields and vector magnetic...

  6. The Fluxgate Magnetometer Simulation in Comsol Multiphysics

    Directory of Open Access Journals (Sweden)

    Kolomeytsev Andrey

    2018-01-01

    Full Text Available This article describes the fluxgate magnetometer simulation in Comsol Multiphysics software package. The simulation results coincide with the experiment described earlier. Decomposition of the output signal by the Fourier coefficients shows a frequency doubling.

  7. The Fluxgate Magnetometer Simulation in Comsol Multiphysics

    OpenAIRE

    Kolomeytsev Andrey; Baranov Pavel; Zatonov Ivan

    2018-01-01

    This article describes the fluxgate magnetometer simulation in Comsol Multiphysics software package. The simulation results coincide with the experiment described earlier. Decomposition of the output signal by the Fourier coefficients shows a frequency doubling.

  8. Magnetometer Data recovered from 35mm film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The L57 CDMP recovery project takes magnetometer data on 35mm film stored at the archive's climate controlled warehouse and digitizes them.

  9. Development of a nuclear precession magnetometer

    International Nuclear Information System (INIS)

    Virgens Alves, J.G. das.

    1983-12-01

    The objective of this thesis was to develop a proton precession magnetometer for geophysical prospecting and base stations. The proton procession magnetometer measures the total magnetic fields intensity. It operates on the basis of nuclear magnetic resonance by determining the processing frequency of protons of a non viscous liquid in the terrestrial magnetic fields. The instrument was tested in field to evaluate signal/noise ratio, supportable gradient and battery consumption. Application test was carried out to take diurnal variation data and, reconnaissance and detail surveys data on an archaeological site in the Marajo Island-Pa. The test results were confronted with two commercial magnetometers-GP-70, McPhar e G-816, Geometric - and, with data from Observatorio Magnetico Ilha de Tatuoca as well. For all cases, the data comparison showed a good performance of the magnetometer tested. (author)

  10. ATS-6 - UCLA fluxgate magnetometer

    Science.gov (United States)

    Mcpherron, R. L.; Coleman, P. J., Jr.; Snare, R. C.

    1975-01-01

    A summary of the design of the University of California at Los Angeles' fluxgate magnetometer is presented. Instrument noise in the bandwidth 0.001 to 1.0 Hz is of order 85 m gamma. The DC field of the spacecraft transverse to the earth-pointing axis is 1.0 + or - 21 gamma in the X direction and -2.4 + or - 1.3 gamma in the Y direction. The spacecraft field parallel to this axis is less than 5 gamma. The small spacecraft field has made possible studies of the macroscopic field not previously possible at synchronous orbit. At the 96 W longitude of Applications Technology Satellite-6 (ATS-6), the earth's field is typically inclined 30 deg to the dipole axis at local noon. Most perturbations of the field are due to substorms. These consist of a rotation in the meridian to a more radial field followed by a subsequent rotation back. The rotation back is normally accompanied by transient variations in the azimuthal field. The exact timing of these perturbations is a function of satellite location and the details of substorm development.

  11. Mapping of Ambient Magnetic Fields within Liquid Helium Dewar for Testing of a DC SQUID Magnetometer

    International Nuclear Information System (INIS)

    Newhouse, Randal

    2003-01-01

    In an effort to explore the cavity lights phenomenon, Experimental Facilities Department at SLAC is testing a DC SQUID magnetometer. Due to the nature of the SQUID magnetometer and the intended tests, the earth's magnetic field must be negated. It is proposed to reduce ambient fields using bucking coils. First, however, an accurate map of the magnetic field inside the liquid helium Dewar where the experiment is going to take place needed to be made. This map was made using a three-axis fluxgate magnetometer mounted on a 3D positioning device made for this purpose. A ten inch tall volume within the Dewar was measured at data points approximately an inch from each other in all three axes. A LabVEIW program took readings from the magnetometer at 2 ms intervals for 1000 readings in such a way as to eliminate any ambient 60 Hz signals that may be present in the data. This data was stored in spreadsheet format and was analyzed to determine how the magnetic field within the Dewar was changing as a function of position

  12. A novel HTS magnetometer, exploiting the low jc of bulk YBCO

    International Nuclear Information System (INIS)

    Gallop, J.C.; Lilleyman, S.; Langham, C.D.; Radcliffe, W.J.; Stewart, M.

    1989-01-01

    The authors report here a novel of magnetometer which is based on the low critical magnetic field H/sub cl/ of sintered samples of the high temperature ceramic superconductor YBa/sub 2/Cu/sub 3/O/sub y/. By driving a sample of the superconductor around a magnetization hysteresis loop, at a frequency of --100 kHz, and detecting the induced voltage in a coil coupled to the sample, at the second harmonic of the drive frequency, the authors find that this voltage is linearly dependent on the aplied d.c. magnetic field in which the sample is situated. They present a model which explains the operation of this magnetometer. This device, while not as sensitive as a SQUID, has the advantage of a wider dynamic range and direct measurement of flux density, unlike a SQUID which is only capable of sensing flux density changes. When operated at 77K the prototype magnetometer has already demonstrated a sensitivity at least 10 times better than that of a commercial fluxgate magnetometer. The system also appears to provide a simple method for investigation of flux flow in these materials

  13. Directly coupled YBCO dc SQUID magnetometers

    International Nuclear Information System (INIS)

    Petersen, P.R.E.; Shen, Y.Q.; Holst, T.; Larsen, B.H.; Sager, M.P.; Bindslev Hansen, J.

    1999-01-01

    YBa 2 Cu 3 O 7- x magnetometers have been made on 10mmx10mm MgO substrates by directly coupling the magnetometer pick-up loop to a dc SQUID with narrow strip lines. The dc SQUIDs were made with YBa 2 Cu 3 O 7-x step-edge Josephson junctions. The layout of the magnetometer pick-up loop was chosen as a compromise between maximizing the loop effective area and minimizing the loop inductance. The SQUID was designed to have L S ∼100 pH in order to obtain β L =2I 0 L S /Φ 0 approx.= 1 with the single-junction critical current I 0 ∼10 μA. We have made magnetometers with white noise levels down to 55 fT Hz -1/2 and a 1/f knee at 1 Hz (ac biased). Noise measurements were made on a field-cooled magnetometer. The noise measured at 1 Hz when cooled in 'zero field' was 175 fT Hz -1/2 . When cooled in magnetic fields of B = 50 μT and B = 100 μT we measured the noise at 1 Hz to be 430 fT Hz -1 2 and 1.3 pT Hz -1/2 , respectively. (author)

  14. Miniaturized digital fluxgate magnetometer for small spacecraft applications

    International Nuclear Information System (INIS)

    Forslund, Åke; Ivchenko, Nickolay; Olsson, Göran; Edberg, Terry; Belyayev, Serhiy; Marusenkov, Andriy

    2008-01-01

    A novel design of an Earth field digital fluxgate magnetometer is presented, the small magnetometer in low-mass experiment (SMILE). The combination of a number of new techniques results in significant miniaturization of both sensor and electronics. The design uses a sensor with volume compensation, combining three dual rod cores in a Macor® cube with the side dimension of 20 mm. Use of volume compensation provides high geometrical stability of the axes and improved performance compared to component compensated sensors. The sensor is operated at an excitation frequency of 8 kHz. Most of the instrument functionality is combined in a digital signal processing core, implemented in a field programmable gate array (FPGA). The pick-up signal is digitized after amplification and filtering, and values of compensation currents for each of the axes are determined by a digital correlation algorithm, equivalent to a matched filter, and are fed to a hybrid pulse-width modulation/delta-sigma digital-to-analogue converter driving the currents through the compensation coils. Using digital design makes the instrument very flexible, reduces power consumption and opens possibilities for the customization of the operation modes. The current implementation of the design is based on commercial off-the-shelf components. A calibration of the SMILE instrument was carried out at the Nurmijärvi Geophysical Observatory, showing high linearity (within 6 nT on the whole ±50 µT scale), good orthogonality (22 arcmin) and very good temperature stability of the axes

  15. Silent Localization of Underwater Sensors Using Magnetometers

    Directory of Open Access Journals (Sweden)

    Jonas Callmer

    2010-01-01

    Full Text Available Sensor localization is a central problem for sensor networks. If the sensor positions are uncertain, the target tracking ability of the sensor network is reduced. Sensor localization in underwater environments is traditionally addressed using acoustic range measurements involving known anchor or surface nodes. We explore the usage of triaxial magnetometers and a friendly vessel with known magnetic dipole to silently localize the sensors. The ferromagnetic field created by the dipole is measured by the magnetometers and is used to localize the sensors. The trajectory of the vessel and the sensor positions are estimated simultaneously using an Extended Kalman Filter (EKF. Simulations show that the sensors can be accurately positioned using magnetometers.

  16. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  17. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  18. Man-Portable Simultaneous Magnetometer and EM System (MSEMS)

    Science.gov (United States)

    2008-12-01

    limited to cesium vapor magnetometers outputting a Larmor signal. It cannot, as presently configured, be used with less expensive fluxgate magnetometers ...pulses to convert the frequency-based Larmor signal into nT. A fluxgate magnetometer does not employ the resonance mechanism of an alkali vapor...Simultaneous Magnetometer and EM System (MSEMS) December 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  19. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  20. Determination of the Overhauser magnetometer uncertainty

    Czech Academy of Sciences Publication Activity Database

    Ulvr, M.; Zikmund, A.; Kupec, J.; Janošek, M.; Vlk, Michal; Bayer, Tomáš

    2015-01-01

    Roč. 66, 7/s (2015), s. 26-29 ISSN 1335-3632 Institutional support: RVO:67985530 Keywords : Overhauser magnetometer * Earth `s magnetic field * comparison * uncertainty Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.407, year: 2015

  1. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  2. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  3. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  4. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  5. A Web Server for MACCS Magnetometer Data

    Science.gov (United States)

    Engebretson, Mark J.

    1998-01-01

    NASA Grant NAG5-3719 was provided to Augsburg College to support the development of a web server for the Magnetometer Array for Cusp and Cleft Studies (MACCS), a two-dimensional array of fluxgate magnetometers located at cusp latitudes in Arctic Canada. MACCS was developed as part of the National Science Foundation's GEM (Geospace Environment Modeling) Program, which was designed in part to complement NASA's Global Geospace Science programs during the decade of the 1990s. This report describes the successful use of these grant funds to support a working web page that provides both daily plots and file access to any user accessing the worldwide web. The MACCS home page can be accessed at http://space.augsburg.edu/space/MaccsHome.html.

  6. Midlatitude magnetometer chains during the IMS

    International Nuclear Information System (INIS)

    Mcpherron, R.L.

    1982-01-01

    The International Magnetospheric Study (IMS) is an international program to study global problems of magnetospheric dynamics. A key element of the U.S. participation in this program was the establishment of a ground magnetometer network. This network included a number of arrays at high and low latitudes. This report describes three chains established at midlatitudes, including the IMS Midlatitude Chain, the AFGL Magnetometer Network, and the Bell Lab Conjugate Array. Descriptions of the type of equipment, station locations, types of data display, and availability of data for each chain are presented in this report. A major problem of the data analysis phase of the IMS will be reducing selected subsets of these data to a common format. Currently, there are no plans to do this in a systematic manner

  7. Digital Detection and feedback Fluxgate Magnetometer

    DEFF Research Database (Denmark)

    Piil-Henriksen, J.; Merayo, José M.G.; Nielsen, Otto V

    1996-01-01

    A new full Earth's field dynamic feedback fluxgate magnetometer is described. It is based entirely on digital signal processing and digital feedback control, thereby replacing the classical second harmonic tuned analogue electronics by processor algorithms. Discrete mathematical cross......-correlation routines and substantial oversampling reduce the noise to 71 pT root-mean-square in a 0.25-10 Hz bandwidth for a full Earth's field range instrument....

  8. High temperature superconductive flux gate magnetometer

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal

  9. Fluxgate magnetometers for outer planets exploration

    Science.gov (United States)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  10. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  11. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  12. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  13. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  14. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  15. The MAGSAT vector magnetometer: A precision fluxgate magnetometer for the measurement of the geomagnetic field

    Science.gov (United States)

    Acuna, M. H.; Scearce, C. S.; Seek, J.; Scheifele, J.

    1978-01-01

    A description of the precision triaxial fluxgate magnetometer to be flown aboard the MAGSAT spacecraft is presented. The instrument covers the range of + or - 64,000 nT with a resolution of + or - 0.5 nT, an intrinsic accuracy of + or - 0.001% of full scale and an angular alignment stability of the order of 2 seconds of arc. It was developed at NASA's Goddard Space Flight Center and represents the state-of-the-art in precision vector magnetometers developed for spaceflight use.

  16. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  17. Development of a Micro-Fabricated Total-Field Magnetometer

    Science.gov (United States)

    2011-03-01

    are made with fluxgate technologies. Fluxgates have lower sensitivity than Cs magnetometers , yet they continue to be used in small wands simply...extraction process by providing the sensitivity of a Cs magnetometer with the convenience and low cost of a fluxgate wand. Extremely small and low cost...FINAL REPORT Development of a Micro-Fabricated Total-Field Magnetometer SERDP Project MR-1512 MARCH 2011 Mark Prouty Geometrics, Inc

  18. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  19. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  20. Choice of optimal parameters for the superconductive quantum magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, B V; Ivanenko, A I; Trofimov, V N

    1974-12-31

    The problem of choosing the optimal coupling coefficient and optimal working frequency for superconductive quantum magnetometer is considered. The present experimental signalnoise dependence confirms the drawn conclusions. (auth)

  1. High Tc Josephson Junctions, SQUIDs and magnetometers

    International Nuclear Information System (INIS)

    Clarke, J.

    1991-01-01

    There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  2. Corrosion measurement using flux gate magnetometer

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad; Chong Cheong Wei

    2001-01-01

    The ability of fluxgate magnetometer to detect and measure quantitatively the magnetic field generated by electrochemical corrosion is presented. In this study, each sample (iron plate) was exposed to a range of increasingly corrosive environment. During the exposure, we measured the magnetic field above the sample for specific duration of time. The result shows that there is a clear relationship between corrosivity of the environment and the change in magnitude of magnetic field that was generated by the corrosion reaction. Therefore, the measurement of magnetic field might be used to determine the corrosion rates. (Author)

  3. Automated system for the calibration of magnetometers

    DEFF Research Database (Denmark)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical Uni...... through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented. ©2009 American Institute of Physics...

  4. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  5. Performances and place of magnetometers based on amorphous wires compared to conventional magnetometers

    International Nuclear Information System (INIS)

    Robbes, D.; Dolabdjian, C.; Monfort, Y.

    2002-01-01

    We discuss and compare performances of various room temperature magnetometers. The work is directed towards the search of those magnetometers having a high sensitivity (>1000 V/T), a very low noise level (>1 pT/√Hz at white noise) attainable in a volume typically smaller than 1 cm 3 . The choice of this set of parameters is related to the useful comparison of room temperature magnetometers versus cryogenic ones, such as Superconducting Quantum Interferometer Devices (SQUIDs). The latter have highly degraded performances when their working operations needs an open unshielded environment as required for example in industrial application (non-destructive evaluation). SQUIDs have also a rather poor spatial resolution, and could be replaced by room temperature sensors in some magnetic imaging systems, which require a high spatial resolution. The paper is 'highlighted' in the field of magnetic sensors based on amorphous magnetic wires that were used to carry out wide bandwidth (>100 kHz), very low noise flux gate (∼pT/√Hz at white noise) and highly sensitive, low noise magnetometers (∼pT/√Hz at white noise) Colpitts oscillator configuration use by K. Bushida's

  6. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  7. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  8. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  9. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  10. Digital Fluxgate Magnetometer for Detection of Microvibration

    Directory of Open Access Journals (Sweden)

    Menghui Zhi

    2017-01-01

    Full Text Available In engineering practice, instruments, such as accelerometer and laser interferometer, are widely used in vibration measurement of structural parts. A method for using a triaxial fluxgate magnetometer as a microvibration sensor to measure low-frequency pendulum microvibration (not translational vibration is proposed in this paper, so as to detect vibration from low-frequency vibration sources, such as large rotating machine, large engineering structure, earthquake, and microtremor. This method provides vibration detection based on the environmental magnetic field signal to avoid increased measurement difficulty and error due to different relative positions of permanent magnet and magnetometer on the device under test (DUT when using the original magnetic measurement method. After fixedly connecting the fluxgate probe with the DUT during the test, the angular displacement due to vibration can be deduced by measuring the geomagnetic field’s magnetic induction intensity change on the orthogonal three components during the vibration. The test shows that the microvibration sensor has angular resolution of over 0.05° and maximum measuring frequency of 64 Hz. As an exploring test aimed to detect the microvibration of earth-orbiting satellite in the in-orbit process, the simulation experiment successfully provides the real-time microvibration information for attitude and orbit control subsystem.

  11. Automated system for the calibration of magnetometers

    International Nuclear Information System (INIS)

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-01-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented

  12. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  13. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  14. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  15. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  16. Battlefield Applications for the Polatomic 2000 Magnetometer/Gradiometer

    National Research Council Canada - National Science Library

    Kuhlman, G

    2002-01-01

    ... He(4) scalar magnetometer/gradiometer. A major innovation in the P-2000 helium magnetometer is the introduction of a laser pump source to replace the conventional RF discharge helium lamp used in the Navy AN/ASQ-81/208 MAD Set...

  17. Choice of Magnetometers and Gradiometers after Signal Space Separation.

    Science.gov (United States)

    Garcés, Pilar; López-Sanz, David; Maestú, Fernando; Pereda, Ernesto

    2017-12-16

    Modern Elekta Neuromag MEG devices include 102 sensor triplets containing one magnetometer and two planar gradiometers. The first processing step is often a signal space separation (SSS), which provides a powerful noise reduction. A question commonly raised by researchers and reviewers relates to which data should be employed in analyses: (1) magnetometers only, (2) gradiometers only, (3) magnetometers and gradiometers together. The MEG community is currently divided with regard to the proper answer. First, we provide theoretical evidence that both gradiometers and magnetometers result from the backprojection of the same SSS components. Then, we compare resting state and task-related sensor and source estimations from magnetometers and gradiometers in real MEG recordings before and after SSS. SSS introduced a strong increase in the similarity between source time series derived from magnetometers and gradiometers (r² = 0.3-0.8 before SSS and r² > 0.80 after SSS). After SSS, resting state power spectrum and functional connectivity, as well as visual evoked responses, derived from both magnetometers and gradiometers were highly similar (Intraclass Correlation Coefficient > 0.8, r² > 0.8). After SSS, magnetometer and gradiometer data are estimated from a single set of SSS components (usually ≤ 80). Equivalent results can be obtained with both sensor types in typical MEG experiments.

  18. Digital fluxgate magnetometer for the "Astrid-2" satellite

    DEFF Research Database (Denmark)

    Pedersen, Erik Bøje; Primdahl, Fritz; Petersen, Jan Raagaard

    1999-01-01

    The design and performance of the Astrid-2 magnetometer are described. The magnetometer uses mathematical routines implemented by software for commercially available digital dignal processors to determine the magnetic field from the fluxgate sensor. The sensor is from the latest generation of amo...

  19. Analysing Harmonic Motions with an iPhone's Magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  20. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  1. CLUSTER–STAFF search coil magnetometer calibration – comparisons with FGM

    Czech Academy of Sciences Publication Activity Database

    Robert, P.; Cornilleau-Wehrlin, N.; Piberne, R.; Conchy de, Y.; Lacombe, C.; Bouzid, V.; Grison, Benjamin; Alison, D.; Canu, P.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 153-177 ISSN 2193-0856 Institutional support: RVO:68378289 Keywords : Cluster Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment * magnetic components of waves Subject RIV: BL - Plasma and Gas Discharge Physics http://www.geosci-instrum-method-data-syst.net/3/153/2014/gi-3-153-2014.pdf

  2. Hall probe magnetometer for SSC magnet cables

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The authors of this paper constructed a Hall probe magnetometer to measure the magnetization hysteresis loops of Superconducting Super Collider magnet cables. The instrument uses two Hall-effect field sensors to measure the applied field H and the magnetic induction B. Magnetization M is calculated from the difference of the two quantities. The Hall probes are centered coaxially in the bore of a superconducting solenoid with the B probe against the sample's broad surface. An alternative probe arrangement, in which M is measured directly, aligns the sample probe parallel to the field. The authors measured M as a function of H and field cycle rate both with and without a dc transport current. Flux creep as a function of current was measured from the dependence of ac loss on the cycling rate and from the decay of magnetization with time. Transport currents up to 20% of the critical current have minimal effect on magnetization and flux creep

  3. Quantum critical environment assisted quantum magnetometer

    Science.gov (United States)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  4. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2015-06-01

    Full Text Available A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  5. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Lu

    2014-07-01

    Full Text Available This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  6. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff

    2015-06-19

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  7. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-01-01

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market. PMID:25196107

  8. High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

    Science.gov (United States)

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-07-30

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current "flip chip" concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or "responsivity" for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz(1/2) at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  9. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  10. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  11. Self-Compensating Excitation of Fluxgate Sensors for Space Magnetometers

    DEFF Research Database (Denmark)

    Cerman, Alec; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    The paper presents design and implementation of the new self-compensating excitation circuitry to the new generation of high-precise space vector magnetometers. The application starts with complex study including design of new robust model of the non-linear inductor leading to investigation...... of the most crucial points, continuous by design of the self-compensating excitation unit and concludes with unit complex testing and application to the magnetometer. The application of the self-compensation of the excitation decreases temperature drift of the magnetometer offset caused by the temperature...

  12. Analysing harmonic motions with an iPhone’s magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  13. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  14. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  15. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  16. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  17. GIOTTO MAGNETOMETER 8 SECOND DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of the Giotto Magnetometer Experiment is the investigation of the interaction between Comet Halley and the solar wind at a distance of 0.9 AU from...

  18. Developement of a Fluxgate Magnetometer for the KITSAT-3 Satellite

    Directory of Open Access Journals (Sweden)

    S. H. Hwang

    1997-12-01

    Full Text Available The magnetometer is one of the most important payloads of scientific satellites to monitor the near-earth space environment. The electromagnetic variations of the space environment can be observed with the electric and magnetic field measurements. In practice, it is well known that the measurement of magnetic fields needs less technical complexities than that of electric fields in space. Therefore the magnetometer has long been recognized as one of the basic payloads for the scientific satellites. In this paper, we discuss the scientific fluxgate magnetometer which will be on board the KITSAT-3. The main circuit design of the present magnetometer is based on that of KISAT-1 and -2 but its facilities have been re-designed to improve the resolution to about 5nT for scientific purpose. The calibration and noise level test of this circuit have been performed at the laboratory of the Tierra Tecnica company in Japan.

  19. VOYAGER 1 SATURN MAGNETOMETER RESAMPLED DATA 9.60 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Saturn encounter magnetometer data that have been resampled at a 9.6 second sample rate. The data set is composed of 6 columns: 1)...

  20. Self-Calibrating Vector Helium Magnetometer (SVHM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes proposed development of a conceptual design for a Self-Calibrating Vector Helium Magnetometer (SVHM) for design and fabrication...

  1. VOYAGER 2 JUPITER MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  2. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    Science.gov (United States)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  3. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  4. Ultrasensitive magnetometers based on rotational magnetic excitation

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2014-01-01

    Three new types of fluxgate magnetometers are presented in this paper, able to monitor the three components of the ambient field, all of them based on the principle of rotational excitation field. The first type is based on Yttrium- Iron Garnet (YIG) single crystal film, magnetized with rotational field on its plane, where the 2"n"d, 4"t"h and 6"t"h harmonics offer the three components of the ambient field with sensitivity better than 1 pT at 0.2 Hz, its size being 25 cm"3. The second type is based on permalloy film, where the rotational excitation field on its plane offers change of magnetoresistance with sensitivity better than 10 pT at 1 Hz, uncertainty of 1 ppm and size ∼ 8 cm"3. The third type, is based on amorphous film, where the rotation field mode offer sensitivity better than 100 pT at 1 Hz, uncertainty of 10 ppm and size ∼ 10 mm"3. (authors)

  5. Ultra-sensitive Magnetic Microscopy with an Atomic Magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-19

    The PowerPoint presentation focused on research goals, specific information about the atomic magnetometer, response and resolution factors of the SERF magnetometer, FC+AM systems, tests of field transfer and resolution on FC, gradient cancellation, testing of AM performance, ideas for a multi-channel AM, including preliminary sensitivity testing, and a description of a 6 channel DAQ system. A few ideas for future work ended the presentation.

  6. Magnetometer and Gyroscope Calibration Method with Level Rotation

    Directory of Open Access Journals (Sweden)

    Zongkai Wu

    2018-03-01

    Full Text Available Micro electro mechanical system (MEMS gyroscopes and magnetometers are usually integrated into a sensor module or chip and widely used in a variety of applications. In existing integrated gyroscope and magnetometer calibration methods, rotation in all possible orientations is a necessary condition for a good calibration result. However, rotation around two or more axes is difficult to attain, as it is limited by the range of movement of vehicles such as cars, ships, or planes. To solve this problem, this paper proposes an integrated magnetometer and gyroscope calibration method with level rotation. The proposed method presents a redefined magnetometer output model using level attitude. New gyroscope and magnetometer calibration models are then deduced. In addition, a simplified cubature Kalman filter (CKF is established to estimate calibration parameters. This method possesses important value for application in actual systems, as it only needs level rotation for real-time calibration of gyroscopes and magnetometers. Theoretical analysis and test results verify the validity and feasibility of this method.

  7. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  8. A method for calibrating coil constants by using the free induction decay of noble gases

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-07-01

    Full Text Available We propose a precise method to calibrate the coil constants of spin-precession gyroscopes and optical atomic magnetometers. This method is based on measuring the initial amplitude of Free Induction Decay (FID of noble gases, from which the π/2 pulse duration can be calculated, since it is inversely proportional to the amplitude of the π/2 pulse. Therefore, the coil constants can be calibrated by measuring the π/2 pulse duration. Compared with the method based on the Larmor precession frequency of atoms, our method can avoid the effect of the pump and probe powers. We experimentally validated the method in a Nuclear Magnetic Resonance Gyroscope (NMRG, and the experimental results show that the coil constants are 436.63±0.04 nT/mA and 428.94±0.02 nT/mA in the x and y directions, respectively.

  9. MRI of the orbit with surface coils

    International Nuclear Information System (INIS)

    Reuther, G.; Requardt, H.; Siemens A.G., Erlangen

    1986-01-01

    MRI of the orbit is strongly improved by the use of surface coils due to a higher signal-to-noise ratio. Oblique views without moving the patient present the optic nerve in full length on one slice. First experience with a small number of cases demonstrates normal anatomy and lesions in detail only at T 1 -weighted pulse sequences. Losses in contrast variation and detail accuracy are caused by movements of the eyeballs. Edge artifacts due to chemical shifting impair the image quality. So far there are no pinters towards tissue-specific signal intensity behaviour. Procedure and most favourable parameters at 1 tesla are given. (orig.) [de

  10. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  11. Design and implementation of JOM-3 Overhauser magnetometer analog circuit

    Science.gov (United States)

    Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting

    2017-09-01

    Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  12. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  13. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  14. Current contact device for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Hieronymus, H.

    1987-01-01

    The invention concerns a current supply device for a superconducting magnet coil to be shortcircuited, with a separating device per coil end, which contains a fixed cooled contact and a moving contact connected to a power supply device and a mechanical actuating device for closing and opening the contacts. When closing the heated contact on to the cooled contact, relatively large quantities of heat can be transferred to the cooled contact and therefore to the connected superconducting coil end and can cause normal conduction there. The invention therefore provides that the mass ratio of the cooled contact to the moving contact is at least 5:1, preferably at least 10:1, and that the cooled contact part is provided, at the end away from the contact area, with means for increasing the area, for example cooling fins and is connected to the coil end has a thermal resistance between the contact area and the coil end of at least 0.2 k/W, preferably at least 0.5 k/W per 1000 A of current to be transmitted. (orig.) [de

  15. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  16. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Science.gov (United States)

    Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.

    2017-10-01

    Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal

  17. The effect of winding and core support material on the thermal gain dependence of a fluxgate magnetometer sensor

    Directory of Open Access Journals (Sweden)

    D. M. Miles

    2017-10-01

    Full Text Available Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc. which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C−1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK engineering plastic (virgin, 30 % glass filled and 30 % carbon filled, and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C−1 had a thermal gain dependence within 5 ppm°C−1 of a traditional sensor constructed from MACOR ceramic (8.1

  18. Calibration of three-axis magnetometers with differential evolution algorithm

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Wang, Wei; Wang, Junya; Li, Ji; Luo, Shitu; Wan, Chengbiao; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The accuracy of three-axis magnetometers is influenced by different scale and bias of each axis and nonorthogonality between axes. One limitation of traditional iteration methods is that initial parameters influence the calibration, thus leading to the local optimal or wrong results. In this paper, a new method is proposed to calibrate three-axis magnetometers. To employ this method, a nonmagnetic rotation platform, a proton magnetometer, a DM-050 three-axis magnetometer and the differential evolution (DE) algorithm are used. The performance of this calibration method is analyzed with simulation and experiment. In simulation, the calibration results of DE, unscented Kalman filter (UKF), recursive least squares (RLS) and genetic algorithm (GA) are compared. RMS error using DE is least, which is reduced from 81.233 nT to 1.567 nT. Experimental results show that comparing with UKF, RLS and GA, the DE algorithm has not only the least calibration error but also the best robustness. After calibration, RMS error is reduced from 68.914 nT to 2.919 nT. In addition, the DE algorithm is not sensitive to initial parameters, which is an important advantage compared with traditional iteration algorithms. The proposed algorithm can avoid the troublesome procedure to select suitable initial parameters, thus it can improve the calibration performance of three-axis magnetometers. - Highlights: • The calibration results and robustness of UKF, GA, RLS and DE algorithm are analyzed. • Calibration error of DE is the least in simulation and experiment. • Comparing with traditional calibration algorithms, DE is not sensitive to initial parameters. • It can improve the calibration performance of three-axis magnetometers

  19. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  20. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  1. Calibration of the Ørsted vector magnetometer

    DEFF Research Database (Denmark)

    Olsen, Nils; Tøffner-Clausen, Lars; Sabaka, T.J.

    2003-01-01

    The vector fluxgate magnetometer of the Orsted satellite is routinely calibrated by comparing its output with measurements of the absolute magnetic intensity from the Overhauser instrument, which is the second magnetometer of the satellite. We describe the method used for and the result obtained...... coordinate system and the reference system of the star imager. This is done by comparing the magnetic and attitude measurements with a model of Earth's magnetic field. The Euler angles describing this rotation are determined in this way with an accuracy of better than 4 arcsec....

  2. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    Science.gov (United States)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  3. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah; Renzoni, Ferruccio [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  4. Characterization of closed nickel-titanium orthodontic coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Langeron, T. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; Filleul, M.P. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; ENSCP, Paris (France). Lab. de Metallurgie Structurale; Humbeeck, J. van [Katholieke Univ. Leuven, Heverlee (Belgium). Faculteit Toegepaste Wetenschappen, Metaalkunde en Toegepaste Materialkund

    2001-11-01

    Nickel-titanium orthodontic coil springs are used to move teeth with low forces and slow deactivation. The present paper provides data on transformation temperatures and on load-deflection rate at buccal temperature of closed Nickel-Titanium coil springs available on the market from ORMCO {sup trademark} and GAC {sup trademark}. All the springs exhibited superelasticity but their properties were not stable in the range of buccal temperatures and varied not only from one manufacturer to the other but they also varied from one batch to the other of each supplier. The need for more stability is stressed. (orig.)

  5. Move up,Move out

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2007-01-01

    @@ China has already become the world's largest manufacturer of cement,copper and steel.Chinese producers have moved onto the world stage and dominated the global consumer market from textiles to electronics with amazing speed and efficiency.

  6. Long-term vacuum tests of single-mode vertical cavity surface emitting laser diodes used for a scalar magnetometer

    Science.gov (United States)

    Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.

    2017-11-01

    Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.

  7. Evaluating Detection and Estimation Capabilities of Magnetometer-Based Vehicle Sensors

    Science.gov (United States)

    2012-05-01

    fluxgate magnetometers whose operating characteristics are well documented [1, 2]. Such magnetometers measure two perpendicular magnetic components of...of surveillance scenarios. As part of that work, this analysis focuses on UGS utilizing of two-axis fluxgate magnetometers . Two MOPs are 12 -60 -40 -20...Proceedings of the IEEE, 78(6):973–989, June 1990. [2] E. M. Billingsley and S. W. Billingsley. Fluxgate magnetometers . Proceedings of the IEEE, 5090(194

  8. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  9. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  10. Design and analysis of miniature tri-axial fluxgate magnetometer

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  11. The Pioneer 11 high-field fluxgate magnetometer

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1973-01-01

    The High Field Fluxgate Magnetometer Experiment flow aboard the Pioneer 11 spacecraft to investigate Jupiter's magnetic field is described. The instrument extends the spacecraft's upper limit measurement capability by more than an order of magnitude to 17.3 gauss with minimum power and volume requirements.

  12. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space. PMID:22294904

  13. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  14. Small fluxgate magnetometers: development and future trends in Spain.

    Science.gov (United States)

    Ciudad, David; Díaz-Michelena, Marina; Pérez, Lucas; Aroca, Claudio

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  15. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    OpenAIRE

    Lucas Pérez; Claudio Aroca; Marina Díaz-Michelena; David Ciudad

    2010-01-01

    In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  16. Small Fluxgate Magnetometers: Development and Future Trends in Spain

    Directory of Open Access Journals (Sweden)

    Lucas Pérez

    2010-03-01

    Full Text Available In this paper, we give an overview of the research on fluxgate magnetometers carried out in Spain. In particular we focus in the development of the planar-type instruments. We summarize the fabrication processes and signal processing developments as well as their use in complex systems and space.

  17. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  18. Voice Coil Percussive Mechanism Concept for Hammer Drill

    Science.gov (United States)

    Okon, Avi

    2009-01-01

    A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.

  19. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  20. Current control by a homopolar machine with moving brushes

    International Nuclear Information System (INIS)

    Vogel, H.

    1978-01-01

    The equation for TNS Doublet's E-coil circuit with moving brush homopolar machine is integrated in the flux of the homopolar for a monotonically increasing current function extending beyond the current reversal into the burn period. The results show that the moving brush feature is not useful for controlling the burn

  1. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 {mu}m and 40 {mu}m, for values of the angle {theta} between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M{sub irr}, allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Senoussi, S.

    2006-01-01

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 μm and 40 μm, for values of the angle θ between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M irr , allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. DESIGN AND CALIBRATION OF A VIBRANT SAMPLE MAGNETOMETER: CHARACTERIZATION OF MAGNETIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Freddy P. Guachun

    2018-01-01

    Full Text Available This paper presents the process followed in the implementation of a vibrating sample magnetometer (VSM, constructed with materials commonly found in an electromagnetism laboratory. It describes the design, construction, calibration and use in the characterization of some magnetic materials. A VSM measures the magnetic moment of a sample when it is vibrated perpendicular to a uniform magnetic field; Magnetization and magnetic susceptibility can be determined from these readings. This instrument stands out for its simplicity, versatility and low cost, but it is very sensitive and capable of eliminating or minimizing many sources of error that are found in other methods of measurement, allowing to obtain very accurate and reliable results. Its operation is based on the law of magnetic induction of Lenz-Faraday that consists in measuring the induced voltage in coils of detection produced by the variation of the magnetic flux that crosses them. The calibration of the VSM was performed by means of a standard sample (Magnetite and verified by means of a test sample (Nickel.

  4. Compressor Has No Moving Macroscopic Parts

    Science.gov (United States)

    Gasser, Max

    1995-01-01

    Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.

  5. The D0 solenoid NMR magnetometer

    International Nuclear Information System (INIS)

    Sten Uldall Hansen; Terry Kiper; Tom Regan; John Lofgren

    2002-01-01

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10 5 . To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV

  6. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.

    Science.gov (United States)

    Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.

  7. Generation of uniform magnetic field using a spheroidal helical coil structure

    International Nuclear Information System (INIS)

    Öztürk, Yavuz; Aktaş, Bekir

    2016-01-01

    Uniformity of magnetic fields are of great importance especially in magnetic resonance studies, namely in magnetic resonance spectroscopy applications (NMR, FMR, ESR, EPR etc.) and magnetic resonance imaging applications (MRI, FMRI). Field uniformity is also required in some other applications such as eddy current probes, magnetometers, magnetic traps, particle counters etc. Here we proposed a coil winding regime, which follows the surface of a spheroid (an ellipsoid of rotation); in light of previous theoretical studies suggesting perfect uniformity for a constant ampere per turn in the axial direction thereof. We demonstrated our theoretical results from finite element calculations suggesting 0.15% of field uniformity for the proposed structure, which we called a Spheroidal Helical Coil. (paper)

  8. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  9. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  10. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  11. The Swiss LCT-coil

    International Nuclear Information System (INIS)

    Vecsey, G.; Benz, H.; Horvath, I.

    1985-01-01

    With delivery of the coil to ORNL on February 4, 1984, the second phase of the Swiss Large Coil Program - design and construction - was terminated. Mainlines of the Swiss design concept are summarized and related to theoretical calculations, experimental results of the supporting program, fabricational experience and first successful test results. An attempt is made to draw preliminary conclusions with regard to the design of future toroidal systems such as NET

  12. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  13. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  14. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  15. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  16. Optimal position of the transmitter coil for wireless power transfer to the implantable device.

    Science.gov (United States)

    Jinghui Jian; Stanaćević, Milutin

    2014-01-01

    The maximum deliverable power through inductive link to the implantable device is limited by the tissue exposure to the electromagnetic field radiation. By moving away the transmitter coil from the body, the maximum deliverable power is increased as the magnitude of the electrical field at the interface with the body is kept constant. We demonstrate that the optimal distance between the transmitter coil and the body is on the order of 1 cm when the current of the transmitter coil is limited to 1 A. We also confirm that the conditions on the optimal frequency of the power transmission and the topology of the transmission coil remain the same as if the coil was directly adjacent to the body.

  17. Results from the GSFC fluxgate magnetometer on Pioneer 11

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    A high-field triaxial fluxgate magnetometer was mounted on Pioneer 11 to measure the main magnetic field of Jupiter. It is found that this planetary magnetic field is more complex than that indicated by the results of the Pioneer 10 vector helium magnetometer. At distances less than 3 Jupiter radii, the magnetic field is observed to increase more rapidly than an inverse-cubed distance law associated with any simple dipole model. Contributions from higher-order multipoles are significant, with the quadrupole and octupole being 24 and 21 percent of the dipole moment, respectively. Implications of the results for the study of trapped particles, planetary radio emission, and planetary interiors are discussed. Major conclusions are that the deviation of the main planetary magnetic field from a simple dipole leads to distortion of the L shells of the charged particles and to warping of the magnetic equator. Enhanced absorption effects associated with Amalthea and Io are predicted.

  18. Fluxgate Magnetometer Array for Geomagnetic Abnormal Phenomena Tracking

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    2011-06-01

    Full Text Available The objective of this project is to develop a flexible observation mode for a geomagnetic abnormal phenomena tracking system. The instrument, based on ring core fluxgate magnetometer technology, improves the field environment performance. Using wireless technology provides on-the-spot mobile networking for the observational data, with efficient access to the earthquake precursor observation network. It provides a powerful detection method for earthquake short-term prediction through installation of a low-noise fluxgate magnetometer array, intensely observing the phenomenon of geomagnetic disturbances and abnormal low-frequency electromagnetic signals in different latitudes, then carrying out observational data processing and exploring the relationship between earthquake activity and geomagnetic field changes.

  19. Machine Learning Based Localization and Classification with Atomic Magnetometers

    Science.gov (United States)

    Deans, Cameron; Griffin, Lewis D.; Marmugi, Luca; Renzoni, Ferruccio

    2018-01-01

    We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb 85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.

  20. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  1. Athermal fiber laser for the SWARM absolute scalar magnetometer

    Science.gov (United States)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.

    2017-11-01

    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  2. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    Directory of Open Access Journals (Sweden)

    Naser El-Sheimy

    2012-09-01

    Full Text Available Inertial Navigation Systems (INS consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth’s magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS applications.

  3. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; hide

    2015-01-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations.

  4. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  5. A spinner magnetometer for large Apollo lunar samples

    Science.gov (United States)

    Uehara, M.; Gattacceca, J.; Quesnel, Y.; Lepaulard, C.; Lima, E. A.; Manfredi, M.; Rochette, P.

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10-7 Am2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  6. A spinner magnetometer for large Apollo lunar samples.

    Science.gov (United States)

    Uehara, M; Gattacceca, J; Quesnel, Y; Lepaulard, C; Lima, E A; Manfredi, M; Rochette, P

    2017-10-01

    We developed a spinner magnetometer to measure the natural remanent magnetization of large Apollo lunar rocks in the storage vault of the Lunar Sample Laboratory Facility (LSLF) of NASA. The magnetometer mainly consists of a commercially available three-axial fluxgate sensor and a hand-rotating sample table with an optical encoder recording the rotation angles. The distance between the sample and the sensor is adjustable according to the sample size and magnetization intensity. The sensor and the sample are placed in a two-layer mu-metal shield to measure the sample natural remanent magnetization. The magnetic signals are acquired together with the rotation angle to obtain stacking of the measured signals over multiple revolutions. The developed magnetometer has a sensitivity of 5 × 10 -7 Am 2 at the standard sensor-to-sample distance of 15 cm. This sensitivity is sufficient to measure the natural remanent magnetization of almost all the lunar basalt and breccia samples with mass above 10 g in the LSLF vault.

  7. Particle swarm optimization algorithm based low cost magnetometer calibration

    Science.gov (United States)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  8. In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Leinweber, H. K.; Plaschke, F.; Strangeway, R. J.; Magnes, W.; Fischer, D.; Nakamura, R.; Anderson, B. J.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.

    2015-12-01

    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and Digital Fluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, Los Angeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since the successful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the ground calibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluate twelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers using algorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF, UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tones and harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA. IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolute gains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS and give examples of the quality of the resulting calibrations.

  9. Low-frequency noise in high-(Tc) superconductor Josephson junctions, SQUIDs, and magnetometers

    Science.gov (United States)

    Miklich, A. H.

    1994-05-01

    Design and performance of high-T(sub c) dc superconducting quantum interference devices (SQUID's), junctions that comprise them, and magnetometers made from them are described, with attention to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUID's; this suggests a poorly connected interface at the grain boundary junction. SQUID's from bicrystal junctions have levels of critical current noise controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5 x 10(exp -30) J Hz(exp -1) at 1 Hz is reported. Magnetometers in which a (9 mm)(exp 2) pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz(exp -1/2) down to frequencies below 1 Hz, improving to 39 fT Hz(exp -1/2) at 1 Hz with the addition of a 50mm-diameter single-turn flux transformer. Poor coupling to pickup loop makes it difficult to satisfy competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz(exp -1/2) in the white noise region is reported with a (10 mm)(exp 2) pickup loop. However, additional 1/f noise from processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz(exp -1/2). High-T(sub c) SQUID's exhibit additional 1/f noise when cooled in a nonzero static magnetic field because of additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution of 9.2 pV Hz(exp -1/2) at 10 Hz (24 pV Hz(exp -1/2) at 1 Hz) is described.

  10. Low-Frequency Noise in High-T Superconductor Josephson Junctions, Squids, and Magnetometers.

    Science.gov (United States)

    Miklich, Andrew Hostetler

    The design and performance of high-T_ {rm c} dc superconducting quantum interference devices (SQUIDs), the junctions that comprise them, and magnetometers made from them are described, with special attention paid to sources of 1/f noise. Biepitaxial junctions are found to have large levels of critical current fluctuations which make them unsuitable for low-noise SQUIDs. This noise suggests a poorly connected interface at the grain boundary junction. SQUIDs from bicrystal junctions, in contrast, have levels of critical current noise that are controllable using bias current reversal techniques which leave the noise white down to frequencies of a few Hz. A SQUID with an energy resolution of 1.5times 10^{-30} J Hz^ {-1} at 1 Hz is reported. Magnetometers in which a (9 mm)^2 pickup loop is directly coupled to a SQUID body have achieved field resolutions of 93 fT Hz^{-1/2} down to frequencies below 1 Hz, improving to 39 fT Hz^{-1/2} at 1 Hz with the addition of a 50 mm-diameter single-turn flux transformer. Although the performance of these devices is sufficient for single -channel biomagnetometry or geophysical studies, their relatively poor coupling to the pickup loop makes it difficult to satisfy the competing goals of high field resolution and small detector size necessary for multichannel biomagnetic imaging. Improved coupling is demonstrated by the use of multiturn-input-coil flux transformers, and a resolution of 35 fT Hz^{-1/2} in the white noise region is reported with a (10 mm) ^2 pickup loop. However, additional 1/f noise from the processed multilayer structures in the transformer limits the resolution at 1 Hz to 114 fT Hz^ {-1/2}. High-T_{ rm c} SQUIDs are shown to exhibit additional 1/f noise when they are cooled in a nonzero static magnetic field because of the additional flux vortices trapped in the film, with the noise power at 1 Hz typically increasing by a factor of 10-20 in a field of 0.05 mT (0.5 G). Finally, a SQUID-based voltmeter with a resolution

  11. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  12. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  13. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  14. Cooling device of superconducting coils

    International Nuclear Information System (INIS)

    Duthil, R.; Lottin, J.C.

    1985-01-01

    This device is rotating around an horizontal axis. The superconducting coils are contained in a cryogenic enclosure feeded in liquid helium forced circulation. They are related to an electric generator by electric mains each of them comprising a gas exchanger, and an exchanger-evaporator set between the cryogenic device and those exchangers. The exchanger-evaporator is aimed at dissipating the heat arriving by conductors connected to the superconducting coils. According to the invention, the invention includes an annular canalization with horizontal axis in which the connection conductors bathe in liquid helium [fr

  15. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  16. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    Science.gov (United States)

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  17. Miniature scientific-grade induction magnetometer for cubesats

    Science.gov (United States)

    Pronenko, Vira

    2017-04-01

    One of the main areas of space research is the study and forecasting of space weather. The society is more and more depending nowadays on satellite technology and communications, so it is vital to understand the physical process in the solar-terrestrial system which may disturb them. Besides the solar radiation and Space Weather effects, the Earth's ionosphere is also modified by the ever increasing industrial activity. There have been also multiple reports relating VLF and ELF wave activity to atmospheric storms and geological processes, such as earthquakes and volcanic activity. For advancing in these fields, the AC magnetic field permanent monitoring is crucial. Using the cubesat technology would allow increasing the number of measuring points dramatically. It is necessary to mention that the cubesats use for scientific research requires the miniaturization of scientific sensors what is a serious problem because the reduction of their dimensions leads, as a rule, to the parameters degradation, especially of sensitivity threshold. Today, there is no basic model of a sensitive miniature induction magnetometer. Even the smallest one of the known - for the Bepi-Colombo mission to Mercury - is too big for cubesats. The goal of the present report is to introduce the new design of miniature three-component sensor for measurement of alternative vector magnetic fields - induction magnetometer (IM). The study directions were concentrated on the ways and possibilities to create the miniature magnetometer with best combination of parameters. For this a set of scientific and technological problems, mostly aimed at the sensor construction improvement, was solved. The most important parameter characterizing magnetometer quality is its own magnetic noise level (NL). The analysis of the NL influencing factors is made and the ways to decrease it are discussed in the report. Finally, the LEMI-151 IM was developed for the SEAM cubesat mission with optimal performances within the

  18. Multilayer Based Technology to Build RTD Fluxgate Magnetometer

    Directory of Open Access Journals (Sweden)

    B. ANDO

    2006-03-01

    Full Text Available In this paper we discuss the main features of the Residence Times Difference Fluxgate Magnetometer. A low-cost technology, negligible onboard power requirements and the intrinsic digital form of the readout signal are the main advantages of the proposed strategy. Results obtained show the possibility to realise low-cost devices exploiting Printed Circuit Board (PCB technology for applications requiring resolution in the nanotesla range as the ferrous object (or particles detection, being the performance obtained suitable to detect the presence or the transit of ferrous materials via their interaction with the geomagnetic field.

  19. Three axis vector atomic magnetometer utilizing polarimetric technique

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India and Homi Bhabha National Institute, Department of Atomic Energy, Mumbai 400094 (India)

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  20. A simple vibrating sample magnetometer for macroscopic samples

    Science.gov (United States)

    Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.

    2018-03-01

    We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.

  1. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  2. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  3. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  4. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  5. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  6. An absolute nuclear magnetic resonance magnetometer; Magnetometre absolu a resonance magnetique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, A [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-10-15

    After an introduction in which the various work undertaken since the discovery of nuclear magnetic resonance is rapidly reviewed, the author describes briefly In the first chapter three types of NMR magnetometers, giving the advantages and disadvantages of each of them and deducing from this the design of the apparatus having the greatest number of qualities Chapter II is devoted to the crossed coil nuclear oscillator which operates continuously over a wide range (800 gamma). To avoid an error due to a carrying over the frequency, the measurement is carried out using bands of 1000 {gamma}. Chapter III deals with frequency measurements. The author describes an original arrangement which makes possible the frequency-field conversion with an accuracy of {+-} 5 x 10{sup -6}, and the differential measurement between two nuclear oscillators. The report finishes with a conclusion and a few recordings. (author) [French] Apres une introduction rappelant les divers travaux effectues en resonance magnetique nucleaire depuis sa mise en evidence, l'auteur decrit sommairement dans le premier chapitre trois types de magnetometre a R.M.N. enumerant les avantages et les inconvenients de chacun a partir desquels il projet, l'appareillage reunissant le maximum de qualites. Le chapitre II est consacre a l'oscillateur nucleaire a bobines croisees permettant un fonctionnement continu dons une large plage (800 gamma). Pour eviter une erreur due a l'entrainement de frequence, la mesure s'effectue par bandes de 1000 {gamma} chacune. Le chapitre III traite la mesure de frequence. L'auteur expose un montage original permettant la traduction frequence-champ avec une precision egale a {+-} 5.10{sup -6}, et la mesure differentielle entre deux oscillateurs nucleaires. Une conclusion et quelques enregistrements terminent ce travail. (auteur)

  7. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...... scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC lander generated magnetic perturbations are discussed, with particular attention to those related to solar generators. Emphasis...... and very resource consuming....

  8. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  9. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  10. Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard

    Science.gov (United States)

    Brunke, Heinz-Peter; Widmer-Schnidrig, Rudolf; Korte, Monika

    2017-11-01

    For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1) fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz-0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate) and low noise at high frequencies (induction coil). This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.

  11. Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard

    Directory of Open Access Journals (Sweden)

    H.-P. Brunke

    2017-11-01

    Full Text Available For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1 fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz–0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate and low noise at high frequencies (induction coil. This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.

  12. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  13. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  14. Status of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J; Benz, H.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1983-01-01

    The Swiss coil is a forced flow coil cooled by supercritical helium. A brief review of the design considerations, some of its specific features, and the progress in fabrication are described. A discussion of both the instrumentation and the cryogenic characteristics of the coil is presented

  15. Linear motor coil assembly and linear motor

    NARCIS (Netherlands)

    2009-01-01

    An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially

  16. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  17. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  18. Novel method of aligning ATF-1 coils

    International Nuclear Information System (INIS)

    Rome, J.A.; Harris, J.H.; Neilson, G.H.; Jernigan, T.C.

    1983-08-01

    The coils for the Advanced Toroidal Facility (ATF-1) torsatron may be easily aligned before the machine is placed under vacuum. This is done by creating nulls in the magnetic field by energizing the coils in various configurations. All of the nulls in vertical bar B vector vertical bar occur on the z-axis. When the nulls coincide, the coils are properly aligned

  19. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  20. Exploiting nonlinear dynamics in a coupled-core fluxgate magnetometer

    International Nuclear Information System (INIS)

    Bulsara, Adi R; In, Visarath; Kho, Andy; Longhini, Patrick; Neff, Joe; Anderson, Gregory; Obra, Christopher; Palacios, Antonio; Baglio, Salvatore; Ando, Bruno

    2008-01-01

    Unforced bistable dynamical systems having dynamics of the general form τ F x-dot (t)=-∇ x U(x) cannot oscillate (i.e. switch between their stable attractors). However, a number of such systems subject to carefully crafted coupling schemes have been shown to exhibit oscillatory behavior under carefully chosen operating conditions. This behavior, in turn, affords a new mechanism for the detection and quantification of target signals having magnitude far smaller than the energy barrier height in the potential energy function U(x) for a single (uncoupled) element. The coupling-induced oscillations are a feature that appears to be universal in systems described by bi- or multi-stable potential energy functions U(x), and are being exploited in a new class of dynamical sensors being developed by us. In this work we describe one of these devices, a coupled-core fluxgate magnetometer (CCFM), whose operation is underpinned by this dynamic behavior. We provide an overview of the underlying dynamics and, also, quantify the performance of our test device; in particular, we provide a quantitative performance comparison to a conventional (single-core) fluxgate magnetometer via a 'resolution' parameter that embodies the device sensitivity (the slope of its input–output transfer characteristic) as well as the noise floor

  1. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  2. Development of autonomous magnetometer rotorcraft for wide area assessment

    Energy Technology Data Exchange (ETDEWEB)

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  3. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  4. Theoretical and computational studies of entangled rod-coil block copolymer diffusion

    Science.gov (United States)

    Wang, Muzhou; Alexander-Katz, Alfredo; Olsen, B. D.

    2012-02-01

    Despite continued interest in the thermodynamics of rod-coil block copolymers for functional nanostructured materials in organic electronics and biomaterials, relatively few studies have investigated the dynamics of these systems which are important for understanding diffusion, mechanics, and self-assembly kinetics. Here, the diffusion of coil-rod-coil block copolymers through entangled melts is simulated using the Kremer-Grest molecular dynamics model, demonstrating that the mismatch between the curvature of the rod and coil blocks results in dramatically slower reptation through the entanglement tube. For rod lengths near the tube diameter, this hindered diffusion is explained by a local curvature-dependent free energy penalty produced by the curvature mismatch, resulting in a rough energy surface as the rod moves along the tube contour. Compared to coil homopolymers which reptate freely along the tube, rod-coil block copolymers undergo an activated diffusion process which is considerably slower as the rod length increases. For large rods, diffusion of the rod through the tube only occurs when the coil blocks occupy straight entanglement tubes, which requires ``arm retraction'' as the dominant relaxation mechanism.

  5. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  6. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are −0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions. (paper)

  7. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Vigneron, Pierre; Leger, Jean-Michel

    2015-01-01

    , combining ASM scalar data with independent uxgate magnetometer vector data. The high level of agreement between these models demonstrates the potential of the ASM's vector mode for data quality control and as a stand alone magnetometer, and illustrates the way the evolution of key eld features can easily...

  8. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    Science.gov (United States)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-07-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.

  9. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  10. The absolute magnetometers on board Swarm, lessons learned from more than two years in space

    DEFF Research Database (Denmark)

    Hulot, Gauthier; Leger, Jean-Michel; Vigneron, Pierre

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-borne magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the ma...

  11. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  12. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1978-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  13. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  14. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1977-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started an aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pusled coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  15. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  16. Correlation between fluxgate and SQUID magnetometer data sets for geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Matladi Thabang

    2014-01-01

    Full Text Available There has always been a need to monitor the near Earth's magnetic field, as this monitoring provides understanding and possible predictions of Space Weather events such as geomagnetic storms. Conventional magnetometers such as fluxgates have been used for decades for Space Weather research. The use of highly sensitive magnetometers such as Superconducting QUantum Interference Devices (SQUIDs, promise to give more insight into Space Weather. SQUIDs are relatively recent types of magnetometers that exploit the superconductive effects of flux quantization and Josephson tunneling to measure magnetic flux. SQUIDs have a very broad bandwidth compared to most conventional magnetometers and can measure magnetic flux as low as a few femtotesla. Since SQUIDs have never been used in Space Weather research, unshielded, it is necessary to investigate if they can be reliable Space Weather instruments. The validation is performed by comparing the frequency content of the SQUID and fluxgate magnetometers, as reported by Phiri.

  17. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  18. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  19. Associating ground magnetometer observations with current or voltage generators

    DEFF Research Database (Denmark)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.

    2017-01-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for driversof ionospheric currents: ionospheric elec tric fields/voltages constant while current/conductivity vary—the“voltage generator”—and current constant while electric field/conductivity vary—the “current generator.......”Statistical studies of ground magnetometer observations associated with dayside Transient High LatitudeCurrent Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm:some studies associate THLCS with voltage generators, others with current generators. We argue that mostof...... these two assumptions substantially alter expectations for magnetic perturbations associatedwith either a current or a voltage generator. Our results demonstrate that before interpreting groundmagnetometer observations of THLCS in the context of current/voltage generators, the location...

  20. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  1. Magnetometer-Augmented IMU Simulator: In-Depth Elaboration

    Directory of Open Access Journals (Sweden)

    Thomas Brunner

    2015-03-01

    Full Text Available The location of objects is a growing research topic due, for instance, to the expansion of civil drones or intelligent vehicles. This expansion was made possible through the development of microelectromechanical systems (MEMS, inexpensive and miniaturized inertial sensors. In this context, this article describes the development of a new simulator which generates sensor measurements, giving a specific input trajectory. This will allow the comparison of pose estimation algorithms. To develop this simulator, the measurement equations of every type of sensor have to be analytically determined. To achieve this objective, classical kinematic equations are used for the more common sensors, i.e., accelerometers and rate gyroscopes. As nowadays, the MEMS inertial measurement units (IMUs are generally magnetometer-augmented, an absolute world magnetic model is implemented. After the determination of the perfect measurement (through the error-free sensor models, realistic error models are developed to simulate real IMU behavior. Finally, the developed simulator is subjected to different validation tests.

  2. Proto-CIRCUS tilted-coil tokamak–torsatron hybrid: Design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.W.; Doumet, M.; Hammond, K.C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Kornbluth, Y. [Yeshiva University, New York, NY 10033 (United States); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Sweeney, R. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Volpe, F.A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2014-11-15

    Highlights: • A tokamak-like device with tilted toroidal field (TF) coils needs less plasma current than a conventional tokamak. • Rotational transform is partly generated by external coils. Device can be considered a tokamak–torsatron hybrid. • We designed and constructed the first device of this type. • Tilted TF coils are interlinked to each other, which helps to reduce aspect ratio of plasma. • This is a six-coil generalization of CNT stellarator, also at Columbia University, which features two interlinked coils. - Abstract: We present the field-line modeling, design, and construction of a prototype circular-coil tokamak–torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a < 5 cm. The six “toroidal field” coils are planar as in a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping measurements. Such comparisons will reveal whether this relatively simple concept can generate the expected rotational transform.

  3. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  4. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  5. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  6. Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility

    Science.gov (United States)

    Mahavarkar, Prasanna; John, Jacob; Dhapre, Vijay; Dongre, Varun; Labde, Sachin

    2018-04-01

    A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia), was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG) in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.

  7. Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility

    Directory of Open Access Journals (Sweden)

    P. Mahavarkar

    2018-04-01

    Full Text Available A tri-axial square Helmholtz coil system for the study of palaeomagnetic studies, manufactured by GEOFYZIKA (former Czechoslovakia, was successfully commissioned at the Alibag Magnetic Observatory (IAGA code: ABG in the year 1985. This system was used for a few years, after which the system encountered technical problems with the control unit. Rectification of the unit could not be undertaken, as the information document related to this system was not available, and as a result the system had been lying in an unused state for a long time, until 2015, when the system was recommissioned and upgraded to a test facility for calibrating the magnetometer sensors. We have upgraded the system with a constant current source and a data-logging unit. Both of these units have been designed and developed in the institute laboratory. Also, re-measurements of the existing system have been made thoroughly. The upgraded system is semi-automatic, enabling non-specialists to operate it after a brief period of instruction. This facility is now widely used at the parent institute and external institutions to calibrate magnetometers and it also serves as a national facility. Here the design of this system with the calibration results for the space-borne fluxgate magnetometers is presented.

  8. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob

    2004-01-01

    between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm....... A linear matrix inequality-based algorithm is proposed for attitude control synthesis. Simulation results are provided, showing the prospect of the concept for onboard implementation....

  9. Localization of firearm projectiles in the human body using a superconducting quantum interference device magnetometer: A theoretical study

    Science.gov (United States)

    Hall Barbosa, C.

    2004-06-01

    A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.

  10. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  11. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  12. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  13. Test facility for PLT TF coils

    International Nuclear Information System (INIS)

    Hearney, J.; File, J.; Dreskin, S.

    1975-01-01

    Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program

  14. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  15. Coil supporting device for thermonuclear device

    International Nuclear Information System (INIS)

    Okubo, Minoru; Ando, Toshiro; Ota, Mitsuru; Ishimura, Masabumi.

    1979-01-01

    Purpose: To lower the bending stress exerted on coils thereby preventing the coils from deformation by branching the outer circumferential support frames of coil support frames disposed at an equal pitch circumferentially to the coils into plurality, and integrally forming them to the inner circumferential support frames. Constitution: Each of the support frames for supporting poloidal coils winding around a vacuum vessel is bisected at the radial midway so that the outer circumferential branches are disposed at an equal pitch and they are formed integrally with the inner circumferential support frames. The inner circumferential support frames are fixed by support posts on a bed and the outer circumferential support frames are mounted to the outer edge of wedge-like support posts. Accordingly, if the coils expand outwardly upon increase in the temperature, the stress exerted on the support frame can be decreased. (Yoshino, Y.)

  16. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  17. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  18. Development of Magnetometer Digital Circuit for KSR-3 Rocket and Analytical Study on Calibration Result

    Directory of Open Access Journals (Sweden)

    Eun-Seok Lee

    2002-12-01

    Full Text Available This paper describes the re-design and the calibration results of the MAG digital circuit onboard the KSR-3. We enhanced the sampling rate of magnetometer data. Also, we reduced noise and increased authoritativeness of data. We could confirm that AIM resolution was decreased less than 1nT of analog calibration by a digital calibration of magnetometer. Therefore, we used numerical-program to correct this problem. As a result, we could calculate correction and error of data. These corrections will be applied to magnetometer data after the launch of KSR-3.

  19. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  20. Optimization of the ECT background coil

    International Nuclear Information System (INIS)

    Ballou, J.K.; Luton, J.N.

    1975-01-01

    This study was begun to optimize the Eccentric Coil Test (ECT) background coil. In the course of this work a general optimization code was obtained, tested, and applied to the ECT problem. So far this code has proven to be very satisfactory. The results obtained with this code and earlier codes have illustrated the parametric behavior of such a coil system and that the optimum for this type system is broad. This study also shows that a background coil with a winding current density of less than 3000 A/cm 2 is not feasible for the ECT models presented in this paper

  1. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  2. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  3. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  4. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, Paolo, E-mail: falferi@science.unitn.it [Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, 38123 Povo, Trento (Italy); INFN, Gruppo Collegato di Trento, Sezione di Padova, 38123 Povo, Trento (Italy)

    2011-07-21

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  5. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    International Nuclear Information System (INIS)

    Falferi, Paolo

    2011-01-01

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  6. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  7. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  8. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  9. Clamp for use in winding large magnet coils

    Science.gov (United States)

    Brown, Robert L.; Kenney, Walter J.

    1983-01-01

    In one aspect, the invention is a novel arrangement for applying forces to urns of a vertically extending helical coil which is wound about a support. The apparatus includes a first rigid member extending towards the turns. A second rigid member extends transversely from the end of the first and has a vertically extending face provided with a generally straight groove extending transversely of the turns. A longitudinal passage in the first member connects to the groove to form therewith a continuous guideway for rollable articles. A rigid lug longitudinally movable in the groove is provided with a projection which extends out of the groove and beneath the bottom of a selected turn of the coil. A train of rigid, rollable articles is disposed in the guideway inwardly of the lug. Means are provided for applying force to that end of the train which is relatively remote from the lug, to urge the latter against the bottom face of the selected turn. As a result, that turn is moved upward along the face of the support, establishing a selected spacing between that turn and the previously formed turn of the coil. When upward movement of the selected turn stops, the force applied to the lug immediately translates to a force which urges the above-mentioned grooved face against all of the formed turns, thus compressing them against the support. The above-mentioned first and second members are swingably mounted so that they can be temporarily moved out of the winding path, thus permitting continuous winding.

  10. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    Science.gov (United States)

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the

  11. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  12. Rad-Hard Sigma-Delta 3-Channel ADC for Fluxgate Magnetometers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The measurement of the magnetic field vector is of fundamental importance to space physics missions. The fluxgate magnetometer is a device developed for precise...

  13. Measuring In-Flight Angular Motion With a Low-Cost Magnetometer

    National Research Council Canada - National Science Library

    Harkins, Thomas E; Wilson, Michael J

    2007-01-01

    A technique for obtaining pitch, yaw, and roll rates of a projectile from a single, low-cost, commercial off-the-shelf magnetometer has been developed at the Advanced Munitions Concepts Branch of the U.S...

  14. Rad-Hard Sigma-Delta 3-channel ADC for Fluxgate Magnetometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project aims to develop a multi-channel analog to digital converter (ADC) required for a fluxgate magnetometer (EPD) employed on NASA's planetary...

  15. Simplified High-Performance Roll Out Composite Magnetometer Boom, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for compact, low-cost deployable magnetometer booms for CubeSats, Roccor proposes to develop a Simple High-performance Roll-Out Composite...

  16. Basic technical parameters of magnetometers with ferromagnetic transducers and a method to define them

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1980-01-01

    The basic technical parameters of magnetometers with ferromagnetic transducers and measuring methods to define these parameters have been discussed. Special attention was paid to factors which essentially affect the inaccuracy of these measuring instruments. (author)

  17. Venus Lightning: What We Have Learned from the Venus Express Fluxgate Magnetometer

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.

    2010-03-01

    The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as predicted by the lightning model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by lightning.

  18. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    Science.gov (United States)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  19. IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies (IMCS31B) data set contains magnetic field readings taken over Greenland using...

  20. IceBridge Scintrex CS-3 Cesium Magnetometer L0 Raw Magnetic Field, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Scintrex CS-3 Cesium Magnetometer L0 Raw Magnetic Field data set contains magnetic field readings and fluxgate values taken over Greenland using...

  1. Job Surfing: Move On to Move Up.

    Science.gov (United States)

    Martin, Justin

    1997-01-01

    Looks at the process of switching jobs and changing careers. Discusses when to consider options and make the move as well as the need to be flexible and open minded. Provides a test for determining the chances of promotion and when to move on. (JOW)

  2. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  3. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  4. Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer

    Science.gov (United States)

    Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.

    2018-04-01

    This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.

  5. A xylophone bar magnetometer for micro/pico satellites

    Science.gov (United States)

    Lamy, Hervé; Niyonzima, Innocent; Rochus, Pierre; Rochus, Véronique

    2010-10-01

    The Belgian Institute of Space Aeronomy (BIRA-IASB), "Centre Spatial de Liège" (CSL), "Laboratoire de Techniques Aéronautiques et Spatiales" (LTAS) of University of Liège, and the Microwave Laboratory of University of Louvain-La-Neuve (UCL) are collaborating in order to develop a miniature version of a xylophone bar magnetometer (XBM) using Microelectromechanical Systems (MEMS) technology. The device is based on a classical resonating xylophone bar. A sinusoidal current is supplied to the bar oscillating at the fundamental transverse resonant mode of the bar. When an external magnetic field is present, the resulting Lorentz force causes the bar to vibrate at its fundamental frequency with an amplitude directly proportional to the vertical component of the ambient magnetic field. In this paper we illustrate the working principles of the XBM and the challenges to reach the required sensitivity in space applications (measuring magnetic fields with an accuracy of approximately of 0.1 nT). The optimal dimensions of the MEMS XBM are discussed as well as the constraints on the current flowing through the bar. Analytical calculations as well as simulations with finite element methods have been used. Prototypes have been built in the Microwave Laboratory using silicon on insulator (SOI) and bulk micromachining processes. Several methods to accurately measure the displacement of the bar are proposed.

  6. Obtaining 'images' from iron objects using a 3-axis fluxgate magnetometer

    International Nuclear Information System (INIS)

    Chilo, Jose; Jabor, Abbas; Lizska, Ludwik; Eide, Age J.; Lindblad, Thomas

    2007-01-01

    Magnetic objects can cause local variations in the Earth's magnetic field that can be measured with a magnetometer. Here we used tri-axial magnetometer measurements and an analysis method employing wavelet techniques to determine the 'signature' or 'fingerprint' of different iron objects. Clear distinctions among the iron samples were observed. The time-dependent changes in the frequency powers were extracted by use of the Morlet wavelet corresponding to frequency bands from 0.1 to 100 Hz

  7. Toroidal field coils for the PDX machine

    International Nuclear Information System (INIS)

    Bushnell, C.W.

    1975-01-01

    This paper describes the engineering design features of the TF coils for the PDX machine. Included are design details of the electrical insulation, water cooling, and coil segment joint which allows access to the central machine area. A discussion of the problems anticipated in the manufacture and the planned solutions are presented

  8. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  9. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  10. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  11. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  12. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  13. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  14. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect

    International Nuclear Information System (INIS)

    Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A.; Fetisov, Y.K.; Stashkevich, A.A.

    2016-01-01

    The design and operation principle of dc field magnetometer using nonlinear resonance magnetoelectric effect in a ferromagnetic–piezoelectric structure are described. It is shown that under action of ac pumping magnetic field the structure generates the output voltage containing higher harmonics whose amplitudes depend on the dc magnetic field. Best performance of the device is obtained if the signal of the third harmonics is used for the dc field measurement. The sensitivity can be considerably (by approximately three orders of magnitude) increased if advantage is taken of the acoustic resonance of the structure at this frequency. There exists the optimal pumping field ensuring the highest sensitivity. Further increasing of this field expands the range of measurable dc fields at the expense of deteriorated sensitivity. The magnetometer fabricated on the basis of a planar langatate-Metglas structure had sensitivity up to ~1 V/Oe and allowed detection of the fields as low as ~10"−"5 Oe. - Highlights: • Operational principle and design of new type dc field magnetometer is described. • Magnetometer uses nonlinear magnetoelectric effect in a langatate-Metglas structure. • Magnetometer has sensitivity of ~1 V/Oe and detects fields as low as 10"−"5 Oe. • The proposed magnetometer can compete with well known fluxgate sensors.

  15. High-sensitivity dc field magnetometer using nonlinear resonance magnetoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, D.A.; Chashin, D.V.; Ekonomov, N.A. [Moscow State University of Information Technologies, Radio Engineering and Electronics, Moscow (Russian Federation); Fetisov, Y.K., E-mail: fetisov@mirea.ru [Moscow State University of Information Technologies, Radio Engineering and Electronics, Moscow (Russian Federation); Stashkevich, A.A. [LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse (France)

    2016-05-01

    The design and operation principle of dc field magnetometer using nonlinear resonance magnetoelectric effect in a ferromagnetic–piezoelectric structure are described. It is shown that under action of ac pumping magnetic field the structure generates the output voltage containing higher harmonics whose amplitudes depend on the dc magnetic field. Best performance of the device is obtained if the signal of the third harmonics is used for the dc field measurement. The sensitivity can be considerably (by approximately three orders of magnitude) increased if advantage is taken of the acoustic resonance of the structure at this frequency. There exists the optimal pumping field ensuring the highest sensitivity. Further increasing of this field expands the range of measurable dc fields at the expense of deteriorated sensitivity. The magnetometer fabricated on the basis of a planar langatate-Metglas structure had sensitivity up to ~1 V/Oe and allowed detection of the fields as low as ~10{sup −5} Oe. - Highlights: • Operational principle and design of new type dc field magnetometer is described. • Magnetometer uses nonlinear magnetoelectric effect in a langatate-Metglas structure. • Magnetometer has sensitivity of ~1 V/Oe and detects fields as low as 10{sup −5} Oe. • The proposed magnetometer can compete with well known fluxgate sensors.

  16. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-01-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  17. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    Science.gov (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  18. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  19. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  20. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  1. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  2. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  3. Effects of passive coils on spheromak gross MHD instabilities

    International Nuclear Information System (INIS)

    Munson, C.; Janos, A.; Paul, S.; Wysocki, F.; Yamada, M.

    1983-01-01

    The experimental investigation of the effectiveness of figure-8 coils in stabilizing the n=1 tilting mode of spheromak plasmas in Proto S-1 A/B is extended. In addition, another coil configuration, the saddle coil, is examined

  4. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.

    Science.gov (United States)

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June

    2013-01-01

    A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.

  5. Development of Autonomous Magnetometer Rotorcraft For Wide Area Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay; Matthew O. Anderson

    2011-08-01

    Large areas across the United States and internationally are potentially contaminated with unexploded ordinance (UXO), with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with (1) near 100% coverage and (2) near 100% detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 to 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys, resulting in costs of approximately $100-$150/acre. In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide highresolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. Thus there is a need for other systems, which can be used for effective data collection. An Unmanned Aerial Vehicle (UAV) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly

  6. In-Flight Calibration of the MMS Fluxgate Magnetometers

    Science.gov (United States)

    Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; hide

    2017-01-01

    We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.

  7. Switching transients in a superconducting coil

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  8. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  9. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  10. Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2011-01-01

    To meet the increasing demand for miniaturized space instruments, efforts have been made to miniaturize traditional magnetometers, e.g. fluxgate and spin-exchange relaxation-free magnetometers. These have, for different reasons, turned out to be difficult. New technologies are needed, and promising in this respect are tunnelling magnetoresistive (TMR) magnetometers, which are based on thin film technology. However, all new space devices first have to be qualified, particularly in terms of radiation resistance. A study on TMR magnetometers' vulnerability to radiation is crucial, considering the fact that they employ a dielectric barrier, which can be susceptible to charge trapping from ionizing radiation. Here, a TMR-based magnetometer, called the spin-dependent tunnelling magnetometer (SDTM), is presented. A magnetometer chip consisting of three Wheatstone bridges, with an angular pitch of 120°, was fabricated using microstructure technology. Each branch of the Wheatstone bridges consists of eight pairs of magnetic tunnel junctions (MTJs) connected in series. Two such chips are used to measure the three-dimensional magnetic field vector. To investigate the SDTM's resistance to radiation, one branch of a Wheatstone bridge was irradiated with gamma rays from a Co 60 source with a dose rate of 10.9 rad min −1 to a total dose of 100 krad. The TMR of the branch was monitored in situ, and the easy axis TMR loop and low-frequency noise characteristics of a single MTJ were acquired before and after irradiation with the total dose. It was concluded that radiation did not influence the MTJs in any noticeable way in terms of the TMR ratio, coercivity, magnetostatic coupling or low-frequency noise

  11. Internal trim coils for CBA superconducting magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Aronson, S.; Cottingham, J.G.; Garber, M.; Hahn, H.; Sampson, W.B.

    1983-01-01

    In order to correct iron saturation effects and shape the beam working line, superconducting trim coils have been constructed, which operate inside the main coils. Detailed studies of mechanical properties, quench behavior, fields produced, and hysteresis have lead to the production of accelerator-quality coils generating the required-strength harmonics up to cos (7theta). These are routinely installed in CBA main magnets and operate at 80% of short sample with negligible training in an ambient field of more than 5.3T

  12. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  13. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  14. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  15. Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.

    Directory of Open Access Journals (Sweden)

    Michael B McCamy

    Full Text Available Human eyes move continuously, even during visual fixation. These "fixational eye movements" (FEMs include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs.

  16. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  17. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  18. Study and Design of a Linear Compressor of Voice-Coil Typ

    Directory of Open Access Journals (Sweden)

    VADAN, I.

    2009-06-01

    Full Text Available The paper presents the design and Finite Element (FEM analysis of a Linear compressor of voice coil type (LCVCT. This kind of linear compressor will be used in a refrigerator equipment. It is well-known that the replacing of the rotating compressor from a classical refrigerator by a linear compressor leads to an efficiency improving wit about 5% by avoiding the piston side friction, which is very important because of the huge number of refrigerators in operation world-wide. The linear compressor refrigerator is already commercially available in South Korea, equipped with an electromagnetic (fix coil and moving permanent magnet linear compressor. This paper presents a new type of linear compressor - a voice-coil type (fixed permanent magnet and moving coil. The operation principle is the same as for electrodynamic vibrator or electro-dynamic loud-speaker. The designing with rare earth permanent magnet is not a simple problem, because of the nonlinear characteristic of rare earth magnets. A magneto-static FEM analysis has been performed in order to validate the design methodology proposed in the paper.

  19. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    Science.gov (United States)

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.

  20. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  1. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs

  2. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  3. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  4. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  5. Advanced Singlet Oxygen Generator for a COIL

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Zagidullin, M; Nikolaev, V; Svistun, M; Khvatov, N; Hruby, J; Spalek, O; Jirasek, V; Censsky, M

    2005-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will develop new and radically different ideas for a high performance, advanced singlet oxygen generator for driving a supersonic COIL...

  6. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  7. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  8. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  9. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-01-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers. (paper)

  10. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz

    Science.gov (United States)

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  11. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    Science.gov (United States)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-02-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.

  12. NetPICOmag: A low-cost networked magnetometer and its applications

    Science.gov (United States)

    Schofield, I.; Connors, M.; Russell, C. T.

    2012-03-01

    NetPICOmag (NPM) is the culmination of a design effort to build a compact, low-cost, laboratory-grade, networked magnetometer designed for remote autonomous operation, suited for research and education. NPM allows wide placement of magnetometers sensitive enough to detect auroral activity and the daily variation, and is suitable for education projects and a range of geophysical applications. The use of networked microcontrollers and GPS timing is applicable to other small instruments for field or local deployment, and an onboard data logging capability has also been demonstrated. We illustrate the value of the placement of low-cost magnetometers to increase coverage in an area through the study of a Pc 5 pulsation event which took place on September 4, 2010. By combining results with those from auroral zone magnetometers supporting the THEMIS project, we find that the phase velocity of these morning sector pulsations was northward on the ground. The event took place under very quiet solar wind conditions, and credible mapping associates it with the inner magnetosphere. Another aspect beyond increasing areal coverage is increasing density of coverage, which becomes feasible with instruments of very low cost. We examine aspects of the April 5, 2010 space weather event which are possible to deduce from closely spaced magnetometers.

  13. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  14. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  15. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  16. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  17. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  18. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  19. Dual levitated coils for antihydrogen production

    Science.gov (United States)

    Wofford, J. D.; Ordonez, C. A.

    2013-04-01

    Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.

  20. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  1. Modelling of subsonic COIL with an arbitrary magnetic modulation

    Science.gov (United States)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  2. Stress analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1990-02-01

    The International Thermonuclear Experimental Reactor (ITER) is intended as an experimental thermonuclear tokamak reactor for testing the basic physics, performance and technologies essential to future fusion reactors. The ITER design will be based on extensive new design work, supported by new physical and technological results, and on the great body of experience built up over several years from previous national and international reactor studies. Conversely, the ITER design process should provide the fusion community with valuable insights into what key areas need further development or clarification as we move forward towards practical fusion power. As part of the design process of the ITER toroidal field coils the mechanical behaviour of the magnetic system under fault conditions has to be analysed in more detail. This paper describes the work carried out to create a detailed finite element model of two toroidal field coils as well as some results of linear elastic analyses with fault conditions. The analyses have been performed with the finite element code ANSYS. (author). 5 refs.; 8 figs.; 2 tabs

  3. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  4. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    Science.gov (United States)

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H

    1997-07-01

    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  5. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  6. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    International Nuclear Information System (INIS)

    El-Alaily, T.M.; El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M.; Assar, S.T.

    2015-01-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability

  7. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    El-Alaily, T.M., E-mail: toson_alaily@yahoo.com [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); El-Nimr, M.K.; Saafan, S.A.; Kamel, M.M.; Meaz, T.M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Assar, S.T. [Engineering Physics and Mathematics Department, Faculty of Engineering, Tanta University, Tanta (Egypt)

    2015-07-15

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability. - Highlights: • A low cost automated vibrating sample magnetometer VSM has been constructed. • The VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. • The VSM has been calibrated and tested by using some measured ferrite samples. • Our VSM lab-built new design proved success and reliability.

  8. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    Science.gov (United States)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  9. Development of a {sup 3}He magnetometer for a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas; Heil, Werner; Lauer, Thorsten; Neumann, Daniel [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Koch, Hans-Christian [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); University of Fribourg, Physics Department, Fribourg (Switzerland); Daum, Manfred [Paul Scherrer Institute, Villigen (Switzerland); Pazgalev, Anatoly [Ioffe Institute, St Petersburg (Russian Federation); Sobolev, Yuri [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Weis, Antoine [University of Fribourg, Physics Department, Fribourg (Switzerland)

    2014-01-01

    We have developed a highly sensitive {sup 3}He magnetometer for the accurate measurement of the magnetic field in an experiment searching for an electric dipole moment of the neutron. By measuring the Larmor frequency of nuclear spin polarized {sup 3}He atoms a sensitivity on the femto-Tesla scale can be achieved. A {sup 3}He/Cs-test facility was established at the Institute of Physics of the Johannes Gutenberg University in Mainz to investigate the readout of {sup 3}He free induction decay with a lamp-pumped Cs magnetometer. For this we designed and built an ultra-compact and transportable polarizer unit which polarizes {sup 3}He gas up to 55% by metastability exchange optical pumping. The polarized {sup 3}He was successfully transfered from the polarizer into a glass cell mounted in a magnetic shield and the {sup 3}He free induction decay was detected by a lamp-pumped Cs magnetometer. (orig.)

  10. Moving and Being Moved: Implications for Practice.

    Science.gov (United States)

    Kretchmar, R. Scott

    2000-01-01

    Uses philosophical writings, a novel about baseball, and a nonfiction work on rowing to analyze levels of meaning in physical activity, showing why three popular methods for enhancing meaning have not succeeded and may have moved some students away from deeper levels of meaning. The paper suggests that using hints taken from the three books could…

  11. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  12. Surgical management of an ACM aneurysm eight years after coiling.

    Science.gov (United States)

    Pogády, P; Fellner, F; Trenkler, J; Wurm, G

    2007-04-01

    The authors present a case report on rebleeding of a medial cerebral aneurysm (MCA) eight years after complete endovascular coiling. The primarily successfully coiled MCA aneurysm showed a local regrowth which, however, was not the source of the rebleeding. The angiogram demonstrated no evidence of contrast filling of the coiled segment, but according to intraoperative findings (haematoma location, displacement of coils, evident place of rupture) there is no doubt that the coiled segment of the aneurysm was responsible for the haemorrhage.

  13. Three-axis orthogonal transceiver coil for eddy current sounding

    Science.gov (United States)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  14. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  15. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  16. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  17. Coherent population trapping magnetometer by differential detecting magneto–optic rotation effect

    International Nuclear Information System (INIS)

    Zhang Fan; Tian Yuan; Zhang Yi; Gu Si-Hong

    2016-01-01

    A pocket coherent population trapping (CPT) atomic magnetometer scheme that uses a vertical cavity surface emitting laser as a light source is proposed and experimentally investigated. Using the differential detecting magneto–optic rotation effect, a CPT spectrum with the background canceled and a high signal-to-noise ratio is obtained. The experimental results reveal that the sensitivity of the proposed scheme can be improved by half an order, and the ability to detect weak magnetic fields is extended one-fold. Therefore, the proposed scheme is suited to realize a pocket-size CPT magnetometer. (paper)

  18. Obtaining 'images' from iron objects using a 3-axis fluxgate magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Chilo, Jose [University of Gaevle, S-80176 Gaevle (Sweden); Jabor, Abbas [Royal Institute of Technology, Department of Physics, S-106 91 Stockholm (Sweden); Lizska, Ludwik [Swedish Institute of Space Physics in Umea (Sweden); Eide, Age J. [Ostfold University College, N-1757 Halden (Norway); Lindblad, Thomas [Royal Institute of Technology, Department of Physics, S-106 91 Stockholm (Sweden)], E-mail: lindblad@particle.kth.se

    2007-10-01

    Magnetic objects can cause local variations in the Earth's magnetic field that can be measured with a magnetometer. Here we used tri-axial magnetometer measurements and an analysis method employing wavelet techniques to determine the 'signature' or 'fingerprint' of different iron objects. Clear distinctions among the iron samples were observed. The time-dependent changes in the frequency powers were extracted by use of the Morlet wavelet corresponding to frequency bands from 0.1 to 100 Hz.

  19. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    Science.gov (United States)

    El-Alaily, T. M.; El-Nimr, M. K.; Saafan, S. A.; Kamel, M. M.; Meaz, T. M.; Assar, S. T.

    2015-07-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability.

  20. Integrated high-transition temperature magnetometer with only two superconducting layers

    DEFF Research Database (Denmark)

    Kromann, R.; Kingston, J.J.; Miklich, A.H.

    1993-01-01

    We describe the fabrication and testing of an integrated YBa2Cu3O7-x thin-film magnetometer consisting of a dc superconducting quantum interference device (SQUID), with biepitaxial grain boundary junctions, integrated with a flux transformer on a single substrate. Only two superconducting layers...... are required, the SQUID body serving as the crossunder that completes the multiturn flux transformer. The highest temperature at which any of the magnetometers functioned was 76 K. At 60 K the magnetic field gain of this device was 63, and the magnetic field noise was 160 fT Hz-1/2 at 2 kHz, increasing to 3...

  1. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    Science.gov (United States)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  2. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  3. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  4. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  5. Lunar magnetic anomalies detected by the Apollo substatellite magnetometers

    Science.gov (United States)

    Hood, L.L.; Coleman, P.J.; Russell, C.T.; Wilhelms, D.E.

    1979-01-01

    Properties of lunar crustal magnetization thus far deduced from Apollo subsatellite magnetometer data are reviewed using two of the most accurate presently available magnetic anomaly maps - one covering a portion of the lunar near side and the other a part of the far side. The largest single anomaly found within the region of coverage on the near-side map correlates exactly with a conspicuous, light-colored marking in western Oceanus Procellarum called Reiner Gamma. This feature is interpreted as an unusual deposit of ejecta from secondary craters of the large nearby primary impact crater Cavalerius. An age for Cavalerius (and, by implication, for Reiner Gamma) of 3.2 ?? 0.2 ?? 109 y is estimated. The main (30 ?? 60 km) Reiner Gamma deposit is nearly uniformly magnetized in a single direction, with a minimum mean magnetization intensity of ???7 ?? 10-2 G cm3/g (assuming a density of 3 g/cm3), or about 700 times the stable magnetization component of the most magnetic returned samples. Additional medium-amplitude anomalies exist over the Fra Mauro Formation (Imbrium basin ejecta emplaced ???3.9 ?? 109 y ago) where it has not been flooded by mare basalt flows, but are nearly absent over the maria and over the craters Copernicus, Kepler, and Reiner and their encircling ejecta mantles. The mean altitude of the far-side anomaly gap is much higher than that of the near-side map and the surface geology is more complex, so individual anomaly sources have not yet been identified. However, it is clear that a concentration of especially strong sources exists in the vicinity of the craters Van de Graaff and Aitken. Numerical modeling of the associated fields reveals that the source locations do not correspond with the larger primary impact craters of the region and, by analogy with Reiner Gamma, may be less conspicuous secondary crater ejecta deposits. The reason for a special concentration of strong sources in the Van de Graaff-Aitken region is unknown, but may be indirectly

  6. Moving Field Guides

    Science.gov (United States)

    Cassie Meador; Mark Twery; Meagan. Leatherbury

    2011-01-01

    The Moving Field Guides (MFG) project is a creative take on site interpretation. Moving Field Guides provide an example of how scientific and artistic endeavors work in parallel. Both begin with keen observations that produce information that must be analyzed, understood, and interpreted. That interpretation then needs to be communicated to others to complete the...

  7. People on the Move

    Science.gov (United States)

    Mohan, Audrey

    2018-01-01

    The purpose of this 2-3 day lesson is to introduce students in Grades 2-4 to the idea that people move around the world for a variety of reasons. In this activity, students explore why people move through class discussion, a guided reading, and interviews. The teacher elicits student ideas using the compelling question (Dimension 1 of the C3…

  8. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    Science.gov (United States)

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  9. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  10. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  11. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  12. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  13. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  14. The design of the SULTAN inner coil

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Spoorenberg, C.J.G.

    1981-12-01

    The background field of the first phase of the test facility SULTAN will be generated by two concentric solenoids: a 6 Tesla outer coil with a free bore of 1.3 m and an inner coil for increasing the field to 8 Tesla. The free bore (cold) will be 1.055 m. The final design of the 8 Tesla inner coil is described. The coil will operate at an overall current density of 23 x 10 6 A/m 2 . It will be cooled directly by forced flow supercritical helium. A hollow conductor is applied, composed of a rectangular copper tube and a 16 strands Rutherford cable, soldered on one side of the tube. The copper tube will be cold worked to cope with the high stress level (165 MPa). The design base (field and stress analysis, cooling, stability), the mechanical design and the instrumentation will be specified. The design and construction of the coil is a part of the collaboration between ECN and Holec Transformer Group

  15. Optimal design for MRI surface coils

    International Nuclear Information System (INIS)

    Rivera, M.; Vaquero, J.J.; Santos, A.; Pozo, F. del; Ruiz-Cabello, J.

    1997-01-01

    To demonstrate the possibility of designing and constructing specific surface coils or antennae for MRI viewing of each particular tissue producing better results than those provided by a general purpose surface coil. The study was performed by the Bioengineering and Telemedicine Group of Madrid Polytechnical University and was carried out at the Pluridisciplinary Institute of the Universidad Complutense in Madrid, using a BMT-47/40 BIOSPEC resonance unit from Bruker. Surface coils were custom-designed and constructed for each region to be studied, and optimized to make the specimen excitation field as homogeneous as possible, in addition to reducing the brightness artifact. First, images were obtained of a round, water phantom measuring 50 mm in diameter, after which images of laboratory rats and rabbits were obtained. The images thus acquired were compared with the results obtained with the coil provided by the manufacturer of the equipment, and were found to be of better quality, allowing the viewing of deeper tissue for the specimen as well as reducing the brightness artifact. The construction of surface coils for viewing specific tissues or anatomical regions improves image quality. The next step in this ongoing project will be the application of these concepts to units designed for use in humans. (Author) 14 refs

  16. Embodied affectivity: On moving and being moved

    Directory of Open Access Journals (Sweden)

    Thomas eFuchs

    2014-06-01

    Full Text Available There is a growing body of research indicating that bodily sensation and behaviour strongly influences one’s emotional reaction towards certain situations or objects. On this background, a framework model of embodied affectivity is suggested: we regard emotions as resulting from the circular interaction between affective qualities or affordances in the environment and the subject’s bodily resonance, be it in the form of sensations, postures, expressive movements or movement tendencies. Motion and emotion are thus intrinsically connected: one is moved by movement (perception; impression; affection and moved to move (action; expression; e-motion. Through its resonance, the body functions as a medium of emotional perception: it colours or charges self-experience and the environment with affective valences while it remains itself in the background of one’s own awareness. This model is then applied to emotional social understanding or interaffectivity which is regarded as an intertwinement of two cycles of embodied affectivity, thus continuously modifying each partner’s affective affordances and bodily resonance. We conclude with considerations of how embodied affectivity is altered in psychopathology and can be addressed in psychotherapy of the embodied self.

  17. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  18. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  19. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  20. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  1. MFTF test coil construction and performance

    International Nuclear Information System (INIS)

    Cornish, D.N.; Zbasnik, J.P.; Leber, R.L.; Hirzel, D.G.; Johnston, J.E.; Rosdahl, A.R.

    1978-01-01

    A solenoid coil, 105 cm inside the 167 cm outside diameter, has been constructed and tested to study the performance of the stabilized Nb--Ti conductor to be used in the Mirror Fusion Test Facility (MFTF) being built at Lawrence Livermore Laboratory. The insulation system of the test coil is identical to that envisioned for MFTF. Cold-weld joints were made in the conductor at the start and finish of each layer; heaters were fitted to some of these joints and also to the conductor at various locations in the winding. This paper gives details of the construction of the coil and the results of the tests carried out to determine its propagation and recovery characteristics

  2. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the sources balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥/rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 12 refs., 2 figs

  3. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the forces balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥ /rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 8 refs., 2 figs

  4. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  5. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  6. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  7. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  8. Space Weather Magnetometer Set with Automated AC Spacecraft Field Correction for GEO-KOMPSAT-2A

    Science.gov (United States)

    Auster, U.; Magnes, W.; Delva, M.; Valavanoglou, A.; Leitner, S.; Hillenmaier, O.; Strauch, C.; Brown, P.; Whiteside, B.; Bendyk, M.; Hilgers, A.; Kraft, S.; Luntama, J. P.; Seon, J.

    2016-05-01

    Monitoring the solar wind conditions, in particular its magnetic field (interplanetary magnetic field) ahead of the Earth is essential in performing accurate and reliable space weather forecasting. The magnetic condition of the spacecraft itself is a key parameter for the successful performance of the magnetometer onboard. In practice a condition with negligible magnetic field of the spacecraft cannot always be fulfilled and magnetic sources on the spacecraft interfere with the natural magnetic field measured by the space magnetometer. The presented "ready-to-use" Service Oriented Spacecraft Magnetometer (SOSMAG) is developed for use on any satellite implemented without magnetic cleanliness programme. It enables detection of the spacecraft field AC variations on a proper time scale suitable to distinguish the magnetic field variations relevant to space weather phenomena, such as sudden increase in the interplanetary field or southward turning. This is achieved through the use of dual fluxgate magnetometers on a short boom (1m) and two additional AMR sensors on the spacecraft body, which monitor potential AC disturbers. The measurements of the latter sensors enable an automated correction of the AC signal contributions from the spacecraft in the final magnetic vector. After successful development and test of the EQM prototype, a flight model (FM) is being built for the Korean satellite Geo-Kompsat 2A, with launch foreseen in 2018.

  9. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Maeuselein, Sascha; Eberbeck, Dietmar; Schilling, Meinhard

    2005-01-01

    A magnetorelaxometry system based on sensitive fluxgate magnetometers for the analysis of the relaxation behavior of magnetic nanoparticles is presented. The system is tested with a dilution series of magnetite. The results are directly compared with data obtained with a SQUID magnetorelaxometry system measured on the same samples. Advantages of using fluxgates rather than SQUIDs for magnetorelaxometry are discussed

  10. Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.

    1984-05-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

  11. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  12. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  13. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  14. MgB2 magnetometer with directly coupled pick-up loop

    NARCIS (Netherlands)

    Portesi, C.; Mijatovic, D.; Veldhuis, Dick; Brinkman, Alexander; Monticone, E.; Gonnelli, R.S.

    2006-01-01

    magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which

  15. Design Principles of A Sigma-delta Flux-gate Magnetometer

    Science.gov (United States)

    Magnes, W.; Valavanoglou, A.; Pierce, D.; Frank, A.; Schwingenschuh, K.

    A state-of-the-art flux-gate magnetometer is characterised by magnetic field resolution of several pT in a wide frequency range, low power consumption, low weight and high robustness. Therefore, flux-gate magnetometers are frequently used for ground-based Earth's field observation as well as for measurements aboard scientific space missions. But both traditional analogue and recently developed digital flux-gate magnetometers need low power and high-resolution analogue-to-digital converters for signal quan- tization. The disadvantage of such converters is the low radiation hardness. This fact has led to the idea of combining a traditional analogue flux-gate regulation circuit with that of a discretely realized sigma-delta converter in order to get a radiation hard and further miniaturized magnetometer. The name sigma-delta converter is derived from putting an integrator in front of a 1-bit delta modulator which forms the sigma-delta loop. It is followed by a digital decimation filter realized in a field-programmable gate array (FPGA). The flux-gate regulation and the sigma-delta loop are quite similar in the way of realizing the integrator and feedback circuit, which makes it easy to com- bine these two systems. The presented talk deals with the design principles and the results of a first bread board model.

  16. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  17. Two-channel recoder for magnetometer with energy-independent mass memory device

    International Nuclear Information System (INIS)

    Korzinin, V.N.; Selivanov, A.M.

    1993-01-01

    The paper describes a two-channel digit-to-analog recorder designed for converting the sequence of pulses from proton magnetometer (MMH-203) outlet; the device enables processing of the pulses and their recording in RAM and on the tape of the analog recorder. The availability of nonvolotile RAM allows to transmit digit information to a computer (BK-0010) for its further processing

  18. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Holland, H.J.; Brake, ter H.J.M.

    2005-01-01

    In order to achieve turnkey operation, the use is planned of cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mech. interference from the coolers, they are switched off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  19. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Venhorst, G.C.F.; Holland, Herman J.; ter Brake, Hermanus J.M.

    2005-01-01

    In order to achieve turnkey operation, we plan to use cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mechanical interference from the coolers, we intend to switch them off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  20. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  1. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  2. Study of electric phenomena in energy dumping of LCT coil

    International Nuclear Information System (INIS)

    Oka, Koichi; Tsuji, Hiroshi; Nishi, Masataka; Shimamoto, Susumu

    1980-03-01

    In IEA-LCT coil, electric phenomena in energy dumping were studied analytically and experimentally. Protection resistance of the Japanese LCT coil is chosen as 0.1 Ω considering the quenching voltage, so that temperature rise of the coil is no problem. Energy dumping characteristic of the six-coil system is calculated under different conditions. It is concluded that simultaneous dumping of all the coils with the equivalent resistance values of protection is necessary. Flashover voltage tests of the model in 4.2 K liquid helium, 4.2 K gas helium and 4.2 K boiling helium show margin in practical quenching voltage of the coil. (author)

  3. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  4. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  5. Zero current measurements using the Rogowski coil

    International Nuclear Information System (INIS)

    Gregor, J.; Jakubova, I.; Kadlec, P.; Senk, J.; Vavra, Z.

    1997-01-01

    The zero current measurements using the Rogowski coil carried out on the model of the extinguishing chamber of hv SF 6 circuit breaker with self-flow generation are presented in the paper. The time course of the post-arc current obtained by numerical integration of the measured induced voltage of the Rogowski coil gives information not only about the value of the residual current after the successful interruption but also about the current changes connected with the dynamic behaviour of the arc during its quenching. (author)

  6. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  7. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta

    2010-01-01

    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  8. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  9. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  10. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  11. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  12. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2002-04-01

    Full Text Available Abstract Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

  13. A game-theoretic approach for calibration of low-cost magnetometers under noise uncertainty

    Science.gov (United States)

    Siddharth, S.; Ali, A. S.; El-Sheimy, N.; Goodall, C. L.; Syed, Z. F.

    2012-02-01

    Pedestrian heading estimation is a fundamental challenge in Global Navigation Satellite System (GNSS)-denied environments. Additionally, the heading observability considerably degrades in low-speed mode of operation (e.g. walking), making this problem even more challenging. The goal of this work is to improve the heading solution when hand-held personal/portable devices, such as cell phones, are used for positioning and to improve the heading estimation in GNSS-denied signal environments. Most smart phones are now equipped with self-contained, low cost, small size and power-efficient sensors, such as magnetometers, gyroscopes and accelerometers. A magnetometer needs calibration before it can be properly employed for navigation purposes. Magnetometers play an important role in absolute heading estimation and are embedded in many smart phones. Before the users navigate with the phone, a calibration is invoked to ensure an improved signal quality. This signal is used later in the heading estimation. In most of the magnetometer-calibration approaches, the motion modes are seldom described to achieve a robust calibration. Also, suitable calibration approaches fail to discuss the stopping criteria for calibration. In this paper, the following three topics are discussed in detail that are important to achieve proper magnetometer-calibration results and in turn the most robust heading solution for the user while taking care of the device misalignment with respect to the user: (a) game-theoretic concepts to attain better filter parameter tuning and robustness in noise uncertainty, (b) best maneuvers with focus on 3D and 2D motion modes and related challenges and (c) investigation of the calibration termination criteria leveraging the calibration robustness and efficiency.

  14. A game-theoretic approach for calibration of low-cost magnetometers under noise uncertainty

    International Nuclear Information System (INIS)

    Siddharth, S; Ali, A S; El-Sheimy, N; Goodall, C L; Syed, Z F

    2012-01-01

    Pedestrian heading estimation is a fundamental challenge in Global Navigation Satellite System (GNSS)-denied environments. Additionally, the heading observability considerably degrades in low-speed mode of operation (e.g. walking), making this problem even more challenging. The goal of this work is to improve the heading solution when hand-held personal/portable devices, such as cell phones, are used for positioning and to improve the heading estimation in GNSS-denied signal environments. Most smart phones are now equipped with self-contained, low cost, small size and power-efficient sensors, such as magnetometers, gyroscopes and accelerometers. A magnetometer needs calibration before it can be properly employed for navigation purposes. Magnetometers play an important role in absolute heading estimation and are embedded in many smart phones. Before the users navigate with the phone, a calibration is invoked to ensure an improved signal quality. This signal is used later in the heading estimation. In most of the magnetometer-calibration approaches, the motion modes are seldom described to achieve a robust calibration. Also, suitable calibration approaches fail to discuss the stopping criteria for calibration. In this paper, the following three topics are discussed in detail that are important to achieve proper magnetometer-calibration results and in turn the most robust heading solution for the user while taking care of the device misalignment with respect to the user: (a) game-theoretic concepts to attain better filter parameter tuning and robustness in noise uncertainty, (b) best maneuvers with focus on 3D and 2D motion modes and related challenges and (c) investigation of the calibration termination criteria leveraging the calibration robustness and efficiency. (paper)

  15. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  16. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    Science.gov (United States)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  17. The Moving image

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner.......Every day we are presented with bodily expressions in audiovisual media – by anchors, journalists and characters in films for instance. This article explores how body language in the moving image has been and can be approached in a scholarly manner....

  18. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  19. Coiling of ruptured pericallosal artery aneurysms.

    NARCIS (Netherlands)

    Menovsky, T.; Rooij, W.J.J. van; Sluzewski, M.; Wijnalda, D.

    2002-01-01

    OBJECTIVE: To assess the technical feasibility of treating ruptured pericallosal artery aneurysms with detachable coils and to evaluate the anatomic and clinical results. METHODS: Over a period of 27 months, 12 patients with a ruptured pericallosal artery aneurysm were treated with detachable

  20. Transcatheter Coil Embolization of Splenic Artery Aneurysm

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Hirota, Shozo; Maeda, Hiroaki; Achiwa, Sachiko; Arai, Keisuke; Kobayashi, Kaoru; Nakao, Norio

    2008-01-01

    The purpose of this study was to evaluate clinical results and technical problems of transcatheter coil embolization for splenic artery aneurysm. Subjects were 16 patients (8 men, 8 women; age range, 40-80 years) who underwent transcatheter embolization for splenic artery aneurysm (14 true aneurysms, 2 false aneurysms) at one of our hospitals during the period January 1997 through July 2005. Two aneurysms (12.5%) were diagnosed at the time of rupture. Multiple splenic aneurysms were found in seven patients. Aneurysms were classified by site as proximal (or strictly ostial) (n = 3), middle (n = 3), or hilar (n = 10). The indication for transcatheter arterial embolization was a false or true aneurysm 20 mm in diameter. Embolic materials were fibered coils and interlocking detachable coils. Embolization was performed by the isolation technique, the packing technique, or both. Technically, all aneurysms were devascularized without severe complications. Embolized aneurysms were 6-40 mm in diameter (mean, 25 mm). Overall, the primary technical success rate was 88% (14 of 16 patients). In the remaining 2 patients (12.5%), partial recanalization occurred, and re-embolization was performed. The secondary technical success rate was 100%. Seven (44%) of the 16 study patients suffered partial splenic infarction. Intrasplenic branching originating from the aneurysm was observed in five patients. We conclude that transcatheter coil embolization should be the initial treatment of choice for splenic artery aneurysm

  1. Stellarator Coil Design and Plasma Sensitivity

    International Nuclear Information System (INIS)

    Ku, Long-Poe; Boozer, Allen H.

    2010-01-01

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  2. High-field superconducting nested coil magnet

    Science.gov (United States)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  3. Coil in bottom part of splitter magnet

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  4. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  5. Traveling-wave synchronous coil gun

    International Nuclear Information System (INIS)

    Elliott, D.G.

    1991-01-01

    This paper reports on a traveling-wave synchronous coil gun which permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required

  6. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  7. Hybrid equilibrium field coils for the ORNL TNS

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Strickler, D.J; Dory, R.A.

    1977-01-01

    In this study, we make a comparative study of the power supplies required by interior and exterior [to the toroidal field (TF) coils] equilibrium field coils that are separately appropriate for high-β, D-shaped plasmas in TNS. It is shown that the interior coils need power supplies that are an order of magnitude below those required by the exterior coils (while the latter case is much less difficult to build than the former). A hybrid EF coil concept is proposed that combines the interior and the exterior coils to retain their advantages in avoiding large interior coils while lowering the power supplied to the exterior coils by an order of magnitude

  8. Testing of the European LCT coil in the TOSKA facility

    International Nuclear Information System (INIS)

    Herz, W.; Katheder, H.; Krauth, H.

    1985-01-01

    The EURATOM-LCT coil was tested as a single coil in TOSKA. Load cells were mounted in the support structure to monitor forces between coil and vacuum vessel during cooldown and coil charging. Disturbances of components by magnetic fringing fields were carefully considered. To investigate the mechanical behaviour and compare it with FEM-calculations the coil was equipped with strain gauge rosettes and displacement transducers. Van Mises stresses in the coil case are in agreement with calculations. As known from special investigations during coil manufacturing the average radial Young modulus varies along the periphery caused by the different curvatures. This leads to differences with FEM-calculation (larger gaps between winding and coil case) assuming a larger constant Young modulus performed at the beginning of the project

  9. A history of detachable coils: 1987-2012.

    Science.gov (United States)

    Hui, Ferdinand K; Fiorella, David; Masaryk, Thomas J; Rasmussen, Peter A; Dion, Jacques E

    2014-03-01

    The development of detachable coils is one of the most pivotal developments in neurointervention, providing a tool that could be used to treat a wide variety of hemorrhagic stroke. From the original Guglielmi detachable coil, a number of different coil designs and delivery designs have evolved. This article reviews the history of commercially available detachable coils. A timeline of detachable coils was constructed and coil design philosophies were reviewed. A complete list of commercially available coils is presented in a timeline format. Detachable coil technology continues to evolve. Advances in construction and design have yielded products which may benefit patients in terms of safety, radiation dose reduction and cost of treatment. Continued evolution is expected, irrespective of competing disruptive technologies.

  10. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  11. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  12. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  13. Test of a Novel Moving Magnet Actuated Seat Valve for Digital Displacement Fluid Power Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Madsen, Esben Lundø; Christensen, Jeppe Haals

    2018-01-01

    The emerging digital displacement fluid power technology requires a new class of high-performance valves that can operate in harsh high-pressure conditions. To overcome the switching performance limitations of solenoids and to avoid the mechanical complexity of moving coil actuators, a novel elec......, and a simple mechanical design....

  14. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  15. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring

    Directory of Open Access Journals (Sweden)

    Seungho Kuk

    2018-04-01

    Full Text Available The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different

  16. Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring.

    Science.gov (United States)

    Kuk, Seungho; Kim, Junha; Park, Yongtae; Kim, Hyogon

    2018-04-27

    The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different countries. Specifically, we

  17. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  18. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  19. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  20. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  1. Moving a House by Moved Participants

    DEFF Research Database (Denmark)

    Axel, Erik

    himself in controlling every detail of the shape of the concrete slaps. He pushed all the other participants of the meetings, asking for details, information, the change of drawings etc. He explained the technical issues he was pursuing, was prepared for problems at the meetings, was well informed, always......? The participant observer believed it was a matter of changing coordinates, but the engineers immediately saw it was an issue of pipes in the ground, could they be moved and still function as planned? To decide the possibility of this suggestion the engineer was given the task of investigating the consequences...... they saw him as a bit pushy. On the other hand they understood why he was so since his firm would be fined if the concrete slabs did not meet specifications. The case will be the basis for a discussion of double motivation of the engineer, his evident interest in his professional work, and the wish...

  2. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  3. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  4. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  5. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  6. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer the rapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  7. Transport of one SC coil through the village of Meyrin

    CERN Multimedia

    1956-01-01

    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  8. Strain and stress of the ASDEX multipole magnetic coils

    International Nuclear Information System (INIS)

    Jandl, O.; Pillsticker, M.

    1978-01-01

    A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de

  9. Mechanical study of 20 MJ superconducting pulse coil

    International Nuclear Information System (INIS)

    Hattori, Yasuhide; Shimamoto, Susumu

    1985-09-01

    This paper describes calculation methods and computer codes of stress distribution in a circular-shaped superconducting pulsed coils. The stress problems of a large sized superconducting coil, for example, are discussed for 20 MJ pool-cooled pulse coil. Young's modulus of a stranded flat cable, low rigidity, is measured and evaluated. (author)

  10. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  11. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  12. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  13. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  14. Development of Geomagnetic Monitoring System Using a Magnetometer for the Field

    Science.gov (United States)

    Lee, Young-Cheol; Kim, Sung-Wook; Choi, Eun-Kyeong; Kim, In-Soo

    2014-05-01

    Three institutes including KMA (Korea Meteorological Administration), KSWC (Korean Space Weather Center) of NRRA (National Radio Research Agency) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are now operating magnetic observatories. Those observatories observe the total intensity and three components of geomagnetic element. This paper comes up with a magnetic monitoring system now under development that uses a magnetometer for field survey. In monitoring magnetic variations in areas (active faults or volcanic regions), more reliable results can be obtained when an array of several magnetometers are used rather than a single magnetometer. In order to establish and operate a magnetometer array, such factors as expenses, convenience of the establishment and operation of the array should be taken into account. This study has come up with a magnetic monitoring system complete with a magnetometer for the field survey of our own designing. A magnetic monitoring system, which is composed of two parts. The one is a field part and the other a data part. The field part is composed of a magnetometer, an external memory module, a power supply and a set of data transmission equipment. The data part is a data server which can store the data transmitted from the field part, analyze the data and provide service to the web. This study has developed an external memory module for ENVI-MAG (Scintrex Ltd.) using an embedded Cortex-M3 board, which can be programmed, attach other functional devices (SD memory cards, GPS antennas for time synchronization, ethernet cards and so forth). The board thus developed can store magnetic measurements up to 8 Gbytes, synchronize with the GPS time and transmit the magnetic measurements to the data server which is now under development. A monitoring system of our own developing was installed in Jeju island, taking measurements throughout Korea. Other parts including a data transfer module, a server and a power supply using solar

  15. Active feedback stabilization of the flute instability in a mirror machine using field-aligned coils

    International Nuclear Information System (INIS)

    Lifshitz, A.; Be'ery, I.; Fisher, A.; Ron, A.; Fruchtman, A.

    2012-01-01

    A plasma confined in linear mirror machines is unstable even at low β, mainly because of the flute instability. One possible way to stabilize the plasma is to use active feedback to correct the plasma shape in real time. The theoretically investigated apparatus consists of feedback coils aligned with the magnetic field, immersed in a cold plasma around the hot core. When the current through the feedback coils changes, the plasma moves to conserve the magnetic flux via compressional Alfvén waves. An analytical model is used to find a robust feedback algorithm with zero residual currents. It is shown that due to the plasma's rotation, maximal stability is obtained with a large phase angle between the perturbations' modes and the feedback integral-like term. Finally, a two-dimensional MHD simulation implementing the above algorithm in fact shows stabilization of the plasma with zero residual currents. (paper)

  16. MOVES regional level sensitivity analysis

    Science.gov (United States)

    2012-01-01

    The MOVES Regional Level Sensitivity Analysis was conducted to increase understanding of the operations of the MOVES Model in regional emissions analysis and to highlight the following: : the relative sensitivity of selected MOVES Model input paramet...

  17. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  18. Moving toroidal limiter

    International Nuclear Information System (INIS)

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  19. Moving to Jobs?

    OpenAIRE

    Dave Maré; Jason Timmins

    2003-01-01

    This paper examines whether New Zealand residents move from low-growth to high-growth regions, using New Zealand census data from the past three inter-censal periods (covering 1986-2001). We focus on the relationship between employment growth and migration flows to gauge the strength of the relationship and the stability of the relationship over the business cycle. We find that people move to areas of high employment growth, but that the probability of leaving a region is less strongly relate...

  20. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)