WorldWideScience

Sample records for moving bed gasification

  1. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two

  2. Simulation of petcoke gasification in slagging moving bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Soumitro; Sarkar, T.K.; Sen, P.K. [Research and Development Center, Engineers India Limited, Gurgaon 122001 (India)

    2005-03-25

    A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m{sup 2}/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 {sup o}C. Fluxes higher than 5000 kg/m{sup 2}/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

  3. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  4. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  5. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  6. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  7. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A [ATEKO a.s., Hradec Kralove (Czech Republic)

    1997-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  8. Mass and heat transfer between a fluidized bed and a freely moving submerged sphere

    NARCIS (Netherlands)

    Prins, W.; Valk, M.

    1995-01-01

    For fluidized bed combustion and gasification of solid fuels, but also for various other fluidized bed processes such as drying, granulation and evaporation, mass and heat transport to (or from) a particle freely moving in the fluidized bed is of great importance. The combustion rate of a

  9. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  10. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    Science.gov (United States)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  11. Down-flow moving-bed gasifier with catalyst recycle

    Science.gov (United States)

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  12. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T; Frankenhaeuser, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  13. Fixed (slow moving) bed updraft gasification of agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, Rolando Zanzi [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Chemical Engineering and Technology], E-mail: rolando@ket.kth.se; Escalona, Ronoldy Faxas [University of Oriente, Santiago de Cuba (Cuba). Fac. of Mechanical Engineering], E-mail: faxas@fim.uo.edu.cu

    2009-07-01

    Birch, in form of pellets has been gasified in updraft fixed-bed gasifier using air as oxidation agent. The main objectives were to study the effect of the treatment conditions on the distribution of the products and the composition of product gas. The influence of the air flow rates on the composition of the producer gas has been studied. The amount of the biomass used in the experiments was varied between 1 and 4 kg and the flow rate of the air was varied from 1.1 to 2.6 m3/h. Increased airflow rates favored higher temperatures. Excessively high airflow rates resulted in fast consumption of the biomass and it also favored combustion over gasification and thus formation of lower amounts of combustible products. High airflow rates caused also higher yields of tars, due to the shorter residence time of the tar-rich gas in the gasifier and thus unfavorable conditions for tar cracking. (author)

  14. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  15. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  16. A comparative study of charcoal gasification in two types of spouted bed reactors

    International Nuclear Information System (INIS)

    Abdul Salam, P.; Bhattacharya, S.C.

    2006-01-01

    Gasification is considered to be a favourable method for converting a solid fuel into a more versatile gaseous fuel. Performance of a gasifier depends on the design of the gasifier, type of fuel used and air flow rate, etc. The applications of spouted bed for a variety of processes such as drying, coating, pyrolysis, gasification and combustion have been reported. Gasification of solid fuels in a spouted bed, which has certain potential advantages over other fluid bed configurations, appears to be an under-exploited technique so far. Central jet distributors are the most commonly used in the experimental studies that has been reported in the literature. Circular slit distributor is a new concept. This paper presents results of a comparative experimental study on air gasification of charcoal in central jet and circular slit inert sand spouted beds. The experiments were carried for an equivalence ratio of 0.25. The effect of spouting velocity and type of the distributor on the gasification performance were discussed. The steady state dense bed temperature varied between 979 and 1183 deg C for central jet spouted bed and between 964 and 1235 deg C for circular slit spouted bed. At higher spouting velocities, the gasification efficiency of the circular slit spouted bed was slightly more compared with that of central jet spouted bed

  17. Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal

    Directory of Open Access Journals (Sweden)

    Lucio Zaccariello

    2015-08-01

    Full Text Available The effect of fuel composition on gasification process performance was investigated by performing mass and energy balances on a pre-pilot scale bubbling fluidized bed reactor fed with mixtures of plastic waste, wood, and coal. The fuels containing plastic waste produced less H2, CO, and CO2 and more light hydrocarbons than the fuels including biomass. The lower heating value (LHV progressively increased from 5.1 to 7.9 MJ/Nm3 when the plastic waste fraction was moved from 0% to 100%. Higher carbonaceous fines production was associated with the fuel containing a large fraction of coal (60%, producing 87.5 g/kgFuel compared to only 1.0 g/kgFuel obtained during the gasification test with just plastic waste. Conversely, plastic waste gasification produced the highest tar yield, 161.9 g/kgFuel, while woody biomass generated only 13.4 g/kgFuel. Wood gasification showed a carbon conversion efficiency (CCE of 0.93, while the tests with two fuels containing coal showed lowest CCE values (0.78 and 0.70, respectively. Plastic waste and wood gasification presented similar cold gas efficiency (CGE values (0.75 and 0.76, respectively, while that obtained during the co-gasification tests varied from 0.53 to 0.73.

  18. Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers

    International Nuclear Information System (INIS)

    Jarungthammachote, S.; Dutta, A.

    2008-01-01

    Spouted beds have been found in many applications, one of which is gasification. In this paper, the gasification processes of conventional and modified spouted bed gasifiers were considered. The conventional spouted bed is a central jet spouted bed, while the modified spouted beds are circular split spouted bed and spout-fluid bed. The Gibbs free energy minimization method was used to predict the composition of the producer gas. The major six components, CO, CO 2 , CH 4 , H 2 O, H 2 and N 2 , were determined in the mixture of the producer gas. The results showed that the carbon conversion in the gasification process plays an important role in the model. A modified model was developed by considering the carbon conversion in the constraint equations and in the energy balance calculation. The results from the modified model showed improvements. The higher heating values (HHV) were also calculated and compared with the ones from experiments. The agreements of the calculated and experimental values of HHV, especially in the case of the circular split spouted bed and the spout-fluid bed were observed

  19. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  20. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  1. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R; Lindblom, M [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1997-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  2. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  3. Catalytic gasification in fluidized bed, of orange waste. Comparison with non catalytic gasification

    International Nuclear Information System (INIS)

    Aguiar Trujillo, Leonardo; Marquez Montesinos, Francisco; Ramos Robaina, Boris A.; Guerra Reyes, Yanet; Arauzo Perez, Jesus; Gonzalo Callejo, Alberto; Sanchez Cebrian, Jose L

    2011-01-01

    The industry processing of the orange, generates high volumes of solid waste. This waste has been used as complement in the animal feeding, in biochemical processes; but their energy use has not been valued by means of the gasification process. They were carried out gasification studies with air in catalytic fluidized bed (using dolomite and olivine as catalysts in a secondary reactor, also varying the temperature of the secondary reactor and the catalyst mass), of the solid waste of orange and the results are compared with those obtained in the gasification with non catalytic air. In the processes we use a design of complete factorial experiment of 2k, valuing the influence of the independent variables and their interactions in the answers, using the software Design-Expert version 7 and a grade of significance of 95 %. The results demonstrate the qualities of the solid waste of orange in the energy use by means of the gasification process for the treatment of these residuals, obtaining a gas of low caloric value. The use of catalysts also diminishes the yield of tars obtained in the gasification process, being more active the dolomite that the olivine in this process. (author)

  4. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Werner, K.F.J.

    1989-09-01

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.) [de

  5. Physical-Mathematical Model for Fixed-Bed Solid Fuel Gasification Process Simulation

    Directory of Open Access Journals (Sweden)

    Slyusarskiy Konstantin V.

    2017-01-01

    Full Text Available Phycial-mathmatical model for fixed-bed coal gasification process simulation is proposed. The heterogeneous carbon oxidation chemical reactions were simulated via Arrhenius equation while homogeneous reactions in gas phase were calculated using Gibbs free energy minimization procedure. The syngas component concentration field and fuel conversion distribution as well as syngas final temperature and composition were defined for fixed bed gasification of T-grade coal of Kuznetskiy deposit. The optimal fuel residence time and gasifyer specific productivity were defined. The prevail reactions in oxidizing and reduction zones together with its height were defined.

  6. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  7. Biomass Gasification in Internal Circulating Fluidized Beds: a Thermodynamic Predictive Tool

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Svoboda, Karel; Schosger, J.-P.; Baxter, D.

    2008-01-01

    Roč. 25, č. 4 (2008), s. 721-726 ISSN 0256-1115 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * fluidized bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.830, year: 2008

  8. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  9. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    Science.gov (United States)

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  11. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  12. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I [Condens Oy, Haemeenlinna (Finland)

    1997-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  13. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  14. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed

    International Nuclear Information System (INIS)

    Nguyen, Thanh D.B.; Ngo, Son Ich; Lim, Young-Il; Lee, Jeong Woo; Lee, Uen-Do; Song, Byung-Ho

    2012-01-01

    Highlights: ► Steam gasification of woodchips is examined in dual circulating fluidized-bed (DFB). ► We develop a three-stage model (TSM) for process performance evaluation. ► Effect of gasification temperature and steam to fuel ratio is investigated. ► Several effective operating conditions are found by parametric study. - Abstract: A three-stage steady state model (TSM) was developed for biomass steam gasification in a dual circulating fluidized-bed (DFB) to calculate the composition of producer gas, carbon conversion, heat recovery, cost efficiency, and heat demand needed for the endothermic gasification reactions. The model was divided into three stages including biomass pyrolysis, char–gas reactions, and gas–phase reaction. At each stage, an empirical equation was estimated from experimental data. It was assumed that both unconverted char and additional fuel were completely combusted at 950 °C in the combustor (riser) and the heat required for gasification reactions was provided by the bed material (silica sand). The model was validated with experimental data taken from the literature. The parametric study of the gasification temperature (T) and the steam to fuel ratio (γ) was then carried out to evaluate performance criteria of a 1.8 MW DFB gasifier using woodchips as a feedstock for the electric power generation. Effective operating conditions of the DFB gasifier were proposed by means of the contour of the solid circulation ratio, the heat recovery, the additional fuel ratio and the cost efficiency with respect to T and γ.

  15. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H. [Ruhr Univ., Bochum (Germany); Magnusson, B.F. [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T. [Colorado School of Mines (United States)

    1996-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  16. International evaluation of the programme on fluid bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H [Ruhr Univ., Bochum (Germany); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Reed, T [Colorado School of Mines (United States)

    1997-12-31

    This report on the Swedish National Program on Fluid Bed Combustion and Gasification is part of the on-going evaluation process adopted by the funding organization NUTEK. This agency has invited the undersigned to act as members of an international panel responsible for evaluating the progress made in 9 projects initiated between 1993-1996. The output of this evaluation procedure is given in this report. The main aim of the Fluid Bed Combustion and Gasification Program is to develop industrially relevant knowledge and competence in experimental and computational techniques capable of characterizing the flow, heat transfer, combustion, gasification, ash formation and deposition and emissions in fluid bed gasifiers and combustors. To achieve this aim NUTEK is sponsoring research in a number of universities and encourages close cooperation between universities and industry. In the evaluation of the various sponsored research programs, the evaluation committee has considered the following key points: relevance of research to industrial needs; originality of research; program management; adequacy of resources; degree of collaboration between industry and academia; international standing of research. In this report comments and recommendations are made on individual projects as well as on the programme in general and they express the unanimous view of the panel members

  17. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  19. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny

    2017-01-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification...... process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg...... particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied...

  20. Gasification of Coal and PET in Fluidized Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Vosecký, Martin; Kameníková, Petra; Punčochář, Miroslav; Skoblia, Sergej; Staf, M.; Vošta, J.; Koutský, B.; Svoboda, Karel

    2006-01-01

    Roč. 85, 17-18 (2006), s. 2458-2468 ISSN 0016-2361 R&D Projects: GA ČR(CZ) GA104/04/0829 Institutional research plan: CEZ:AV0Z40720504 Keywords : fludized bed * gasification * plastic waste Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.358, year: 2006

  1. Hydrogen production by biomass steam gasification in fluidized bed reactor with Co catalyst

    International Nuclear Information System (INIS)

    Kazuhiko Tasaka; Atsushi Tsutsumi; Takeshi Furusawa

    2006-01-01

    The catalytic performances of Co/MgO catalysts were investigated in steam gasification of cellulose and steam reforming of tar derived from cellulose gasification. For steam reforming of cellulose tar in a secondary fixed bed reactor, 12 wt.% Co/MgO catalyst attained more than 80% of tar reduction. The amount of produced H 2 and CO 2 increased with the presence of catalyst, and kept same level during 2 hr at 873 K. It is indicated that steam reforming of cellulose tar proceeds sufficiently over Co/MgO catalyst. For steam gasification of cellulose in a fluidized bed reactor, it was found that tar reduction increases with Co loading amount and 36 wt.% Co/MgO catalyst showed 84% of tar reduction. The amounts of produced gas kept for 2 hr indicating that 36 wt.% Co/MgO catalyst is stable during the reaction. It was concluded that these Co catalysts are promising systems for the steam gasification of cellulose and steam reforming of cellulose tar. (authors)

  2. Autothermal gasification of low-grade fuels in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Belyaev [Scientific Center for Comprehensive Processing of Solid Combustible Minerals (IGI), Moscow (Russian Federation). Institute of Combustible Minerals Federal State Unitary Enterprise

    2009-01-15

    Autothermal gasification of high-ash flotation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  3. Fluidized bed gasification of sugar cane bagasse. Influence on gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, E.; Aleman, Y. [Univ. of las Villas, Santa Clara (Cuba). Biomass Thermoconversion group/CETA; Arauzo, J.; Gea, G. [Univ. of Zaragoza (Spain). Chemical and Environmental Engineering Dept.

    1999-07-01

    Air and steam gasification of biomass has been studied at different temperatures. The experiments have been carried out in a bench scale plant. It consists of an atmospheric bubbling fluidized bed gasifier heated by an electric furnace. The gasification process have been carried out at high heating rates and low residence time of the gases. The biomass used has been Cuban sugar cane bagasse. Three operating parameters have been evaluated to improve the gas composition: Equivalence Ratio (E.R.) in the range of 0.15 to 0.55; the bed temperature from 780 to 920 deg C; and steam/biomass ratio (S/B) from 0.1 g/g to 0.5 g/g. The results obtained show the effect of these operating parameters in gas composition and the conditions to obtain higher yield to gas and else the maximum energy.

  4. Pressured fluidized-bed gasification experiments with wood, peat and coal at VTT in 1991-1992. Test facilities and gasification experiments with sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen, J [Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology

    1994-12-31

    Fluidized-bed air gasification of Finnish pine saw dust was studied in the PDU-scale test facilities of VTT to support the development of simplified integrated gasification combined-cycle processes by providing new information on the formation and behaviour of different gas impurities in wood gasification. The gasifier was operated at 4-5 bar pressure and at 880-1 020 deg C Product gas was cleaned by ceramic candle filters operated at 490-715 deg C. Concentrations of tars, fixed nitrogen species and vapour-phase alkali metals were determined in different operating conditions. Carbon conversion exceeded 95 deg C in all test periods although the gasifier was operated without recycling the cyclone or filter fines back to the reactor. However, at the gasification temperature of 880-900 deg C more than 5 deg C of the wood carbon was converted to tars. The total concentration of tars (compounds heavier than benzene) was reduced from 6 000 to 3 000 mg/m{sup 3}n by increasing the gasification temperature from 880 deg C to 1 000 deg C. The expected catalytic effects of calcium on tar decomposition could not be achieved in these experiments by feeding coarse dolomite into the bed. The use of sand or aluminium oxide as an inert bed material did neither lead to any decrease in tar concentrations. However, the tar concentrations were dramatically reduced in the cogasification experiments, when a mixture of approximately 50 deg C/50 deg C wood and coal was used as the feed stock. Wood nitrogen was mainly converted into ammonia, while the concentrations of HCN and organic nitrogen containing compounds were very low

  5. Pressured fluidized-bed gasification experiments with wood, peat and coal at VTT in 1991-1992. Test facilities and gasification experiments with sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen, J. [Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology

    1993-12-31

    Fluidized-bed air gasification of Finnish pine saw dust was studied in the PDU-scale test facilities of VTT to support the development of simplified integrated gasification combined-cycle processes by providing new information on the formation and behaviour of different gas impurities in wood gasification. The gasifier was operated at 4-5 bar pressure and at 880-1 020 deg C Product gas was cleaned by ceramic candle filters operated at 490-715 deg C. Concentrations of tars, fixed nitrogen species and vapour-phase alkali metals were determined in different operating conditions. Carbon conversion exceeded 95 deg C in all test periods although the gasifier was operated without recycling the cyclone or filter fines back to the reactor. However, at the gasification temperature of 880-900 deg C more than 5 deg C of the wood carbon was converted to tars. The total concentration of tars (compounds heavier than benzene) was reduced from 6 000 to 3 000 mg/m{sup 3}n by increasing the gasification temperature from 880 deg C to 1 000 deg C. The expected catalytic effects of calcium on tar decomposition could not be achieved in these experiments by feeding coarse dolomite into the bed. The use of sand or aluminium oxide as an inert bed material did neither lead to any decrease in tar concentrations. However, the tar concentrations were dramatically reduced in the cogasification experiments, when a mixture of approximately 50 deg C/50 deg C wood and coal was used as the feed stock. Wood nitrogen was mainly converted into ammonia, while the concentrations of HCN and organic nitrogen containing compounds were very low

  6. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)

    2001-07-01

    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  7. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  8. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  9. Co-gasification of a lignite/waste-tyre in a moving bed

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel; Bučko, Z.

    2009-01-01

    Roč. 90, č. 10 (2009), s. 1202-1206 ISSN 0378-3820 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : co-gasification * waste-tyre * lignite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.321, year: 2009

  10. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ((approx)2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  11. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Jong, W de; Hein, K R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  12. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  13. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    Science.gov (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  15. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor

    International Nuclear Information System (INIS)

    Arena, Umberto; Di Gregorio, Fabrizio

    2014-01-01

    Two plastic wastes obtained as co-products from an industrial process were fed in a pilot-scale bubbling fluidized bed gasifier, having an internal diameter of 0.38 m and a maximum thermal output of about 400 kW. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.2 to 0.3. Olivine, a neo-silicate of Fe and Mg, already tested as a good catalyst for tar removal during gasification of polyolefin plastic wastes, was used as bed material. The results provide the complete composition of the syngas, including the tar, particulate and acid/basic gas contents as well as the chemical and physical characterization of the bed material and entrained fines. The gasification process appears technically feasible, yielding a producer gas of valuable quality for energy applications in an appropriate plant configuration. On the other hand, under the experimental conditions tested, olivine particles show a strongly reduced catalytic activity in all the runs. The differences in the gasification behaviour of the two industrial plastics are explained on the basis of the structure and composition of the wastes, taking also into account the results of a combined material and substance flow analysis. - Highlights: • Pilot-scale investigation of fluidized bed gasification of two industrial plastic wastes. • Tests under conditions of thermal/chemical steady state at various equivalence ratios. • Complete composition of the producer gas, including tar, particulate and acid/basic gases. • Differences in the gasification behaviour of plastic wastes. • Material, substance, and feedstock energy flow analysis for different gasification tests

  16. Process and technological aspects of municipal solid waste gasification. A review

    International Nuclear Information System (INIS)

    Arena, Umberto

    2012-01-01

    Highlights: ► Critical assessment of the main commercially available MSW gasifiers. ► Detailed discussion of the basic features of gasification process. ► Description of configurations of gasification-based waste-to-energy units. ► Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  17. Integration of coal gasification and packed bed CLC for high efficiency and near-zero emission power generation

    NARCIS (Netherlands)

    Spallina, V.; Romano, M.C.; Chiesa, P.; Gallucci, F.; Sint Annaland, van M.; Lozza, G.

    2014-01-01

    A detailed thermodynamic analysis has been carried out of large-scale coal gasification-based power plant cycles with near zero CO2 emissions, integrated with chemical looping combustion (CLC). Syngas from coal gasification is oxidized in dynamically operated packed bed reactors (PBRs), generating a

  18. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  19. Gasification of bio char from empty fruit bunch in a fluidized bed

    International Nuclear Information System (INIS)

    Nsamba Hussein Kisiki; Amran Mohammad Salleh; Wan Azlina; Hamdan Yusof

    2010-01-01

    Full text: Bio char from empty fruit bunch was gasified in a fluidized bed reactor using compressed air as a gasifying agent. The experiment was conducted in the temperature ranges of 500-850 degree Celsius and the equivalence ratio, temperature and size of the feedstock was varied. A series of parameters such as gas yield, overall carbon conversion, gas quality, and composition, were measured as a function of temperature, equivalence ratio and temperature. Results obtained were compared to the actual values of coal and other gasification feedstock reveal that, bio char has the potential to replace coal as a gasification agent in power plants .Hydrogen gas from bio char was also optimized during the experiment. There is great potential of making Hydrogen from Bio char through thermo chemical gasification It was observed that it has a very great potential of being upgraded to Fischer Tropsh fuels. There is a great opportunity of using this char from empty fruit bunch as an alternative fuel in power plants and all the adverse effects of coal gasification can be counteracted. (author)

  20. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    International Nuclear Information System (INIS)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-01-01

    Highlights: ► We investigate sulphur during MSW gasification within a fluid bed-plasma process. ► We review the literature on the feed, sulphur and process principles therein. ► The need for research in this area was identified. ► We perform thermodynamic modelling of the fluid bed stage. ► Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H 2 S) – Na and K based species in particular. Work is underway to further investigate and validate this.

  1. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  2. Low-temperature gasification of waste tire in a fluidized bed

    International Nuclear Information System (INIS)

    Xiao Gang; Ni Mingjiang; Chi Yong; Cen Kefa

    2008-01-01

    In order to recovery energy and materials from waste tire efficiently, low-temperature gasification is proposed. Experiments are carried out in a lab-scale fluidized bed at 400-800 deg. C when equivalence ratio (ER) is 0.2-0.6. Low heat value (LHV) of syngas increases with increasing temperature or decreasing ER, and the yield is in proportion to ER linearly. The yield of carbon black decreases with increasing temperature or ER lightly. When temperature is over 600 deg. C, characteristics of carbon black is similar. When temperature is over 700 deg. C, LHV of syngas rises up lightly with increasing temperature, which indicates that it hardly facilitates gasification any more. It is suitable for tire gasification when temperature is 650-700 deg. C and ER is 0.2-0.4. Under this condition, LHV and yield of syngas are about 4000-9000 kJ/Nm 3 and 1.8-3.7 Nm 3 /kg, respectively; surface area and yield of carbon black lie in range of 20-30 m 3 /g and 550-650 g/kg, respectively. The carbon balance of these experiments achieves 85-95% when temperature is over 600 deg. C

  3. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 5 - Surveys and studies of demonstration plant); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 5. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Surveys and studies were conducted concerning a demonstration plant for establishing the technology of integrated coal gasification combined cycle, and the fiscal 1995 results are compiled. In this fiscal year, a demonstration plant conceptual design was prepared for assuring smooth transition from a pilot plant to a commercial plant. The design followed the system employed at the Nakoso pilot plant for its gasification power generation. It was decided that the gasification furnace be of the air-blown (oxygen enriched) 2-stage entrained bed type, that the desulfurization system be of the dry type 2-stage fluidized bed type, the dedusting system be of the dry type granular bed type (moving bed type), that the combined cycle power facility be derived from the commercialized gas turbine, and that the cycle of the steam system agree with the integrated coal gasification combined cycle system now under discussion. Studies were made, which covered heat efficiency (generating end/sending end), heat/matter balance, process flow, gas turbine/steam system optimization, comparison in performance with a pilot plant with its dimensions increased, estimation of the performance of each of the facilities, estimation of the construction cost, calculation of the generation cost, environmental friendliness, operating characteristics, acceptable coal types, and the like. (NEDO)

  5. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  6. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    Science.gov (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Rodriguez-Alejandro, David Aaron

    2016-01-01

    Enriched-air gasification was performed in fluidized bed reactors using the processed dairy manure which was mixed with sand bedding. The effects of temperature, modified equivalence ratio (ER_m), and oxygen concentration on the gas products were investigated based on the statistical models using a bench-scale reactor in order to obtain empirical correlations. Then, the empirical equations were applied to compare the produced gases from a pilot-scale fluidized bed gasifier. The empirical and actual H_2 and CH_4 compositions were within a 10% error, while the sum of produced CO and CO_2 gases showed similar composition within 3% error. The most influential factors for the syngas heating value were temperature followed by the oxygen concentration and ER (equivalence ratio). The composition of H_2 (2.1–11.5%) and CO (5.9–20.3%) rose with an increase in temperature and oxygen concentration. The variation of CO_2 (16.8–31.6%) was mainly affected by the degree of oxygen concentration in the gasifying agent. The ranges of the LHV (lower heating value), carbon conversion efficiency and cold gas efficiency were discussed. An economic review showed favorable indications for on-site dairy manure gasification process for electric power based on the depreciable payback period and the power production costs. - Highlights: • Sand mixed dairy manure obtained directly from a dairy farm was processed and used. • Response surface methodology was used to investigate the enriched-air gasification. • Syngas results from bench and pilot scale gasifiers were compared and reviewed. • A highest LVH of 8 MJ/Nm"3 was obtained from the enriched-air gasification. • The power production costs were determined to be $0.053/kWh

  8. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Jhon F. Velez; Farid Chejne; Carlos F. Valdes; Eder J. Emery; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    The main results of an experimental work on co-gasification of Colombian biomass/coal blends in a fluidized bed working at atmospheric pressure are reported in this paper. Several samples of blends were prepared by mixing 6-15wt% biomass (sawdust, rice or coffee husk) with coal. Experimental assays were carried out by using mixtures of different steams/blends (Rvc) and air/blend (Rac) ratios showing the feasibility to implement co-gasification as energetic alternative to produce fuel gas to heat and to generate electricity and the possibility of converting clean and efficiently the refuse coal to a low-heating value gas. 29 refs., 5 figs., 4 tabs.

  9. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    Science.gov (United States)

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production

    International Nuclear Information System (INIS)

    Maglinao, Amado L.; Capareda, Sergio C.; Nam, Hyungseok

    2015-01-01

    Highlights: • High tonnage sorghum, cotton gin trash and beef cattle manure were characterized and gasified in a fluidized bed reactor. • Biomass gasification at 730 °C and ER = 0.35 produced synthesis gas with an average energy content of 4.19 MJ Nm −3 . • Synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. • Optimum hydrogen production on HTS gasification was achieved at 780 °C temperature and ER of 0.4. - Abstract: Fluidized bed gasification using high-tonnage sorghum, cotton gin trash and beef cattle manure was performed in a pilot scale bubbling fluidized bed reactor equipped with the necessary feedback control system. Characterization of biomass showed that the high-tonnage sorghum had the highest energy and carbon content of 19.58 MJ kg −1 and 42.29% wt , respectively among the three feed stocks. At 730 °C reaction temperature and equivalence ratio of 0.35, comparable yields of methane, nitrogen and carbon dioxide (within ± 1.4% vol ) were observed in all three feed stocks. The gasification system produced synthesis gas with an average heating value of 4.19 ± 0.09 MJ Nm −3 and an average yield of 1.98 ± 0.1 Nm 3 kg −1 of biomass. Carbon conversion and gasification efficiencies indicated that most of the carbon was converted to gaseous products (85% average ) while 48% average of the energy from the biomass was converted into combustible gas. The production of hydrogen was significantly affected by the biomass used during gasification. The synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. Utilizing high-tonnage sorghum, the optimum hydrogen production during gasification was achieved at a reaction temperature of 780 °C and an equivalence ratio of 0.40.

  11. Pressurised fluidised-bed gasification experiments with biomass, peat and coal at VTT in 1991-1994. Gasification of Danish wheat, straw and coal

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Laatikainen-Luntama, J; Staahlberg, P; Moilanen, A [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    Fluidised-bed air gasification of three different Danish straw feedstocks and Colombian bituminous coal was studied in the PDU-scale test facilities of VTT. The test programme was divided into two different modes of operation. First, the usability of straw as the only feedstock was investigated by operating the gasifier at relatively low temperature normally used in biomass gasifiers. In this operation mode the main aim was to find out the limits for gasification temperatures, set by the sintering behaviour of the straw. Secondly, the use of straw as an additional feedstock in a fluidised-bed coal gasifier was examined by operating the gasifier at about 1 000 deg C with different ratings of straw and coal feeding. The gasifier was operated at 5 bar pressure and at 80 990 deg C. The product gas was cleaned by ceramic candle filters operated at 465-540 deg C. Concentrations of tars, nitrogen com- pounds, sulphur gases, vapour-phase alkali metals as well as chlorine were determined in different operating conditions. (12 refs.)

  12. Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier

    International Nuclear Information System (INIS)

    Kaewluan, Sommas; Pipatmanomai, Suneerat

    2011-01-01

    Experiments of rubber wood chip gasification were carried out in a 100-kW th bubbling fluidised bed gasifier to investigate the effect of air to fuel ratio (represented as equivalence ratio - ER) on the yield and properties of synthesis gas. For all experiments, the flow rate of ambient air was fixed, while the feed rate of rubber wood chip was adjusted to vary ER in the range of 0.32-0.43. Increasing ER continuously raised the bed temperature, which resulted in higher synthesis gas yield and lower yield of ash and tar. However, higher ER generally gave synthesis gas of lower heating value, partly due to the dilution of N 2 . Considering the energy efficiency of the process, the optimum operation was achieved at ER = 0.38, which yielded 2.33 Nm 3 of synthesis gas per kg of dry biomass at the heating value of 4.94 MJ/Nm 3 . The calculated carbon conversion efficiency and gasification efficiency were 97.3% and 80.2%, respectively. The mass and energy balance of the gasification process showed that the mass and energy distribution was significantly affected by ER and that the energy losses accounted for ∼25% of the total output energy. The economical assessment of synthesis gas utilisation for heat and electricity production based on a 1-MW th bubbling fluidised bed gasifier and the operational data resulting from the rubber wood chip gasification experiments in this study clearly demonstrated the attractiveness of replacing heavy fuel oil and natural gas by the synthesis gas for heat applications in terms of 70% and 50% annual saving of fuel cost, respectively. However, the case of electricity production does not seem a preferable option due to its current technical and non-technical barriers.

  13. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Energy recovery from sewage sludge by means of fluidised bed gasification

    International Nuclear Information System (INIS)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes

  15. Distribution of volatile sulphur containing products during fixed bed pyrolysis and gasification of coals

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1991-08-01

    Various coals were used to study the evolution of H{sub 2}S COS, and SO{sub 2} in a fixed bed reactor. For all types of coal, most of H{sub 2}S and SO{sub 2} were released during the devolatilization stage. COS was formed only during the gasification stage in the presence of CO{sub 2}.

  16. Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz [VŠB – Technical University of Ostrava, Energy Research Center, 708 33 Ostrava (Czech Republic)

    2016-06-30

    The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the life of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.

  17. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    Science.gov (United States)

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  19. Research of Heat Rates Effect on the Process Of Fuel-Bed Gasification Of “Balakhtinskoe”, “Osinnikovskoe”, “Krasnogorskoe” and “Borodinskoe” Coal Deposits

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2016-01-01

    Full Text Available Experimental research of fuel-bed gasification at different heating rates was conducted. Release of four gases (CO, NO, H2O, CO2 was determined. Optimal heating rate mode for this method of gasification was established.

  20. Transient Catalytic Activity of Calcined Dolomitic Limestone in a Fluidized Bed during Gasification of Woody Biomass.

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Jeremiáš, Michal; Skoblia, S.; Beňo, Z.; Šyc, Michal; Svoboda, Karel

    2016-01-01

    Roč. 30, č. 5 (2016), s. 4065-4071 ISSN 0887-0624 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : fluidized- bed gasification * woody biomass * limestone Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.091, year: 2016

  1. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed

    International Nuclear Information System (INIS)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-01-01

    Highlights: • The temporal release of Se from coal combustion and gasification was measured. • Kinetic laws for Se release from coal combustion and gasification were determined. • The influences of temperature and chemical composition of flue gas were clarified. • The interactions of Se species with mineral affect the release kinetics of Se. - Abstract: The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x) = 0.94e −26.58/RT (−0.56 x 2 −0.51 x + 1.05) was determined for selenium release during coal combustion, and r(x) = 11.96e −45.03/RT (−0.53 x 2 −0.56 x + 1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  2. Second stage gasifier in staged gasification and integrated process

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  3. Process and unit for gasification of combustible material. Verfahren und Aggregat zur Vergasung brennbaren Gutes

    Energy Technology Data Exchange (ETDEWEB)

    Linneborn, J

    1987-05-21

    The invention refers to a process for the gasification of solid and combustible material in a moving bed and a unit in which this process can be carried out. By material to be gasified one means small material such as ground fossil coal and all organic substances such as wood, straw, husks and shells of fruit, to which sewage sludge can be added. The new process can be carried out, according to the invention, in a closed duct moved by vibration or shaking, in which the material or the ash produced moves from one end to the other by suitable vibration and comes into contact with round heat sources largely resistant to friction. This achieves rapid gasification of the material (at about 1000/sup 0/C) by convection and radiation.

  4. Reaction Mechanism of Tar Evolution in Biomass Steam Gasification for Hydrogen Production

    International Nuclear Information System (INIS)

    Shingo Katayama; Masahiro Suzuki; Atsushi Tsutsumi

    2006-01-01

    Reaction mechanism of tar evolution in steam gasification of biomass was investigated with a continuous cross-flow moving bed type differential reactor, in which tar and gases can be fractionated according to reaction time. We estimated that time profile of tar and gas evolution in the gasification of cellulose, xylan, and lignin, and compared it with experimental product time profile of real biomass gasification. The experimental tar evolution rate is different from estimated tar evolution rate. The estimated tar evolution rate has a peak at 20 s. On the other hand, the experimental tar evolution rate at 20 s is little, and tar at initial stage includes more water-soluble and water-insoluble compounds. It can be concluded that in the real biomass steam gasification the evolution of tar from cellulose and lignin component was found to be precipitated by that from hemi-cellulose component. (authors)

  5. Design and simulation of a circulating fluidized bed to clean the products of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa Neto, Moises; Carvalho, Yuri de Araujo [Dept. de Engenharia Mecanica. Faculdade de Tecnologia. Universidade de Brasilia, DF (Brazil); Oliveira, Taygoara Felamingo de; Barcelos, Manuel [Faculdade do Gama. Universidade de Brasilia, Gama, DF (Brazil)], e-mail: taygoara@unb.br

    2010-07-01

    The main goal of this work is to design a workbench circulating fluidized bed to study the cracking of tar in gases from the processes of biomass gasification. For this, a design methodology based on analytical results and empirical correlations for fluidized beds was employed. In parallel, a numerical code of open source technology (MFIX) for the solution of the transport equations of the multiphase flow in the column of a fluidized bed was used to give support to the choice of the design elements. The whole project of the workbench fluidized bed was completely developed, whose operation parameters such as bed geometry, gas velocity, circulating ratio and void fraction characterize a fast fluidization process. A preliminary mesh convergence study was executed with the numerical tool, that was validated comparing with analytical results. Among the most important results, the code computed the predicted value for the minimum fluidization. (author)

  6. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  7. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  8. Air gasification of agricultural waste in a fluidized bed gasifier: hydrogen production performance

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ab Karim Ghani, W. A.; Moghadam, R. A.; Mohd Salleh, M. A. [Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Alias, A. B. [Chemical Engineering, Universiti Teknologi MARA Malaysia, 54500 Shah Alam, Selangor (Malaysia)

    2009-07-01

    Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell) by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900 {sup o}C), fluidization ratio (2 to 3.33 m/s), static bed height (10 to 30 mm) and equivalence ratio (0.16 to 0.46) were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol%) could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900 {sup o}C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidising velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced. (author)

  9. Air Gasification of Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance

    Directory of Open Access Journals (Sweden)

    A. B. Alias

    2009-05-01

    Full Text Available Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C, fluidization ratio (2 to 3.33 m/s, static bed height (10 to 30 mm and equivalence ratio (0.16 to 0.46 were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol% could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.

  10. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  11. Effect of Operating Conditions on Catalytic Gasification of Bamboo in a Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Thanasit Wongsiriamnuay

    2013-01-01

    Full Text Available Catalytic gasification of bamboo in a laboratory-scale, fluidized bed reactor was investigated. Experiments were performed to determine the effects of reactor temperature (400, 500, and 600°C, gasifying medium (air and air/steam, and catalyst to biomass ratio (0 : 1, 1 : 1, and 1.5 : 1 on product gas composition, H2/CO ratio, carbon conversion efficiency, heating value, and tar conversion. From the results obtained, it was shown that at 400°C with air/steam gasification, maximum hydrogen content of 16.5% v/v, carbon conversion efficiency of 98.5%, and tar conversion of 80% were obtained. The presence of catalyst was found to promote the tar reforming reaction and resulted in improvement of heating value, carbon conversion efficiency, and gas yield due to increases in H2, CO, and CH4. The presence of steam and dolomite had an effect on the increasing of tar conversion.

  12. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael

    2014-01-01

    Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden

  13. Co-gasification of meat and bone meal with coal in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Cascarosa; L. Gasco; G. Gea; J.L. Sanchez; J. Arauzo [Universidad de Zaragoza (Spain). Thermochemical Processes Group

    2011-08-15

    After the Bovine Spongiform Encephalopathy illness appeared, the meat and bone meat (MBM) produced from animal residues became an important waste. In spite of being a possible fuel due to its heating value (around 21.4 MJ/kg), an important fraction of the meat and bone meal is being sent to landfills. The aim of this work is to evaluate the co-gasification of low percentages of meat and bone meal with coal in a fluidised bed reactor as a potential waste management alternative. The effect of the bed temperature (800-900{sup o}C), the equivalence ratio (0.25-0.35) and the percentage of MBM in the solid fed (0-1 wt.%) on the co-gasification product yields and properties is evaluated. The results show the addition of 1 wt.% of MBM in a coal gasification process increases the gas and the liquid yield and decreases the solid yield at 900{sup o}C and 0.35 of temperature and equivalence ratio operational conditions. At operational conditions of 900{sup o}C and equivalence ratio of 0.35, the specific yield to gas (y{sub gas}) increases from 3.18 m{sup 3}(STP)/kg to 4.47 m{sup 3}(STP)/kg. The gas energy yield decreased 24.1% and the lower heating value of the gas decreases from 3.36 MJ/m{sup 3}(STP) to 2.16 MJ/m{sup 3}(STP). The concentration of the main gas components (H{sub 2}, CO and CO{sub 2}) hardly varies with the addition of MBM, however the light hydrocarbon concentrations decrease and the H{sub 2}S concentration increases at the higher temperature (900{sup o}C). 32 refs., 9 figs., 7 tabs.

  14. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny

    2017-01-01

    to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify...

  15. Gasification of Biomass with CO2 and H2O Mixtures in a Catalytic Fluidised Bed.

    Czech Academy of Sciences Publication Activity Database

    Jeremiáš, Michal; Pohořelý, Michael; Svoboda, Karel; Manovic, V.; Anthony, E.J.; Skoblia, S.; Beňo, Z.; Šyc, Michal

    2017-01-01

    Roč. 210, DEC 15 (2017), s. 605-610 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 103-2923-E-042A-001-MY3 Institutional support: RVO:67985858 Keywords : fluidised bed * gasification * catalyst Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 4.601, year: 2016

  16. Biomass gasification, stage 2 LTH. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bjerle, I.; Chambert, L.; Hallgren, A.; Hellgren, R.; Johansson, Anders; Mirazovic, M.; Maartensson, R.; Padban, N.; Ye Zhicheng [comps.] [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    1996-11-01

    This report presents the final report of the first phase of a project dealing with a comprehensive investigation on pressurized biomass gasification. The intention with the project first phase was firstly to design, install and to take in operation a PCFB biomass gasifier. A thorough feasibility study was made during the first half year including extensive calculations on an internal circulating fluidized bed concept. The experimental phase was intended to study pressurized gasification up to 2.5 MPa (N{sub 2}, air) at temperatures in the interval 850-950 deg C. The more specific experimental objective was to examine the impact from various process conditions on the product formation as well as on the function of the different systems. The technical concept has been able to offer novel approaches regarding biomass feeding and PCFB gasification. The first gasification test run was made in December 1993 after almost 18 months of installation work. Extensive work was made during 1994 and the first half of 1995 to find the balance of the PCFB gasifier. It turned out to be very difficult to find operating parameters such that gave a stable circulation of the bed material during gasification mode. Apparently, the produced gas partly changed the pressure profile over the riser which in turn gave unstable operation. After a comprehensive investigation involving more than 100 hours of tests runs it was decided to leave the circulating bed concept and focus on bubbling bed operations. The test rig is currently operating as a bubbling bed gasifier. 4 refs, 24 figs, 6 tabs

  17. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  18. Explanative report on the achievements in research and development of a coal gasification technology in fiscal 1981. Research and development of a low-calorie gasification power generation technology; 1981 nendo sekitan gas ka gijutsu no kenkyu kaihatsu seika setsumeisho. Teikarori gas ka hatsuden gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the development works on a low-calorie gasification power generation technology in research and development of a coal gasification technology in fiscal 1981. The third sub-committee was established in the Coal Gasification Committee, and the sub-committee has summarized a survey report on coal gasification composite power generation upon having held seven discussion meetings. Surveys were carried out on the fluidized bed gasification process and the coal gasification composite power generation systems mainly in Germany and the U.S.A. where development of coal gasification technologies has been advanced. Germany and Britain who use great amount of coal are urged to find ways for how to clear the environmental criteria applied in the EC countries. The U.S.A. is moving forward the development of coal gasification technologies for power generation, chemical materials, and industrial fuel to be used as the substitutes to petroleum. This paper describes the development works at the Electric Power Development Company to realize a coal gasification composite power generation system of 1,000 t/d class. The pressurized fluidized bed system is assumed, and a verification test is scheduled to be performed on the chemical reaction characteristics by using a 40-t/d furnace. The furnace shape will be decided upon executing high-pressure cold model experiments. Fiscal 1981 has fabricated and installed devices for the high-pressure coal feeding system. Operation tests, air tightness tests, and instrumentation tests have verified normal operation. (NEDO)

  19. Gasification of Biomass with CO2 and H2O Mixtures in a Catalytic Fluidised Bed.

    Czech Academy of Sciences Publication Activity Database

    Jeremiáš, Michal; Pohořelý, Michael; Svoboda, Karel; Manovic, V.; Anthony, E.J.; Skoblia, S.; Beňo, Z.; Šyc, Michal

    2017-01-01

    Roč. 210, DEC 15 (2017), s. 605-610 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Grant - others:NSC(TW) 103-2923-E-042A-001-MY3 Institutional support: RVO:67985858 Keywords : fluidised bed * gasification * catalyst Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuel s Impact factor: 4.601, year: 2016

  20. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  1. Thermodynamic comparison of the FICFB and Viking gasification concepts

    International Nuclear Information System (INIS)

    Gassner, Martin; Marechal, Francois

    2009-01-01

    Two biomass gasification concepts, i.e. indirectly heated, fast internally circulating fluidised bed (FICFB) gasification with steam as gasifying agent and two-stage, directly heated, fixed bed Viking gasification are compared with respect to their performance as gas generators. Based on adjusted equilibrium equations, the gas composition and the energy requirements for gasification are accurately modelled. Overall energy balances are assessed by an energy integration with the heat cascade concept and considering energy recovery in a steam Rankine cycle. A detailed inventory of energy and exergy losses of the different process sections is presented and potential process improvements due to a better utility choice or feed pretreatment like drying or pyrolysis are discussed. While Viking gasification performs better as an isolated gas generator than state-of-the-art FICFB gasification, there is large potential for improvement of the FICFB system. Furthermore, a concluding analysis of the gasification systems in an integrated plant for synthetic natural gas production shows that FICFB gasification is more suitable overall due to a more advantageous energy conversion related to the producer gas composition.

  2. Biomass gasification in fixed bed type down draft: theoretical and experimental aspects; Gasificacao de biomassa em leito fixo tipo concorrente: aspectos teoricos e experimentais

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Daniel; Andrade, Rubenildo Vieira; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2008-07-01

    Actually are recognizing the advantages of biomass in reducing dependence on fossil fuels and significant reduction in emissions of greenhouse effect gases such as Co2. Also are known the different conversion of biomass routes for their use or exploitation, such as thermochemical process (gasification, pyrolysis and combustion), the biological process (fermentation and transesterification) and the physical process (densification, reducing grain and mechanical pressing). In this sense, the gasification is regarded as the most promising mechanism to obtain a homogeneous gaseous fuel with sufficient quality in the small scale distributed generation. This work presents some aspects of biomass gasification in fixed bed, as well as some preliminary results in the evaluation and operation of fixed bed down draft gasifier with double stage air supply of the NEST, identifying the adequate air supply quantity (equivalence ratio in the range of 0,35 to 0,45) for obtaining a fuel gas with lower heating value around 4 MJ/N m3. (author)

  3. Pressurized fluidized bed combustion combined cycle power plant with coal gasification: Second generation pilot plant

    International Nuclear Information System (INIS)

    Farina, G.L.; Bressan, L.

    1991-01-01

    This paper presents the technical and economical background of a research and development program of a novel power generation scheme, which is based on coal gasification, pressurized fluid bed combustion and combined cycles. The participants in this program are: Foster Wheeler (project leader), Westinghouse, IGT and the USA Dept. of Energy. The paper describes the characteristics of the plant, the research program in course of implementation, the components of the pilot plant and the first results obtained

  4. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  5. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat

    2017-11-28

    Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.

  6. Optimization of simulated moving bed (SMB) chromatography: a multi-level optimization procedure

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lim, Young-il

    2004-01-01

    objective functions (productivity and desorbent consumption), employing the standing wave analysis, the true moving bed (TMB) model and the simulated moving bed (SMB) model. The procedure is constructed on a non-worse solution property advancing level by level and its solution does not mean a global optimum...

  7. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M; Hoelder, D; Backhaus, C; Althaus, W [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  8. FY 1988 report on the committee of the Coal Gasification Committee; 1988 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    The paper reported activities of the committee of the Coal Gasification Committee in FY 1988. In the 1st committee meeting, report/discussion were made on the outline of the FY 1988 research plan on the coal gasification technology development. The distributed data were those on the development of entrained bed coal gasification power generation plant (the state of the development of a 200t/d gasification power generation pilot plant), the results of the operation using entrained bed coal gasification equipment, development of coal utilization hydrogen production technology (design/construction of pilot plant) and development of coal utilization hydrogen production technology (support study of pilot plant, study using small equipment). In the 2nd committee meeting, report/discussion were made on activities of sections such as the gasification power generation section and gasification technology section and the state of progress of the coal gasification technology development. The distributed data were those on the development of an entrained bed coal gasification power generation plant, support study of the development of an entrained bed coal gasification power generation plant, etc. (NEDO)

  9. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor

    International Nuclear Information System (INIS)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru'l-Razi, A.

    2011-01-01

    A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700-1000 o C, feedstock particle size in the range of 0.3-1.0 mm and equivalence ratio (ER) in the range of 0.15-0.35. The main gas species generated, as identified by a gas chromatography (GC), were H 2 , CO, CO 2 and CH 4 . With temperature increasing from 700 o C to 1000 o C, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 o C with big portions of H 2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H 2 , CO and CH 4 yields. The feedstock particle size of 0.3-0.5 mm, was found to obtain a higher H 2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m 3 ). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H 2 yield (27.31 vol.%) at 850 o C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm 3 ).

  10. Catalytic steam gasification of biomass in fluidized bed at low temperature: Conversion from livestock manure compost to hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Xiao, Xianbin; Le, Duc Dung; Li, Liuyun; Meng, Xianliang; Cao, Jingpei; Morishita, Kayoko; Takarada, Takayuki

    2010-01-01

    Utilizing large amounts of animal waste as a source of renewable energy has the potential to reduce its disposal problems and associated pollution issues. Gasification characteristics of the manure compost make it possible for low temperature gasification. In this paper, an energy efficient approach to hydrogen-rich syngas from manure compost is represented at relatively low temperature, around 600 o C, in a continuous-feeding fluidized bed reactor. The effects of catalyst performance, reactor temperature, steam, and reaction type on gas yield, gas composition, and carbon conversion efficiency are discussed. The Ni-Al 2 O 3 catalyst simultaneously promotes tar cracking and steam reforming. Higher temperature contributes to higher gas yield and carbon conversion. The steam introduction increases hydrogen yield, by steam reforming and water-gas shift reaction. Two-stage gasification is also tried, showing the advantage of better catalyst utilization and enhancing the catalytic reactions to some extent.

  11. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  12. Coal gasification in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Furfari, S [Commissione delle Comunita' Europee, Bruxelles (Belgio). Direzione Generale dell' Energia, Direzione delle Tecnologie

    1992-02-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes.

  13. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  14. Catalytic and noncatalytic gasification of pyrolysis oil

    NARCIS (Netherlands)

    van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2007-01-01

    Gasification of pyrolysis oil was studied in a fluidized bed over a wide temperature range (523−914 °C) with and without the use of nickel-based catalysts. Noncatalytically, a typical fuel gas was produced. Both a special designed fluid bed catalyst and a crushed commercial fixed bed catalyst showed

  15. The Kaldnes Moving Bed biofilm technology for treatment of industrial wastewater; Tecnologia Kaldnes Moving Bed biofilm (KMT) para la depuracion de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, V.; Garcia Carrion, M.; Farre Solsona, C.

    2004-07-01

    The Kaldnes Moving bed biofilm technology is a biofilm process which is very suitable for treatment of industrial wastewaters. Biofilm processes have several acknowledged advantages compared to suspended biomass processes, e. g. resistance to toxicity and load variations. Traditionally biofilm processes have been known to clog at high loads and hence have not been suited for industrial effluents: however, the Kaldnes Moving Bed biofilm process has overcome this problem. This article describes how the process has been used as pre-treatment up front of activated sludge at a dairy in USA, and as sole treatment at pharmaceutical industry in Sweden. (Author)

  16. Biomass utilization for the process of gasification

    Directory of Open Access Journals (Sweden)

    Josef Spěvák

    2008-01-01

    Full Text Available Biomass as one of the renewable resources of energy has bright future in utilization, especially in obtaining various forms of energy (heat, electrical energy, gas.According to the conception of energy policy of the Czech Republic and according to the fulfillment of the indicators of renewable resources using until the year 2010, the research of thermophysical characteristics of biofuels was realized.There were acquired considerable amount of results by combustion and gasification process on the basis of three-year project „Biomass energy parameters.” By means of combustion and gasification tests of various (biomass fuels were acquired the results which were not published so far.Acquired results are published in the fuel sheets, which are divided into four parts. They consist of information on fuel composition, ash composition, testing conditions and measurand overview. Measurements were realized for the process of combustion, fluidized-bed gasification and fixed-bed gasification. Following fuels were tested: Acacia, Pine, Birch, Beech, Spruce, Poplar, Willow, Rape, Amaranth, Corn, Flax, Wheat, Safflower, Mallow, and Sorrel.

  17. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  19. Research results of sewage sludge and waste oil disposal by entrained bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schingnitz, M.; Goehler, P.; Wenzel, W.; Seidel, W. (Noell-DBI Energie- und Entsorgungstechnik GmbH, Freiberg (Germany))

    1992-01-01

    Presents results of gasifying sewage sludge and waste oil with the GSP technology, developed by the Freiberg Fuel Institute (FRG). The GSP reactor was developed in 1976 for gasification of pulverized brown coal. An industrial reactor of this design operated for over 5 years with a total coal throughput of more than 300,000 t. The design of the gasification generator and the flowsheet of a 3 MW experimental pilot plant for waste gasification are presented. The PCB content in the gasification sludge is 6.14 mg/kg, in waste oil - 160 mg/kg. Gasification takes place at high temperatures of more than 1,400 C for complete destruction of toxic pollutants. Gasification results compare composition of raw gas produced by gasification of brown coal, sewage sludge and waste oil. A detailed list of content of pollutants (PCDD, PCDF, PAH, dioxin and furan) in the gasification gas, in process waters and in solid residue of the process water is provided. It is concluded that the GSP gasification process is suitable for safe disposal of waste with toxic content. 3 refs.

  20. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible. (Auth.)

  1. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires the addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible

  2. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  3. Entrained bed gasification of coal: prediction of contaminant levels using thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Boudreau, F.; Kovacik, G. (CANMET, Ottawa, ON (Canada). Energy Research Labs.)

    1993-10-01

    The F.A.C.T. method was used for predicting the emissions of S-, Cl-, N-, Pb- and As-containing contaminants from entrained bed gasification of one bituminous coal and one subbituminous coal. When the effect of mineral matter was included, the emissions of H[sub 2]S, CS[sub 2], COS, HCl and HCN decreased substantially whereas the amount of predicted NH[sub 3] remained unaffected. The decrease was offset by increased formation of metal sulphides, chlorides and cyanides. Relatively large amounts of Na, K, Mg, Ca, Pb and As in the gas were predicted by the method. The chlorides of these metals are also rather volatile. The presence of steam increased the amount of H[sub 2]S and HCl and decreased the amount of HCN in the products. 8 refs., 5 figs., 5 tabs.

  4. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    Science.gov (United States)

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Numerical Simulation of Fluidized Bed Gasifier for Integrated Gasification Combined Cycle

    Directory of Open Access Journals (Sweden)

    CHEN Ju-hui

    2017-06-01

    Full Text Available The overall thermal efficiency of the integrated gasification combined cycle ( IGCC has not been sufficiently improved. In order to achieve higher power generation efficiency,the advanced technology of IGCC has been developed which is on the basis of the concept of exergy recovery. IGCC systems and devices from the overall structure of opinion,this technology will generate electricity for the integration of advanced technology together,the current utilization of power generation technology and by endothermic reaction of steam in the gasifier,a gas turbine exhaust heat recovery or the solid oxide fuel cell. It is estimated that such the use of exergy recycling has the advantage of being easy to use,separating,collecting fixed CO2,making it very attractive,and can increase the overall efficiency by 10% or more. The characteristics of fluidized bed gasifier,one of the core equipment of the IGCC system,and its effect on the whole system were studied.

  6. Computational simulation of the biomass gasification process in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Rojas Mazaira, Leorlen Y.; Gamez Rodriguez, Abel; Andrade Gregori, Maria Dolores; Armas Cardona, Raul

    2009-01-01

    In an agro-industrial country as Cuba many residues of cultivation like the rice and the cane of sugar take place, besides the forest residues in wooded extensions. Is an interesting application for all this biomass, the gasification technology, by its high efficiency and its positive environmental impact. The computer simulation appears like a useful tool in the researches of parameters of operation of a gas- emitting, because it reduces the number of experiments to realise and the cost of the researches. In the work the importance of the application of the computer simulation is emphasized to anticipate the hydrodynamic behavior of fluidized bed and of the process of combustion of the biomass for different residues and different conditions of operation. A model using CFD for the simulation of the process of combustion in a gas- emitting of biomass sets out of fluidized bed, the hydrodynamic parameters of the multiphasic flow from the elaboration of a computer simulator that allows to form and to vary the geometry of the reactor, as well as the influence of the variation of magnitudes are characterized such as: speed, diameter of the sand and equivalent reason. Experimental results in cylindrical channels appear, to complete the study of the computer simulation realised in 2D. (author)

  7. Modelling the low-tar BIG gasification concept[Biomass Integrated gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Lars; Elmegaard, B.; Qvale, B.; Henriksen, Ulrrik [Technical univ. of Denmark (Denmark); Bentzen, J.D.; Hummelshoej, R. [COWI A/S (Denmark)

    2007-07-01

    A low-tar, high-efficient biomass gasification concept for medium- to large-scale power plants has been designed. The concept is named 'Low-Tar BIG' (BIG = Biomass Integrated Gasification). The concept is based on separate pyrolysis and gasification units. The volatile gases from the pyrolysis (containing tar) are partially oxidised in a separate chamber, and hereby the tar content is dramatically reduced. Thus, the investment, and running cost of a gas cleaning system can be reduced, and the reliability can be increased. Both pyrolysis and gasification chamber are bubbling fluid beds, fluidised with steam. For moist fuels, the gasifier can be integrated with a steam drying process, where the produced steam is used in the pyrolysis/gasification chamber. In this paper, mathematical models and results from initial tests of a laboratory Low-Tar BIG gasifier are presented. Two types of models are presented: 1. The gasifier-dryer applied in different power plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification and Combined Cycle (IGCC). The paper determines the differences in efficiency of these systems and shows that the gasifier will be applicable for very different fuels with different moisture contents, depending on the system. 2. A thermodynamic Low-Tar BIG model. This model is based on mass and heat balance between four reactors: Pyrolysis, partial oxidation, gasification, gas-solid mixer. The paper describes the results from this study and compares the results to actual laboratory tests. The study shows, that the Low-Tar BIG process can use very wet fuels (up to 65-70% moist) and still produce heat and power with a remarkable high electric efficiency. Hereby the process offers the unique combination of large scale gasification and low-cost gas cleaning and use of low-cost fuels which very likely is the necessary combination that will lead to a breakthrough of gasification technology. (au)

  8. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  9. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input

    International Nuclear Information System (INIS)

    Kraft, Stephan; Kirnbauer, Friedrich; Hofbauer, Hermann

    2017-01-01

    Highlights: • We simulated an 8 MWth steam gasification system with the CPFD code Barracuda. • The prediction of the hydrodynamics depends strongly upon the chosen drag law. • The EMMS drag law predicted best the bed material recirculation and pressure drops. • The model of the DFB plant is able to predict the operation accurately. - Abstract: Dual fluidized bed (DFB) systems for biomass gasification consist of two connected fluidized beds with a circulating bed material in between. Inside such reactor systems, rough conditions occur due to the high temperatures and the movement of the bed material. Computational fluid dynamics calculations are a useful tool for investigating fluid dynamics inside such a reactor system. In this study, an industrial-sized DFB system was simulated with the commercial code CPFD Barracuda. The DFB system is part of the combined heat and power (CHP) plant at Güssing, situated in Austria, and has a total fuel input of 8 MW_t_h. The model was set up according to geometry and operating data which allows a realistic description of the hot system in the simulation environment. Furthermore, a conversion model for the biomass particles was implemented which covers the drying and devolatilization processes. Homogeneous and heterogeneous reactions were considered. Since drag models have an important influence on fluidization behavior, four drag models were tested. It was found that the EMMS drag model fits best, with an error of below 20%, whereas the other drag models produced much larger errors. Based on this drag law, further simulations were conducted. The simulation model correctly predicts the different fluidization regimes and pressure drops in the reactor system. It is also able to predict the compositions of the product and flue gas, as well as the temperatures inside the reactor, with reasonable accuracy. Due to the results obtained, Barracuda seems suitable for further investigations regarding the fluid mechanics of such

  10. FY 1986 report on the committee of the Coal Gasification Committee; 1986 nendo sekitan gaska iinkai hon'iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The paper reported on activities of the committee of the Coal Gasification Committee in FY 1986. In the 1st Committee Meeting, after selecting the chairperson, report/discussion were made about the outline of the FY 1986 coal gasification technology development plan. The distributed data were the outline of the development of an entrained bed coal gasification power plant, outline of the development of a 40t/d fluidized bed coal gasification plant, outline of the design of a 1,000t/d 100,000KW-class demonstrative plant, outline of the development of coal utilization hydrogen production technology, and outline of the development of high-calorie gas production technology. In the 2nd Committee Meeting, report/discussion were made about activities of each section of the committee and the state of progress of the development of coal gasification technology. The distributed data were those on the development of an entrained bed coal gasification power plant, development of a 40t/d fluidized bed coal gasification plant, design of a 1,000t/d 100,000KW-class demonstrative plant, and development of coal utilization hydrogen production technology (design/construction of pilot plant, study using small equipment). (NEDO)

  11. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R. [CRS Sirrine Engineers, Inc., Greenville, SC (United States); Lisauskas, R.A.; Dixit, V.J. [Riley Stoker Corp., Worcester, MA (United States); Morgan, M.E.; Johnson, S.A. [PSI Technology Co., Andover, MA (United States). PowerServe Div.; Boni, A.A. [PSI-Environmental Instruments Corp., Andover, MA (United States)

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  12. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study

    International Nuclear Information System (INIS)

    Erlich, Catharina; Fransson, Torsten H.

    2011-01-01

    The downdraft gasification technology has an increased interest among researchers worldwide due to the possibility to produce mechanical and electrical power from biomass in small-scale to an affordable price. The research is generally focused on improvement of the performance and optimizing of a certain gasifier, on testing different fuels, on increasing the user-friendliness of the gasifier and on finding other uses for the product gas than in an IC-engine, for example liquid fuel production. The main objective with the gasification tests presented here is to further contribute in the field by studying the impact of the char bed properties such as char bed porosity and pressure drop on the gasification performance as well as the impact of fuel particle size and composition on the gasification process in one and the same gasifier. In addition, there is very little gasification data available in literature of 'before disregarded' fuels such as sugar cane bagasse from sugar/alcohol production and empty fruit bunch (EFB) from the palm-oil production. By pelletizing these residues, it is possible to introduce them into downdraft gasification technology which has been done in this study. The results show that one and the same reactor can be used for a variety of fuels in pellet form, but at varying air-fuel ratios, temperature levels, gas compositions and lower heating values. Gasification of wood pellets results in a richer producer gas while EFB pellets give a poorer one with higher contents of non-combustible compounds. In this gasification study, there is almost linear relation between the air-fuel ratio and the cold-gas efficiency for the studied fuels: Higher air-fuel ratios result in better efficiency. The pressure drop in the char bed is higher for more reactive fuels, which in turn is caused by low porosity char beds.

  13. Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model

    International Nuclear Information System (INIS)

    Kaniyal, Ashok A.; Eyk, Philip J. van; Nathan, Graham J.

    2016-01-01

    Highlights: • First analysis to assess storage requirements of a stand-alone packed bed, batch process solar gasifier. • 35 days of storage required for stand-alone solar system, whereas 8 h of storage required for hybrid system. • Sensitivity of storage requirement to reactor operation, solar region and solar multiple evaluated. - Abstract: The first multi-day performance analysis of the feasibility of integrating a packed bed, indirectly irradiated solar gasification reactor with a downstream FT liquids production facility is reported. Two fuel-loading scenarios were assessed. In one, the residual unconverted fuel at the end of a day is reused, while in the second, the residual fuel is discarded. To estimate a full year time-series of operation, a simplified statistical model was developed from short-period simulations of the 1-D heat transfer, devolatilisation and gasification chemistry model of a 150 kW th packed bed reactor (based on the authors’ earlier work). The short time-series cover a variety of solar conditions to represent seasonal, diurnal and cloud-induced solar transience. Also assessed was the influence of increasing the solar flux incident at the emitter plate of the packed bed reactor on syngas production. The combination of the annual time-series and daily model of syngas production was found to represent reasonably the seasonal transience in syngas production. It was then used to estimate the minimum syngas storage volume required to maintain a stable flow-rate and composition of syngas to a FT reactor over a full year of operation. This found that, for an assumed heliostat field collection area of 1000 m 2 , at least 64 days of storage is required, under both the Residual Fuel Re-Use and Discard scenarios. This figure was not sensitive to the two solar sites assessed, Farmington, New Mexico or Tonopah Airport, Nevada. Increasing the heliostat field collection area from 1000 to 1500 m 2 , led to an increase in the calculated daily rate

  14. Sewage sludge gasification in fluidized bed: influence of temperature and the stoichiometric relation; Gasificacion de fangos de depuradora en lecho fluidizado: influencia de la temperatura y de la relacion estequiometrica

    Energy Technology Data Exchange (ETDEWEB)

    Manya, J.J.; Gonzalo, A.; Sanchez, J.L.; Arauzo, J. [Universidad de Zaragoza, Aragon (Spain). Inst. de Investigacion en Ingenieria. Grupo de Procesos Termoquimicos; Rocha, J.D. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE); Mesa Perez, J.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Agricola (FEAGRI)

    2004-07-01

    The gasification of a dry granular sewage sludge has been experimentally studied. The gasification was carried out in a bench scale BFB facility, operated at steady state. The attention was focused on the presence of tar in the produced gas which affect the process efficiency and give negative drawbacks in the utilization in motors. The influence of two operating variables (bed temperature and equivalence ratio) on the gasification performances has been explored. Results show that the composition of produced gas is quite dependent of the variables analyzed. However, the results of tar yield show an unexpected behaviour. (author)

  15. Gasification-based energy production systems for different size classes - Potential and state of R and D

    International Nuclear Information System (INIS)

    Kurkela, E.

    1997-01-01

    (Conference paper). Different energy production systems based on biomass and waste gasification are being developed in Finland. In 1986-1995 the Finnish gasification research and development activities were almost fully devoted to the development of simplified IGCC power systems suitable to large-scale power production based on pressurized fluid-bed gasification, hot gas cleaning and a combined-cycle process. In the 1990's the atmospheric-pressure gasification activities aiming for small and medium size plants were restarted in Finland. Atmospheric-pressure fixed-bed gasification of wood and peat was commercialized for small-scale district heating applications already in the 1980's. Today research and development in this field aims at developing a combined heat and power plant based on the use of cleaned product gas in internal combustion engines. Another objective is to enlarge the feedstock basis of fixed-bed gasifiers, which at present are limited to the use of piece-shaped fuels such as sod peat and wood chips. Intensive research and development is at present in progress in atmospheric-pressure circulating fluidized-bed gasification of biomass residues and wastes. This gasification technology, earlier commercialized for lime-kiln applications, will lead to co-utilization of local residues and wastes in existing pulverized coal fired boilers. The first demonstration plant is under construction in Finland and there are several projects under planning or design phase in different parts of Europe. 48 refs., 1 fig., 1 tab

  16. Treatment of Mixed Wastes via Fixed Bed Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-10-28

    This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

  17. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A; Laatikainen-Luntama, J; Nieminen, M; Kurkela, E; Korhonen, J [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  18. Research into Biomass and Waste Gasification in Atmospheric Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Skala, Zdenek; Ochrana, Ladislav; Lisy, Martin; Balas, Marek; Kohout, Premysl; Skoblja, Sergej

    2007-07-01

    Considerable attention is paid in the Czech Republic to renewable energy sources. The largest potential, out of them all, have biomass and waste. The aim therefore is to use them in CHP in smaller units (up to 5MWel). These are the subject of the research summarized in our article. The paper presents results of experimental research into gasification in a 100 kW AFB gasifier situated in Energy Institute, Faculty of Mechanical Engineering, Brno University of Technology, and fitted with gas cleaning equipment. Within the research, study was carried out into gas cleaning taking primary measures in the fluidized bed and using hot filter, metal-based catalytic filter, and wet scrubber. Descriptions and diagrams are given of the gasifier and new ways of cleaning. Results include: Impact of various fuels (farming and forest wastes and fast-growing woods and culm plants) on fuel gas quality. Individual kinds of biomass have very different thermal and physical properties; Efficiency of a variety of cleaning methods on content of dust and tars and comparison of these methods; and, Impact of gasifier process parameters on resultant gas quality. (auth)

  19. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  20. Survey report for fiscal 2000 on survey of high-efficiency gasification technology of catalyst utilization type; 2000 nendo chosa hokokusho. Shokubai riyo gata kokoritsu gas ka gijutsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Survey and experimental research have been carried out on coal gasification using a pressurized internal circulation fluidized bed, spouted bed hydrogenation pyrolysis, supercritical water gasification, and a possibility of efficiency improvement by utilization of catalyst in chemical raw material production spouted bed gasification system. In the coal gasification using the pressurized internal circulation fluidized bed, an experiment was performed by using active alumina and Ni catalyst, where outstanding effect was identified. In the spouted bed hydrogenation pyrolysis, an experiment was executed by using iron hydroxide catalyst, but no noticeable effect was recognized. In the supercritical water gasification, an experiment was carried out by using Na{sub 2}CO2 and K{sub 2}CO{sub 3} catalysts, where it was found that the effect of the catalysts is little in the supercritical gasification reaction area of 800 degrees C. The power generation system composite with the chemical raw material production spouted bed gasification is a one-path system in which coal is gasified by the spouted bed gasification furnace, catalyst and steam are put into a heat exchanger to perform DME synthesis, and non-reacted gas is supplied as gas turbine fuel. Estimation was made on the possibility by an on-the-desk study, which requires experiments in the future. (NEDO)

  1. Biowaste utilization in the process of co-gasification with bituminous coal and lignite

    International Nuclear Information System (INIS)

    Howaniec, Natalia; Smoliński, Adam

    2017-01-01

    Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed. - Highlights: • Biowaste co-gasification with bituminous coal/lignite to hydrogen-rich gas. • Steam co-gasification in laboratory scale fixed-bed reactor at 700 and 900 °C. • Hierarchical Clustering Analysis complemented with color map of experimental data. • Carbon conversion increase with increasing biomass content. • The highest total gas and hydrogen volume in co-gasification of C-B20 blend at 900C.

  2. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 2. Support study for the development of an entrained bed coal gasification power plant (Summarization of the operation study); 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu (Funryusho sekitan gaska hatsuden plant kaihatsu no shien kenkyu) - Sono 2. Unten kenkyu sokatsu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-01

    The paper summarized the results of the following tests on a 40 t/d pilot plant which were conducted as the support study for the development of an entrained bed coal gasification power plant: dry desulfurization test, dry dedusting test, high-temperature NOx gas combustion test (gas turbine element test). In the dry desulfurization test, tested were the operational automation and monitoring technology, performance of desulfurization, characteristics of load response, sulfur recovery, etc. In the dry dedusting test, tested were the filter medium/dust separation, powder level meter, continuous dust densitometer, operational automation, characteristics of partial load/load response, improvement of filtration materials, test on characteristics of air conveyance, etc. In the high-temperature low-NOx gas combustion test (gas turbine element test), the following were conducted: examination of the test method of gas turbine materials, inspection/examination of the corrosion of gas turbine combustion test device, inspection/examination of the internal corrosion of the stationary blade for gas turbine deposit test, inspection/examination of gasification system. The results of these support studies were reflected one after another in the project on the development of an entrained bed coal gasification power plant. (NEDO)

  3. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  4. Staged catalytic gasification/steam reforming of pyrolysis oil

    NARCIS (Netherlands)

    van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Gasification/steam reforming of pyrolysis oil was studied in a staged reactor concept, which consisted of an inert fluidized bed and a catalytic fixed bed. Methane and C2−C3 free syngas is produced at a single temperature around 800 °C at atmospheric pressure. By lowering the temperature of the

  5. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, element study was conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. In the gasification test using 2t/d gasifier equipment, the following were carried out: test on gasification of the coal proposed for pilot plant, test on changes in coal feed ratio, analysis of trace gas elements in coal, study of the fixed bed gas refining system, etc. In the study of large gas turbine combustor for demonstration machine, development of combustor which makes stable combustion in the low load region possible, development of low NOx combustor which controls the conversion of nitrogen compounds such as ammonia in coal gasification gas to NOx, development of combustor which makes the optimum and effective cooling possible by combining film cooling, impingement cooling, etc. In the study of simulation of the combined power generation total system, verification tests on the control mode switching function of the general load pressure control system, movement to meet anomaly of the control system, integrated cooperation control system, etc. (NEDO)

  6. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS

    DEFF Research Database (Denmark)

    Suhr, Karin; Pedersen, Per Bovbjerg

    2010-01-01

    The nitrification performance of two fixed bed (FB) biofilters and two moving bed (MB) biofilters was evaluated. They received the same cold (8 degrees C) influent water from a commercial outdoor RAS facility producing rainbow trout (average density 32 kg m(-3)). The filters were constructed as f...

  7. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  8. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  9. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, I.; Kurkela, E.

    2013-04-15

    With the objective of gaining a better understanding of the system design trade-offs and economics that pertain to biomass-to-liquids processes, 20 individual BTL plant designs were evaluated based on their technical and economic performance. The investigation was focused on gasification-based processes that enable the conversion of biomass to methanol, dimethyl ether, Fischer-Tropsch liquids or synthetic gasoline at a large (300 MWth of biomass) scale. The biomass conversion technology was based on pressurised steam/O2-blown fluidised-bed gasification, followed by hot-gas filtration and catalytic conversion of hydrocarbons and tars. This technology has seen extensive development and demonstration activities in Finland during the recent years and newly generated experimental data has also been used in our simulation models. Our study included conceptual design issues, process descriptions, mass and energy balances and production cost estimates. Several studies exist that discuss the overall efficiency and economics of biomass conversion to transportation liquids, but very few studies have presented a detailed comparison between various syntheses using consistent process designs and uniform cost database. In addition, no studies exist that examine and compare BTL plant designs using the same front-end configuration as described in this work. Our analysis shows that it is possible to produce sustainable low-carbon fuels from lignocellulosic biomass with first-law efficiency in the range of 49.6-66.7% depending on the end-product and process conditions. Production cost estimates were calculated assuming Nth plant economics and without public investment support, CO2 credits or tax assumptions. They are 58-65 euro/MWh for methanol, 58-66 euro/MWh for DME, 64-75 euro/MWh for Fischer-Tropsch liquids and 68-78 euro/MWh for synthetic gasoline. (orig.)

  10. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  11. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  12. Gasification of peat and biomass in suspension flow 2; Turpeen ja biomassan suspensiokaasutus 2

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Hepola, J. [VTT Energy, Espoo (Finland); Haukka, P.; Vehmaan-Kreula, M.; Raiko, R. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project was an extension of the earlier Liekki-project 402 carried out in 1993-1994. The aims of the 1995 project were: (1) to study the formation of problematic tar/soot compounds and nitrogen pounds in the conditions of entrained flow gasification of biomass and peat, (2) study the product yields and kinetics of pyrolysis, and (3) to develop simulation methods for entrained flow pyrolysis and gasification. Pyrolysis and gasification tests were carried out at a new entrained flow reactor of the Gasification Research Group of VTT using mainly peat as the feedstock. The pyrolysis kinetics was studies using three particle size distributions of fuel peat (0.075-0.125 mm, 0.16-0.25 mm and 0.315-0.5 mm). The char yields were determined at two temperatures (900 and 1000 deg C) and the effects fuel to gas ratio (suspension density) as well as the effects of gas atmosphere were determined. Limited amount of tests were also carried out with pine wood and dried de-inking sludge. The formation of tars and nitrogen compounds was studied with peat as the feedstock. Based on the test results of this project and the on earlier fluidized-bed gasification data of VTT, the following conclusions can be made: (1) the char yields in rapid entrained flow pyrolysis of small particles of peat and biomass are considerably lower than derived in fluid-bed pyrolysis of more coarse feedstocks. Consequently, simple entrained flow reactors without any recycling of char could already give rather high carbon conversions. However, high carbon conversions can also be easily achieved in fluidized-bed gasifiers with biomass fuels due to the high gasification reactivity of the char, (2) more tars were formed in entrained flow pyrolysis of peat than in fluidized-bed experiments carried out at the same temperature, (3) the total conversion of peat nitrogen to NH{sub 3}+HCN was as high in the entrained flow pyrolysis as in the fluid-bed pyrolysis experiments. (Abstract Truncated)

  13. Gasification of biochar from empty fruit bunch in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Salleh, M. A.; Hussein Kisiki, N.; Yusuf, H. M.; Ghani, W. A. K. [Department of Chemical and Enviromental Engineering University Putra Malaysia, 43400, Serdang (Malaysia)

    2010-07-15

    A biochar produced from empty fruit bunches (EFB) was gasified in a fluidized bed using air to determine gas yield, overall carbon conversion, gas quality, and composition as a function of temperature. The experiment was conducted in the temperature range of 500-850 {sup o}C. It was observed that biochar has the potential to replace coal as a gasification agent in power plants. Hydrogen gas from biochar was also optimized during the experiment. High temperatures favor H{sub 2} and CO formation. There was an increase of H{sub 2} over the temperature range from 500-850 {sup o}C from 5.53% to 27.97% (v/v), with a heating value of 30 kJ/g. The C conversion in the same temperature range increased from 76% to 84%. Therefore, there are great prospects for the use of biochar from EFB as an alternative fuel in power plants, as a renewable energy providing an alternative path to biofuels. Results from this work enable us to better understand syn gas production under high treatment temperatures. (authors)

  14. Biomass Gasification - A synthesis of technical barriers and current research issues for deployment at large scale

    Energy Technology Data Exchange (ETDEWEB)

    Heyne, Stefan [Chalmers Univ. of Technology, Gothenburg (Sweden); Liliedahl, Truls [KTH, Royal Inst. of Technology, Stockholm (Sweden); Marklund, Magnus [Energy Technology Centre, Piteaa (Sweden)

    2013-09-01

    Thermal gasification at large scale for cogeneration of power and heat and/or production of fuels and materials is a main pathway for a sustainable deployment of biomass resources. However, so far no such full scale production exists and biomass gasification projects remain at the pilot or demonstration scale. This report focuses on the key critical technology challenges for the large-scale deployment of the following biomass-based gasification concepts: Direct Fluidized Bed Gasification (FBG), Entrained Flow Gasification (EFG) and indirect Dual Fluidized Bed Gasification (DFBG). The main content in this report is based on responses from a number of experts in biomass gasification obtained from a questionnaire. The survey was composed of a number of more or less specific questions on technical barriers as to the three gasification concepts considered. For formalising the questionnaire, the concept of Technology Readiness Level (TRL 1-9) was used for grading the level of technical maturity of the different sub-processes within the three generic biomass gasification technologies. For direct fluidized bed gasification (FBG) it is mentioned that the technology is already available at commercial scale as air-blown technology and thus that air-blown FBG gasification may be reckoned a mature technology. The remaining technical challenge is the conversion to operation on oxygen with the final goal of producing chemicals or transport fuels. Tar reduction, in particular, and gas cleaning and upgrading in general are by far the most frequently named technical issues considered problematic. Other important aspects are problems that may occur when operating on low-grade fuels - i.e. low-cost fuels. These problems include bed agglomeration/ash sintering as well as alkali fouling. Even the preparation and feeding of these low-grade fuels tend to be problematic and require further development to be used on a commercial scale. Furthermore, efficient char conversion is mentioned by

  15. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  16. Improvement for the design of packed moving bed adsorption column

    International Nuclear Information System (INIS)

    Xiao Wei

    2014-01-01

    The problems needed to pay attention to in the physical design of packed moving bed adsorption column were presented. The design of key parts such as the inlet and outlet of liquid phase and gas phase were improved. The expected effect was achieved by the improvement. (author)

  17. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  18. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  19. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Solantausta, Y; Wilen, C

    1996-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  20. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  1. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  2. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  3. Mixing and scale affect moving bed biofilm reactor (MBBR) performance

    NARCIS (Netherlands)

    Kamstra, Andries; Blom, Ewout; Terjesen, Bendik Fyhn

    2017-01-01

    Moving Bed Biofilm Reactors (MBBR) are used increasingly in closed systems for farming of fish. Scaling, i.e. design of units of increasing size, is an important issue in general bio-reactor design since mixing behaviour will differ between small and large scale. Research is mostly performed on

  4. A moving-bed gasifier with internal recycle of pyrolysis gas

    NARCIS (Netherlands)

    Susanto, H.; Beenackers, A.A C M

    A co-current moving bed gasifier with internal recycle and separate combustion of pyrolysis gas has been developed with the aim of producing a design suitable for scaling-up downdraft gasifiers while maintaining a low tar content in the producer gas. Using wood chips with a moisture content of 7-9

  5. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  6. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  7. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  8. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The development of solid fuel gasification systems for cost-effective power generation with low environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M; Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J; Ranta, J; Hepola, J; Kangasmaa, K [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1997-10-01

    Relatively low carbon conversion is a disadvantage related to the air-blown fluidised-bed coal-biomass co-gasification process. Low carbon conversion is due to different reactivities and ash sintering behaviour of coal and biomass which leads to compromises in definition of gasification process conditions. In certain cases co-gasification may also lead to unexpected deposit formations or corrosion problems in downstream components especially when high alkali metal or chlorine containing biomass feedstocks are co-gasified with coal. During the reporting period, the work focused on co-gasification of coal and wood waste. The objectives of the present work were to find out the optimum conditions for improving the carbon conversion and to study the formation of different gas impurities. The results based on co-gasification tests with a pressurised fluidised-bed gasifies showed that in co-gasification even with only 15 % coal addition the heavy tar concentration was decreased significantly and, simultaneously, an almost total carbon conversion was achieved by optimising the gasification conditions. The study of filter fines recirculation and solid residues utilisation was started by characterizing filter dust. The work was carried out with an entrained-flow reactor in oxidising, inert and reducing gas conditions. The aim was to define the conditions required for achieving increased carbon conversion in different reactor conditions

  10. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  11. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  12. Porous filtering media comparison through wet and dry sampling of fixed bed gasification products

    Science.gov (United States)

    Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.

    2014-11-01

    The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.

  13. Environmentally favourable electricity production using allothermal coal gasification in accordance with the MBG system

    International Nuclear Information System (INIS)

    Rost, M.; Heek, K.H. van; Knop, K.

    1988-01-01

    Combined gas- and steam turbine power plants with integrated coal gasification are an important foundation alone for the further development of coal processing. The basis of the development is a new allothermal coal gasification system in a fluidized bed, which has been developed from the long operating experience accumulated at a half-scale plant. In contrast with the concept adopted so far of combination with nuclear process heat, in the MGB system (M.A.N.-Bergbauforschung-Gaserzeugung) the reaction heat required for the gasification is obtained by burning part of the coal gas produced. The gasification in the fluidized bed occurs at temperatures of between 800 and 850 0 C within a pressure range of between 20 and 25 bar. The paper describes the integration of the MBG system into a 250 MW power plant as well as the state of development of allothermal coal gasification and test results from the half-scale experimental plant. The construction of a demonstration plant, which will be incorporated in the bypass of a bituminous coal-fired unit, is planned in order to prove the function of the gas generator. (orig.) [de

  14. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A. Lemire; Marc A. Demeter; Iain George; Howard Ceri; Raymond J. Turner

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  15. The BGL coal gasification process - development status, operational experience and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.R.; Brown, D.J.; H. Hirschfelder [Advantica Technologies Ltd., Loughborough (United Kingdom)

    2006-07-01

    The BGL gasifier's fixed bed mode of operation makes for significant operational differences to the various entrained flow bed gasification processes currently available, whilst the slagging lower half offers considerable advantages over older processes in terms of efficiency and steam usage. This paper reviews operating experience of the BGL process on a variety of feedstocks and presents economic and technical assessments of the application of the BGL gasifier for IGCC, Syngas and SNG applications under current market conditions. Finally there a survey of the status of new BGL gasification projects and the scope of the current BGL technology is offering. 2 figs., 3 tabs., 2 photos.

  16. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    Science.gov (United States)

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 1. Element study/Technical survey; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, element study of a 200 t/d entrained bed coal gasification pilot plant was made, and the FY 1992 results were summarized. In the gasification test using a 2 t/d furnace equipment, study was made of the extraction of subjects on the operation, performance of gasification, slagging characteristics and characteristics of flux addition. In the study of slag utilization technology, chemical analysis, test on fine aggregate and test on fine particle were carried out to study applicability of the slag discharged from the entrained bed coal gasification power plant to various materials. In the study of a large gas turbine combustor for the demonstrative machine, the demonstrative machine use large gas turbine combustor testing equipment was installed at actual pressure/actual size combustion testing facilities in the pilot plant and further the test use combustor was integrated into them. By using them, the real gas combustion test was made using the adjusted coal for evaluation of combustion performance of the test use combustor. In the simulation study of the total pilot plant system, the comparative study was made between the data on the test using the actual machine and the results of the simulation. (NEDO)

  18. Adiabatic Fixed-Bed Gasification of Colombian Coffee Husk Using Air-Steam Blends for Partial Oxidation

    Directory of Open Access Journals (Sweden)

    Javier Bonilla

    2017-01-01

    Full Text Available The increasing energy consumption, mostly supplied by fossil fuels, has motivated the research and development of alternative fuel technologies to decrease the humanity’s dependence on fossil fuels, which leads to pollution of natural sources. Small-scale biomass gasification, using air-steam blends for partial oxidation, is a good alternative since biomass is a neutral carbon feedstock for sustainable energy generation. This research presents results obtained from an experimental study on coffee husk (CH gasification, using air-steam blends for partial oxidation in a 10 kW fixed-bed gasifier. Parametric studies on equivalence ratio (ER (1.53 < ER < 6.11 and steam-fuel (SF ratio (0.23 < SF < 0.89 were carried out. The results show that increasing both SF and ER results in a syngas rich in CH4 and H2 but poor in CO. Also, decreased SF and ER decrease the peak temperature (Tpeak at the gasifier combustion zone. The syngas high heating value (HHV ranged from 3112 kJ/SATPm3 to 5085 kJ/SATPm3 and its maximum value was obtained at SF = 0.87 and ER = 4.09. The dry basis molar concentrations of the species, produced under those operating conditions (1.53 < ER < 6.11 and 0.23 < SF < 0.89, were between 1.12 and 4.1% for CH4, between 7.77 and 13.49% for CO, and between 7.54 and 19.07% for H2. Other species were in trace amount.

  19. Gasification

    International Nuclear Information System (INIS)

    White, David J.

    1999-12-01

    Contains Executive Summary and Chapters on: Introduction; Review of driving forces for change; Gasification technology; Versatility of the gasification process; Commercial Application of gasification; Gas turbine development; Fuel Cell Development; Economics of gasification; Global warming and gasification; Discussion; Summary and Conclusions. (Author)

  20. Biomass gasification : The understanding of sulfur, tar, and char reaction in fluidized bed gasifiers

    NARCIS (Netherlands)

    Meng, X.

    2012-01-01

    As one of the currently available thermo-chemical conversion technologies, biomass gasification has received considerable interest since it increases options for combining with various power generation systems. The product gas or syngas produced from biomass gasification is environmental friendly

  1. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny

    2017-01-01

    to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottomashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded thatLT-CFB gasification and co-gasification is a highly effective way to purify...

  2. Gasificación con aire en lecho fluidizado de los residuos sólidos del proceso industrial de la naranja//Air gasification in fluidized bed of solid residue the orange industrial process

    Directory of Open Access Journals (Sweden)

    Leonardo Aguiar-Trujillo

    2012-12-01

    Full Text Available La industria procesadora de la naranja genera elevados volúmenes de residuos sólidos. Este residuo se ha utilizado en la alimentación animal y en procesos bioquímicos; pero no se ha aprovechado a través de la gasificación. El objetivo del trabajo fue determinar el aporte energético por medio del proceso de gasificación, realizándose estudios de los residuos sólidos de naranja, utilizando aire en reactor de lecho fluidizado burbujeante (variando la temperatura de gasificación, relación estequiométrica y altura del lecho. En el proceso se utilizó un diseño de experimento factorial completo de 2k, valorando la influencia de las variables independientes y sus interacciones en las respuestas, con un grado de significación del 95 %. Se obtuvieron los parámetros para efectuar el proceso de gasificación de los residuos sólidos de naranja, obteniendo un gas de bajo poder calórico, próximo a 5046 kJ/m3N, demostrando sus cualidades para su aprovechamiento energético.Palabras claves: gasificación con aire, lecho fluidizado, residuo de naranja._______________________________________________________________________________AbstractThe orange industrial process generates high volumes of solid residue. This residue has been used as complement in the animal feeding and biochemical processes; but it has not taken advantage through of the gasification process. The objective of the work was to determine the energy contribution by means ofthe gasification process, were carried out studies of the orange solid residue, using air in reactor of bubbling fluidized bed (varying the gasification temperature, air ratio and bed height. In the process a design of complete factorial experiment of 2k, was used, valuing the influence of the independent variables and its interactions in the answers, using a confidence level of 95 %. Were obtained the parameters to make the process of gasification of the orange solid residue, obtaining a gas of lower heating

  3. Steam gasification of Bulmer coal in the presence of lignite ash

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Furimsky, E.

    1986-01-01

    Steam gasification of blends prepared from Balmer coal and the ash from combustion of Onakawana lignite was performed in a fixed bed reactor. The blends were prepared by co-slurrying followed by drying. In the presence of 20 wt% ash the gasification rate doubled at 830 and 930 C. Direct blending of coal and lignite resulted in an overall increase in carbon conversion at 830 C but had no effect at 930 C. 5 refs.

  4. Performance of entrained flow and fluidised bed biomass gasifiers on different scales

    International Nuclear Information System (INIS)

    Tremel, Alexander; Becherer, Dominik; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut

    2013-01-01

    Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MW th to 500 MW th . While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MW th ) and €7.4 cent/kWh (10 MW th ) in the economic analysis of both technologies. The study indicates that the

  5. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  6. Gasification Performance of a Top-Lit Updraft Cook Stove

    Directory of Open Access Journals (Sweden)

    Yogesh Mehta

    2017-10-01

    Full Text Available This paper reports on an experimental study of a top-lit updraft cook stove with a focus on gasification. The reactor is operated with primary air only. The performance is studied for a variation in the primary airflow, as well as reactor geometry. Temperature in the reactor, air flow rate, fuel consumption rate, and producer gas composition were measured. From the measurements the superficial velocity, pyrolysis front velocity, peak bed temperature, air fuel ratio, heating value of the producer gas, and gasification rate were calculated. The results show that the producer gas energy content was maximized at a superficial velocity of 9 cm/s. The percent char remaining at the end of gasification decreased with increasing combustion chamber diameter. For a fixed superficial velocity, the gasification rate and producer gas energy content were found to scale linearly with diameter. The energy content of the producer gas was maximized at an air fuel (AF ratio of 1.8 regardless of the diameter.

  7. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are compiled. In fiscal 1995, 1328 hours and 3 minutes (8 gasification operations) was recorded with gasification furnace facility, 899 hours and 53 minutes with the gas clean-up facility, 831 hours and 27 minutes with the gas turbine facility (11 startups for the generation of 6657 MWh), and 1958 hours and 2 minutes with the treatment furnace and 1331 hours and 10 minutes with the denitration unit of the safety/environment-related facility. The details of starts and stops were described in graphs which covered Runs D13, D14-1, D14-2, E1, D15, and A14. Operating procedures were studied and compiled for the plant start/stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and the safety/environment-related facility. (NEDO)

  8. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  9. NH3 Abatement in Fluidized Bed Co-Gasification of RDF and Coal

    Science.gov (United States)

    Gulyurtlu, I.; Pinto, Filomena; Dias, Mário; Lopes, Helena; André, Rui Neto; Cabrita, I.

    Gasification of wastes may come out as an alternative technology to produce a gas with many potential applications, from direct burning in a boiler or motor to the production of synthetic chemicals and hydrogen. High tar production and high operational costs are preventing gasification wider dissemination. Besides these problems, the presence of NH3 in the syngas may have a negative impact as it can be converted into nitrogen oxides if the gas is further burnt. To reduce NH3 formation it is required a full understanding of how operational parameters contribute to the formation/reduction of this pollutant. A full studyon the effect of fuel composition, temperature and equivalence ratio on the formation of NH3 is given. Experimental results are compared to theoretical ones obtained with FactSage software. It is also analyzed the effect of feedstock mineral matterin NH3 release during gasification. Toaccomplish a significant decrease in the release of NH3, different catalysts and sorbents were tested with the aim of achieving high energy conversions and low environmental impact.

  10. Report for fiscal 1994 by gasification technology subcommittee, Coal Gasification Committee; 1994 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As the result of a RUN-9 operation in the research on technologies for hydrogen production from coal and for pilot plants, it is found that the Muswellbrook, Datong, and Blair Athol coals are all suitable for gasification in pilot plants. Their handlability is considerably improved when the grain sizes after crushing are allowed to remain coarse (with the Blair Athol coal still retaining some disadvantage). A concept design is prepared for a HYCOL (hydrogen from coal) process demonstration plant. The reference coal is an imported coal similar to the Taiheiyo coal, and the hydrogen production target is set at 1-million m{sup 3}N/d (590t/d in terms of Taiheiyo coal) and hydrogen purity at 95% or higher. The whole process consists of coal gasification (with oxygen serving as gasification agent), dedusting, conversion to CO, desulfurization and decarboxylation (recovery of sulfur), and methanation. The gasification furnace is a 1-chamber entrained bed type with a 2-stage gyration flow. Dried and pulverized coal is conveyed aboard an air flow into the gasification furnace, where it is thrown into partial combustion reaction with the gasification agent for gasification in a high-temperature zone (1,500-1,600 degrees C), and the ash is taken out as slag. The generated gas is cooled in a heat recovery boiler, dedusted in a cyclone dust filter, and then forwarded to the washing unit. (NEDO)

  11. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  12. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  13. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Research and development of coal gasification (Feasibility study and conceptual design regarding high-temperature gasification technology); 1981 nendo sekitan gas ka no kenkyu kaihatsu seika hokokusho. Koon gas ka gijutsu ni kansuru feasibility study oyobi gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The melting point of ash is one of the most important physical properties in the process of coal gasification. A fluidized bed gasification furnace is suitable for the gasification of coal whose ash has a high melting point, but it does not work at temperatures higher than the melting point of the ash. A high-temperature gasification furnace, though not suitable for gasifying coal whose ash has a high melting point, gasifies the kinds of coal that the fluidized bed gasification furnace fails to deal with. Accordingly, almost all kinds of coal are to be appropriately gasified when these two types of gasification furnaces are available. The goal of the development effort is the achievement of a coal utilization factor of 99% or more and a thermal efficiency of 80% or more. The technology elements have to deal with the structure of furnace walls and refractory materials for them, discharge of slag, feeding of raw materials, recovery of exhaust heat, measurement and control, gasification furnace simulation, etc. A proposition is presented on a conceptual design and prototype for a 50t/d pilot plant in which the above-mentioned factors are organically integrated. (NEDO)

  14. FY 1991 report on the Coal Gasification Committee; 1991 nendo sekitan gasuka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The paper reported activities of the Coal Gasification Committee, gasification power generation section and gasification technology section in FY 1991. The 1st Coal Gasification Committee Meeting was held on July 16,1991, and report/discussion were made about an outline of the FY 1991 research plan on the development of coal gasification technology. The 2nd Meeting was held on March 12, 1992, and report/discussion were made about activities of each section meeting and the progress of the development of coal gasification technology. In the section meeting of coal gasification power generation, report/discussion were made about the progress and study object of the development of entrained bed coal gasification power plant and support study for the development of the plant. In the 1st section meeting of coal gasification technology, as to the developmental plan on coal utilization hydrogen production technology, report/discussion were made about design/construction/operational study of pilot plant and support study for pilot plant (study using small equipment, study of trial manufacture of plant use equipment/materials). In the 2nd section meeting, report/discussion were made about the results of the development of coal utilization hydrogen production technology. (NEDO)

  15. Fiscal 1994 achievement report. Development of entrained bed coal gasification power plant (Part 4 - Pilot plant operation); 1994 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for the establishment of the technology of integrated coal gasification combined cycle power generation was operated for testing, and the results are put together. Operating hours recorded were 1347 hours and 7 minutes for the gasification furnace facility (7 gasification operations), 752 hours and 22 minutes for the gas clean-up facilities, 425 hours and 20 minutes for the gas turbine facility (6 startups for generating 2616.1 MWh), and 1852 hours for the treatment furnace and 1304 hours and 32 minutes for the denitration system in the safety/environment-related facility. Detailed graphs were drawn for the description of starts and stops in Run D8, Run D9 (1-3), Run D10, Run D11, and in Run D12. Operating procedures were studied and then compiled for the plant start-stop schedule, general guidelines, gasification furnace facility, gas clean-up facility (dry type desulfurization facility), gas clean-up facility (dry type dedusting facility), gas turbine facility, real-pressure natural-size combustor test facility, and for the safety/environment related facility. (NEDO)

  16. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  17. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  18. Gasification of peat and biomass in suspension. Turpeen ja biomassan suspensiokaasutus

    Energy Technology Data Exchange (ETDEWEB)

    Haukka, P.; Raiko, R.

    1993-01-01

    Gasification of peat and biomass in dilute particle-gas suspension has not been studied significantly in Finland, even though these fuels require drying, which often produces dry pulverized fuel. This report has concentrated on studying suitability of so-called two-stage entrained-bed gasification for peat and biomass. The gasification system consists of a pyrolysis reactor (entrained flow) and an adiabatic char combustor. Dry or almost dry fuel is fed into the hot flue gas stream coming from the char combustor. Gasification is based on flash pyrolysis in the dilute suspension flow. Residual char is separated from pyrolyzer gases in a gas cleaning device and fed back to the adiabatic combustor. In the combustor char is burned at high temperature to supply the heat required to support endothermic reactions occurring in the pyrolyzer. To study entrained-bed gasification two types of computer models were developed: steady state simulation model and kinetic pyrolyzer model. With the help of these computer models mass and energy balances of the gasifier can be solved and the main dimensions of the gasifier can be determined. Lack of proper kinetic parameters for fast pyrolysis of peat and biomass makes it more difficult to apply the kinetic model in practice. Quantitative data concerning fast pyrolysis in dilute gas-particle suspension are needed to be able to evaluate the performance of the suspension gasifier in more detail. Gasifier operation has been studied using three different levels for amounts of pyrolysis pro- ducts, nine pressure levels between 15-23 bars and five temperature levels between 800-1200 deg C. Furthermore, normal pressure performance was simulated. In addition to simulation studies product gas heating value was optimized

  19. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  20. On the gasification of biomass in a steam-oxygen blown CFB gasifier with the focus on gas quality upgrading : Technology background, experiments and mathematical modeling

    NARCIS (Netherlands)

    Siedlecki, M.

    2011-01-01

    This work presents and discusses the results of the research on the gasification of biomass in an atmospheric circulating fluidized bed, with a mixture of steam and oxygen as fluidization / gasification medium. The main objectives of this research were to investigate and improve the gasification

  1. Gasification reactivities of cokes derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1985-10-01

    Gasification reactivities of cokes obtained from Athabasca bitumen by delayed coking and fluid coking were compared in fixed and fluidized bed systems. In both systems the C + O/sub 2/ reaction accounted for the most of converted carbon. The C + H/sub 2/O reaction proceeded to a smaller extent. The bulk reactivity of the fluid coke was higher than that of delayed coke, when comparing -20 to +60 mesh particles in fluidized bed and -14 to +20 mesh particles in fixed bed, respectively. However, the reactivity of the delayed coke expressed per unit of surface area was markedly higher than that of the fluid coke. 9 figs., 7 tabs., 6 refs. (A.V.)

  2. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  3. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  4. Syngas production by gasification of aquatic biomass with CO2/O2 and simultaneous removal of H2S and COS using char obtained in the gasification

    International Nuclear Information System (INIS)

    Hanaoka, Toshiaki; Hiasa, Shou; Edashige, Yusuke

    2013-01-01

    Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H 2 ) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO 2 /O 2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO 2 /O 2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H 2 S/N 2 , COS/N 2 , and a mixture of gases composed of CO, CO 2 , H 2 , N 2 , CH 4 , H 2 S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H 2 S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO 2 /O 2 and dry gas cleaning using self-supplied bed material. -- Highlights: • A product gas with high syngas content was produced from the gasification of gulfweed with CO 2 /O 2 . • The syngas content increased with decreasing the equivalence ratio. • The syngas content was maximized at 67.6% at an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%. • The char simultaneously removed H 2 S and COS from a mixture of gases at 450 °C efficiently

  5. Fluidized Bed Gasification of Coal-Oil and Coal-Water-Oil Slurries by Oxygen –Steam and Oxygen-CO2 Mixtures

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael; Jeremiáš, Michal; Kameníková, Petra; Hartman, Miloslav; Skoblia, S.; Šyc, Michal

    2012-01-01

    Roč. 95, č. 1 (2012), s. 16-26 ISSN 0378-3820 R&D Projects: GA MŠk 2B08048; GA MŠk 7C08034 Grant - others:RFCR(XE) CT-2010-00009 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * coal slurries Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.816, year: 2012 http://www.scopus.com/record/display.url?eid=2-s2.0-82455175439&origin=resultslist&sort=plf-f&src=s&st1=svoboda%2ck&sid=ikNGw6d45E-yyuMoDwlGiWn%3a420&sot=b&sdt=b&sl=22&s=AUTHOR-NAME%28svoboda%2ck%29&relpos=1&relpos=1&searchTerm=AUTHOR-NAME(svoboda,k)

  6. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  7. Integrated bioenergy conversion concepts for small scale gasification power systems

    Science.gov (United States)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  8. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  9. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification

    International Nuclear Information System (INIS)

    Janajreh, Isam; Raza, Syed Shabbar; Valmundsson, Arnar Snaer

    2013-01-01

    Highlights: ► Plasma/conventional gasification are modeled via Gibbs energy minimization. ► The model is applied to wide range of feedstock, tire, biomass, coal, oil shale. ► Plasma gasification show high efficiency for tire waste and coal. ► Efficiency is around 42% for plasma and 72% for conventional gasification. ► Lower plasma gasification efficiency justifies hazardous waste energy recovery. - Abstract: In this study, two methods of gasification are developed for the gasification of various feedstock, these are plasma gasification and conventional air gasification. The two methods are based on non-stoichiometric Gibbs energy minimization approach. The model takes into account the different type of feedstocks, which are analyzed at waste to energy lab at Masdar Institute, oxidizer used along with the plasma energy input and accurately evaluates the syngas composition. The developed model is applied for several types of feedstock, i.e. waste tire material, coal, plywood, pine needles, oil shale, and municipal solid waste (MSW), algae, treated/untreated wood, instigating air/steam as the plasma gas and only air as oxidizer for conventional gasification. The results of plasma gasification and conventional air gasification are calculated on the bases of product gas composition and the process efficiency. Results of plasma gasification shows that high gasification efficiency is achievable using both tire waste material and coal, also, the second law efficiency is calculated for plasma gasification that shows a relative high efficiency for tire and coal as compare to other feedstock. The average process efficiency for plasma gasification is calculated to be around 42%. On other hand the result of conventional gasification shows an average efficiency of 72%. The low efficiency of plasma gasification suggest that if only the disposal of hazard waste material is considered then plasma gasification can be a viable option to recover energy.

  10. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen [ed.

    2008-11-15

    results in a product gas free of nitrogen and hence suitable for production of biomethane. The concept has been proven at the Guessing plant using a slip-stream but still we are awaiting the first commercial plant that produce biomethane suitable as vehicle fuel or for grid injection. Several demonstration projects are related to air-blown gasification and CHP production. The two-stage Viking gasifier developed at Technical University of Denmark produces a gas with low tar content (<5 mg/Nm3) suitable for combined heat and power production where a gas engine is used for the electricity production. The 70 kW{sub th} pilot plant has an electric efficiency of 25 %. With a scale-up to 0.2-2 MW{sub e} and improved internal heat recovery an electric efficiency of >37 % is expected. In Skive, Denmark, biomass gasification in a 20 MW{sub th} gasifier based on technology developed at GTI, USA and commercialized by Carbona, Finland is demonstrated. The total investment cost is 30 million Euro. Expected pay-back time is approx. 10 years. The project is delayed and the official opening is planned to April 2009. The delay reflects the inherent uncertainty related to large-scale demonstration of new technology. There are several other demonstrations related to biomass gasification and gas cleaning on their way and the field of gasification seems to experience a renaissance. Gas engines utilizing gasified biomass are commercially available. GE Jenbacher has installed gas engines in many biomass gasification plants in Europe. The accumulated hours of operation for the gas engines well exceed 100,000 hours. The plants with installed gas engines span over different gasification technologies (e.g. fixed bed - updraft, fixed bed - down draft and indirect gasification) and different gas compositions with lower heating values ranging from 5.4 MJ/Nm3 to 10.5 MJ/Nm3. High CO content in the gas results in high CO emissions from the gas engine which calls for exhaust gas after-treatment. To avoid

  11. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  12. Techno-economic studies on transportable moving-bed onion irradiator

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Sharma, K.S.S.; Deshmukh, V.P.; Bongirwar, D.R.; Nair, K.V.V.; Patil, K.B.

    1984-01-01

    The paper presents the optimisation studies and the design features of a transportable irradiator evolved to demonstrate the techno-economic advantage of the irradiation process at village level. A brief outline is also given of the computer programme generated and employed to optimise the source-target configuration based on a narrow plane source moving-bed irradiation concept that aimed at achieving a simplified product handling system and cost effective design of the biological shield and controls for the irradiator. The engineering features of the irradiator along with a summary of the analysis of the economics of the application of the process are also given. (author)

  13. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Support study for the development of the entrained bed coal gasification power plant; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu (Funryusho sekitan gaska hatsuden plant kaihatsu no shien kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    For the purpose of supplying the data necessary for construction/operation/maintenance of system, gas turbine, etc. of the desulfurization/dust removal process to be adopted to a pilot plant of 200t/d entrained bed coal gasification power generation, support study was made using the Yubari 40t/d test equipment, and the FY 1989 results were summarized. As to the operation of the 40t/d gasification system, operation was stably continued, and also the system was able to feed gas to the wake device. In the high temperature dry desulfurization test, test was made on the following: structure of the sampling system of the continuous analyzer installed in the coal gas system and circulation gas system, load response corresponding control system, sequence control of the system for supplying reducing agent to SO{sub 2} reduction tower and the system for ash discharge, back washing of D-42 lift gas filter, etc. In the high temperature dry dust removal test, improvement in filtration material/dust separation performance, sequence control of the filtration material supply/discharge system, continuous dust densitometer, operational automation, etc. Through the tests, obtained were the results that are useful for the 200t/d plant. (NEDO)

  14. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  15. Optimisation of Experimental Conditions for Ex-Bed Desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. M.; Ruiz, E.; Otero, J.

    2010-12-22

    This report compiles the results of the work conducted by CIEMAT for Task 6.3 Sulfur and Nitrogen Compounds Abatement of the FLEXGAS project Near Zero Emission Advanced Fluidized Bed Gasification, which has been carried out with financial support from the Research Fund for Coal and Steel, RFCR-CT-2007-00005. The assignment of CIEMAT in Task 6.3 has dealt with the experimental study of ex-bed desulfurization at high temperature and high pressure. Based on a review of the state of the art, a zinc oxide sorbent was chosen as a promising candidate for bulk sulfur removal in highly reducing gases such as those from coal and waste oxygen gasification or for a polishing stage in low sulfur content gases, which is typically the case in biomass gasification gases. The work accomplished has included the study of the sulfidation and regeneration stages in order to determine successful operating conditions and the assessment of the long term performance of the sorbent over subsequent sulfidation and regeneration cycles. (Author) 36 refs.

  16. Properties of gasification-derived char and its utilization for catalytic tar reforming

    Science.gov (United States)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst

  17. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, element study was made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. In the study by the gasification test on 2t/d furnace, gasification test was conducted for the OM coal newly selected as a coal proposed for the expansion of coal kind. As a result, the pulverized coal/char of OM coal have almost good handling property and showed favorable gasification performance. In the study of large gas turbine combustor for demonstrative machine, with the aim of developing a combustor that makes stable combustion also in the low load region possible, fabrication of the accessory equipment of combustor (choke mechanism, measuring use duct and heat insulating plate) was made for the actual-pressure/actual-size combustion test. In the study by simulation of the total system of combined cycle power generation, etc., the following were conducted: verification of characteristics of the integrated control (state of the ordinary operation, state of the mock load control, etc.), load dump simulation (state of the bleed cooperation, state of the bleed separation (state of the air booster operation, etc.)), etc. (NEDO)

  18. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification.

    Science.gov (United States)

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R

    2018-06-01

    The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Early processing variations in selective attention to the color and direction of moving stimuli during 30 days head-down bed rest

    Science.gov (United States)

    Wang, Lin-Jie; He, Si-Yang; Niu, Dong-Bin; Guo, Jian-Ping; Xu, Yun-Long; Wang, De-Sheng; Cao, Yi; Zhao, Qi; Tan, Cheng; Li, Zhi-Li; Tang, Guo-Hua; Li, Yin-Hui; Bai, Yan-Qiang

    2013-11-01

    Dynamic variations in early selective attention to the color and direction of moving stimuli were explored during a 30 days period of head-down bed rest. Event-related potentials (ERPs) were recorded at F5, F6, P5, P6 scalp locations in seven male subjects who attended to pairs of bicolored light emitting diodes that flashed sequentially to produce a perception of movement. Subjects were required to attend selectively to a critical feature of the moving target, e.g., color or direction. The tasks included: a no response task, a color selective response task, a moving direction selective response task, and a combined color-direction selective response task. Subjects were asked to perform these four tasks on: the 3rd day before bed rest; the 3rd, 15th and 30th day during the bed rest; and the 5th day after bed rest. Subjects responded quickly to the color than moving direction and combined color-direction response. And they had a longer reaction time during bed rest on the 15th and 30th day during bed rest after a relatively quicker response on the 3rd day. Using brain event-related potentials technique, we found that in the color selective response task, the mean amplitudes of P1 and N1 for target ERPs decreased in the 3rd day during bed rest and 5th day after bed rest in comparison with pre-bed rest, 15th day and 30th day during bed rest. In the combined color-direction selective response task, the P1 latencies for target ERPs on the 3rd and 30th day during bed rest were longer than on the 15th day during bed rest. As 3rd day during bed rest was in the acute adaptation period and 30th day during bed rest was in the relatively adaptation stage of head-down bed rest, the results help to clarify the effects of bed rest on different task loads and patterns of attention. It was suggested that subjects expended more time to give correct decision in the head-down tilt bed rest state. A difficulty in the recruitment of brain resources was found in feature selection task

  20. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    Science.gov (United States)

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2015-01-01

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  2. Shielding evaluation of moving bed onion irradiator by radiometry

    International Nuclear Information System (INIS)

    Venkataramani, R.; Sangurdekar, P.R.; Sarangapani, R.; Raipurkar, D.R.; Mehta, S.K.; Shastri, S.P.; Patil, K.B.; Bongirwar, D.R.

    1994-01-01

    A moving bed onion irradiator made from m.s. cladded lead slab shields designed to hold 20 kCi of 60 Co source was evaluated by radiometry with an 8 Ci 60 Co source from CRC-2 radiography camera. Some shielding losses in the irradiator noted by radiometry could be visualized by a thermocole model of the complex shielding assembly. These were rectified by appropriate lead filling. Significant shielding losses noted at cladding layer positions of slabs were attributed to lack of interlocking features in the slabs. These had to be rectified by provision of 3 TVL of additional all round shielding supplemented by local shielding at some positions. (author). 1 fig., 1 tab

  3. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  4. Investigation on hydrogen permeation on heat exchanger materials in conditions of steam coal gasification

    International Nuclear Information System (INIS)

    Moellenhoff, H.

    1984-01-01

    The permeation of hydrogen through iron-based alloys of different compositions in the temperature range between 700 and 1000 0 C was examined in a laboratory fluidized bed in the conditions of steam/coal gasification. Apart from tests on bright metal samples, measurement in the gasification atmosphere at a maximum pressure of 1 bar were carried out during oxidation of the metal. Experiments in a steam/hydrogen/argon mixture with the same oxidation potential were used for comparison purposes. The hydrogen permeated through the metal sample was taken to a gas chromatograph with argon flushing gas and analyzed there. The investigations on bright steel samples of various composition showed that their permeabilities for hydrogen at temperatures around 900 0 C only differed by a maximum of ± 30%. Effective prevention of permeation is therefore not possible simply by choosing a suitable alloy. If the steels are oxidized during permeation measurements, there is a reduction of the hydrogen permeability by 2 or 3 orders of magnitude due to the oxidation process, both in the steam/coal gasification fluidized bed and in a pure steam/hydrogen/argon mixture. (orig./GG) [de

  5. Underground gasification of coal - possibilities and trends

    International Nuclear Information System (INIS)

    Dushanov, D.; Minkova, V.

    1994-01-01

    A detailed historical review is given on the problem of underground coal gasification (UCG) with emphasis on its physical, chemical, technological and financial aspects. The experience of USA, Japan, former USSR, Belgium, UK and France is described. The feasibility of UCG in the Dobrudzhan Coal Bed in Bulgaria is discussed. The deposit has reserves of about 1.5 billion tones at relatively shallow depths. Almost the whole scale from long flame to dry coal is covered. According to its coalification degree the bed belongs to gas coal - V daf 35-40%; C daf 80-83%, eruption index = 1. Enriched samples has low sulfur content - 0.6-1.5% and low mineral content - 6-12%. Having in mind the lack of domestic natural gas and petroleum resources, the authors state that the utilisation of the bed will alleviate the energy problems in Bulgaria. 24 refs., 5 figs., 1 tab

  6. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.

    Science.gov (United States)

    Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping

    2017-11-01

    The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  8. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  9. Characteristics and utilisation of high-temperature (HTHP) filter dusts from pfb gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The aim of the study was to survey characteristics, utilisation and possible environmental impacts of solid wastes, i.e., in case of biomass, mainly high-temperature filter ash (HTHP) from pressurised fluidised-bed gasification (PFBG). The aim is to utilise solid wastes (slag, filter dust, additives) from biomass gasification instead of dumping. One alternative is recycling to the soil as liming material or fertiliser. It is expected that the ash recycled to forest soils changes the environment less than non-recycled ash. (orig.) 3 refs.

  10. Report for fiscal 1994 by Coal Gasification Committee; 1994 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Summarized in this report is the material already distributed concerning the program for modifying the Nakoso 200t/d pilot plant entrained bed coal gasification furnace. The program aims to verify the overall suitability for power generation use of the air-blow pressurized 2-chamber 2-stage flow entrained bed gasification furnace. Although each specific feature of gasification furnace performance is found to be satisfactory, yet a 100% operation and extended continuous operation remain to be accomplished. Slagging is a phenomenon of ash grains in high-temperature gas adhering to and growing on the furnace walls to block up the furnace to eventually disable the furnace from continuous operation. In view of past achievements and test results, it is found that slagging is closely related to the behavior of floating or molten ash and to the transition temperature range. Various slagging measures have been taken for the current gasification furnace, but they prove to be ineffective. Some drastic measures need to be implemented for improvement. Under study using model furnaces and test furnaces are the reduction of slag generation at its source (re-entrained slag), prevention of adhesion (untrapped slag), removal of slag, optimization of gyration in the furnace, modification of slag properties for enhanced discharge, optimization of the transition gas temperature range, and the modification of furnace dimensions. (NEDO)

  11. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects......Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out...

  12. Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates

    Science.gov (United States)

    Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.

    2015-01-01

    Simulated moving bed chromatography, a continuous separation method, enables the nearly quantitative recovery of sugar products and ionic liquid solvent from chemical hydrolysates of biomass. The ensuing sugars support microbial growth, and the residual lignin from the process is intact. PMID:23939991

  13. Guideline for safe and eco-friendly biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vos, J.; Knoef, H. (BTG biomass technology group, Enschede (Netherlands)); Hauth, M. (Graz Univ. of Technology. Institute of Thermal Engineering, Graz (Austria)) (and others)

    2009-11-15

    The objective of the Gasification Guide project is to accelerate the market penetration of small-scale biomass gasification systems (< 5 MW fuel power) by the development of a Guideline and Software Tool to facilitate risk assessment of HSE aspects. The Guideline may also be applied in retrofitting or converting old thermal plants in the Eastern European countries - with rich biomass recourses - to new gasification plants. The objective of this document is to guide key target groups identifying potential hazards and make a proper risk assessment. The software tool is an additional aid in the risk assessment. This guideline is intended to be a training tool and a resource for workers and employers to safely design, fabricate, construct, operate and maintain small-scale biomass gasification facilities. The Guideline is applicable with the following constraints: 1) The maximum scale of the gasification plant was agreed to be about 1 MW{sub e}. The reason is that large companies do have normally their safety rules in place; 2) This means in principle only fixed bed gasifier designs. However, most parts are also valid to other designs and even other thermal conversion processes; 3) The use of contaminated biomass is beyond the scope of this Guideline. The Guideline contains five major chapters; Chapter 2 briefly describes the gasification technology in general. Chapter 3 gives an overview of major legal framework issues on plant permission and operation. The legal frame is changing and the description is based on the situation by the end of 2007. Chapter 4 explains the theory behind the risk assessment method and risk reduction measures. Chapter 5 is the heart of the Guideline and gives practical examples of good design, operation and maintenance principles. The practical examples and feedback have been received throughout the project and the description is based on mid-2009. Chapter 6 describes the best techniques currently available for emission abatement which are

  14. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  15. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 4. Pilot plant operation edition; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the operation achievements in fiscal 1993. The plant operation record in fiscal 1993 was as follows: 430 hours 27 minutes in the gasification furnace (ten gasification operations), 233 hours 51 minutes in the gas refining facility, 140 hours 31 minutes in the gas turbine facility (power generation amount of 746.8 MWh with nine actuations), 1,263 hours 09 minutes in the processing furnace in the safety environment facility, and 427 hours 22 minutes in the NOx removal equipment. Descriptions were given with detailed graphs on the actuation and shutdown record with respect to the run D2, the run D3 (1 and 2), the run D4, the run D5, the run D6, and the run D7 (1 through 4). The operation procedures were prepared for the plant startup and shutdown schedule, the generalization report, the gasification furnace facility, the gas refining facility (dry type desulfurizing facility), the gas refining facility (dry type dust removing facility), the gas turbine facility, the combustor testing facility with actual pressure and size, and the safety environment facilities. (NEDO)

  16. Report on the results of the R and D of a 200 t/d entrained bed coal gasification pilot plant. Summary - Part 2. Volume 3: Results of the study operation and the evaluation; 1986- 200t/nichi funryusho sekitan gaska hatsuden pilot plant no kenkyu seika hokokusho (Matome). Sono 2. Dai 3 hen kenkyu unten seika to sono hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A project was finished which had been carried out for 11 years since 1986 for technology of the entrained bed coal gasification power generation technology using a 200 t/d coal gasification combined cycle power generation pilot plant, and it was comprehensively summed up. In Volume 3: Results of the study operation and the evaluation, the following were summarized on gasifier: gasification performance of 200 t/d furnace, operation ability of the bituminous coal supply system, stability of char recovery, deposition of slag and char in furnace, discharge characteristics of molten slag, operation characteristics, etc. The following on gas refining facilities: dry desulfurizer, dust remover, new gas refining equipment (fixed bed dust removal/desulfurization system, packed bed desulfuriztion/dust removal system), etc. The following on gas turbine facilities: 12.5 MW gas turbine, large gas turbine, large gas turbine combustor, etc. Additionally, the paper summarized the control system and total function, operation characteristics of the whole pilot plant, relations of environmental preservation, study of the effective slag utilization, collection/study of unfavorable conditions/troubles and matters for the reflection, etc. (NEDO)

  17. Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification

    International Nuclear Information System (INIS)

    Khan, Zakir; Yusup, Suzana; Ahmad, Murni Melati; Chin, Bridgid Lai Fui

    2014-01-01

    Highlights: • The paper presents integrated catalytic adsorption (ICA) steam gasification for H 2 yield. • Effects of adsorbent to biomass, biomass particle size and fluidization velocity on H 2 yield are examined. • The present study produces higher H 2 yield as compared to that obtained in literatures. • The ICA provides enhancement of H 2 yield as compared to independent catalytic and CO 2 adsorption gasification systems. - Abstract: The present study investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen production in a pilot scale atmospheric fluidized bed gasifier. The biomass steam gasification is performed in the presence of an adsorbent and a catalyst in the system. The effect of adsorbent to biomass (A/B) ratio (0.5–1.5 wt/wt), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–2.0 mm) are studied at temperature of 675 °C, steam to biomass (S/B) ratio of 2.0 (wt/wt) and biomass to catalyst ratio of 0.1 (wt/wt). Hydrogen composition and yield, total gas yield, and lower product gas heating values (LHV gas ) increases with increasing A/B ratio, while particle size has no significant effect on hydrogen composition and yield, total gas and char yield, gasification and carbon conversion efficiency. However, gas heating values increased with increasing biomass particle size which is due to presence of high methane content in product gas. Meanwhile, medium fluidization velocity of 0.21 m/s favoured hydrogen composition and yield. The results showed that the maximum hydrogen composition and yield of 84.62 vol% and 91.11 g H 2 /kg biomass are observed at A/B ratio of 1.5, S/B ratio of 2.0, catalyst to biomass ratio of 0.1 and temperature of 675 °C. The product gas heating values are observed in the range of 10.92–17.02 MJ/N m 3 . Gasification and carbon conversion efficiency are observed in the range of 25.66–42.95% and 20.61–41.95%, respectively. These lower

  18. Fiscal 1996 achievement report. Development of entrained bed coal gasification power plant (Part 1 - Studies of dismantling and surveys of techniques); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Kaitai kenkyu hen, gijutsu chosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the establishment of technology of integrated coal gasification combined cycle, studies were made for the dismantling of the 200 tons/day entrained bed coal gasification pilot plant and surveys were conducted of overseas technologies. In the gasification furnace facility, 40 devices were selected, and dismantled, from the locations corresponding to the factors of damage expected to occur involving important equipment. Although no significant damage was detected in the gasification pressure vessel, peripheral walls, or the like, malfunctions due to corrosion or abrasion were discovered in some pipes and members. In the dry type gas clean-up facility (desulfurization facility), damage due to heat stress or corrosion was detected in the regeneration tower inner cyclone, regeneration tower filter flexible tubes, and in circulation gas cooler cooling tubes. In the dry type gas clean-up facility (dedusting facility), damage was found in the dust collector gas seal valve, dust collector filter materials cut valve, and in the separator A/B. In the gas turbine facility, no abnormality was discovered but for some damage in some initial stage static vanes. (NEDO)

  19. Tetrafluoride uranium pilot plant in operation at IEA, using the moving bed process

    International Nuclear Information System (INIS)

    Franca Junior, J.M.

    1975-01-01

    A UF 4 pilot plant, in operation at IEA, using the moving bed process is reported. UO 3 obtained from the thermal decomposition of ADU is used as a starting material in this pilot plant. The type of equipment and the process are both described. Ammonia gas (NH 3 ) was used in the reduction operation and anhydrous hydrofluoric acid (HF) in the hydrofluorination step

  20. Circulating fluidized-bed technologies for the conversion of biomass into energy

    International Nuclear Information System (INIS)

    Greil, C.; Hirschfelder, H.

    1995-01-01

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi's CFB technology in developing countries is proposed. (author)

  1. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-10-29

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  2. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-30

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  3. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-07-23

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  4. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)

    Energy Technology Data Exchange (ETDEWEB)

    Archie Robertson

    2003-04-17

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

  5. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson

    2003-12-31

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

  6. Fluidized bed gasification of selected South African coals

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-05-01

    Full Text Available that due to the good heat and mass transfer properties of fluidised beds, coal with ash contents up to 70% can be utilised. The CSIR’s research and development work resulted in the installation of five bubbling fluidised bed combustors (BFBCs) between... 1989 and 1999. Other companies, such as Babcock and Scientific Design, also installed a number of BFBC plants during this time. It was realised during the development of BFBC technology that due to the low lateral dispersion coefficient of coal...

  7. Preliminary studies of lignocellulosics and waste fuels for fixed bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, H [Marmara Research Center, Kocaeli (Turkey). Energy Systems and Environmental Research Institute; Dogru, M; Howarth, C R [University of Newcastle (United Kingdom). Dept. of Chemical and Process Engineering; Malik, A A [University of Northumbria, Newcastle (United Kingdom). Dept. of Chemical and Life Science

    2001-07-01

    This study was carried out to understand the decomposition behaviour of a range of biofuel and waste feedstock during gasification in a downdraft gasifier. A laboratory scale large sample thermogravimetric analyser (LSTA) is used which allows the data on burn-out characteristics of different fuel particles to be measured under agitated conditions. The conditions chosen simulate the combustion behaviour in a gasifier for a range of biofuels and wastes, namely hazelnut, pistachio, and peanut shells, wood chips and sewage sludge pellets. From this data the activation energy is calculated for a heating rate of 20{sup o}C/min. It was found that, as the weight loss increases, the activation energy decreases. In addition the influence of a range of gasification air/N{sub 2} levels on constituents of the gas released during hazelnut shell decomposition was observed. It was found that the composition of the product gases consisted of CH{sub 4}, H{sub 2}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}. This was analysed as function of time for hazelnut shells showing that the primary products are H{sub 2}, CO, CH{sub 4} and CO{sub 2}. (author)

  8. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  9. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  10. FY 1991 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study/investigational study of technology/study of the integrated coal gasification combined cycle power system; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Youso kenkyu hen, gijutsu chosa hen, sekitan gaska fukugo hatsuden system kento hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, the following were conducted: element study of a 200t/d entrained bed coal gasification pilot plant, survey of technology of the coal gasification power generation, study of the practical scale IGCC, etc. The FY 1991 results were summarized. In the gasification test using 2t/d furnace equipment, evaluation test on the test coal for pilot plant was made. In the study of gas turbine combustor for demonstration machine use, measuring duct was fabricated for measurement of combustion gas temperature/pressure, etc. In the simulational study of the total system of combined cycle power generation, review/modification of part of the simulation model and detailing of the model were conducted by comparison with the data on pilot plant operation. In the technology study, joint technology conferences were held for discussions between Japan and Australia, Japan and the U.S., and Japan and Canada. As to the practical scale IGCC, the initially planned output capacity and thermal efficiency were studied based on the knowledge/information obtained through the R and D on the 200t/d pilot plant. (NEDO)

  11. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader

    2000-09-01

    Fluidised bed thermal gasification of biomass is an effective route that results in 100 % conversion of the fuel. In contrast to chemical, enzymatic or anaerobic methods of biomass treatment, the thermal conversion leaves no contaminated residue after the process. The product gas evolved within thermal conversion can be used in several applications such as: fuel for gas turbines, combustion engines and fuel cells, and raw material for production of chemicals and synthetic liquid fuels. This thesis treats a part of the experimental data from two different gasifiers: a 90 kW{sub th} pressurised fluidised bubbling bed gasifier at Lund University and a 18 MW{sub th} circulating fluidised bed gasifier integrated with gas turbine (IGCC) in Vaernamo. A series of parallel and consecutive chemical reactions is involved in thermal gasification, giving origin to formation of a variety of products. These products can be classified within three major groups: gases, tars and oils, and char. The proportion of these categories of species in the final product is a matter of the gasifier design and the process parameters. The thesis addresses the technical and theoretical aspects of the biomass thermochemical conversion and presents a new approach in describing the gasification reactions. There is an evidence of fuel effect on the characteristics of the final products: a mixture of plastic waste (polyethylene) and biomass results in higher concentration of linear hydrocarbons in the gas than gasification of pure biomass. Mixing the biomass with textile waste (containing aromatic structure) results in a high degree of formation of aromatic compounds and light tars. Three topic questions within biomass gasification, namely: tar, NO{sub x} and alkali are discussed in the thesis. The experimental results show that gasification at high ER or high temperature decreases the total amount of the tars and simultaneously reduces the contents of the oxygenated and alkyl-substituted poly

  12. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  13. Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review

    Directory of Open Access Journals (Sweden)

    Adrian H.M. Verkooijen

    2011-03-01

    Full Text Available Biomass is one of the renewable and potentially sustainable energy sources and has many possible applications varying from heat generation to the production of advanced secondary energy carriers. The latter option would allow mobile services like the transportation sector to reduce its dependency on the fossil fuel supply. This article reviews the state-of-the-art of the fluidization technology applied for the gasification of biomass aimed at the production of gas for subsequent synthesis of the liquid energy carriers via, e.g., the Fischer-Tropsch process. It discusses the advantages of the gasification technology over combustion, considers the size of the conversion plant in view of the local biomass availability, assesses the pros and cons of different gasifier types in view of the application of the product gas. Subsequently the article focuses on the fluidized bed technology to discuss the main process parameters and their influence on the product composition and the operability of the gasifier. Finally a synthesis process (FT is introduced shortly to illustrate the necessary gas cleaning steps in view of the purity requirements for the FT feed gas.

  14. Achievement report for fiscal 1993 on developing entrained bed coal gasification power plant. Part 2. Summary of tests and researches on pilot plant operation; 1993 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant unten shiken kenkyu no gaiyo hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Tests and researches have been carried out on operation of a 200-t/d entrained bed coal gasification pilot plant built with an objective of establishing the coal gasification composite power generation technology. This paper summarizes the achievements in fiscal 1993. The current fiscal year has performed the test operation on the pilot plant as a whole by using the coal D in continuation from the previous fiscal year. For the gasification furnace facilities, an air variation test was conducted for charging coal into the gasification furnace by using recovered oxygen, wherein satisfactory control was verified on oxygen concentration in the air supplied into the gasification furnace. In the gas refining facilities (dry desulfurizing facilities), the total sulfur concentration at 300 to 650 ppm in the gas produced from the coal gasification furnace was refined to 30 to 100 ppm, having achieved the initial target value. The gas refining facilities (dry dust collecting facilities) have achieved satisfactory result that the entrance dust concentration at 66 to 270 mg/Nm{sup 3} was reduced to the exit dust concentration at 1 to 3 mg/Nm{sup 3}. With respect to the gas turbine facilities, the planned values of output and thermal efficiency were satisfied, having derived good performance characteristics. (NEDO)

  15. Circulating fluidized-bed technologies for the conversion of biomass into energy

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C; Hirschfelder, H [Lurgi Energid und Umwelt GmbH, Frankfurt am Main (Germany)

    1995-12-01

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi`s CFB technology in developing countries is proposed. (author) 7 refs, 4 figs, 3 tabs

  16. Status of steam gasification of coal by using heat from high-temperature reactors (HTRs)

    International Nuclear Information System (INIS)

    Schroeter, H.J.; Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    Bergbau-Forschung GmbH, Essen, is developing a process for steam gasification of coal by using process heat from high-temperature nuclear reactors (HTRs). The envisaged allothermal gas generator is heated by an internally mounted bundle of heat exchanging tubes through which the gaseous reactor coolant helium flows. Research and development work for this process has been under way for about 11 years. After intensive small-scale investigations the principle of the process was tested in a semi-technical plant with 0.2 t/h coal throughput. In its gasifier a fluidized bed of approximately 1 m 2 cross-section and up to 4 m high is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it. The gas generator is a cut-out version of the full-scale generator, in which the height of the bed, and the arrangement of the heat-exchanger tubes correspond to the full-scale design. The semi-technical plant has now achieved a total gasification time of about 13,000 hours. Roughly 2000 t of coal have been put through. During recent years the gasification of Federal German coking coal by using a jet-feeding system was demonstrated successfully. The results, confirmed and expanded by material tests for the heat exchanger, engineering and computer models and design studies, have shown the feasibility of nuclear steam gasification of coal. The process described offers the following advantages compared with existing processes: higher efficiency as more gas can be produced from less coal; less emission of pollutants as, instead of a coal-fired boiler, the HTR is used for producing steam and electricity; lower production costs for gas. The next step in the project is a pilot plant of about 2-4 t/h coal throughput, still with non-nuclear heating, to demonstrate the construction and operation of the allothermal gas generator on a representative scale for commercial applications. (author)

  17. Use of moist run-of-mine coal for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Sowka, K.; Duerlich, M.; Rabe, W. (VEB Gaskombinat Fritz Selbmann, Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    A Series of experiments was performed in 1982 and 1986 to assess the feasibility of substituting brown coal briquets by raw brown coal in the fixed bed gasification plant for producing town gas at Schwarze Pumpe, GDR. Raw brown coal (50% coal moisture, screened coal of fractions 20 to 80 mm) had to be mixed with dry briquets to maintain a maximum 35% coal charge moisture. Briquet substitution degree varied from 20 to 50%. Short-term gasification tests were also carried out at an experimental generator examining 80 to 100% substitution degrees. Parameters of generator operation that were achieved are provided. Experiments proved that 50% briquet substitution is technologically feasible in industrial plant operation employing unscreened coal containing all coal fines. An economic assessment is further made that shows substantial energy savings in coal drying and briquetting.

  18. Study of the Apparent Kinetics of Biomass Gasification Using High-Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Alevanau, Aliaksandr

    2010-10-15

    Among the latest achievements in gasification technology, one may list the development of a method to preheat gasification agents using switched ceramic honey combs. The best output from this technology is achieved with use of water steam as a gasification agent, which is heated up to 1600 deg C. The application of these temperatures with steam as a gasification agent provides a cleaner syngas (no nitrogen from air, cracked tars) and the ash melts into easily utilised glass-like sludge. High hydrogen content in output gas is also favourable for end-user applications.Among the other advantages of this technology is the presumable application of fixed-bed-type reactors fed by separately produced and preheated steam. This construction assumes relatively high steam flow rates to deliver the heat needed for endothermic reactions involving biomass. The biomass is to be heated uniformly and evenly in the volume of the whole reactor, providing easier and simpler control and operation in comparison to other types of reactors. To provide potential constructors and exploiters of these reactors with the kinetic data needed for the calculations of vital parameters for both reactor construction and exploitation, basic experimental research of high-temperature steam gasification of four types of industrially produced biomass has been conducted.Kinetic data have been obtained for straw and wood pellets, wood-chip charcoal and compressed charcoal of mixed origin

  19. Fluidized-bed gasification of biomass: Conversion of fine carabon particles in the freeboard; Biomassevergasung in der Wirbelschicht: Umsatz von feinen Kohlenstoffpartikeln im Freeboard

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, F [Ist. Ricerche sulla Combustione-CNR, Napoli (Italy); Moersch, O; Spliethoff, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The conversion of carbon particles in gasification processes was investigated in a fluidized-bed reactor of the Institute of Chemical Engineering and Steam Boiler Technology of Stuttgart University. This reactor is heated electrically to process temperature, and freeboard coal particles can be sampled using an isokinetic probe. The fuel used in the experiments consisted of beech wood chips. The temperature and air rating, i.e. the main parameters of the process, were varied in order to investigate their influence on product gas quality and carbon conversion. The conversion rate is influenced to a significant extent by grain disintegration and discharge of carbon particles. In gasification conditions, a further conversion process takes place in the freeboard. (orig.) [Deutsch] In dieser Arbeit wird die Umsetzung von Kohlenstoffpartikeln unter Vergasungsbedingungen untersucht. Die Versuche wurden an einem Wirbelschichtreaktor des Instituts fuer Verfahrenstechnik und Dampfkesselwesen der Universitaet Stuttgart durchgefuehrt. Dieser Reaktor wird elektrisch auf Prozesstemperatur beheizt. Mit Hilfe einer isokinetischen Sonde koennen Proben von Kohlenstoffpartikeln im Freeboard genommen werden. Als Brennstoff wurden zerkleinerte Buchenholz-Hackschnitzel eingesetzt. Variiert wurden als Hauptparameter des Prozesses Temperatur und Luftzahl. Untersucht wurde der Einfluss dieser Parameter auf die Qualitaet des Produktgases und die Umsetzung des Kohlenstoffes. Kornzersetzungs- und Austragsvorgaenge von Kohlenstoffpartikeln spielen eine wichtige Rolle fuer den Kohlenstoffumsatz. Unter Vergasungsbedingungen findet im Freeboard eine weitere Umsetzung der Partikel statt. (orig.)

  20. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  1. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  2. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  3. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2013-01-01

    -chemical processes are divided in two successive sections: drying and conversion (which includes pyrolysis, gasification and combustion). The second model is an empirical 1D approach. The two models need input data such as composition, temperature and feeding rate of biomass and primary air. Temperature, species...... to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo...... concentrations and velocity of the producer gas leaving the fuel bed provided by the two models are compared. A sensitivity analysis with respect to mass flow rate of the primary air is also performed, as well as a further comparison regarding the dependence of the producer gas properties on the initial moisture...

  4. Benefits of Allothermal Biomass Gasification for Co-Firing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Vreugdenhil, B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Many countries have set obligations to reduce the CO2 emissions from coal fired boilers. Co-firing of biomass in existing coal fired power plants is an attractive solution to reduce CO2 emissions. Co-firing can be done by direct mixing of biomass with coal (direct co-firing) or by converting the biomass into a gas or liquid which is fired in a separate burner (indirect co-firing). Direct co-firing is a rather simple solution, but requires a high quality and expensive biomass fuel (e.g. wood pellets). Indirect co-firing requires an additional installation that converts the solid biomass into a gas or liquid, but has the advantage that it can handle a wide range of cheap biomass fuels (e.g. demolition wood) and most of the biomass ash components are separated from the gas before it enters the boiler. Separation of biomass ash can prevent fouling issues in the boiler. Indirect co-firing, using biomass gasification technology, is already common practice. In Geertruidenberg (the Netherlands) a 80 MWth Lurgi CFB gasifier produces gas from demolition wood which is co-fired in the Amer PC boiler. In Ruien (Belgium) a 50 MWth Foster Wheeler fluidized bed gasifier is in operation. The Energy research Centre of the Netherlands (ECN) developed a 'second generation' allothermal gasifier called the MILENA gasifier. This gasifier has some major advantages over conventional fluidized bed gasifiers. The heating value of the produced gas is approximately 2.5 times higher than of gas produced by conventional bubbling / circulating fluidized bed gasifiers. This results in smaller adaptations to the membrane wall of the boiler for the gas injection, thus lower costs. A major disadvantage of most fluidized bed gasifiers is the incomplete conversion of the fuel. Typical fuel conversions vary between 90 and 95%. The remaining combustible material, also containing most of the biomass ash components, is blown out of the gasifier and removed from the gas stream by a cyclone to

  5. Fixed-bed gasification for industrial appliances; Gaseificacao em leito fixo para aplicacoes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Makray, Zsolt [Termoquip Energia Alternativa, Campinas, SP (Brazil)

    1988-12-31

    Wood gasification for industrial thermal processes as an alternative to fuel oil has economic, strategic and air pollution advantages. Since 1981, a Brazilian industry developed a line of down-draft gasifiers for industrial heating in the capacity of 0,3 to 3,0 MW thermal. (author) 3 figs.

  6. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  7. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  8. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Advances in CO_2 gasification reactivity of biomass char through utilization of radio frequency irradiation

    International Nuclear Information System (INIS)

    Lahijani, Pooya; Mohammadi, Maedeh; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman

    2015-01-01

    A straightforward and well-known reaction for CO_2 activation is the “Boudouard reaction”, wherein, CO_2 is reacted with carbon (char) to produce CO. In this study, a RF (radio frequency) heating system was developed to perform the Boudouard reaction by passing CO_2 through a packed bed of PNS (pistachio nut shell) char. High CO_2 conversion of 84% was achieved at 850 °C. When similar experiments were performed in thermal electric furnace, the conversion was only 38%. For further expanding the knowledge on RF-induced gasification, sodium (Na) was incorporated into char skeleton and gasified with CO_2 under RF irradiation. RF gasification of Na-catalyzed char pronouncedly improved in the reaction, where sustainable CO_2 conversion of 99% was attained at 850 °C. The predominance of RF over thermal heating was highly reflected in kinetic studies, where the activation energies of 26.7, 46.9 and 183.9 kJ/mol were obtained for catalytic and non-catalytic RF and thermal gasification, respectively. In RF gasification studies, it was attempted to improve the quality of mix gases, simulating air and steam gasification gas compositions, through the Boudouard reaction. The heating value of the gases simulating air and steam gasification improved from 6.4 to 8.0 MJ/m"3 and 7.6–10.4 MJ/m"3, respectively. - Highlights: • We study radio frequency-induced CO_2 gasification of pistachio nut shell char. • We achieve very high CO_2 conversion of 99% in RF gasification of Na-catalyzed char. • E_a of 47 and 184 kJ/mol obtained for RF-assisted and conventional CO_2 gasification. • Heating value of synthesis gas improved via RF-induced char-CO_2 gasification.

  10. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  11. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  12. Japan`s Sunshine Project. 1991 annual summary of coal liquefaction and gasification; 1991 nendo sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gas ka

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Out of the research and development on the 1991 Sunshine Project, the results of coal liquefaction/gasification are reported. The basic research of coal liquefaction/gasification is conducted. The research plan for a 150 ton/day scale pilot plant (PP) is worked out for the development of bituminous coal liquefaction technology by NEDOL process. Data of PSU (Process Support Units) operation, especially, are studied. Concerning the data obtained through dismantling of the 50 ton/day PP in Australia which uses Australian Victoria coal due to completion of its operation and also obtained from its support research, they are reflected in the design of a demonstration plant, and the results are arranged for study. Research and development on refining technology of coal-derived liquid such as Illinois coal liquid and on application technology of its products are made. For the development of coal-use hydrogen production technology, conducted is the research of a high temperature gasification PP by entrained flow bed process which is the core of the coal gasification technology. Elementary study with a 2 ton/day furnace is made for the development of the entrained flow bed coal gasification combined cycle power generation system. Also conducted are PP construction, adjusting operation and the overall research operation.

  13. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  14. Achievement report for fiscal 1984 on Sunshine Program. Basic research on coal type and gasification characteristics; 1984 nendo tanshu to gas ka tokusei no kiso kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    The study of pressurized fluidized gasification of coal chars started in fiscal 1975, and a 0.2t/d unit was in operation until fiscal 1979. Since fiscal 1980, a 1t/d unit has been in operation. In fiscal 1984, an entrained bed gasification furnace was constructed, capable of high-temperature gasification of various coals, and it is now undergoing a test operation. This report consists of pressurized gasification tests for coal char, the result of a study on the effect of coal type on the char gasification reaction rate, and the result of experiments on the treatment of coal liquefaction residue, all accomplished in the 1t/d gasification unit. For the investigation of the effect of coal type, chars of 13 types of coals are subjected to reaction tests in the carbon dioxide gas, and weight reduction rates and changes in residue surface areas are determined while reaction is under way. The results are analyzed and parameters are made clear that enable a quantitative assessment of the effect of coal type on gasification reaction rates. Pulverized grains and coal liquefaction residue are blended and gasified in the fluidized bed in the presence of oxygen and steam. As the result, a gas capable of 2,000kcal/Nm{sup 3} containing 30% hydrogen and 25% carbon monoxide is acquired, when catalyst grains in the residue are segregated. (NEDO)

  15. Transformation products of clindamycin in moving bed biofilm reactor (MBBR)

    DEFF Research Database (Denmark)

    Ooi, Gordon Tze Hoong; Escola Casas, Monica; Andersen, Henrik Rasmus

    2017-01-01

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater...... treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs...... process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments...

  16. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  17. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  18. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  19. 100 kW two-staged gasification plant at the Technical University of Denmark. Results until the spring 1998; 100 kW totrinsforgasningsanlaeg paa DTU. Resultater til og med foraaret 1998

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.; Brandt, P.; Goebel, B.; Hindsgaul Hansen, C.; Henriksen, U.

    1998-12-31

    During many years Technical University of Denmark (DTU) has worked with thermal conversion of biomass to gas. The aim is to use the gas for production of combined heating and power. DTU has developed a process: two-staged gasification. Compared to other processes of gasification this process has higher energy efficiency and lower tar in the produced gas. This report describes the experiments performed at a 100 kW two-staged gasification. The conclusions of the results were the following: Particle measuring: the particles from the gasification consist mainly of soot; Investigations of gas purifying: a venturi scrubber removes between 60 and 90 % of particles. A simple air filter afterwards removes the rest of the particles resulting in a particle load below 5 mg/Nm{sup 3}. A small bag filter filtrated 97 % of the particles; Tar measuring: the coke bed reduces the content of tar with a factor 5-9; Gas composition: the gas composition is stable and the highest calorific value is about 6 MJ/Nm{sup 3}; Temperature: the temperature in the pyrolysis pipe depends highly of moisture content of fuel. Gas temperature up to 1400 deg. C was measured and the surface temperature of the coke bed is about 950 deg. C; Pressure: phenomenon, which has influence on understanding drop of pressure in coke bed, is propounded; Mass balance: cold gas efficiency is about 90 %; Quality of coke: the coke from the two-staged gasification is qualified as active coal. The gasification is stable and easy to regulate. (EHS) EFP-97. 25 refs.

  20. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  1. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  2. A REVIEW ON SEWAGE TREATMENT AND POLISHING USING MOVING BED BIOREACTOR (MBBR

    Directory of Open Access Journals (Sweden)

    JAMAL ALI KAWAN

    2016-08-01

    Full Text Available Effluent treatment and polishing using moving bed bioreactors (MBBRs are advanced technique in biological treatment operations become increasing widely and popular use all over the world to treat various types of effluents with very different operating status. It is a combination of two separate processes suspended and attached growth systems for the treatment in order to minimize the concentrations of the contaminated parameters at the required level for reuse or final destination. The MBBR has been proved to be effective in great removing biochemical oxygen demand (BOD and chemical oxygen demand (COD with nutrients (N and P from the effluent stream simultaneously. It provides additional capacity of wastewater treatment technology with high treatment efficiency; low capital, operational, maintenance and replacement cost; single reliable and robust operation procedure. This process can be used for new sewage treatment works or for modifying (upgrading existing wastewater treatment plants as it is efficient, compact and easy to operate. The efficiency of MBBR depends on the filling percent of biofilm carriers to be provided inside the tank, surface area of the biocarrier, diffused aeration supply and the organic loading. The aim of this paper is reviewing the sewage treatment and polishing using moving bed bioreactor MBB technology as an alternative and successful method. It presents the advantages of the MBBR compared to conventional waste water treatment. The review also includes many relevant researches carried out at the laboratory andpilot scales plants that could improve these systems by enhancing performance and reducing costs.

  3. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    a waste management perspective, pyrolysis and gasification are of relatively little importance as an overall management option. Today, gasification is primarily used on specific waste fractions as opposed to mixed household wastes. The main commercial activity so far has been in Japan, with only limited....... Today gasification is used within a range of applications, the most important of which are conversion of coal into syngas for use as chemical feedstock or energy production; but also gasification of biomass and waste is gaining significant interest as emerging technologies for sustainable energy. From...... success in Europe and North America (Klein et al., 2004). However, pyrolysis and gasification of waste are generally expected to become more widely used in the future. A main reason for this is that public perceptions of waste incineration in some countries is a major obstacle for installing new...

  4. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  5. Kinetic Modeling of Synthetic Wastewater Treatment by the Moving-bed Sequential Continuous-inflow Reactor (MSCR

    Directory of Open Access Journals (Sweden)

    Mohammadreza Khani

    2016-11-01

    Full Text Available It was the objective of the present study to conduct a kinetic modeling of a Moving-bed Sequential Continuous-inflow Reactor (MSCR and to develop its best prediction model. For this purpose, a MSCR consisting of an aerobic-anoxic pilot 50 l in volume and an anaerobic pilot of 20 l were prepared. The MSCR was fed a variety of organic loads and operated at different hydraulic retention times (HRT using synthetic wastewater at input COD concentrations of 300 to 1000 mg/L with HRTs of 2 to 5 h. Based on the results and the best system operation conditions, the highest COD removal (98.6% was obtained at COD=500 mg/L. The three well-known first order, second order, and Stover-Kincannon models were utilized for the kinetic modeling of the reactor. Based on the kinetic analysis of organic removal, the Stover-Kincannon model was chosen for the kinetic modeling of the moving bed biofilm. Given its advantageous properties in the statisfactory prediction of organic removal at different organic loads, this model is recommended for the design and operation of MSCR systems.

  6. Mathematical modeling of a fluidized bed gasifier for steam gasification of coal using high-temperature nuclear reactor heat

    International Nuclear Information System (INIS)

    Kubiak, H.; vanHeek, K.-H.; Juntgen, H.

    1986-01-01

    Coal gasification is a well-known technique and has already been developed and used since a long time. In the last few years, forced by the energy situation, new efforts have been made to improve known processes and to start new developments. Conventional gasification processes use coal not only as feedstock to be gasified but also for supply of energy for reaction heat, steam production, and other purposes. With a nuclear high temperature reactor (HTR) as a source for process heat, it is possible to transform the whole of the feed coal into gas. This concept offers advantages over existing gasification processes: saving of coal, as more gas can be produced from coal; less emission of pollutants, as the HTR is used for the production of steam and electricity instead of a coal-fired boiler; and lower production costs for the gas

  7. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  8. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge

    International Nuclear Information System (INIS)

    Li, Hanhui; Chen, Zhihua; Huo, Chan; Hu, Mian; Guo, Dabin; Xiao, Bo

    2015-01-01

    Highlights: • Bioleaching can modify the physicochemical property of sewage sludge. • The enhancement is mainly hydrogen. • Bioleaching can enhance the gas production in gasification of sewage sludge. • Study provides an insight for future application of bioleached sewage sludge. - Abstract: Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge was carried out in a lab-scale fixed-bed reactor. The influence of sewage sludge solids concentrations (6–14% (w/v) in 2% increments) during the bioleaching process and reactor temperature (600–900 °C in 100 °C increments) on gasification product yields and gas composition were studied. Characterization of samples showed that bioleaching treatment, especially in 6% (w/v) sludge solids concentration, led to metal removal effectively and modifications in the physicochemical property of sewage sludge which was favored for gasification. The maximum gas yield (49.4%) and hydrogen content (46.4%) were obtained at 6% (w/v) sludge solids concentration and reactor temperature of 900 °C. Sewage sludge after the bioleaching treatment may be a feasible feedstock for hydrogen-rich gas product.

  9. FY 1996 report on the results of the development of an entrained bed coal gasification power plant. Part 2. Investigational study of verification plant; 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the purpose of developing the technology of the integrated coal gasification combined cycle power generation, an investigational study of verification plant was made, and the FY 1996 results were summarized. In this fiscal year, the conceptual design was made of the Nakoso method based on the method of Nakoso pilot plant, the fixed bed method in which fixed bed gas refining facilities tested in Nakoso pilot plant were adopted, and the packed bed method. In the Nakoso method, 5 cases were studied using the air blown two-stage entrained bed for gasifier, dry two-stage fluidized bed for desulfurization and dry granular bed packed bed for dust removal. In the fixed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry fixed bed for gas refining. In the packed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry packed bed for gas refining. As to gas turbine facilities, 5 cases were studied in which GT output is 115MW - 215MW (output of combined cycle power generation: 220MW - 420MW). (NEDO)

  10. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  11. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. © 2013 Elsevier Ltd. All rights reserved....

  12. Hydrogen production by co-gasification of coal and renewables

    Energy Technology Data Exchange (ETDEWEB)

    Fermoso, J.; Arias, B.; Rubiera, F.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo, (Spain)

    2006-07-01

    In this work, co-gasification of two coals with samples of pet-coke, sewage sludge and biomass was conducted at atmospheric pressure in a fixed bed reactor under steam/oxygen atmosphere, in order to evaluate possible synergistic effects during co-gasification. Experiments carried out at non-isothermal conditions for blends of a low volatile bituminous coal and dried sewage sludge, indicated the absence of interactive effects between the blends. The concentration of H{sub 2} and CO could be predicted from the concentrations of the individual components in the blends and their respective mass fractions. The results obtained under isothermal (1000 C) conditions for blends of a high ash coal with pet-coke, and blends with biomass (chestnut) produced less gas yield than the theoretically calculated. However, for the mixtures of coal and biomass the quality of the syngas, expressed by the amount of the produced H{sub 2}+CO and by the H{sub 2}/CO ratio, was not altered. (authors)

  13. Hydrogen production by co-gasification of coal and renewables

    International Nuclear Information System (INIS)

    Fermoso, J.; Arias, B.; Rubiera, F.; Arenillas, A.; Pis, J.J.

    2006-01-01

    In this work, co-gasification of two coals with samples of pet-coke, sewage sludge and biomass was conducted at atmospheric pressure in a fixed bed reactor under steam/oxygen atmosphere, in order to evaluate possible synergistic effects during co-gasification. Experiments carried out at non-isothermal conditions for blends of a low volatile bituminous coal and dried sewage sludge, indicated the absence of interactive effects between the blends. The concentration of H 2 and CO could be predicted from the concentrations of the individual components in the blends and their respective mass fractions. The results obtained under isothermal (1000 C) conditions for blends of a high ash coal with pet-coke, and blends with biomass (chestnut) produced less gas yield than the theoretically calculated. However, for the mixtures of coal and biomass the quality of the syngas, expressed by the amount of the produced H 2 +CO and by the H 2 /CO ratio, was not altered. (authors)

  14. Bed care for patients in palliative settings: considering risks to caregivers and bed surfaces.

    Science.gov (United States)

    Fragala, Guy

    2015-02-01

    Ensuring patients are comfortable in bed is key to effective palliative care, but when moving and positioning patients in bed, health professionals face an occupational risk of injury. The turning and positioning (TAP) system is a new method of moving patients in bed, that evidence has shown to reduce the risk of injury to caregivers. Providing the correct bed surface is another aspect of bed care essential to the comfort of the palliative patient, and to aid wound prevention and treatment. It is important to take a patient-centred approach when considering the most appropriate bed surface patients. This article provides an overview and discussion of these two aspects of bed care for palliative patients.

  15. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions

    International Nuclear Information System (INIS)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing; Richards, George

    2016-01-01

    Highlights: • BaFe 2 O 4 and CaFe 2 O 4 are excellent for chemical looping coal gasification. • BaFe 2 O 4 and CaFe 2 O 4 have minimal reactivity with synthesis gas. • Steam enhances the gasification process with these oxygen carriers. • Reaction rates of steam gasification of coal with CaFe 2 O 4 was better than with gaseous oxygen. • Coal gasification appears to be via solid–solid interaction with the oxygen carrier. - Abstract: Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe 2 O 4 ) and calcium ferrite (CaFe 2 O 4 ). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe 2 O 4 and CaFe 2 O 4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H 2 ) and carbon monoxide (CO), but carbon dioxide (CO 2 ) remained low because these oxygen carriers have minimal reactivity with H 2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H 2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  16. Kinetics of gasification and combustion of residues, biomass and coal in a bubbling fluidized bed; Die Kinetik der Vergasung und Verbrennung unterschiedlicher Abfaelle, Biomassen und Kohlen in der blasenbildenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, S; Krumm, W [Siegen Univ. (Gesamthochschule) (Germany). Lehrstuhl fuer Energie- und Umweltverfahrenstechnik

    1998-09-01

    The combustion and gasification characteristics of Rhenish brown coal, domestic waste, waste plastics, wood and sewage sludge were investigated in a bubbling atmospheric fluidized bed in the laboratory scale. The materials were pyrolyzed in the fluidized bed in a nitrogen atmosphere. The residual coke was combuted in the presence of oxygen with varying operating parameters or else gasified in the presence of carbon dioxide. The different materials were characterized by global combustion rates, and kinetic parameters were determined for residual coke combustion. (orig.) [Deutsch] Das Verbrennungs- und Vergasungsverhalten von Rheinischer Braunkohle, Hausmuell, Restkunststoff, Holz und Klaerschlamm wurde in einer blasenbildenden, atmosphaerischen Laborwirbelschicht untersucht. Die Einsatzstoffe wurden in der mit Stickstoff fluidisierten Wirbelschicht pyrolysiert. Der verbleibende Restkoks wurde anschliessend unter Variation der Betriebsparameter mit Sauerstoff verbrannt oder mit Kohlendioxid vergast. Die unterschiedlichen Einsatzstoffe wurden durch globale Vebrennungsraten charakterisiert. Fuer die Restkoksverbrennung wurden kinetische Parameter ermittelt. (orig.)

  17. Catalytic mechanism of sodium compounds in black liquor during gasification of coal black liquor slurry

    International Nuclear Information System (INIS)

    Kuang Jianping; Zhou Junhu; Zhou Zhijun; Liu Jianzhong; Cen Kefa

    2008-01-01

    The coal black liquor slurry (CBLS) was composed of coal and black pulping liquor, which has plenty of sodium compounds, lignin and cellulose. The sodium compounds have a catalytic effect on the gasification process of coal black liquor slurry, while lignin and cellulose enhance the heat value. Alkali-catalyzed gasification experiments of CBLS and CWS (coal water slurry) are investigated on the thermobalance and fixed bed reactor. The residues of the gasification of CBLS and CWS are analyzed by XRD, SEM and FT-IR. It is found that many micro- and mesopores and zigzag faces exist in the surface of the CBLS coke, which play a key role in the catalytic gasification. Sodium can enhance the reaction potential, weaken the bond of C-O and improve the gasification reaction rate. XRD results show that sodium aluminum silicate and nepheline are the main crystal components of the CBLS and CWS. The C-O stretching vibration peak in the 1060 cm -1 band in the CBLS shifts to 995.65 cm -1 in the CBLS coke after partial gasification. This means that the energy of the C-O stretching vibration in the CBLS carbon matrix decreases, so the structure of the carbon matrix is more liable to react with an oxygen ion or hydroxide ion. The amplitude of the C-O stretching vibration peak is augmented step by step due to the ground-excited level jump of the C-O band

  18. Achievement report for fiscal 1981 on research under Sunshine Program. Basic research on high-calorie gas production technology; 1981 nendo sunshinte keikaku kenkyu seika hokokusho. Kokarori gas seizo gijutsu no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Test and research are conducted for acquiring basic data regarding coal gasification. In the basic research for the development of a high-calorie gas production process, a small moving bed gas furnace is improved, and a high-calorie gas of a heating value of approximately 5,100kcal/m{sup 3} is stably produced at a rate of approximately 20m{sup 3} per diem. The carbon conversion rate turns out to be approximately 37% for the gas, approximately 53% for the residual char, and approximately 10% for a mixture of tar, naphthalene, benzene, phenol, etc. Hydrogen is produced making use of the residual char when a small amount of coal is added, and it is deemed that the first experiment for the development of a moving bed hydrogasification process has been successfully completed. In the study of the mechanism of hydrogasification reaction, the result of a preliminary experiment in a fixed bed pressurized gasification furnace is compared with the data from a continuous gasification experiment, and the relationship is determined between the coal feed rate and the reaction rate. Conducted besides are a basic study of problems relating to operation, basic research on a reaction mechanism (carbonization by rapid heating), estimation of the equilibrium composition of gas generated by coal gasification, etc. (NEDO)

  19. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  20. Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-09-01

    Full Text Available Fluidised bed gasification (FBG) is a clean coal technology suitable for power and fuel generation from low grade coals. However, the resulting bottom ash presents some disposal challenges to the power plants and the environment. The production...

  1. Gasification of Rice Husk in a Downdraft Gasifier: The Effect of Equivalence Ratio on the Gasification Performance, Properties, and Utilization Analysis of Byproducts of Char and Tar

    Directory of Open Access Journals (Sweden)

    Zhongqing Ma

    2015-03-01

    Full Text Available Rice husks (RH are a potential biomass source for bio-energy production in China, such as bio-gas production by gasification technology. In this paper, a bench-scale downdraft fixed bed gasifier (DFBG and a tar sampling system were designed. The effect of equivalence ratio (ER on gasification performance in terms of the temperature in the gasifier, the composition distribution of the producer gas, and the tar content in the producer gas was studied. The maximum lower heating value of 4.44 MJ/Nm3, minimum tar content of 1.34 g/Nm3, and maximum cold gas efficiency of 50.85% were obtained at ER of 0.211. In addition, the characteristics of gasification byproducts, namely bio-char and bio-tar, were analyzed. The proximate and ultimate analysis (especially of the alkali metal, the surface morphology, the surface area, and the pore size distribution of the rice husk char (RHC were obtained by the use of X-ray fluorescence (XRF and scanning electron microscopy (SEM, as well as by using the Brunauer-Emmett-Teller (BET method. The components of light tar and heavy tar were obtained by using gas chromatography-mass spectrometry (GC-MS.

  2. Comparison of mass and energy balances for air blown and thermally ballasted fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Lysenko, Steve; Sadaka, Samy; Brown, Robert C.

    2012-01-01

    The objective of this study was to compare the mass and energy balances for a conventional air blown fluidized bed gasifier and a ballasted fluidized bed gasifier developed at Iowa State University. The ballasted gasifier is an indirectly heated gasifier that uses a single reactor for both combustion and pyrolysis. Heat accumulated in high-temperature phase change material during the combustion phase is released during the pyrolysis phase to generate producer gas. Gas composition, tar and char contents, cold gas efficiency, carbon conversion, and hydrogen yield per unit biomass input were determined as part of these evaluation. During the pyrolysis phase of ballasted gasification, higher volumetric concentrations of hydrogen and methane were obtained than during air blown gasification. Hydrogen yield for ballasted gasification was 14 g kg −1 of biomass, which was about 20% higher than that obtained during air blown gasification. The higher heating value of the producer gas also reached higher levels during the ballasted pyrolysis phase than that of air blown gasification. Heating value for air blown gasification was 5.2 MJ m −3 whereas the heating value for the ballasted pyrolysis phase averaged 5.5 MJ m −3 , reaching a maximum of 8.0 MJ m −3 . The ballasted gasifier was expected to yield producer gas with average heating value as high as 15 MJ m −3 but excessive use of nitrogen to purge and cool the fuel feeder system greatly diluted the producer gas. Relatively simple redesign of the feeder system would greatly reduce the use of purge gas and may increase the heating values to about 17.5 MJ m −3 . Higher char production per kilogram of biomass was associated with the ballasted system, producing 140 g kg −1 of biomass compared to only 53 g kg −1 of biomass during air blown gasification. On the other hand, tar concentrations in the producer gas were 6.0 g m −3 for ballasted gasification compared to 11.7 g m −3 for air blown gasification. On

  3. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  4. Biomass gasification for electric power generation. Biomassa vergassing voor elektriciteitsopwekking

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H J

    1992-10-01

    Attention is paid to power generation by means of the use of synthesis gas, produced by biomass gasification, in internal combustion engines and gas turbines. Descriptions are given of the biomass gasification process and several types of gasifiers: cocurrent or downcraft gasifiers, countercurrent gasifiers, crosscurrent gasifiers and fluidized bed gasifiers. The first aim of this report is to assess which gasifier is the most appropriate gasifier to be used in combination with an internal combustion engine or a gas turbine. The second aim is to determine the quality of the biomass fuel, which must be gasified in a particular gasifier. In chapter two the notion biomass is discussed, and in chapter three attention is paid to the gasification process. An overview of the characteristics of available gasifiers is presented in chapter four (performance, quality of the synthesis gas and the biomass fuel, investment costs, and state of the art). In chapter five and six the internal combustion engine and the gas turbine are dealt with, as well as the experiences with and the consequences of the use of synthesis gas. Also the economic feasibility of the application of combined gasifier/engine systems and gasifier/gas turbine systems is discussed. 39 figs., 20 tabs., 43 refs.

  5. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    International Nuclear Information System (INIS)

    Martínez-Lera, S.; Torrico, J.; Pallarés, J.; Gil, A.

    2013-01-01

    Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m 3 and cold gas efficiencies up to 60%

  6. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  7. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  8. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations

    Directory of Open Access Journals (Sweden)

    Aïda Ben Hassen Trabelsi

    2017-01-01

    Full Text Available Solar dried sewage sludge (SS conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%. SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02  9.96 MJ/kg for gasification due to their high contents of H2 (up to 11 and 7 wt%, resp. and CH4 (up to 17 and 5 wt%, resp.. The yields of combustible gases (H2 and CH4 show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization.

  9. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2018-02-01

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m 2 . The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  10. Operating experiences with heat-exchanging components of a semi-technical pilot plant for steam gasification of coal using heat from HTR

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van

    1984-01-01

    within the framework of the PNP- Project, a semi-technical plant for the development of a process of coal gasification by means of nuclear heat was operated. Here gasification is for the first time implemented in a fluidized bed using heat of an electrically heated helium cycle at pressure up to 40 bar and temperatures normal for HTR. The plant serves for testing and developing various components as immersion heater, insulations, dosing devices, and for compiling sound data for further planning

  11. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  12. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  13. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-09-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  14. Survey report for fiscal 1981 of 3rd subcommittee of Coal Gasification Committee; 1981 nendo sekitan gasu ka iinkai dai 3 bukai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Survey and research are conducted to grasp the current status of the development of the coal gasification combined power cycle generation technology, in which the coal gasification technology and the combined power cycle generation technology are combined, and to clarify the relevant tasks to be discharged. The latest information on the coal gas direct combustion system and fuel cell system is also compiled into this report. Although coal is abundant all the world over, yet Japan has to import it. It is afraid that the coal to be imported will be diverse in property and that the use will increase of coal inferior in quality with much ash and moisture. As for gasification furnaces, efforts of development are concentrated on the fluidized bed type and entrained bed type, both of which will have to deal with various kinds of coal, to be large in capacity, high in gasification efficiency, and excellent in serviceability. As for cleaning-up systems, the dry type is advantageous in terms of thermal efficiency, but it needs to be verified for refining capacity and serviceability. When it comes to gas turbines, efforts need to be started at an early date for developing a high-temperature/high-pressure gas turbine which is fueled with coal gas. Since the development of an integrated coal gasification combined cycle power generation plant demands enormous amounts of funds, a check-and-review process is indispensable for each development stage. (NEDO)

  15. Tar dew point analyser as a tool in biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vreugdenhil, B.J.; Kuipers, J. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2008-08-15

    Application of the Tar Dew point Analyzer (TDA) in different biomass based gasification systems and subsequent gas cleaning setups has been proven feasible. Such systems include BFB gasifiers, CFB gasifier and fixed bed gasifiers, with tar crackers or different scrubbers for tar removal. Tar dew points obtained with the TDA give direct insight in the performance of the gas cleaning section and help prevent any tar related problems due to condensation. The current TDA is capable of measuring tar dew points between -20 to 200C. This manuscript will present results from 4 different gasification setups. The range of measured tar dew points is -7 to 164C with comparable results from the calculated dew points based on the SPA measurements. Further detail will be presented on the differences between TDA and SPA results and explanations will be given for deviations that occurred. Improvements for the TDA regarding future work will be presented.

  16. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  17. Mathematical Modeling of Ultra-Superheated Steam Gasification

    Science.gov (United States)

    Xin, Fen

    Pure steam gasification has been of interest in hydrogen production, but with the challenge of supplying heat for endothermic reactions. Traditional solutions included either combusting feedstocks at the price of decreasing carbon conversion ratio, or using costly heating apparatus. Therefore, a distributed gasifier with an Ultra-Superheated-Steam (USS) generator was invented, satisfying the heat requirement and avoiding carbon combustion in steam gasification. This project developed the first version of the Ultra-Superheated-Steam-Fluidization-Model (USSFM V1.0) for the USS gasifier. A stand-alone equilibrium combustion model was firstly developed to calculate the USS mixture, which was the input to the USSFM V1.0. Model development of the USSFM V1.0 included assumptions, governing equations, boundary conditions, supporting equations and iterative schemes of guessed values. There were three nested loops in the dense bed and one loop in the freeboard. The USSFM V1.0 included one main routine and twenty-four subroutines. The USSFM V1.0 was validated with experimental data from the Enercon USS gasifier. The calculated USS mixture had a trace of oxygen, validating the initial expectation of creating an oxygen-free environment in the gasifier. Simulations showed that the USS mixture could satisfy the gasification heat requirement without partial carbon combustion. The USSFM V1.0 had good predictions on the H2% in all tests, and on other variables at a level of the lower oxygen feed. Provided with higher oxygen feed, the USSFM V1.0 simulated hotter temperatures, higher CO% and lower CO2%. Errors were explained by assumptions of equilibrium combustion, adiabatic reactors, reaction kinetics, etc. By investigating specific modeling data, gas-particle convective heat transfers were found to be critical in energy balance equations of both emulsion gas and particles, while bubble size controlled both the mass and energy balance equations of bubble gas. Parametric study

  18. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    of the different operating conditions reveals an optimum for the chosen pressure ratio with respect to the resulting electrical efficiency. Furthermore, the SOFC operating temperature and fuel utilization should be maintained at a high level and the cathode temperature gradient maximized. Based on 1st and 2nd law...... based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants....... The work deals with the coupling of thermal biomass gasification and solid oxide fuel cells (SOFCs), and specific focus is kept on exploring the potential performance of hybrid CHP systems based on the novel two-stage gasification concept and SOFCs. The two-stage gasification concept is developed...

  19. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior

    International Nuclear Information System (INIS)

    Zhou, Chunguang; Rosén, Christer; Engvall, Klas

    2016-01-01

    Highlights: • Dolomite is a superior material in preventing bed agglomeration. • Small molten ash particles deposited on magnesite at bed temperatures above 1000 °C. • The performance, when using magnesite, is sensitive to temperature disturbances. • The anti-agglomeration mechanisms of Ca- and Mg-bearing materials were discussed. - Abstract: In this study, the anti-agglomeration abilities of Ca- and Mg-containing bed materials, including dolomite and magnesite, in a pressurized bubbling fluidized bed gasifier using pine pellets and birch chips as feedstock, is investigated. The most typical bed material—silica sand—was also included as a reference for comparison. The sustainability of the operation was evaluated via analyzing the temperatures at different levels along the bed height. During the performances, the aim was to keep the temperature at the bottom zone of the reactor at around 870 °C. However, the success highly depends on the bed materials used in the bed and the temperature can vary significantly in case of agglomeration or bad mixing of bed materials and char particles. Both Glanshammar and Sala dolomites performed well with no observed agglomeration tendencies. In case of magnesite, the bed exhibited a high agglomeration tendency. Silica sand displayed the most severe agglomeration among all bed materials, even when birch chips with a low silica content was fed at a relatively low temperature. The solid samples of all the bed materials were inspected by light microscopy and Scanning Electron Microscopy (SEM). The Energy Dispersive Spectroscopy (EDS) detector was used to detect the elemental distribution in the surface. The crystal chemical structure was analyzed using X-ray Diffraction (XRD). Magnesite agglomerates glued together by big molten ash particles. There was no coating layer detected on magnesite particles at bed temperatures – below 870 °C. But when the temperature was above 1000 °C, a significant amount of small molten

  20. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    Science.gov (United States)

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-02

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail.

  1. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lydia Fryda

    2015-11-01

    Full Text Available The growing need for food, energy and materials demands a resource efficient approach as the world’s population keeps increasing. Biochar is a valuable product that can be produced in combination with bio-energy in a cascading approach to make best use of available resources. In addition, there are resources that have not been used up to now, such as, e.g., many agro-residues that can become available. Most agro-residues are not suitable for high temperature energy conversion processes due to high alkali-content, which results in slagging and fouling in conventional energy generation systems. Using agro-residues in thermal processes, therefore, logically moves to lower temperatures in order to avoid operational problems. This provides an ideal situation for the combined energy and biochar production. In this work a slow pyrolysis process (an auger reactor at 400 °C and 600 °C is used as well as two fluidized bed systems for low-temperature (600 °C–750 °C gasification for the combined energy and biochar generation. Comparison of the two different processes focuses here on the biochar quality parameters (physical, chemical and surface properties, although energy generation and biochar quality are not independent parameters. A large number of feedstock were investigated on general char characteristics and in more detail the paper focuses on two main input streams (woody residues, greenhouse waste in order to deduct relationships between char parameters for the same feedstock. It is clear that the process technology influences the main biochar properties such as elemental- and ash composition, specific surface area, pH, in addition to mass yield quality of the gas produced. Slow pyrolysis biochars have smaller specific surface areas (SA and higher PAH than the gasification samples (although below international norms but higher yields. Higher process temperatures and different gaseous conditions in gasification resulted in lower biochar

  2. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  3. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  4. Survey of Biomass Gasification, Volume II: Principles of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  5. Commercialisation BIVKIN-based gasification technology. Non-confidential version

    International Nuclear Information System (INIS)

    Van der Drift, A.; De Kant, H.F.; Rajani, J.B.

    2000-08-01

    In 1996, the Netherlands Energy Research Foundation (ECN) in Petten, Netherlands, developed and built a circulating fluidized bed gasification process BIVKIN (Dutch abbreviation for biomass gasification installation) in co-operation with Novem, Afvalzorg and Stork. The plant was initially used at the ECN location in Petten for the characterisation of more than 15 different biomass species, including wood, sludge, grass and manure. During this test work, it was discovered that BIVKIN was an ideal tool for gasification of such diverse biomass at various thermal outputs. ECN has been conducting tests to improve the gas quality so that such fuel gas can be used for the generation of electricity by the use of a gas engine. In order to bring the BIVKIN technology to the commercial market, ECN, Shell and HoSt performed a study to evaluate the engineering concept and cost of such a design in detail. With this study, co-financed by Novem, the commercial viability of the BIVKIN technology in the electrical output range of 1 to 5 MW, is determined. For this relatively small scale, it is assumed that the extra positive cash flow due to selling the heat can compensate the higher investment per kW compared to large-scale systems where the produced heat generally cannot be used. This report is a reflection of the study to commercialise the BIVKIN technology. The BIVKIN-technology will be compared with alternative technologies commercially available for the power range under consideration. Both technical and economic evaluations will be presented. 12 refs

  6. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  7. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    A record was summarized of the operation test study in FY 1992 of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. The operating hour of gasifier facilities in FY 1992 was 635 hours 19 minutes, and the number of times of gasification operation was 9. The operating hour of letting gas through to gas refining facilities was 549 hours 14 minutes. The operating hour of gas turbine facilities was 310 hours 18 minutes, and the generated output was 1,366.2 MWh. The operating hour of treatment furnace of safety environment facilities was 1,401 hours 4 minutes, and that of the denitrification system was 621 hours 24 minutes. As to the actual results of the start-up/stop, the paper detailedly recorded those of RUNs 10, 11, 12, 13 and D1. Further, operation manuals were made for the schedule of plant start-up/stop, gasifier facilities, gas refining facilities (dry desulfurization facilities), gas refining facilities (dry dedusting facilities), actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  8. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  9. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  10. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    A record was summarized of the operation of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. As to the actual results of operation hours, the paper summarized the records of gasifier facilities, gas refining facilities, gas turbine facilities and safety environment facilities which were collected from April 1991 to January 1993. Relating to the actual results of start-up/stop, the paper summarized the records of gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities and safety environment facilities. Further, operation manuals were made for the schedule of plant start-up/stop, generalization, gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities, actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  11. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  12. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  13. Reports on 1977 result of Sunshine Project. Research for detailed design of coal gasification plant (studies on operating conditions 'pressurized hydro-fluidized gasification method', dissolution of research equipment); 1977 nendo sekitan gas ka plant no shosai sekkei no tame no shiken kenkyu seika hokokusho. Unten joken no kenkyu 'kaatsu suiten ryudo gas ka hoshiki' kenkyu kaitai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    The pressurized hydro-fluidized gasification method is such that coal is hydro-gasified under a pressure of 30kg/cm{sup 3} to produce a methane-rich calorie gas. This method is a combination of three independent processes, namely, (1) thermal cracking of coal, (2) hydrogasification of thermally decomposed product, and (3) water gasification for self-contained hydrogen, and is a continuous gasification method in which all processes are operated in a fluidized bed. In fiscal 1976, an operation technique was found in which conditions suitable for each reaction purpose were given to a detached thermal cracking furnace and hydrogasification furnace and in which continuous gasification was still maintained without an adverse effect between the two furnaces. This year, the continuous gasification test will be implemented successively, determining suitable operating conditions for the purpose of increasing methane concentration and improving gasification efficiency, and concurrently extracting device-related problems that impair the continuous operation. With the aim of obtaining a self-contained system for hydrogen, water gasification tests will be conducted, with the optimum conditions determined for the water gasification. An operation test will be carried out for an internal heat type control box, so that the functions under pressurization, durability and operation criteria will be determined. (NEDO)

  14. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  15. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  16. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  17. Development of a new steady state zero-dimensional simulation model for woody biomass gasification in a full scale plant

    International Nuclear Information System (INIS)

    Formica, Marco; Frigo, Stefano; Gabbrielli, Roberto

    2016-01-01

    Highlights: • A simulation model with Aspen Plus is created for a full scale biomass gasification plant. • Test results, equipment data and control logics are considered in the simulation model. • The simulation results are in agreement with the experimental data. • The gasifying air temperature affects largely the energy performance of the gasification plant. • Increasing the equivalent ratio implies a strong reduction of the gasification efficiency. - Abstract: A new steady state zero-dimensional simulation model for a full-scale woody biomass gasification plant with fixed-bed downdraft gasifier has been developed using Aspen Plus®. The model includes the technical characteristics of all the components (gasifier, cyclone, exchangers, piping, etc.) of the plant and works in accordance with its actual main control logics. Simulation results accord with those obtained during an extensive experimental activity. After the model validation, the influence of operating parameters such as the equivalent ratio, the biomass moisture content and the gasifying air temperature on syngas composition have been analyzed in order to assess the operative behavior and the energy performance of the experimental plant. By recovering the sensible heat of the syngas at the outlet of the gasifier, it is possible to obtain higher values of the gasifying air temperature and an improvement of the overall gasification performances.

  18. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Science.gov (United States)

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  19. Study on tar generated from downdraft gasification of oil palm fronds.

    Science.gov (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  20. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    Directory of Open Access Journals (Sweden)

    Samson Mekbib Atnaw

    2014-01-01

    Full Text Available One of the most challenging issues concerning the gasification of oil palm fronds (OPF is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3 in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  1. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    Science.gov (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study. PMID:24526899

  2. Report on completion of R and D for fiscal 1980 on technology for high calorie gasification of coal; 1980 nendo sekitan kokarori gas ka gijutsu no kaihatsu kenkyu kanryo hokokuksho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-31

    The paper explains R and D of high calorie gasification technology in fiscal 1980. In the development of a fluidized bed 7,000Nm{sup 3}/day class pilot plant, the foundation work for equipment was completed in September. The installation work of the equipment was subsequently completed, with part of its trial run and adjustment implemented. In the pressure fluidized gasification of coal/heavy oil admixture, a simulator model was improved in the process studies, which showed that the gas composition distribution in the height direction of the gasification furnace was in agreement with the experiment but that the temperature distribution in the height direction was not. For the purpose of diversifying the raw materials, thermal cracking properties were examined on various heavy oils and coals. In the studies of making the equipment and devices, a partial modification was finished in September for the improvement of gasification efficiency and for the automation. In addition, the packing materials in the fluidized bed enhanced the gasification efficiency by 3%. The thermal cracking properties of raw materials and the melting point of ash contents and fluidity in coals became the points in the diversification of the raw materials. With the purpose of obtaining basic data for establishing the automatic operation technology, a test was carried out for the automatic control of in-furnace temperature. In the research on the plant materials, investigation was conducted on the domestic and international literatures including primarily those of the U.S.. Examination was also made on hydro-gasification conditions with the aim of obtaining hydrogen for hydrogenation. (NEDO)

  3. Report on the achievements in the Sunshine Project in investigations and studies on treatment technologies for coals used in coal gasification. A report on coal type investigation; Sekitan gas ka yotan no shori gijutsu ni kansuru chosa kenkyu. Tanshu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    This paper reports the investigation on coal types for coal gasification in the Sunshine Project. With regard to the status of existence, production and dressing of coals as the material for coal gasification and liquefaction, summarized site investigations and sampling were performed on underground mining coal mines being operated in Japan. Test sample coals are put into a data file as the important fundamental data for gasification and liquefaction characteristics tests at the Japan Coal Energy Center. The sampling investigation is planned to start in fiscal 1988. The coal mines having been investigated to date include: Taiheiyo Coal Mine (Kushiro), Mitsui Coal Mining Industry (Miike), Matsushima Coal Mine (Ikejima), Mitsubishi Coal Mining Industry (Minami O-Yubari), Sumitomo Coal Akabira Coal Mine (Akabira), Mitsui Coal Mining Industry (Ashibetsu), and Sorachi Coal Mine (Sorachi). Coal beds subjected to the sampling were selected upon carefully discussing with the site engineers on the current status of the coal mine, and the coal beds that could be operated in the future. The sampling method was such that the whole coal bed from the upper bed to the lower bed at the facing was sampled and put into vinyl sampling bags each at about 2 kg as the target. (NEDO)

  4. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    Nor Fadzilah Othman; Mohd Hariffin Bosrooh; Kamsani Abdul Majid

    2010-01-01

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, R max , Activation Energy, E a and Arrhenius constant, ln R o for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. E a is the highest for Merit Pila coal (166.81kJmol -1 ) followed with Mukah Balingian (101.15 kJmol -1 ), Hunter Valley (96.45 kJmol -1 ) and Silantek (75.23 kJmol -1 ) coals. This finding indicates direct correlation of lower rank coal with higher E a . Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H 2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHV pg (5.56 MJ/Nm 3 ) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHV pg . (author)

  5. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  6. Challenges And Opportunities For Coal Gasification In Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    Coal gasification for chemicals, gaseous and liquid fuels production can fulfil an important strategic need in those developing countries where coal is the primary fuel source and oil and gas energy security is an issue. At the same time, the establishment of major projects in such countries can be problematical for a number of technical and economic reasons, although it is encouraging that some projects appear to be moving forward. There are two developing countries where coal conversion projects to produce chemicals, gaseous and liquid fuels have been taken forward strongly. The first is South Africa, which established the world's only commercial-scale coal-to-liquids and coal-to-chemicals facilities at Secunda and Sasolburg respectively. The other is China, where there is a major gasification-based coal conversion development and deployment programme that is set to become a significant, large-scale commercial element in the nation's energy development plans. This will provide further major opportunities for the deployment of large-scale coal gasification technologies, various syngas conversion units and catalysts for the subsequent production of the required products. The role of China is likely to be critical in the dissemination of such technologies to other developing countries as it can not only provide the technical expertise but also financially underpin such projects, including the associated infrastructure needs.

  7. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    International Nuclear Information System (INIS)

    Wilen, C.; Kurkela, E.

    1997-01-01

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW th ) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW th ) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are the main

  8. Gasification of biomass for energy production. State of technology in Finland and global market perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    This report reviews the development of the biomass gasification technology in Finland over the last two decades. Information on Finnish biomass resources and use, energy economy and national research policy is provided as background. Global biomass resources and potential energy from biomass markets are also assessed based on available literature, to put the development of the gasification technology into a wider perspective of global biomass utilization for energy production. The increasing use of biomass and other indigenous forms of energy has been part and parcel of the Finnish energy policy for some twenty years. Biomass and peat account for almost 20% of the production of primary energy in Finland. As the consumption of biofuels is significantly lower than the annual growth or renewal, the use of bioenergy is considered to be an important measure of reducing carbon dioxide emissions. Research and development on thermal gasification of solid fuels was initiated in the late 1970s in Finland. The principal aim was to decrease the dependence of Finnish energy economy on imported oil by increasing the utilization potential of indigenous fuels. Development in the early 1980s focused on simple atmospheric-pressure fuel gas applications including a gasification heating plant. Eight Bioneer updraft gasifiers (abt 5 MW{sub th}) were constructed in 1982-1986, and a new Bioneer gasifier was commissioned in eastern Finland in 1996. A Pyroflow circulating fluidised-bed gasifies was also commercialized in the mid-1980s; four gasifiers (15-35 MW{sub th}) were commissioned. In the late 1980s the interest in integrated gasification combined-cycle (IGCC) power plants, based on pressurised air gasification of biomass and hot gas cleanup, increased in Finland and in many other countries. The utilization potential for indigenous fuels is mainly in medium-scale combined heat and electricity production (20-150 MW,). Foster Wheeler Energia Oy, Carbona Inc. and Imatran Voima Oy are

  9. Layout of an internally heated gas generator for the steam gasification of coal

    International Nuclear Information System (INIS)

    Feistel, P.P.; Duerrfeld, R.; Heck, K.H. van; Juentgen, H.

    1975-01-01

    Industrial-scale steam gasification of coal using heat from high temperature reactors requires research and development on allothermal gas generators. Bergbau-Forschung GmbH, Essen, does theoretical and experimental work in this field. The experiments deal with reaction kinetics, heat transfer and material tests. Their significance for the layout of a full-scale gas generator is shown. Including material specifications, the feasibility of a gasifier, characterized by a fluid bed volume of 318 m 3 and a heat transferring area of 4000 m 2 , results. The data, now available, are used to determine the gasification throughput from the heat balance, i.e. the equality of heat consumed and heat transferred. Throughputs of about 50 t/hr of coal are possible for a single gas generator, the helium outlet temperature of the HTR being 950 0 C/ Bergbau-Forschung has commissioned a medium-scale pilot plant (200 kg/hr). (Auth.)

  10. Recent advances in oxygen production for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-07-01

    This paper described the Ionic Transport Membrane (ITM) technology that reduces the overall cost of the gasification process by 7 per cent. Gasification is a proven, but expensive technology for producing hydrogen and synthesis gas from low cost hydrocarbon feedstock. Gasification is also an alternative to conventional steam methane reforming based on natural gas. A key cost element in gasification is the production of oxygen. For that reason, Air Products Canada Limited developed a ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates very well with the gasification process and an integrated gasification combined cycle (IGCC) option for production of electrical power from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed how the superior economics of ITM can allow gasification to compete with steam methane reforming and thereby reduce dependency of oil sands development on increasingly scarce and costly natural gas.

  11. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    , air preheating and pyrolysis, hereby very high energy efficiencies can be achieved. Encouraging results are obtained at a 100 kWth laboratory facility. The tar content in the raw gas is measured to be below 25 mg/Nm3 and around 5 mg/Nm3 after gas cleaning with traditional baghouse filter. Furthermore...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...... fuels, and is a suitable design for medium size gasifiers....

  12. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  13. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  14. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. As to the gasifier equipment, fabrication of a considerable number of the main equipment was finished. And, the equipment was sent into the coal gasification power plant and the installation work was done. Concerning gas refining facilities, fabrication of most of the components of the dry desulfurization system was finished, and further, fabrication of part of the piping prefabrication, disk and part of the disk fitting instrument was finished. The partial equipment of the dry dust removal system was also fabricated. About gas turbine facilities, the drawings necessary for each of the equipment fabricated/installed in this fiscal year were made, and at the same time a part of the technical data prepared so far was reviewed according to the progress of design. As to safety environmental facilities, installation work was done of gas treatment furnace, gas cooling system, buffer tank, desulfurizing tower, etc. Besides, design/technical study were made of the total control system, equipment of the indoor switching station, etc. (NEDO)

  15. Report on 1977 result of Sunshine Project. Test research for detailed design of coal gasification plant (pressure fluidized gasification method for mixed material of coal/heavy oil); 1977 nendo sekitan gas ka plant no shosai sekkei no tame no shiken kenkyu seika hokokusho. Sekitan jushitsuyu kongo genryo no kaatsu ryudo gas ka hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    Since fiscal 1974, development has been implemented for the coal/heavy oil hybrid gasification process which converts coal and heavy oil simultaneously to clean fuel gas. With the purpose of obtaining basic data to be reflected on the detailed design of 7,000 Nm{sup 3}/d pilot plant of the subject process started in fiscal 1977, implemented this year were (1) test on high pressure valves and (2) research on operation studies. In (1), a life test device for high pressure operation valves will be designed and manufactured so that basic materials may be obtained for the development of durable operation valves to be used in a high temperature and high pressure coal/heavy oil slurry feeding device. Operation studies of a low pressure slurry feeding device will be continued, accumulating data required for the design of the coal/heavy oil slurry feeding device. In (2), studies will be started on the operation of a 300{phi}(diameter) internal heat type low pressure gasification device, collecting know-how for the model and design of the gasification furnace of the pilot plant. Gasification experiments will be continued using the high pressure gasification device, so that gasification characteristics under a high pressure will be grasped to examine the optimization of gasification conditions. In addition, a fluidized bed quencher test equipment will be designed and manufactured. (NEDO)

  16. Design and assembling of a moving bed column to operate with ion exchange resin

    International Nuclear Information System (INIS)

    Franca Junior, J.M.; Abrao, A.

    1976-01-01

    A new moving bed column specially designed to operate with ion exchange resins in such peculiar situations where there is gas evolution is reported. The second part reports the use of the column in the preparation of nuclear grade ammonium uranyl tricarbonate (AUTC), from crude uranyl nitrate solution. Uranium-VI is binded into a strong cationic ion exchanger and then eluted with (NH 4 ) 2 CO 3 . The final product is crystallized from the eluate by simply cooling down the temperature to 5 0 or by addition of ethanol. Loading of resin with uranyl ion, its elution with ammonium carbonate and the crystallization of AUTC is described [pt

  17. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  18. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    Science.gov (United States)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  19. Bed Bugs and Schools

    Science.gov (United States)

    Bed bugs have long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. They are successful hitchhikers, and can move from an infested site to furniture, bedding, baggage, boxes, and clothing.

  20. Report on the gasification technology sub-committee of the coal gasification committee in fiscal 1988; 1989 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    This paper is a report on the gasification technology sub-committee of the coal gasification committee in fiscal 1988. It summarizes the report mainly on the data distributed at the technology sub-committee meetings. In developing the coal utilizing hydrogen manufacturing technology, a high-temperature coal gasification pilot plant of the jet flow bed type with a capacity of 50 tons a day will be built. The plan covers five years from fiscal 1986 through fiscal 1990. Fiscal 1988 has performed the detailed design, civil and building constructions, device fabrication, and their installation. Studies are also being carried out by using a small equipment as the studies on supports. For furnace materials in trial production and development of the materials, discussions are given on iron oxide burst (refractories made mainly of Cr ore absorb iron oxide from slag, resulting in deterioration), for which improvement will be attempted. The crucible method and the slag mounting method were used for tests as the purely static testing method. Although no abnormal expansion in the structure can be recognized in any of the tested materials, internal penetration of slag takes place in association with temperature rise. Difference in melting loss appears in the surface parts, which requires more detailed investigation. ZrB2 (ceramics and sintered refractory) is a promising material. Evaluation was given on healthiness of repaired parts under heating cycle, whereas a possibility of maintaining the healthiness was recognized. High-purity sintered alumina showed excellent corrosion resistance. (NEDO)

  1. Iron-based materials as tar cracking catalyst in waste gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nordgreen, Thomas

    2011-07-01

    The treatment of municipal solid waste (MSW) in Sweden has changed during the past decades due to national legislation and European Union directives. The former landfills have more or less been abandoned in favour of material recycling and waste incineration. On a yearly basis approximately 2.2 million tonnes waste are incinerated in Sweden with heat recovery and to some extent also with electricity generation, though at a low efficiency. It is desirable to alter this utilisation and instead employ MSW as fuel in a fluid bed gasification process. Then electrical energy may be produced at a much higher efficiency. However, MSW contain about 1 % chlorine in the form of ordinary table salt (NaCl) from food scraps. This implies that the tar cracking catalyst, dolomite, which is normally employed in gasification, will suffer from poisoning if applied under such conditions. Then the tar cracking capacity will be reduced or vanish completely with time. Consequently, an alternative catalyst, more resistant to chlorine, is needed. Preliminary research at KTH has indicated that iron in its metallic state may possess tar cracking ability. With this information at hand and participating in the project 'Energy from Waste' an experimental campaign was launched. Numerous experiments were conducted using iron as tar cracking catalyst. First iron sinter pellets from LKAB were employed. They were reduced in situ with a stream of hydrogen before they were applied. Later iron-based granules from Hoeganaes AB were tested. These materials were delivered in the metallic state. In all tests the KTH atmospheric fluidised bed gasifier with a secondary catalytic reactor housing the catalytic material was deployed. Mostly, the applied fuel was birch. The results show that metallic iron possesses an intrinsic ability, almost in the range of dolomite, to crack tars. Calculations indicate that iron may be more resistant to chlorine than dolomite. The exploration of metallic iron

  2. Modeling and comparative assessment of bubbling fluidized bed gasification system for syngas production - a gateway for a cleaner future in Pakistan.

    Science.gov (United States)

    Shehzad, Areeb; Bashir, Mohammed J K; Horttanainen, Mika; Manttari, Mika; Havukainen, Jouni; Abbas, Ghulam

    2017-06-19

    The present study explores the potential of MSW gasification for exergy analysis and has been recently given a premier attention in a region like Pakistan where the urbanization is rapidly growing and resources are few. The plant capacity was set at 50 MW based on reference data available and the total exergetic efficiency was recorded to be 31.5 MW. The largest irreversibility distribution appears in the gasifier followed by methanation unit and CO 2 capture. The effect of process temperature, equivalence ratio and MSW moisture content was explored for inspecting the variations in syngas composition, lower heating value, carbon conversion efficiency and cold gas efficiency. Special attention of the paper is paid to the comparative assessment of MSW gasification products in four regions, namely Pakistan, USA, UAE and Thailand. This extended study gave an insight into the spectrum of socioeconomic conditions with varying MSW compositions in order to explain the effect of MSW composition variance on the gasification products.

  3. Thermal valorization of post-consumer film waste in a bubbling bed gasifier.

    Science.gov (United States)

    Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A

    2013-07-01

    The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Texaco gasification power systems for clean energy

    International Nuclear Information System (INIS)

    Quintana, M.E.; Thone, P.W.

    1991-01-01

    The Texaco Gasification Power Systems integrate Texaco's proprietary gasification technology with proven power generation and energy recovery schemes for efficient and environmentally superior fuel utilization. Texaco's commercial experience on gasification spans a period of over 40 years. During this time, the Texaco Gasification Process has been used primarily to manufacture synthesis gas for chemical applications in one hundred commercial installations worldwide. Power generation using the Texaco Gasification Power Systems (TGPS) concept has been successfully demonstrated at the Texaco-sponsored Cool Water Coal Gasification Program in California. The environmental superiority of this technology was demonstrated by the consistent performance of Cool Water in exceeding the strict emission standards of the state of California. Currently, several TGPS projects are under evaluation worldwide for power generation in the range of 90MW to 1300MW

  5. Costs of elephant grass gasification for rural electric power generation; Custos da gaseificacao de graminea para eletrificacao rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos

    2000-07-01

    Biomass gasification is an sustainable option for energy supply, which presents low pollutants emission rate and allows - through the global cycle of growing and consumption of feedstock (vegetables), a balance between consumption and production of carbonic gas, preventing an increase of the carbonic gas levels in the atmosphere. Fluidized bed gasification is a means to increase the energetic use of biomass. A gasifier was built with internal diameter of 400 mm and total height of 4600 mm . The equipment was tested for gasification of elephant-grass (Pennisetum purpureum) at a 100 kg/h rate. It was evaluated an adequate diesel-electric-generator to work at hybrid regime, using 70% biomass gas and 30% diesel. With the equipment's construction costs, could be made a first economic feasibility assessment on the pilot-plant to produce electricity by grass gasification (elephant-grass) at rural communities. The annual cost of the investment was estimated. The cost of electricity was calculated as a function of the capital cost and the diesel price. The methods and equations for economic assessment are presented. This study found values between 0,16 and 0,23 R$/kWh for the produced electricity, what points towards the feasibility of this project. (author)

  6. Nitrogen chemistry in combustion and gasification - mechanisms and modeling

    International Nuclear Information System (INIS)

    Kilpinen, P.; Hupa, M.

    1998-01-01

    The objective of this work has been to increase the understanding of the complex details of gaseous emission formation in energy production techniques based on combustion and/or gasification. The aim has also been to improve the accuracy of mathematical furnace models when they are used for predicting emissions. The main emphasis has been on nitrogen oxides (NO x , N 2 O). The work supports development of cleaner and more efficient combustion technology. The main emphasis has been on combustion systems that are based on fluidized bed technology including both atmospheric and pressurized conditions (BFBC, CFBC, PFBC/G). The work has consisted of advanced theoretical modeling and of experiments in laboratory devices that have partly been made in collaboration with other LIEKKI projects. Two principal modeling tools have been used: detailed homogeneous chemical kinetic modeling and computational fluid dynamic simulation. In this report, the most important results of the following selected items will be presented: (1) Extension of a detailed kinetic nitrogen and hydrocarbon oxidation mechanism into elevated pressure, and parametric studies on: effect of pressure on fuel-nitrogen oxidation under PFBC conditions, effect of pressure on selective non-catalytic NO x reduction under PFBC conditions, effect of different oxidizers on hot-gas cleaning of ammonia by means of selective oxidation in gasification gas. (2) Extension of the above mechanism to include chlorine reactions at atmospheric pressure, and parametric studies on: effect of HCl on CO burn-out in FBC combustion of waste. (3) Development of more accurate emission prediction models: incorporation of more accurate submodels on hydrocarbon oxidation into CFD furnace models, and evaluation of different concepts describing the interaction between turbulence and chemical reaction, development of a mechanistic detailed 1.5-dimensional emission model for circulating fluidized bed combustors. (orig.) 14 refs

  7. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  8. DDGS chars gasification with CO{sub 2}: a kinetic study using TG analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangmei; Jong, Wiebren de; Fu, Ningjie; Verkooijen, Adrian H.M. [Delft University of Technology, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft (Netherlands)

    2011-12-15

    Dry Distiller's Grains with Solubles (DDGS) is a by-product during ethanol production from cereals which is currently mainly used as feedstock for cattle. With the growth of the ethanol industry, the increasing supply of DDGS may saturate the livestock feed market; thus, its potential applications need to be explored. DDGS gasification in a 100-kW{sub th} circulating fluidized bed (CFB) steam-O{sub 2} blown gasifier has been studied. However, the modeling of DDGS gasification process encounters difficulties due to the unavailable knowledge of DDGS char gasification kinetics. Therefore, in this paper, gasification kinetics of DDGS char with CO{sub 2} was investigated using thermogravimetric analysis (TGA). Two different types of char samples have been tested. Char type one (PYR-Char) was obtained after DDGS pyrolysis in a TGA at a final temperature of 750 C or 850 C for 20 min. Char type two (CFB-Char) was obtained after DDGS gasification in the 100-kW{sub th} CFB gasifier within the temperature range of 790 C to 820 C with a steam/biomass mass ratio of 0.81 and oxygen to biomass stoichiometric ratio of approximately 0.38. The influences of pyrolysis temperature (750 C, 850 C), heating rate (10 C/min, 30 C/min, 50 C/min, 70 C/min), CO{sub 2} concentration (10, 20, 30 vol.%), and gasification temperature (900 C, 1,000 C, 1,100 C) on the reaction rate of char-CO{sub 2} reaction were determined. Two representative gas-solid reaction models, the volumetric reaction model (VRM) and the shrinking core model (SCM) were applied in order to determine kinetic parameters. It was found that the calculated activation energy (E{sub a}) values using SCM were slightly lower than those using VRM. The calculated E{sub a} values for PYR-Char using both models were in the range of 100-165 kJ/mol, while the calculated E{sub a} values for CFB-Char were in the range of 55-100 kJ/mol. It was observed by scanning electron microscopy (SEM) that CFB-Char was more fragile and PYR

  9. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  10. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  11. Reports on 1977 result of Sunshine Project. R and D on high calorie gas manufacturing technology (molten salt/lime slurry bath gasification method); 1977 nendo kokarori gas seizo gijutsu no kenkyu kaihatsu seika hokokusho. Yoyuen sekkai slurry yo gas ka hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    The following results were obtained by fundamental studies on molten salt/lime slurry bath gasification method. A comparison between a gasification process in a literature and the subject process shows the characteristics as follows. It is necessary to withdraw a high temperature molten salt slurry from under pressurization to atmospheric pressure and to separate only the ash content from other components; however, a large burden of this operation is a problem. In addition, CaO reacts with a part of the ash, making complete recovery of CaO difficult. From these two reasons, the subject gasification process has disadvantage, compared with the fluidized-bed process, against coal that contains much ash content. The gasification process, however, has the following advantage. It can reduce oxygen usage. It is unaffected by the grain size and caking of coal. The reaction rate of CaO in carbonation is several times greater in molten salt than in a fluidized bed. The heat of reaction of CaO for carbonation is an exothermic reaction and can supply several tens of percentages of the heat of reaction in coal gasification. The desulfurization effect of CaO is great. Molten salt has a catalytic effect, making particularly the reaction rate of methanization several times greater. (NEDO)

  12. A review of the primary measures for tar elimination in biomass gasification processes

    International Nuclear Information System (INIS)

    Devi, Lopamudra; Ptasinski, K.J.; Janssen, F.J.J.G.

    2003-01-01

    Tar formation is one of the major problems to deal with during biomass gasification. Tar condenses at reduced temperature, thus blocking and fouling process equipments such as engines and turbines. Considerable efforts have been directed on tar removal from fuel gas. Tar removal technologies can broadly be divided into two approaches; hot gas cleaning after the gasifier (secondary methods), and treatments inside the gasifier (primary methods). Although secondary methods are proven to be effective, treatments inside the gasifier are gaining much attention as these may eliminate the need for downstream cleanup. In primary treatment, the gasifier is optimized to produce a fuel gas with minimum tar concentration. The different approaches of primary treatment are (a) proper selection of operating parameters, (b) use of bed additive/catalyst, and (c) gasifier modifications. The operating parameters such as temperature, gasifying agent, equivalence ratio, residence time, etc. play an important role in formation and decomposition of tar. There is a potential of using some active bed additives such as dolomite, olivine, char, etc. inside the gasifier. Ni-based catalyst are reported to be very effective not only for tar reduction, but also for decreasing the amount of nitrogenous compounds such as ammonia. Also, reactor modification can improve the quality of the product gas. The concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance. Some aspects of primary methods and the research and development in this area are reviewed and cited in the present paper

  13. The Safety of Hospital Beds: Ingress, Egress, and In-Bed Mobility.

    Science.gov (United States)

    Morse, Janice M; Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients' ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients' use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated.

  14. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  15. Biomass gasification in electric power production; Gaseificacao de biomassa na producao de eletricidade

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P. de; Ennes, Sergio A.W. [Companhia Energetica de Sao Paulo, SP (Brazil); Corsetti, Marilena

    1992-12-31

    The main objective of this work is to evaluate the technical and economical viability of thermoelectric power generation based on biomass. The technology of gasification of sugar cane bagasse in fluidized bed and its influences in the generation or co-generation process in gas turbines is analysed. The potential of such kind of generation as well as the costs are indicated. Such potential are compared to those of the conventional technologies of co-generation using fuel oil and natural gas in the industry 10 refs., 2 figs., 4 tabs.

  16. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  17. Steam Gasification of Sawdust Biochar Influenced by Chemical Speciation of Alkali and Alkaline Earth Metallic Species

    Directory of Open Access Journals (Sweden)

    Dongdong Feng

    2018-01-01

    Full Text Available The effect of chemical speciation (H2O/NH4Ac/HCl-soluble and insoluble of alkali and alkaline earth metallic species on the steam gasification of sawdust biochar was investigated in a lab-scale, fixed-bed reactor, with the method of chemical fractionation analysis. The changes in biochar structures and the evolution of biochar reactivity are discussed, with a focus on the contributions of the chemical speciation of alkali and alkaline earth metallic species (AAEMs on the steam gasification of biochar. The results indicate that H2O/NH4Ac/HCl-soluble AAEMs have a significant effect on biochar gasification rates. The release of K occurs mainly in the form of inorganic salts and hydrated ions, while that of Ca occurs mainly as organic ones. The sp3-rich or sp2-sp3 structures and different chemical-speciation AAEMs function together as the preferred active sites during steam gasification. H2O/HCl-soluble AAEMs could promote the transformation of biochar surface functional groups, from ether/alkene C-O-C to carboxylate COO− in biochar, while they may both be improved by NH4Ac-soluble AAEMs. H2O-soluble AAEMs play a crucial catalytic role in biochar reactivity. The effect of NH4Ac-soluble AAEMs is mainly concentrated in the high-conversion stage (biochar conversion >30%, while that of HCl-soluble AAEMs is reflected in the whole activity-testing stage.

  18. Development of a computer program for the simulation of one-dimensional fixed- and moving-bed reactors

    International Nuclear Information System (INIS)

    Hartner, P.

    1996-11-01

    Chemical reactors with a flow through a bed of solid particles are of great importance in the processing industry. Modern computational tools allow for an improved characterization of the complex facts in such reactors leading to new opportunities of optimizing the reactor operation and environmental effects. This thesis is concerned with the development of the one-dimensional simulation software REASIM. The program covers the effects within a reacting bed and is designed for fixed and moving beds. To describe the reactor the balances for energy, momentum and mass are solved. The drying of the particles, pyrolysis and chemical gas-solid and gas-gas reactions are considered. For the description of the chemical gas-solid reactions a particle model for porous solids is developed. The calculation of mass transfer and of chemical reactions is strictly separated. All parameters necessary for the model can be measured in the laboratory. The model equations form a system of partial differential equations. This system is transformed to a set of ordinary differential equations. It is found that the best discretization method is the method of finite differences with the upwind-scheme for situations where convection is strong. The program has a modular structure making it is easy to replace parts of the program by new, improved modules if they become available. (author)

  19. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.

    Science.gov (United States)

    Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H

    2005-01-01

    Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be treatment) and sufficient P-removal.

  20. Pengolahan Lindi Menggunakan Moving Bed Biofilm Reactor dengan Proses Anaerobik-Aerobik-Anoksik

    Directory of Open Access Journals (Sweden)

    Nuriflalail Rio Jusepa

    2017-01-01

    Full Text Available Lindi mengandung konsentrasi organik, Total Kjeldahl Nitrogen, amonium, nitrit dan nitrat yang tinggi sehingga lindi yang tidak diolah dapat mencemari lingkungan. Pengolahan biologis dengan sistem fluidized attached growth seperti Moving Bed Biofilm Reactor (MBBR dapat digunakan untuk menurunkan senyawa organik dan senyawa nitrogen. Konsentrasi organik dan nitrogen yang tinggi pada lindi dapat diolah dengan mengatur proses aerobik-anaerobik-anoksik di dalam MBBR. Kapasitas pengolahan MBBR yang digunakan sebesar 10 L dan media Kaldness (K1 sebanyak 2 L. MBBR dioperasikan dengan sistem batch, dengan kondisi aerobik yang berasal dari aerator dan pompa submersible, kondisi anaerobik berasal dari pompa submersible saja, dan kondisi anoksik yang berasal dari pompa submersible dan aerator. Hasil penelitian ini menunjukkan bahwa MBBR dapat digunakan untuk menurunkan senyawa nitrogen dan senyawa organik. Efisiensi penyisihan optimum senyawa organik sebesar 87% pada proses anaerobik baik pada sistem fluidized attached growth maupun suspended growth. Efisiensi penyisihan optimum senyawa nitrogen sebesar 72% pada proses anoksik baik pada sistem fluidized attached growth maupun suspended growth.

  1. Operation of a semi-technical pilot plant for nuclear aided steam gasification of coal

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    After intensive investigations on a small scale, the principle of the process has been tested in a semi-technical pilot plant. In its gasifier a fluidized bed of approx. 1 m 2 cross-section and of up to 4 m height is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it, which is heated electrically. The plant was commissioned in 1976 and has been in hot operation for approx. 23000 h, over 13000 h whereof account for coal gasification. Roughly 1600 t of coal have been put through. During recent years the processing of German caking long-flame gas coal and the marked improvement of the process by the use of catalysts have been demonstrated successfully. (orig.)

  2. Gasification of Phycoremediation Algal Biomass

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Sharara

    2015-03-01

    Full Text Available Microalgae have been utilized in wastewater treatment strategies in various contexts. Uncontrolled algal species are a cheap and effective remediation strategy. This study investigates the thermochemical potential of wastewater treatment algae (phycoremediation as a means to produce renewable fuel streams and bio-products. Three gasification temperature levels were investigated in an auger gasification platform: 760, 860, and 960 °C. Temperature increases resulted in corresponding increases in CO and H2 concentrations in the producer gas from 12.8% and 4.7% at 760 °C to 16.9% and 11.4% at 960 °C, respectively. Condensable yields ranged between 15.0% and 16.6%, whereas char yields fell between 46.0% and 51.0%. The high ash content (40% on a dry basis was the main cause of the elevated char yields. On the other hand, the relatively high yields of condensables and a high carbon concentration in the char were attributed to the low conversion efficiency in this gasification platform. Combustion kinetics of the raw algae, in a thermogravimetric analyzer, showed three consecutive stages of weight loss: drying, devolatilization, and char oxidation. Increasing the algae gasification temperature led to increases in the temperature of peak char oxidation. Future studies will further investigate improvements to the performance of auger gasification.

  3. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas

    NARCIS (Netherlands)

    Spallina, V.; Chiesa, P.; Martelli, E; Gallucci, F.; Romano, M.C.; Lozza, G.; Sint Annaland, van M.

    2015-01-01

    This paper deals with the design and operation strategies of dynamically operated packed-bed reactors (PBRs) of a chemical looping combustion (CLC) system included in an integrated gasification combined cycle (IGCC) for electric power generation with low CO2 emission from coal. The CLC reactors,

  4. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  5. Catalytic technology in the energy/environment field. Utilization of catalyst in coal pyrolysis and gasification processes; Energy kankyo bun`ya ni okeru shokubai gijutsu. Sekitan no netsubunkai oyobi gas ka ni okeru shokubai no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y. [Tohoku University, Institute for Chemical Reaction Science (Japan)

    1998-05-20

    This review article focuses on the utilization of several catalysts during coal pyrolysis and gasification. In situ or off line catalytic upgrading of volatile matters during pyrolysis of low rank coals is carried out in pressurized H2 with different reactors to produce BTX (benzene, toluene and xylene). When NiSO4 and Ni(OH)2 are used in the hydropyrolysis of Australian brown coal using an entrained bed reactor with two separated reaction zones, BTX yield reaches 18-23%. MS-13X zeolite and USY zeolite mixed with Al2O3 are effective for producing BTX with powder-particle fluidized bed and two-stage reactors, respectively. Catalytic gasification is described from a standpoint of direct production of SNG(CH4) from coal and steam. When K2CO3 and Ni are compared for this purpose, Ni catalyst is more suitable at low temperatures of 500-600degC, where CH4 formation is thermodynamically favorable. Fe and Ca catalysts can successfully be prepared from inexpensive raw materials and are rather active for steam gasification at {>=}700degC. The use of upgrading and gasification catalysts is discussed in terms of preparation, performance, life and recovery. 27 refs., 6 figs., 2 tabs.

  6. Report on results of research. Basic studies on characteristics of coal char gasification under pressure; Sekitan char no kaatsuka ni okeru gas ka tokuseino kiso kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper explains basic studies on characteristics of coal char gasification under pressure. Hydro-gasification of coal needs as a gasifying agent a large amount of hydrogen, which is effectively produced by the water gasification of exhaust unreacted residual char. In fiscal 1975, gasification was tested on Taiheiyo coal carbonized char by an atmospheric fluidized gasifier of 28 mm bore. In fiscal 1976, experiment was conducted under pressure by fully improving the auxiliary safety equipment. The char and gas yield increased with higher pressure in pressurized carbonization by an autoclave. In fiscal 1977, clinker was successfully prevented by using quartz sand for a fluidized medium. In fiscal 1978, two-stage continuous gasification was examined. In fiscal 1979, correlation was determined between operation factors such as gasification pressure, temperature, etc., and clinker formation/char reactivity. An experiment was conducted for particle pop-out using a pressurized fluidized bed of 100 mm inner diameter, with the pop-out quantity found to be proportional to the 0.38th power of a pressure. A high pressure fluidized gasifier was built having a char processing capacity of 1 t/day, 20 atmospheric pressure, and an inner diameter of 100 mm. In fiscal 1980, this device was continuously operated, elucidating problems for the practicability. (NEDO)

  7. Removal of phenol by powdered activated carbon prepared from coal gasification tar residue.

    Science.gov (United States)

    Wang, Xiong-Lei; Shen, Jun; Niu, Yan-Xia; Wang, Yu-Gao; Liu, Gang; Sheng, Qing-Tao

    2018-03-01

    Coal gasification tar residue (CGTR) is a kind of environmentally hazardous byproduct generated in fixed-bed coal gasification process. The CGTR extracted by ethyl acetate was used to prepare powdered activated carbon (PAC), which is applied later for adsorption of phenol. The results showed that the PAC prepared under optimum conditions had enormous mesoporous structure, and the iodine number reached 2030.11 mg/g, with a specific surface area of 1981 m 2 /g and a total pore volume of 0.92 ml/g. Especially, without loading other substances, the PAC, having a strong magnetism, can be easily separated after it adsorbs phenol. The adsorption of phenol by PAC was studied as functions of contact time, temperature, PAC dosage, solution concentration and pH. The results showed a fast adsorption speed and a high adsorption capacity of PAC. The adsorption process was exothermic and conformed to the Freundlich models. The adsorption kinetics fitted better to the pseudo-second-order model. These results show that CGTR can be used as a potential adsorbent of phenols in wastewater.

  8. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  10. Gasification : converting low value feedstocks to high value products

    International Nuclear Information System (INIS)

    Koppel, P.; Lorden, D.

    2009-01-01

    This presentation provided a historic overview of the gasification process and described the process chemistry of its two primary reactions, notably partial oxidation and steam reforming. The gasification process involves converting low value carbonaceous solid or liquid feeds to a synthetic gas by reacting the feed with oxygen and steam under high pressure and temperature conditions. Since the gasifier operates under a reducing environment instead of an oxidizing environment, mist sulphur is converted to hydrogen sulphide instead of sulphur dioxide. The gasification process also involves cleaning up synthetic gas and acid gas removal; recovery of conventional sulphur; and combustion or further processing of clean synthetic gas. This presentation also outlined secondary reactions such as methanation, water shift, and carbon formation. The negative effects of gasification were also discussed, with particular reference to syngas; metal carbonyls; soot; and slag. Other topics that were presented included world syngas production capacity by primary feedstock; operating IGCC projects; natural gas demand by oil sands supply and demand considerations; reasons for using the gasification process; gasifier feedstocks; and gasification products. The presentation concluded with a discussion of gasification licensors; gasification technologies; gasification experience; and the regulatory situation for greenhouse gas. Gasification has demonstrated excellent environmental performance with sulphur recovery greater than 99 per cent, depending on the the recovery process chosen. The opportunity also exists for carbon dioxide recovery. tabs., figs.

  11. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  12. Microbiological and chemical approaches to degradation of mecoprop in a Moving-Bed Biofilm-Reactor

    DEFF Research Database (Denmark)

    Escola, Monica; Tue Kjærgaard Nielsen, Tue; Hansen, Lars Hestbjerg

    Micro-pollutants are ubiquitous in wastewater effluents. Therefore, in-situ treatments of highly polluted water or polishing treatments after classical wastewater treatment have been proposed as a solution. Moving Bed Biofilm-Reactors (MBBRs) are a recent-developed biofilm technology for wastewater...... treatment. MBBRs consist incontain biofilms which are grown on small (1-4 cm diameter) plastic chips that are suspended and mixed in a water tank. These systems have been recognized as robust and versatile. Besides, biofilm systems fdescribe acilitatedemonstrate a clear, but slow, biodegradation of some...... recalcitrant compounds. For all these reasonsThus, MBBRs are pointed as a valuable tool for the elimination of micro-pollutants. Several studies have focused in on describing degradation processes in biofilm by quantifying the loss of micro-pollutants over time. This can be helpful foraid optimizing...

  13. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography.

    Science.gov (United States)

    Chung, Ji-Woo; Kim, Kyung-Min; Yoon, Tae-Ung; Kim, Seung-Ik; Jung, Tae-Sung; Han, Sang-Sup; Bae, Youn-Sang

    2017-12-22

    A novel power partial-discard (PPD) strategy was developed as a variant of the partial-discard (PD) operation to further improve the separation performance of the simulated moving bed (SMB) process. The PPD operation varied the flow rates of discard streams by introducing a new variable, the discard amount (DA) as well as varying the reported variable, discard length (DL), while the conventional PD used fixed discard flow rates. The PPD operations showed significantly improved purities in spite of losses in recoveries. Remarkably, the PPD operation could provide more enhanced purity for a given recovery or more enhanced recovery for a given purity than the PD operation. The two variables, DA and DL, in the PPD operation played a key role in achieving the desired purity and recovery. The PPD operations will be useful for attaining high-purity products with reasonable recoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Attached biomass growth and substrate utilization rate in a moving bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    J. J. Marques

    2008-12-01

    Full Text Available A moving bed bioreactor containing cubes of polyether foam immersed in a synthetic wastewater (an aqueous mixture of meat extract, yeast extract, dextrose, meat peptone, ammonium chloride, potassium chloride, sodium chloride, sodium bicarbonate, potassium mono-hydrogen-phosphate and magnesium sulphate was used to evaluate bacterial growth and biomass yield parameters based on Monod's equation. The wastewater was supplied in the bottom of the equipment flowing ascending in parallel with a diffused air current that provided the mixing of the reactor content. Suspended and attached biomass concentration was measured through gravimetric methods. Good agreement was found between experimental kinetic parameters values and those obtained by other researchers. The only significant difference was the high global biomass content about 2 times the values obtained in conventional processes, providing high performance with volumetric loading rates up to 5.5 kg COD/m³/d.

  15. Development of Moving Bed Technology for Heat Treatment and Grinding of Dismantled Concrete

    International Nuclear Information System (INIS)

    Kang, Yong

    2009-04-01

    The factors such as gas or fluid velocity, length, width and depth of each stage, number of Zig-Zag stage, angle of each stage, position of feed stage, size and amount of feed material, amount of treated concrete waste, method of fluid distribution, surface area of heat transfer, position of heater, method of heating, temperature difference between the heater and the material, amount of heat have been found to be important factors in the system. The capability of the system has been analyzed and evaluated by means of total efficiency and grade separation efficiency the experiments by using the simulated Zig-Zag type moving bed flow process with bench scale(3.2m high, Ifi-stage) have shown that the total efficiency has been in the range of 92% - 95% and the grade efficiency of 93% - 95%, respectively, elucidating that the system is quite good

  16. Operating experience in the gasification of municipal waste and other waste at the `secondary feedstocks recycling centre` (SVZ) Schwarze Pumpe; Betriebserfahrungen zur Vergasung von Hausmuell und anderen Abfaellen im Sekundaerrohstoffverwertungszentrum Schwarze Pumpe (SVZ)

    Energy Technology Data Exchange (ETDEWEB)

    Buttker, B. [Sekundaerrohstoffverwertungszentrum Schwarze Pumpe GmbH, Schwarze Pumpe (Germany)

    1998-12-31

    The business purpose of SVZ Schwarze Pumpe is the production of synthesis gas from hydro-carbon-containing waste material and the use of synthesis gas in gas production or energy generation. For synthesis gas production, the techniques of packed-bed pressure gasification (FDV) and entrained-flow gasification (FSV) are used in close interconnection. Process control is such that only inert slags accrue, apart from the final products methanol and gypsum as well as generated energy in the form of electricity, process steam and heat. Currently, the following materials are mainly used in gasification: plastic materials after being subjected to conditioning, industrial and municipal sewage sludge, shredded goods, contaminated used wood, contaminated used oil, oil components obtained from oil/water mixtures, and slurry products. A special in-house know-how for waste oil gasification, and for the combined gasification of solid waste and coal by packed-bed pressure gasification with gradual stepping-up of the waste portion was realized. (orig.) [Deutsch] Der Geschaetszweck des SVZ Schwarze Pumpe besteht in der Herstellung von Synthesegas aus kohlenwasserstoffhaltigen Einsatzstoffen und in der stofflichen und energetischen Nutzung des Wertstoffes Synthesegas. Zur Synthesegasgewinnung werden die Verfahren der Festbettdruckvergasung (FDV) und Flugstromvergasung (FSV) in einer engen verbundwirtschaftlichen Kopplung angewandt. Die Betriebsfuehrung ist so gestaltet, dass neben den Endprodukten Methnaol und Gips sowie erzeugter Energie in Form von Strom, Prozessdampf und Waerme nur noch inerte Schlacken entstehen. Die Haupteinsatzprodukte fuer die Vergasung sind ggw. aufbereitete Altkunststoffe, industrielle und kommunale Klaerschlaemme, Shreddergueter, kontaminiertes Altholz, kontaminierte Altoele, Oelkomponenten, die aus Oel-Wasser-Gemischen gewonnen werden, und Slurry-Produkte. Es wurde ein spezielles Betriebs-Know-how zur Abfalloel-Vergasung und zur kombinierten Vergasung

  17. Dynamic models of staged gasification processes. Documentation of gasification simulator; Dynamiske modeller a f trinopdelte forgasningsprocesser. Dokumentation til forgasser simulator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)

  18. Subtask 4.2 - Coal Gasification Short Course

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Galbreath

    2009-06-30

    Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

  19. Gasification of coal making use of nuclear processing heat

    International Nuclear Information System (INIS)

    Schilling, H.D.; Bonn, B.; Krauss, U.

    1981-01-01

    In the chapter 'Gasification of coal making use of nuclear processing heat', the steam gasification of brown coal and bituminous coal, the hydrogenating gasification of brown coal including nuclear process heat either by steam cracking methane in the steam reformer or by preheating the gasifying agent, as well as the hydrogenating gasification of bituminous coal are described. (HS) [de

  20. The use of moving bed bio-reactor to laundry wastewater treatment

    Science.gov (United States)

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni

    2017-11-01

    Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.

  1. Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char

    International Nuclear Information System (INIS)

    Gil-Lalaguna, N.; Sánchez, J.L.; Murillo, M.B.; Atienza-Martínez, M.; Gea, G.

    2014-01-01

    Thermo-chemical treatment of sewage sludge is an interesting option for recovering energy and/or valuable products from this waste. This work presents an energetic assessment of pyrolysis and gasification of sewage sludge, also considering the prior sewage sludge thermal drying and the gasification of the char derived from the pyrolysis stage. Experimental data obtained from pyrolysis of sewage sludge, gasification of sewage sludge and gasification of char (all of these performed in a lab-scale fluidized reactor) were used for the energetic calculations. The results show that the energy contained in the product gases from pyrolysis and char gasification is not enough to cover the high energy consumption for thermal drying of sewage sludge. Additional energy could be obtained from the calorific value of the pyrolysis liquid, but some of its properties must be improved facing towards its use as fuel. On the other hand, the energy contained in the product gas of sewage sludge gasification is enough to cover the energy demand for both the sewage sludge thermal drying and the gasification process itself. Furthermore, a theoretical study included in this work shows that the gasification efficiency is improved when the chemical equilibrium is reached in the process. - Highlights: • 4 MJ kg −1 for thermal drying of sewage sludge (SS) from 65 to 6.5 wt.% of moisture. • 0.15 MJ kg −1 for thermal decomposition of sewage sludge during fast pyrolysis. • Not enough energy in gases from SS pyrolysis and char gasification for thermal drying. • Enough energy in SS gasification gas for thermal drying and gasification process. • Gasification efficiency improves when equilibrium is reached in the process

  2. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  3. Radiolytic carbon gasification

    International Nuclear Information System (INIS)

    Shennan, J.V.

    1980-01-01

    A vast body of knowledge has been accumulated over the past thirty years related to the radiolytic oxidation of the graphite moderator in carbon dioxide cooled Reactors. In the last ten years the dominance of the internal pore structure of the graphite in controlling the rate of carbon gasification has been steadily revealed. The object of this paper is to sift the large body of evidence and show how internal gas composition and hence carbon gasification is controlled by the virgin pore structure and the changes in pore structure brought about by progressive radiolytic oxidation. (author)

  4. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  5. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    Science.gov (United States)

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Statistical description of flume experiments on mixed-size bed-load transport and bed armoring processes

    Science.gov (United States)

    Chen, D.; Zhang, Y.

    2008-12-01

    The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.

  7. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  8. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    Science.gov (United States)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  9. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    Science.gov (United States)

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gasification potential for process industries in Languedoc-Roussillon

    International Nuclear Information System (INIS)

    2013-06-01

    This study, requested by the French 'BioenergieSud' network, aims at identifying the potentialities of gasification in Languedoc-Roussillon region (France). The goals are: evaluating the degree of information of industrialists with respect to gasification, their present day perception and the different obstacles and levers for the adoption of this technology; estimating the potential market of gasification units in this area through the study of the existing industrial actors; better evaluating the energy needs and expectations of the industrialists from different sectors in order to develop suitable gasification solutions

  11. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    International Nuclear Information System (INIS)

    Ongen, Atakan; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-01-01

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m 3 . • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity

  12. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ongen, Atakan, E-mail: aongen@istanbul.edu.tr; Kurtulus Ozcan, H.; Arayıcı, Semiha

    2013-12-15

    Highlights: • We model calorific value of syn-gas from tannery industry treatment sludge. • We monitor variation of gas composition in produced gas. • Heating value of produced gas is around 1500 kcal/m{sup 3}. • Model predictions are in close accordance with real values. -- Abstract: This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

  13. Technical and economical optimization of wood gasification in a circulating fluidized bed. Final report; Technische und wirtschaftliche Optimierung der Vergasung von Holz in der zirkulierenden Wirbelschicht. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Unger, C.; Heunemann, F.; Dinkelbach, L.

    2002-12-01

    The project's objective was the optimization of a novel process for high efficient combined heat and power production from solid biomass. The processed air blown wood gasification in a pilot scale circulating fluidized bed was added by a catalytic tar reformer which would yield a tar-free gas quality suitable for IC-engine operation. Major efforts were taken for technical improvement of the tar reformer, especially concerning temperature control and cleaning devices which is important for keeping constantly a high activity. Pure natural timber did not yield chemical deactivation at the catalyst whereas the gasification of waste wood yielded decreasing activity which could be partly reversed by special measures taken. Further optimization of the process considered a better automation and improvement of the engine's flue gas emissions. Also a detailed economic consideration and evaluation of the entire process has been carried out. As a result the novel process should have economic advantages compared with conventional technology. (orig.) [German] Gegenstand des Vorhabens war die Weiterentwicklung eines Verfahrens zur effizienteren Strom- und Waermegewinnung aus festen Biobrennstoffen. Durch luftgeblasene Vergasung von Holz im Pilotmassstab in einer zirkulierenden Wirbelschicht und anschliessender katalytischer Teerspaltung konnte ein niederkalorisches Brenngas erzeugt werden, welches zum Betrieb eines Motoren-Blockheizkraftwerks geeignet war. Im Rahmen der Verfahrensoptimierung wurde der katalytische Teer-Reformer, insbesondere in Bezug auf Temperaturfuehrung und die zum Aktivitaetserhalt wichtige Abreinigungsvorrichtung, verbessert. Bei der Vergasung von Naturholz wurde keine chemische Desaktivierung festgestellt. Beim Altholzeinsatz wurde ein ueberwiegend reversibler Aktivitaetsverlust verzeichnet und begruendet. Geeignete Gegenmassnahmen wurden untersucht und beschrieben. Weitere Optimierungen betrafen die Anlagensteuerungstechnik im Hinblick auf die

  14. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  15. Gasification research at Royal Inst. of Technology July 2000 - Jun 2002

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestroem, Krister [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Technology

    2004-05-01

    The project is subdivided into four sub-projects; (1) Pyrolysis for large biomass particles, (2) Analysis of nitrogen-containing compounds during gasification of biomass, (3) Tar analysis and gas phase reactions, and (4) Means to predict fluidised bed agglomeration/sintering in biomass conversion. Within the sub-project 'Pyrolysis for large biomass particles' a theoretical pyrolysis model has been developed. Different kinetic schemes describing the chemistry of wood pyrolysis have been evaluated. Various shrinkage models have also been developed and evaluated. An overlaying drying model is currently being added to the above model. A major part of the work in this highly theoretical sub-project has to do with code handling and code optimisation. With respect to the sub-project 'Analysis of nitrogen-containing compounds during gasification of biomass' it can be concluded that the feeding position influences ammonia conversion in a fluidised bed. The most likely explanation for this is that the contact between the pyrolysis gas and the oxygen vary depending on the feeding position. Additionally, a extractive method analysis of nitrogen containing hetreocyclical compounds been developed. It is to early to draw definite conclusions with respect to the applicability and quality of this suggested method. Within the sub-project 'Tar analysis and gas phase reactions' our SPA-method has been developed further for analysis of (very) low tar concentrations. The SPA-method is today used almost as a standard in many laboratories. We are actively involved in the pan-European work aiming to standardise tar sampling and tar analysis. The sub-project 'Means to predict fluidised bed agglomeration/sintering in biomass conversion' has resulted in an empirical regression expression for predicting defluidisation/sintering. The basis for the expression are 129 earlier made tests at KTH and TPS. Parameters that seems to influence sintering the most

  16. Evaluation of advanced coal gasification combined-cycle systems under uncertainty

    International Nuclear Information System (INIS)

    Frey, H.C.; Rubin, E.S.

    1992-01-01

    Advanced integrated gasification combined cycle (IGCC) systems have not been commercially demonstrated, and uncertainties remain regarding their commercial-scale performance and cost. Therefore, a probabilistic evaluation method has been developed and applied to explicitly consider these uncertainties. The insights afforded by this method are illustrated for an IGCC design featuring a fixed-bed gasifier and a hot gas cleanup system. Detailed case studies are conducted to characterize uncertainties in key measures of process performance and cost, evaluate design trade-offs under uncertainty, identify research priorities, evaluate the potential benefits of additional research, compare results for different uncertainty assumptions, and compare the advanced IGCC system to a conventional system under uncertainty. The implications of probabilistic results for research planning and technology selection are discussed in this paper

  17. The 7th European gasification conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The theme of the conference was 'extending resources for clean energy'. Sessions covered coal gasification, gasification of biomass and waste, hydrogen and CO{sub 2} capture and storage, and development. The poster papers are also included. Selected papers have been abstracted separately on the Coal Abstracts database.

  18. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  19. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Miyazawa, Tomohisa; Ito, Shin-ichi; Kunimori, Kimio; Koyama, Shuntarou; Tomishige, Keiichi

    2004-01-01

    The gasification of cedar wood in the presence of Rh/CeO 2 /SiO 2 has been conducted in the laboratory scale fluidized bed reactor using air as a gasifying agent at low temperatures (823-973 K) in order to produce high-quality fuel gas for gas turbine for power generation. The performance of the Rh/CeO 2 /SiO 2 catalyst has been compared with conventional catalysts such as commercial steam reforming catalyst G-91, dolomite and noncatalyst systems by measurements of the cold gas efficiency, tar concentration, carbon conversion to gas and gas composition. The tar concentration was completely negligible in the Rh/CeO 2 /SiO 2 -catalyzed product gas whereas it was about 30, 113, and 139 g/m 3 in G-91, dolomite and noncatalyzed product gas, respectively. Since the carbon conversion to useful gas such as CO, H 2 , and CH 4 are much higher on Rh/CeO 2 /SiO 2 catalyst than others at 873 K, the cold gas efficiency is much higher (71%) in this case than others. The hydrogen content in the product gas is much higher (>24 vol%) than the specified level (>10 vol%) for efficient combustion in the gas turbine engine. The char and coke formation is also very low on Rh/CeO 2 /SiO 2 catalyst than on the conventional catalysts. Although the catalyst surface area was slightly decreased after using the same catalyst in at least 20 experiments, the deactivation problem was not severe

  20. Gasification: in search of efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Whysall, M. [UOP N.V., Antwerp (Belgium)

    2007-07-01

    Gasification of low cost feed stocks such as coal and heavy residues enables the supply of synthesis gas, hydrogen, power and utilities at a lower cost relative to conventional methodologies. The resulting synthesis gas can be used, after cleaning and sulphur removal, as a fuel or to produce other chemicals such as ammonia, methanol, or Fischer-Tropsch liquids. The paper covers coal and residue upgrading through the use of gasification, conversion and hydroprocessing and its integration with synthesis gas treatment and hydrogen recovery. Residue conversion choices can be influenced by hydrogen cost which can be controlled by integrating hydrogen production, recovery and purification into the gasification complex. Flow-schemes that maximize generation efficiency and minimize capital and operating costs and offer possibilities for CO{sub 2} capture are discussed. 3 figs.

  1. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-12-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.

  2. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Pantazi, Ypapanti

    2015-01-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The Activated Sludge system was operated under low organic loading conditions. The Moving Bed...... in significantly lower biodegradation for 4 out of 6 examined compounds. Calculation of specific removal rates (normalised to biomass) revealed that attached biomass had higher biodegradation potential for target compounds comparing to suspended biomass. Clear differences in the biodegradation ability of attached...... biomass grown in different bioreactors of MBBR systems were also observed. Batch experiments showed that micropollutants biodegradation by both types of biomass is co-metabolic....

  3. Optimal processing conditions for a dolomite cracker for cracking of tar from gasification of biomass fuels. Optimale procesbetingelser for en dolomitkrakker til krakning af tjaere fra forgasning af biobraendsler

    Energy Technology Data Exchange (ETDEWEB)

    Fjellerup, J.

    1989-08-15

    Gasification of fuels derived from biomass is of interest in connection with combined cycle systems. During gasification tar compounds can be produced, and these can block further stages of the process. As gas turbines are very sensitive to tar compounds it is necessary to remove the tar completely from the gas. The most effective method appears to be catalytic cracking and it is suggested that dolomite is an effective and cheap catalysator. Based on a survey of relevant literature, the aim was to discover optimal conditions for the process of dolomite cracking. It is concluded that it is important to decarbonate the dolomite before use, that dolomite is not suitable for use in fluidized beds as it can become eroded and is subsequently very quickly blown out, and that it is important to hold the temperature at a level of ca. 800 deg. C. Conditions for fixed bed cracking both with and without steam are also desderibed. (AB) 15 refs.

  4. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  5. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C von; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  6. Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance.

    Science.gov (United States)

    Song, Ji-Yeon; Oh, Donghoon; Lee, Chang-Ha

    2015-07-17

    The effects of a malfunctional column on the performance of a simulated moving bed (SMB) process were studied experimentally and theoretically. The experimental results of conventional four-zone SMB (2-2-2-2 configuration) and FeedCol operation (2-2-2-2 configuration with one feed column) with one malfunctional column were compared with simulation results of the corresponding SMB processes with a normal column configuration. The malfunctional column in SMB processes significantly deteriorated raffinate purity. However, the extract purity was equivalent or slightly improved compared with the corresponding normal SMB operation because the complete separation zone of the malfunctional column moved to a lower flow rate range in zones II and III. With the malfunctional column configuration, FeedCol operation gave better experimental performance (up to 7%) than conventional SMB operation because controlling product purity with FeedCol operation was more flexible through the use of two additional operating variables, injection time and injection length. Thus, compared with conventional SMB separation, extract with equivalent or slightly better purity could be produced from FeedCol operation even with a malfunctional column, while minimizing the decrease in raffinate purity (less than 2%). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Improving thermal efficiency and increasing production rate in the double moving beds thermally coupled reactors by using differential evolution (DE) technique

    International Nuclear Information System (INIS)

    Karimi, Mohsen; Rahimpour, Mohammad Reza; Rafiei, Razieh; Shariati, Alireza; Iranshahi, Davood

    2016-01-01

    Highlights: • Double moving bed thermally coupled reactor is modeled in two dimensions. • The required heat of naphtha process is attained with nitrobenzene hydrogenation. • DE optimization method is applied to optimize operating conditions. • Hydrogen, aromatic and aniline productions increase in the proposed configuration. - Abstract: According to the global requirements for energy saving and the control of global warming, multifunctional auto-thermal reactors as a novel concept in the process integration (PI) have risen up in the recent years. In the novel modification presented in this study, the required heat of endothermic naphtha reforming process has been supplied by nitrobenzene hydrogenation reaction. In addition, the enhancement of reactor performance, such as the increase of production rate, has become a key issue in the diverse industries. Thus, Differential Evolution (DE) technique is applied to optimize the operating conditions (temperature and pressure) and designing parameters of a thermally coupled reactor with double moving beds. Ultimately, the obtained results of the proposed model are compared with non-optimized and conventional model. This model results in noticeable reduction in the operational costs as well as enhancement of the net profit of the plant. The increase in the hydrogen and aromatic production shows the superiority of the proposed model.

  8. The Safety of Hospital Beds

    Science.gov (United States)

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  9. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...... and the entrained fine particles are further burned in the freeboard. Nevertheless, grate-firing generally needs to be improved in terms of efficiency and overall environmental impacts, in which computational fluid dynamics (CFD) modelling plays the vital role. In this paper, a comprehensive mathematical model...

  10. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  11. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 1. Support study for the development of an entrained bed coal gasification power plant (Dismantling study); 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu (Funryusho sekitan gaska hatsuden plant kaihatsu no shien kenkyu) - Sono 1. Kaitai kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-01

    As a support study for the development of an entrained bed coal gasification power plant by a 200 t/d pilot plant, the dismantling study was made for gasifier facilities, desulfurization facilities, dedusting facilities at the existing 40 t/d testing facilities. In the results of the analysis of the specimens sampled from gasifier and peripheral facilities, the corrosion loss of thickness was great in carbon steel/low-alloy steel equipment, and the generation of intergranular corrosion/intergranular crack was recognized in stainless steel equipment. The loss of thickness caused by erosion was also recognized in carrier tubes, etc. As to the high-temperature dry desulfurization system, the damage was totally great, but the effect of taking measures for it was unclear because the loss of thickness by corrosion/abrasion had not been measured regularly. Relating to the high-temperature dry dedusting system, there used to be a lot of troubles from stress corrosion cracking and pitting corrosion, and the best measures for corrosion prevention were taken for each trouble. As to the Al thermal spraying, stabilized thermal treatment, shot-peening, etc., the excellent corrosion prevention effect was recognized on the austenite stainless steel. (NEDO)

  12. Radiative Gasification Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  13. Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems

    International Nuclear Information System (INIS)

    Colpan, C.O.; Hamdullahpur, F.; Dincer, I.; Yoo, Y.

    2009-01-01

    In this study, an integrated SOFC and biomass gasification system is modeled. For this purpose, energy and exergy analyses are applied to the control volumes enclosing the components of the system. However, SOFC is modeled using a transient heat transfer model developed by the authors in a previous study. Effect of gasification agent, i.e. air, enriched oxygen and steam, on the performance of the overall system is studied. The results show that steam gasification case yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency. For this case, it is found that electrical, fuel utilization and exergetic efficiencies are 41.8%, 50.8% and 39.1%, respectively, and the power-to-heat ratio is 4.649. (author)

  14. Roadmap for the commercialisation of biomass gasification. A critical evaluation, tips, questions and pitfalls

    International Nuclear Information System (INIS)

    Huisman, G.H.

    2000-10-01

    Biomass has the potential to be a major replacement of fossil fuels. The world wide availability of biomass is considerable but it is not always in balance with the anticipated consumption. Biomass (wood) has the disadvantage that it has a low energy density and transport costs are, therefore, relatively high. Combustion, being a well-developed technology with many references, is the obvious choice for conversion technology. On the scale that biomass plants are usually constructed, however, the overall efficiency of the combustion system is low. Gasification has the advantage that solid fuel is converted into gaseous fuel which can be used in IC (internal combustion) engines or combined (gas and steam turbine) cycles with high efficiency. Even on a very small scale (several hundred kWe) a biomass-driven IC engine can have an efficiency of around 25%. Gasification has not yet advanced to the stage that it can serve as a reliable conversion technology for supplying electric power to industry or to the national grid. This may be possible on paper but in practice the market needs to be convinced by the success of plants in full operation. The first generation of plants, now under construction, or in operation, have to demonstrate the technology and provide confidence for future developments. Fixed bed gasification in combination with IC engines is more appropriate for small units. The development in micropower units is of particular interest. This development has been initiated for natural gas-fuelled units supplying power and heat to households, apartment blocks or offices. Once the fuel handling problems have been overcome and the units are more reliable and easier to operate, this could be a market with ample cost savings on the basis of mass production. Fluidised bed gasification, integrated with a combined cycle, is probably better suited to larger units, above 10 MWe. After experience has been obtained with units at an atmospheric pressure, the increase of the

  15. Coke gasification costs, economics, and commercial applications

    International Nuclear Information System (INIS)

    Jahnke, F.C.; Falsetti, J.S.; Wilson, R.F.

    1996-01-01

    The disposition of petroleum coke remains a problem for modern high conversion refineries. Market uncertainty and the price for coke can prevent the implementation of otherwise attractive projects. The commercially proven Texaco Gasification Process remains an excellent option for clean, cost effective coke disposition as demonstrated by the new coke gasification units coming on-line and under design. Previous papers, have discussed the coke market and general economics of coke gasification. This paper updates the current market situation and economics, and provide more details on cost and performance based on recent studies for commercial plants

  16. Advances in fluidized bed technologies

    International Nuclear Information System (INIS)

    Mutanen, K.

    1992-01-01

    Atmospheric fluidized bed combustion (AFBC) has advanced into industrial cogeneration and utility-scale electric generation. During the 1980's AFBC became the dominant technology in the United States for power generation systems fired with solid fuels. Development of pressurized fluidized bed combustion/gasification (PFB/G) has grown rapidly from small bench-scale rigs to large pilot and demonstration plants. AFBC as large as 160 MWe in capacity are now in operation, while pressurized combustion systems generating 80 MWe have started up two years ago. The major driving forces behind development of fluidized bed technologies are all the time strictening emission control regulations, need for fuel flexibility, repowering of older power plants and need for higher efficiency in electricity generation. Independent power producers (IPP) and cogenerators were the first ones in the United States who accepted AFBC for wide commercial use. Their role will be dominant in the markets of the 1990's also. Developers of AFBC systems are working on designs that reduce investment costs, decrease emissions and offer even higher reliability and availability in utility-scale applications while developers of PFBC/G work on designs that increase plant efficiencies, allow modular construction, decrease emissions further and reduce the cost of generating power. This paper presents technological background, commercial status, boiler performance, emissions and future developments for both AFBC and PFBC/G systems

  17. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  18. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  19. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  20. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2008-01-15

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached. (author)

  1. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    International Nuclear Information System (INIS)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro

    2008-01-01

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached

  2. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. CO2 gasification of microalgae (N. Oculata – A thermodynamic study

    Directory of Open Access Journals (Sweden)

    Adnan Muflih Arisa

    2018-01-01

    Full Text Available A new model of CO2 gasification has been developed in the Aspen Plus. The potential of microalgae (N. oculata for CO2 gasification also has been investigated. The present gasification process utilizes the CO2 at atmospheric pressure as the gasifying agent. The steam is also injected to the gasification to enhance the H2 production. The composition of the producer gas and gasification system efficiency (GSE are used for performance evaluation. It is found that the CO2 gasification of microalgae produces a producer gas with a high concentration of CO and H2. The GSE indicates that the process works at high performance.

  4. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    Science.gov (United States)

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  6. Gasification in a revolving tube

    International Nuclear Information System (INIS)

    Speicher, R.F.

    1981-01-01

    The concept of a method for allothermal coal gasification is to refine raw lignite from the Rhine area to high-quality synthesis gas or reduction gas without extracting the water utilizing nuclear process heat in a heated revolving bundle of tubes. Computational models are described for the macroscopic course of events in parallel flow gasification. In the design of the test plant, the principle of drag-in and transport of the tube drier was applied. (DG) [de

  7. Pressurized pyrolysis and gasification behaviour of black liquor and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The objective of this project is to obtain basic experimental data on pyrolysis and gasification of various black liquors and biofuels at elevated pressures, and to model these processes. Liquor-to-liquor differences in conversion behavior of single liquor droplets during gasification at atmospheric pressure were investigated. The applicability of a rate equation developed for catalyzed gasification of carbon was investigated with regard to pressurized black liquor gasification. A neural network was developed to simulate the progression of char conversion during pressurized black liquor gasification. Pyrolysis of black liquor in a pressurized drop-tube furnace was investigated in collaboration with KTH in Stockholm. (author)

  8. Syngas production from downdraft gasification of oil palm fronds

    International Nuclear Information System (INIS)

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2013-01-01

    Study on gasification of OPF (oil palm fronds) is scarce although the biomass constitutes more than 24% of the total oil palm waste. The lack of research related to gasification of oil palm fronds calls for a study on gasification behaviour of the fuel. In this paper the effects of reactor temperature and ER (equivalence ratio) on gas composition, calorific value and gasification efficiency of downdraft gasification of OPF were investigated. The heating value of syngas and the values of cold gas and carbon conversion efficiencies of gasification obtained were found to be comparable with woody biomass. The study showed that oxidation zone temperature above 850 °C is favourable for high concentration of the fuel components of syngas CO, H 2 and CH 4 . Average syngas lower heating value of 5.2 MJ/Nm 3 was obtained for operation with oxidation zone temperatures above 1000 °C, while no significant change in heating value was observed for temperature higher than 1100 °C. The average and peak heating values of 4.8 MJ/Nm 3 and 5.5 MJ/Nm 3 , and cold gas efficiency of 70.2% at optimum equivalence ratio of 0.37 showed that OPF have a high potential as a fuel for gasification. - Highlights: • Kinetic study of pyrolysis and combustion of OPF (oil palm fronds) was done. • Experimental study on syngas production utilizing OPF and parametric study was done. • OPF was found to have a comparable performance with wood in downdraft gasification

  9. Fiscal 1995 achievement report. Development of entrained bed coal gasification power plant (Part 3 - Pilot plant operational test - 2/2); 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken hen (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The 200 tons/day entrained bed coal gasification pilot plant constructed for establishing the technology of integrated coal gasification combined cycle was subjected to operational tests, and the fiscal 1995 results are detailed. During Runs D13, D14, E1, D15, and A14 in the operational test of the gas clean-up facility (dry type dedusting facility), 10 troubles occurred, including damage of the separator screen, leak in the seal valve, and leak of the expansion gas, and measures were taken to deal with each of the troubles. The results of the gas turbine facility operational test were satisfactory, without any trouble worth discussion. In the operational test of the safety/environment-related facility, it was found that the produced gas was stably incinerated and that denitration performance during gas turbine operation roughly achieved the intended level. In the operational test of electric and control facilities, an overall test was conducted, inspection was made of the indoor switching facility, etc., and 13 improvements were made, which included the alteration of the high ANN setting in the water tank for slag, the alteration of the mill exit temperature setting for enabling the use of Taiheiyo coal, and proper methods for carrying out high-load operation. (NEDO)

  10. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  11. Supercritical water gasification of Victorian brown coal: Experimental characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Doki; Aye, Lu [Department of Civil and Environmental Engineering, The University of Melbourne, Vic 3010 (Australia); Sanderson, P. John; Lim, Seng [CSIRO Minerals, Clayton, Vic 3168 (Australia)

    2009-05-15

    Supercritical water gasification is an innovative thermochemical conversion method for converting wet feedstocks into hydrogen-rich gaseous products. The non-catalytic gasification characteristics of Victorian brown coal were investigated in supercritical water by using a novel immersion technique with quartz batch reactors. Various operating parameters such as temperature, feed concentration and reaction time were varied to investigate their effect on the gasification behaviour. Gas yields, carbon gasification efficiency and the total gasification efficiency increased with increasing temperature and reaction time, and decreasing feed concentration. The mole fraction of hydrogen in the product gases was lowest at 600 C, and increased to over 30 % at a temperature of 800 C. Varying parameters, especially reaction time, did not improve the coal utilisation for gas production significantly and the measured data showed a large deviation from the equilibrium level. (author)

  12. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  13. Estudio mecánico e hidrodinámico de un reactor de gasificación de lecho fluidizado. // Mechanic and hydrodynamic study of a fluidized bed gasification reactor.

    Directory of Open Access Journals (Sweden)

    W. Rosales

    2008-01-01

    Full Text Available Se realizó una simulación mediante Elementos Finitos y CFD de un prototipo de gasificador experimental a partir de unageometría propuesta. Se abordan aspectos termomecánicos, al calcularse las deformaciones originadas en el equipo,producto de su peso, en las condiciones de emplazamiento y la carga térmica a la que se somete. También se considera elflujo multifásico gas-sólido presente en el lecho fluidizado, se determina el rango de presiones y velocidades de trabajo deldispositivo, y se estudia la evolución del flujo. Para ello se utiliza el modelo de fuerza de arrastre y presión de sólido deGidaspow, así como los criterios de velocidad mínima de fluidización de Wen & Yu y Kunii & Levenspiel.Palabras claves: Gasificación, lecho fluidizado, CFD, FEM, flujo multifásico.______________________________________________________________________________Abstract.A Finite Element and CFD simulations were conducted to a prototype of experimental gasifier, starting from a proposedgeometry. Thermomechanic aspects are briefed, calculating the reactor deformation, due to its weight and the thermic load.The gas-solid multiphase flow, present on the fluidized bed was also considered, the working range for the pressure andvelocity fields were determined and the flow evolution was studied. The drag force and solid pressure models byGidaspow, and the minimum fluidization velocity criteria, by Wen & Yu and Kunii & Levenspiel were used.Key words: gasification, fluidized bed, CFD, Finite Element, Multiphase Flow.

  14. Small Scale Gasification Application and Perspectives in Circular Economy

    Science.gov (United States)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  15. The Effect of Temperature on the Gasification Process

    Directory of Open Access Journals (Sweden)

    Marek Baláš

    2012-01-01

    Full Text Available Gasification is a technology that uses fuel to produce power and heat. This technology is also suitable for biomass conversion. Biomass is a renewable energy source that is being developed to diversify the energy mix, so that the Czech Republic can reduce its dependence on fossil fuels and on raw materials for energy imported from abroad. During gasification, biomass is converted into a gas that can then be burned in a gas burner, with all the advantages of gas combustion. Alternatively, it can be used in internal combustion engines. The main task during gasification is to achieve maximum purity and maximum calorific value of the gas. The main factors are the type of gasifier, the gasification medium, biomass quality and, last but not least, the gasification mode itself. This paper describes experiments that investigate the effect of temperature and pressure on gas composition and low calorific value. The experiments were performed in an atmospheric gasifier in the laboratories of the Energy Institute atthe Faculty of Mechanical Engineering, Brno University of Technology.

  16. Current results of coal gasification materials research at GRI

    International Nuclear Information System (INIS)

    Hill, V.L.; Barone, S.P.; Meyer, H.S.

    1984-01-01

    Corrosion, erosion/corrosion and mechanical property testing of commercial available materials in coal gasification atmospheres has been supported by the Gas Research Institute (GRI) since 1978. Recent corrosion data developed in the program for gasification and methanation technologies under development by GRI are presented. A brief discussion of typical results of long-term stress-rupture tests in coal gasification atmospheres is included

  17. Advantages and applications of moving bed technology in urban and industrial waste waters; Ventajas y aplicaciones de la tecnologia de lecho movil en aguas residuales urbanas e industriales

    Energy Technology Data Exchange (ETDEWEB)

    Larrea Urcola, A.; Zalakain Bengoa, G.; Larrea Ucola, L.; Abad Alba, A.

    2004-07-01

    Moving bed technology is a new biological treatment by activated sludge where the biomass grows attached to a inert media (plastic) that moves free along the reactor. The main advantages of this technology are the reduction of the reactor volume, simplicity of operation and the easiest way for the upgrading of plants. Results of different industrial applications are shown together with the latest researches lines that combine organic matter and nitrogen removal. (Author) 12 refs.

  18. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  19. Gasification - Status and Technology; Foergasning - Status och teknik

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2011-07-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect atmospheric gasification and Pressurized oxygen blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them is based on conventional techniques with well-proven components that are commercially available while others more advantageous solutions, still need further development. The report deals to a minor extent with the conversion of syngas to synthetic fuels. The ongoing research and development of gasification techniques is extensive, both on national and international level. Although many process concepts and components have been demonstrated, there is still no full-scale plant for the production of synthetic fuels based on biomass. Factors affecting the choice of technology are plant size, operating conditions, the possibility for process integration, access to feedstock, market aspects, incentives and economic instruments et cetera. Increased competition for biofuels will inevitably lead to higher raw material costs. This in turn means that the fuel chains with high efficiency, such as biomethane through gasification and methanation, are favored

  20. A market-driven commercialization strategy for gasification-based technologies

    International Nuclear Information System (INIS)

    Klara, J.M.; Tomer, B.J.; Stiegel, G.J.

    1998-01-01

    In the wake of deregulation of power generation in the US, market-based competition is driving electricity generators to low-cost risk system. In such an environment, gasification-based technologies will not be competitive with low capital cost, efficient, and reliable natural gas-fired facilities for baseload power generation in the foreseeable future. The lack of a near-term market application poses a serious threat to the progress of gasification technology. With a reduction in direct federal funding of large-scale demonstration plants as the trend to reduce the size of government continues, an alternate approach to commercialize gasification-based technologies has been developed at DOE/FETC. This new strategy employs gasification in near-term markets where, due to its ability to coproduce a wide variety of commodity and premium products to meet market requirements, it is an attractive alternative. By obtaining operating experience in near-term coproduction applications, gasification system modules can be refined and improved leading to commercial guarantees and acceptance of gasification technology as a cost-effective technology for baseload power generation when this market begins to open domestically, sometime after 2005

  1. Effect of coal rank and mineral matter on gasification reactivity of coal char treated at high temperature; Netsushorishita sekitan char no gas ka tokusei ni taisuru tanshu oyobi kobutsushitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takei, H.; Harano, A.; Takarada, T. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    In the wide range from brown coal to anthracite, an investigation was made of effects of heat treatment on physical/chemical properties and of coal rank dependence. For the experiment, 12 kinds of coal samples were used, and for heat treatment, the fluidized bed heated by the electric furnace and the infrared-ray gold image furnace were used. To examine characteristics of the heat-treated coal char, conducted were oxygen gasification, TPD measurement, XRD measurement, alkali metal measurement, and pore distribution measurement. The following were obtained from the experiment. The gasification reaction rate of the char heat-treated in the temperature range between 900{degree}C to 1700{degree}C decreases with a rise of the temperature of heat treatment, and the degree of decrease in the rate depends on coal rank. The order of gasification rate between coal ranks depends on the temperature of heat treatment, and the lower the heat treatment temperature is, the more largely the gasification rate is influenced by catalysis of mineral matters included in the coal. As causes of the decrease in gasification rate associated with the rise in temperature of heat treatment, indicated were release of alkali metal having catalysis and decrease of active sites by carbonaceous crystallinity. 6 figs.

  2. GASIFICATION BASED BIOMASS CO-FIRING - PHASE I; SEMIANNUAL

    International Nuclear Information System (INIS)

    Babul Patel; Kevin McQuigg; Robert F. Toerne

    2001-01-01

    Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere

  3. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  4. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  5. Multi-objective optimization for the economic production of d-psicose using simulated moving bed chromatography.

    Science.gov (United States)

    Wagner, N; Håkansson, E; Wahler, S; Panke, S; Bechtold, M

    2015-06-12

    The biocatalytic production of rare carbohydrates from available sugar sources rapidly gains interest as a route to acquire industrial amounts of rare sugars for food and fine chemical applications. Here we present a multi-objective optimization procedure for a simulated moving bed (SMB) process for the production of the rare sugar d-psicose from enzymatically produced mixtures with its epimer d-fructose. First, model parameters were determined using the inverse method and experimentally validated on a 2-2-2-2 lab-scale SMB plant. The obtained experimental purities (PUs) were in excellent agreement with the simulated data derived from a transport-dispersive true-moving bed model demonstrating the feasibility of the proposed design. In the second part the performance of the separation was investigated in a multi-objective optimization study addressing the cost-contributing performance parameters productivity (PR) and desorbent requirement (DR) as a function of temperature. While rare sugar SMB operation under conditions of low desorbent consumption was found to be widely unaffected by temperature, SMB operation focusing on increased PR significantly benefited from high temperatures, with possible productivities increasing from 3.4kg(Lday)(-1) at 20°C to 5kg(Lday)(-1) at 70°C, indicating that decreased selectivity at higher temperatures could be fully compensated for by the higher mass transfer rates, as they translate into reduced switch times and hence higher PR. A DR/PR Pareto optimization suggested a similar but even more pronounced trend also under relaxed PU requirements, with the PR increasing from 4.3kg(Lday)(-1) to a maximum of 7.8kg(Lday)(-1) for SMB operation at 50°C when the PU of the non-product stream was reduced from 99.5% to 90%. Based on the in silico optimization results experimental SMB runs were performed yielding considerable PRs of 1.9 (30°C), 2.4 (50°C) and 2.6kg(Lday)(-1) (70°C) with rather low DR (27L per kg of rare sugar produced) on a

  6. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  7. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed......Biomass is increasingly used as a fuel for power generation. Herbaceous fuels however, contain high amounts of alkali metals which get volatilized at high temperatures and forms salts with low melting points and thus condense on pipelines, reactor surfaces and may cause de-fluidization. A Low......-Temperature Circulating Fluidized Bed System (LTCFB) gasifier allows pyrolysis and gasification of biomass to occur at low temperatures thereby improving the retention of alkali and other ash species within the system and minimizing the amount of ash species in the product gas. In addition, the low reactor temperature...

  8. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a high-calorie gas manufacturing technology (research on a pressurized and fluidized gasification system for coal and heavy oil mixed materials); Sekitan gas ka gijutsu no kenkyu kaihatsu seika hokokusho. Kokarori gas seizo gijutsu no kaihatsu (sekitan oyobi jushitsuyu kongo genryo no kaatsu ryudo gas ka hoshiki no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the achievements in developing a high-calorie gas manufacturing technology for coal gasification in the Sunshine Project in fiscal 1981. Pulverized coal and heavy oil are heated and stirred to make it a slurry, which is forced into a fluidized bed gasification furnace together with spraying steam, and pyrolyzed by using a unique slurry feeding system (a hydrohoist). Carbon-like material as a by-product (char) is partially oxidized (burned) by steam and oxygen at the lower part of the gasification furnace. The material is gasified in the furnace, where the generated heat is sent to the pyrolysis zone in the upper part by the gas and fluidized bed media particles (char), and utilized as a heat source for the slurry pyrolysis. The produced gas is cooled by an indirect heat exchanger of the fluidized bed system and a scrubber to separate tar, dust and unreacted steam. Part of the sensible heat is recovered as steam. Thus, high-calorie gas of 6,000 kcal/Nm{sup 3} can be obtained, which is rich in methane, CO and hydrogen. Fiscal 1981 has performed a continuous test by using an internal heat type low-pressure gasification equipment to evaluate its compatibility to the diversification of materials. (NEDO)

  9. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... a discrete phase model. In this model, the continuous phase is described by Eulerian conservation equations and the discrete phase is described by tracking individual particles in a Lagrangian framework. A two-way coupling accounts for momentum, heat and mass transfer between the continuous and discrete...

  10. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Gil, J; Martin, J A; Frances, E; Olivares, A; Caballero, M A; Perez, P [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J [Madrid Univ. (Spain)

    1997-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  11. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  12. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, A; Ozdogan, S; Caglayan, E; Olgun, H [TUBITAK Marmara Research Center, Kocaeli (Turkey). Institute of Energy

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  13. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  14. Mathematic modulation of a simulation program for a coal and wood counter-current moving bed gasifier, which includes pyrolysis and drying processes and processes alternatives; Modelagem matematica e simulacao em computador de gaseificador de leito fixo contra-corrente para carvoes e biomassa com inclusao de processos de pirolise, secagem e alternativas do processo

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, M.L. de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1985-12-31

    A new version of a simulation program for coal and wood counter-current fixed bed gasifier has been completed and provides: all the principal information variables of the process throughout the bed as mass flow and composition for 13 gases and 6 solids, temperature of the gas and solid phases, reaction rates of combustion, gasification, pyrolysis and drying processes; composition, mass flow, temperature, combustion enthalpy and other produced gases physical and chemical properties; possibility of process alternatives analysis as volatiles recycling in order to eliminate tar, double withdrawn of gases and combinations. Comparisons between simulation and experimental results are presented. (author). 26 refs., 1 tab

  15. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  16. Report for fiscal 1993 by coal gasification committee; 1993 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This report is a compilation mainly of distributed material. In the development of entrained bed coal gasification power generation, gasification is tested in a 2t/d-capable facility and gasification efficiency and operation characteristics are grasped, these constituting the studies of elements to assist pilot plant operation etc. The fluid temperature point of slag is found to decrease by 200 degrees C at the maximum upon addition of flux (CaO), and this improves on slag fluidity. For the development of a demonstration gas turbine, an experimentally built combustor is tested using a real gas. A combined cycle power system is studied by simulation. In the study of pilot plant operation, measures relative to slagging are implemented, inspection and maintenance are conducted for each facility, and the combustor for a demonstration plant is subjected to oil and coal combustion tests. In the study of a pilot plant for developing technologies for hydrogen production using coal, the plant stably runs more than 1,000 hours under 100% load at in a RUN-8-3 operation. Some deposit collects in the neighborhood of the contracted area of the blow nozzle and on some part in the slip stream, but it does not affect operation. No abnormalities are detected in the cyclone or heat recovery boiler. The pilot plant is let to continue its operation, and excellent results are achieved, which are beyond the targets of carbon conversion efficiency of 98% or higher and gas cooling efficiency of 78% or higher. (NEDO)

  17. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Öztürk, Murat; Özek, Nuri; Yüksel, Yunus Emre

    2012-01-01

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  18. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  19. Iron-catalyzed gasification of char in CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Sears, P.; Suzuki, T.

    Gasification of Fe-loaded char was carried out at 750 and 950 C by using media containing 25, 50, and 100 vol % of CO/sub 2/. Moessbauer spectroscopy was used to determine the forms of Fe species present before and at the end of gasification. At 750 C the reduction of magnetite by carbon was observed to be a rate-determining step. At 950 C the gasification may be governed by a combination of mass-transfer effects and a loss of active Fe. At 950 C both magnetite and wustite were present. The amount of the latter increased with decreasing CO/sub 2/ concentration in the gasification medium. 23 refs., 6 figs., 4 tabs.

  20. Gasification - effective carbon control. The 8th European gasification conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Sessions covered: new projects and gasifiers; new feedstocks, fuels and syngas treatment; CO{sub 2} capture and hydrogen production; and devices and development. Selected papers have been abstracted separately on the database. The presentations can be downloaded for free from www.icheme.org/gasification2007.

  1. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier

    Science.gov (United States)

    Boravelli, Sai Chandra Teja

    This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.

  3. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  4. Report on the gasification technology sub-committee of the coal gasification committee in fiscal 1992; 1992 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper reports the coal gasification committee and the gasification technology sub-committee in fiscal 1992. The paper summarizes the report mainly on the data distributed at the gasification technology sub-committee meetings in fiscal 1992. In developing the coal utilizing hydrogen manufacturing technology, the trial operation was started on the pilot plant in fiscal 1991, wherein two comprehensive trial operations were carried out on gasification of 10 kg/cm{sup 2} to extract troubles throughout the whole system, smooth temperature rise and pressure rise were performed, and coal and oxygen were supplied into a furnace to have verified ignition of the coal. Furthermore, one trial operation for gasification of 30 kg/cm{sup 2} was executed. Fiscal 1992 will continue the gasification test of 30 kg/cm{sup 2}. In addition, a test on measures to improve efficiency purposed for gasification efficiency enhancement is carried out, and so is a coal type diversification test purposed to expand coal type applicability. A study was performed by using a small device as a pilot plant supporting study. Prototype fabrication, development, and in-plant tests were made on materials for plant devices (refractories and ceramics). The paper also describes the current status of HYCOL pilot plant operation study. Discussions were given also on heat balance of a gasification furnace. (NEDO)

  5. Co-gasification of pelletized wood residues

    Energy Technology Data Exchange (ETDEWEB)

    Carlos A. Alzate; Farid Chejne; Carlos F. Valdes; Arturo Berrio; Javier De La Cruz; Carlos A. Londono [Universidad Nacional de Colombia, Antioquia (Colombia). Grupo de Termodinamica Aplicada y Energias Alternativas

    2009-03-15

    A pelletization process was designed which produces cylindrical pellets 8 mm in length and 4 mm in diameter. These ones were manufactured using a blend of Pinus Patula and Cypress sawdust and coal in proportions of 0%, 5%, 10%, 20%, and 30% v/v of coal of rank sub-bituminous extracted from the Nech mine (Amaga-Antioquia). For this procedure, sodium carboxymethyl cellulose (CMC) was used as binder at three different concentrations. The co-gasification experiments were carried out with two kinds of mixtures, the first one was composed of granular coal and pellets of 100% wood and the second one was composed of pulverized wood and granular coal pellets. All samples were co-gasified with steam by using an electrical heated fluidized-bed reactor, operating in batches, at 850{sup o}C. The main components of the gaseous product were H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and N{sub 2} with approximate quantities of 59%, 6.0%, 20%, 5.0%, and 9.0% v/v, respectively, and the higher heating values ranged from between 7.1 and 9.5 MJ/Nm{sup 3}.

  6. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    Science.gov (United States)

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  7. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.

    Science.gov (United States)

    Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo

    2017-06-01

    In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Hernandez, Juan J.; Pazo, Amparo; Lopez, Julio [Universidad de Castilla-La Mancha, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n. 13071 Ciudad Real (Spain)

    2008-09-15

    Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal-coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H{sub 2} and CH{sub 4}) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H{sub 2}-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H{sub 2} concentration increased with increasing temperature. (author)

  9. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  10. Procedure for the gasification of pelletized carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, T.E.; Sheppard, J.C.; Marlowe, W.H.

    1980-08-07

    A continuous, travelling grate device is used for the production of low Btu gas with high hydrogen and carbon monoxide content from coke pellets. For the initiation of an oxidation zone the surface of one of the layers of a horizontally moved coal bed with a layer of a sorted recycled coal charge and a layer of fresh coal is ignited. The zone migrates in the form of a wave into the lower and upper layer reducing the coal which is to be found in zones in front of the forward migrating oxidation zones. The reactions are stopped before the reaction zones reaches the both extreme surfaces of the beds.

  11. Thermovolumetric investigations of steam gasification of coals and their chars

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2017-01-01

    Full Text Available The process of steam gasification of three coals of various rank and three chars obtained from these coals by the ex-situ method at 900 °C was compared. In the coal gasification process, the pyrolysis stage plays a very important part, which is connected with its direct impact on the kinetics of gasification of the resulting char. What is more, taking into consideration the impact of pyrolysis conditions on char properties, it should be anticipated that the gasification kinetics of coal and char, formed from it by the ex situ method, will be different. In order to examine and compare the process of gasification of coals and chars, an isothermal thermovolumetric method, designed by the authors, was applied. For all the examined samples the measurements were performed at three temperatures, i.e. 850, 900, and 950 °C, and at the pressure of 0.1 MPa. An evaluation of the impact of raw material on the steam gasification of the examined samples was made. The carbon conversion degree and the kinetic parameters of CO and H2 formation reaction were calculated. It was observed that the course of gasification is different for coals and chars obtained from them and it can be concluded that coals are more reactive than chars. Values of kinetic parameters of carbon monoxide and hydrogen formation calculated for coals and corresponding chars are also different. Due to the observed differences the process of gasification of coals and of chars with steam should not be equated.

  12. Gasification in petroleum refinery of 21. century; La gazeification dans la raffinerie du petrole du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, Ontario (Canada)

    1999-07-01

    The worldwide trends in the crude oil supply indicate a continuous increase of the heavy crudes. The increase in the yield of distillation residues is complemented by an increase in their sulfur content. Additional distillates are produced by upgrading the residues. The upgrading step generates final residues, such as visbreaking tar, coke and asphalt which are produced by visbreaking, coking and de-asphalting, respectively. The final residues can be converted to usable products such as hydrogen, steam, electricity, ammonia and chemicals. For this purpose, gasification has emerged as the technology of choice because of its superior environmental performance when compared with the competing means for residue utilization. Also, refinery sludges can be co-gasified with the final residues and as such, be converted to usable products. If integrated with the petroleum refinery, gasification can diminish any environmental problems associated with residue and sludge disposal. The economic indicators of the refinery can improve as well. The trends in deregulation of the power market enable petroleum refineries to enter this lucrative market either alone or in a partnership with the utilities. The potential of co-production of chemicals and steam with electricity offers the flexibility to respond to market demands. Gasification technology is commercially proven. Among several types, entrained bed gasifiers are the gasifiers of choice. A number of commercial projects in Europe, Asia and United States use a gasifier employing either a slurry feeding system or a dry feeding system. (author)

  13. Design of a 60 MW CFB gasification system (CGAS) for Uganda : utilising rice husks as input fuel

    Energy Technology Data Exchange (ETDEWEB)

    Amanyire, F. [Gulu Univ., Gulu (Uganda). Dept. of Biosystems Engineering; Bagamuhunda, D.B. [Uganda Industrial Research Inst., Technology Development Centre, Kampala (Uganda)

    2010-07-01

    In Uganda, biomass comprises more than 95 per cent of the total energy supply. Agricultural residues are a major source of energy that can be converted into producer gas in biomass gasifiers. The high poverty levels in Uganda can be attributed in part to the fact that more than 90 per cent of the population does not have access to electricity due to limited and unreliable electricity produced in the country. A circulating fluidized bed (CFB) gasification system was designed in this study in order to generate a system for the effective use of agricultural wastes for energy production. Rice husks were used as the feedstock for a power output of 60 MW. The gasification system was designed using ERGUN CFB software with available theoretical and experimental data. The design comprises a reactor subsystem, air distribution plate, cyclone, air inlet and fuel feeding systems. The reactor is 10 m high and has a fuel flow rate of 8.1 kg/s. The inlet air flow rate is 11 m{sup 3}/s and the fluidization velocity is 0.9 m/s, with a pressure drop in the bed of 1.5 kPa. The inlet gas velocity of the reactor is 25.2 m/s with about 99 per cent cyclone efficiency and less than 1 kPa pressure drop in cyclone. It has a cold gas efficiency of 50 per cent. It was concluded that the gasifier can produce 60 MW of electricity from locally available and environmentally sound biomass energy sources.

  14. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  15. Volatile organic compound adsorption in a gas-solid fluidized bed.

    Science.gov (United States)

    Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T

    2004-01-01

    Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas

  16. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  17. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.

    Science.gov (United States)

    Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert

    2017-11-01

    This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  19. Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed

    Directory of Open Access Journals (Sweden)

    M. A. Cremasco

    2009-03-01

    Full Text Available A laboratory-scale simulated moving bed (SMB was designed and tested for the separation of paclitaxel, a powerful anti-cancer agent known as Taxol@, from impurities of a plant tissue culture (PTC broth. The innovative strategy of a pseudo-binary model, where mixtures A and B were treated as single solutes A and B, was used in the linear standing wave analysis to fix the SMB operating parameters for a multicomponent and complex system. Linear standing wave design was used to specify the zone flow rates and the switching time for the laboratory-scale SMB unit, with two steps of separation. The SMB consists of four packed columns, where each column is 12.5 cm in length and 1.5 cm in diameter. Two sequential separation steps were used to recover paclitaxel from a small feed batch (less than one liter. Placlitaxel was recovered from the complex plant tissue culture broth in 82% yield and 72% purity.

  20. Moving-bed: a stable and rapidly recovering process; El sistema de biomasa fija sobre lecho movil: un proceso estable y de rapida recuperacion

    Energy Technology Data Exchange (ETDEWEB)

    Velasco Munguira, A.; Jorda Llona, J. R.; Farre Solsona, C.; Cortacans Torre, J. A.

    2005-07-01

    A moving-bed biofilm process is presented for the treatment of soft drink factory outlet. Once the system has been stabilized regarding oxygen, nutrient addition and pH control, the process goes on up to a 95% and over 98% reduction of COD and BOD, respectively, rapidly recovering from toxic shacks. Sludge production is larger than expected due to a higher yield of bacteria growing on a sugar-rich influent. (Author) 4 refs.