WorldWideScience

Sample records for mouse spermiogenesis results

  1. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  2. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  3. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    Science.gov (United States)

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  4. Probing spermiogenesis: a digital strategy for mouse acrosome classification.

    Science.gov (United States)

    Taloni, Alessandro; Font-Clos, Francesc; Guidetti, Luca; Milan, Simone; Ascagni, Miriam; Vasco, Chiara; Pasini, Maria Enrica; Gioria, Maria Rosa; Ciusani, Emilio; Zapperi, Stefano; La Porta, Caterina A M

    2017-06-16

    Classification of morphological features in biological samples is usually performed by a trained eye but the increasing amount of available digital images calls for semi-automatic classification techniques. Here we explore this possibility in the context of acrosome morphological analysis during spermiogenesis. Our method combines feature extraction from three dimensional reconstruction of confocal images with principal component analysis and machine learning. The method could be particularly useful in cases where the amount of data does not allow for a direct inspection by trained eye.

  5. Ultrastructural, autoradiographic and electrophoretic examinations of Chara tomentosa spermiogenesis

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Ultrastructure of a spermatid nucleus changes many times during spermiogenesis. Condensed chromatin forms irregular clusters during phases I-II, a continuous ring adjacent to a nuclear envelope during phases III-V and a network occupying the whole nucleus during phase VI. In advanced spermiogenesis dense chromatin disappears and short randomly positioned fibrils arise, then long parallel ones are found (phase VIII which during phase IX form a lamellar structure. In mature spermatozoids (phase X chromatin becomes extremely condensed. 3H-arginine and 3H-lysine incorporation into spermatids during 2-min incubation is intensive during phases IN, decreases during phases VI, VII and becomes very low during phases VIII-IX. Capillary electrophoresis has shown that during Chara tomentosa spermiogenesis replacement of histones with basic proteins whose mobility is comparable to that of salmon protamines takes place. At the beginning of spermiogenesis core and linker histones are found in spermatids. During early spermiogenesis protamine-like proteins appear and their amount increases in late spermiogenesis when core histones are still present. In mature spermatozoids only protamine-like proteins represented by 3 fractions: 9.1 kDa, 9.6 kDa, 11.2 kDa are found. Disappearance of linker histones following their modification precedes disappearance of core histones. The results indicate that dynamic rearrangement of chromatin ultrastructure and aminoacid incorporation rate during spermiogenesis are reflected in basic nuclear protein changes.

  6. Centriole Remodeling during Spermiogenesis in Drosophila.

    Science.gov (United States)

    Khire, Atul; Jo, Kyoung H; Kong, Dong; Akhshi, Tara; Blachon, Stephanie; Cekic, Anthony R; Hynek, Sarah; Ha, Andrew; Loncarek, Jadranka; Mennella, Vito; Avidor-Reiss, Tomer

    2016-12-05

    The first cell of an animal (zygote) requires centrosomes that are assembled from paternally inherited centrioles and maternally inherited pericentriolar material (PCM) [1]. In some animals, sperm centrioles with typical ultrastructure are the origin of the first centrosomes in the zygote [2-4]. In other animals, however, sperm centrioles lose their proteins and are thought to be degenerated and non-functional during spermiogenesis [5, 6]. Here, we show that the two sperm centrioles (the giant centriole [GC] and the proximal centriole-like structure [PCL]) in Drosophila melanogaster are remodeled during spermiogenesis through protein enrichment and ultrastructure modification in parallel to previously described centrosomal reduction [7]. We found that the ultrastructure of the matured sperm (spermatozoa) centrioles is modified dramatically and that the PCL does not resemble a typical centriole. We also describe a new phenomenon of Poc1 enrichment of the atypical centrioles in the spermatozoa. Using various mutants, protein expression during spermiogenesis, and RNAi knockdown of paternal Poc1, we found that paternal Poc1 enrichment is essential for the formation of centrioles during spermiogenesis and for the formation of centrosomes after fertilization in the zygote. Altogether, these findings demonstrate that the sperm centrioles are remodeled both in their protein composition and in ultrastructure, yet they are functional and are essential for normal embryogenesis in Drosophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Autoradiographic study of nuclear protein acetylation during Locust spermiogenesis

    International Nuclear Information System (INIS)

    Bouvier, D.; Chevaillier, P.

    1975-01-01

    Autoradiographic studies, at the light and electron microscope level, demonstrate that spermatid nuclei of the Locust Locusta migratoria incorporate 3 H-acetate, especially during the first stages of spermiogenesis. The highest level of acetate incorporation is observed during stage II of spermiogenesis. During this stage and the following, the spermatid nucleus undergoes a number of structural and chemical modifications: chromatin decondenses and somatic histones are progressively replaced by newly synthesized arginine-rich proteins. Therefore, the higher degree of acetylation of nuclear components coincides with chromatin decondensation and precedes the protein transition occurring in later stages. Cytochemical and autoradiographic tests have been realized so as to localize 3 H-acetate in the nuclear components. Trichloracetic acid was used at various concentrations: the action of hydrochloric acid, pronase and DNase was also tested. The results support the idea that proteins, and among them histones, are the only nuclear components to be acetylated during spermiogenesis. Thus, histone acetylation seems to play an important role in modulating histone-DNA interactions and allowing histone replacement [fr

  8. Ultrastructure of spermiogenesis of Dipylidium caninum (Cestoda, Cyclophyllidea, Dipylidiidae), an intestinal parasite of Canis familiaris.

    Science.gov (United States)

    Miquel, J; Bâ, C T; Marchand, B

    1998-09-01

    We describe for the first time the ultrastructure of spermiogenesis of a representative of the family Dipylidiidae, Dipylidium caninum. Spermiogenesis begins with the formation of a differentiation zone. This conical area presents two centrioles with associated striated roots. One of the centrioles develops a flagellum and posteriorly a proximodistal fusion is produced between the axoneme and a median cytoplasmic process. In a final stage of spermiogenesis a condensation of electron-dense material between cortical microtubules is observed in the anterior part of the differentiation zone. This is the origin of the crest-like body that appears at the end of spermiogenesis. The presence of striated roots associated with centrioles constitutes the first report of these structures in the spermiogenesis of a cyclophyllidean cestode.

  9. The expression pattern and potential functions of PHB in the spermiogenesis of Phascolosoma esculenta.

    Science.gov (United States)

    Hou, Cong-Cong; Gao, Xin-Ming; Ni, Jie; Mu, Dan-Li; Yang, Hai-Yan; Liu, Cheng; Zhu, Jun-Quan

    2018-04-30

    Prohibitin (PHB) is a ubiquitous, evolutionarily conserved protein that is mainly localized in the inner mitochondrial membrane and exerts various mitochondrial functions. Here, we first cloned the phb gene from P. esculenta. The Pe-PHB protein has high homology and a similar protein structure to that of other animals, and it can be divided into the N-terminal hydrophobic/transmembrane domain, SPFH domain, and C-terminal coiled-coil domain. The Pe-phb gene is widely expressed, and the gene expression of phb is highest in coelomic fluid where spermiogenesis occurs, indicating a specific function in the coelom. We further observed continuous expression of the phb gene and localization of PHB proteins in mitochondria during spermiogenesis, indicating that PHB, as a mitochondrial component, may play a role during this process via its mitochondrial function. In addition, ubiquitination of mitochondria was detected, and the PHB signal was co-localized with the poly-ubiquitin signal during spermiogenesis. Mature sperm also showed ubiquitination of mitochondria and PHB. Therefore, PHB may be a substrate of poly-ubiquitin to regulate the ubiquitination of mitochondria and even subsequent elimination during P. esculenta spermiogenesis, and it has a potential role in guaranteeing the maternal inheritance of mitochondria. Taken together, these results support the hypothesis that PHB participates in the spermiogenesis of P. esculenta by maintaining the normal function of mitochondria and regulating the degradation of mitochondria. Copyright © 2018. Published by Elsevier B.V.

  10. Spermiogenesis in the imbricate alligator lizard, Barisia imbricata (Reptilia, Squamata, Anguidae).

    Science.gov (United States)

    Gribbins, Kevin M; Rheubert, Justin L; Touzinsky, Katherine; Hanover, Jessica; Matchett, Caroline L; Granados-González, Gisela; Hernández-Gallegos, Oswaldo

    2013-06-01

    Although the events of spermiogenesis are commonly studied in amniotes, the amount of research available for Squamata is lacking. Many studies have described the morphological characteristics of mature spermatozoa in squamates, but few detail the ultrastructural changes that occur during spermiogenesis. This study's purpose is to gain a better understanding of the subcellular events of spermatid development within the Imbricate Alligator Lizard, Barisia imbricata. The morphological data presented here represent the first complete ultrastructural study of spermiogenesis within the family Anguidae. Samples of testes from four specimens collected on the northwest side of the Nevado de Toluca, México, were prepared using standard techniques for transmission electron microscopy. Many of the ultrastructural changes occurring during spermiogenesis within B. imbricata are similar to that of other squamates (i.e., early acrosome formation, chromatin condensation, flagella formation, annulus present, and a prominent manchette). However, there are a few unique characteristics within B. imbricata spermatids that to date have not been described during spermiogenesis in other squamates. For example, penetration of the acrosomal granule into the subacrosomal space to form the basal plate of the perforatorium during round spermatid development, the clover-shaped morphology of the developing nuclear fossa of the flagellum, and the bulbous shape to the perforatorium are all unique to the Imbricate Alligator Lizard. These anatomical character differences may be valuable nontraditional data that along with more traditional matrices (such as DNA sequences and gross morphological data) may help elucidate phylogenetic relationships, which are historically considered controversial within Squamata. Copyright © 2013 Wiley Periodicals, Inc.

  11. Ontogenic development of spermatids during spermiogenesis in the high altitude bunchgrass lizard (Sceloporus bicanthalis).

    Science.gov (United States)

    Rheubert, Justin; Touzinsky, Katherine; Hernández-Gallegos, Oswaldo; Granados-González, Gisela; Gribbins, Kevin

    2012-04-01

    The body of ultrastructural data on spermatid characters during spermiogenesis continues to grow in reptiles, but is still relatively limited within the squamates. This study focuses on the ontogenic events of spermiogenesis within a viviparous and continually spermatogenic lizard, from high altitude in Mexico. Between the months of June and August, testicular tissues were collected from eight spermatogenically active bunchgrass lizards (Sceloporus bicanthalis) from Nevado de Toluca, México. The testicular tissues were processed for transmission electron microscopy and analyzed to access the ultrastructural differences between spermatid generations during spermiogenesis. Interestingly, few differences exist between S. bicanthalis spermiogenesis when compared with what has been described for other saurian squamates. Degrading and coiling membrane structures similar to myelin figures were visible within the developing acrosome that are likely remnants from Golgi body vesicles. During spermiogenesis, an electron lucent area between the subacrosomal space and the acrosomal medulla was observed, which has been observed in other squamates but not accurately described. Thus, we elect to term this region the acrosomal lucent ridge. This study furthers the existing knowledge of spermatid development in squamates, which could be useful in future work on the reproductive systems in high altitude viviparous lizard species.

  12. SEPT12–NDC1 Complexes Are Required for Mammalian Spermiogenesis

    Directory of Open Access Journals (Sweden)

    Tsung-Hsuan Lai

    2016-11-01

    Full Text Available Male factor infertility accounts for approximately 50 percent of infertile couples. The male factor-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile sperm, immature sperm, abnormally structured sperm, and sperm with nuclear damage. Our knockout and knock-in mice models demonstrated that SEPTIN12 (SEPT12 is vital for the formation of sperm morphological characteristics during spermiogenesis. In the clinical aspect, mutated SEPT12 in men results in oligozoospermia or teratozoospermia or both. Sperm with mutated SEPT12 revealed abnormal head and tail structures, decreased chromosomal condensation, and nuclear damage. Furthermore, several nuclear or nuclear membrane-related proteins have been identified as SEPT12 interactors through the yeast 2-hybrid system, including NDC1 transmembrane nucleoporin (NDC1. NDC1 is a major nuclear pore protein, and is critical for nuclear pore complex assembly and nuclear morphology maintenance in mammalian cells. Mutated NDC1 cause gametogenesis defects and skeletal malformations in mice, which were detected spontaneously in the A/J strain. In this study, we characterized the functional effects of SEPT12–NDC1 complexes during mammalian spermiogenesis. In mature human spermatozoa, SEPT12 and NDC1 are majorly colocalized in the centrosome regions; however, NDC1 is only slightly co-expressed with SEPT12 at the annulus of the sperm tail. In addition, SEPT12 interacts with NDC1 in the male germ cell line through coimmunoprecipitation. During murine spermiogenesis, we observed that NDC1 was located at the nuclear membrane of spermatids and at the necks of mature spermatozoa. In male germ cell lines, NDC1 overexpression restricted the localization of SEPT12 to the nucleus and repressed the filament formation of SEPT12. In mice sperm with mutated SEPT12, NDC1 dispersed around the manchette region of the sperm head and annulus, compared with concentrating at the sperm neck

  13. Effects of immobilization on spermiogenesis

    Science.gov (United States)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  14. Spermiogenesis in the proteocephalidean cestode Proteocephalus torulosus (Batsch, 1786)

    Czech Academy of Sciences Publication Activity Database

    Bruňanská, Magdaléna; Nebesářová, Jana; Scholz, Tomáš

    2003-01-01

    Roč. 90, č. 4 (2003), s. 318-324 ISSN 0932-0113 R&D Projects: GA ČR GA524/01/1314; GA ČR GA206/03/1317 Institutional research plan: CEZ:AV0Z6022909 Keywords : cestoda * spermiogenesis * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.000, year: 2003

  15. EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice

    DEFF Research Database (Denmark)

    Dong, Yixin; Isono, Kyo Ichi; Ohbo, Kazuyuki

    2017-01-01

    Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation- mediated histone replacement remains poorly understood. Here...

  16. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis

    Directory of Open Access Journals (Sweden)

    Ying-Hung Lin

    2017-01-01

    Full Text Available According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16. RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1, were identified using co-immunoprecipitation (co-IP and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS. We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.

  17. Gene expression profiles of prohibitin in testes of Octopus tankahkeei (ot-phb) revealing its possible role during spermiogenesis.

    Science.gov (United States)

    Mao, Hai-Tao; Wang, Da-Hui; Lan, Zhou; Zhou, Hong; Yang, Wan-Xi

    2012-05-01

    Prohibitin is essential for intracellular homeostasis and stabilization of mitochondrial respiratory chain complexes. To explore its functions during spermiogenesis of Octopus tankahkeei (O. tankahkeei), we have cloned and sequenced the cDNA of this mammalian PHB homologue (termed ot-PHB) from the testes of O. tankahkeei. The 1165 bp ot-phb cDNA contains a 100 bp 5' UTR, a 882 bp open reading frame and a 183 bp 3' UTR. The putative ot-PHB protein owns a transmembrane domain from 6 to 31 amino acid (aa) and a putative PHB domain from 26 to 178 aa. Protein alignment demonstrated that ot-PHB had 73.3, 73.6, 74.0, 75.1, and 45.4% identity with its homologues in Homo sapiens, Mus muculus, Danio rerio, Xenopus tropicalis and Trypanosoma brucei, respectively. Tissue distribution profile analysis revealed its presence in all the tissues examined. In situ hybridization in spermiogenic cells demonstrated that ot-phb was expressed moderately at the beginning of the spermiogenesis. The abundance of transcripts increased in intermediate spermatids and in drastically remodeling final spermatids. In mature spermatozoa, the residuary transcripts concentrated around the chondriosomal mantle where mitochondria assemble around. In summary, the expression of ot-phb during spermiogenesis implicates a potential function of this protein during mitochondrial ubiquitination. It is the first time to implicate the role of prohibitin in cephalopod spermiogenesis.

  18. Spermiogenesis and sperm ultrastructure of the pseudophyllidean cestode Triaenophorus nodulosus (Pallas, 1781)

    Czech Academy of Sciences Publication Activity Database

    Levron, Céline; Bruňanská, Magdaléna; Marchand, B.

    2005-01-01

    Roč. 98, č. 1 (2005), s. 26-33 ISSN 0932-0113 R&D Projects: GA ČR GA524/04/0342; GA ČR GA206/03/1317 Grant - others:Grantová agentura SR(SK) VEGA2/4177/04 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cestoda * Triaenophorus nodulosus * spermiogenesis Subject RIV: EA - Cell Biology Impact factor: 1.226, year: 2005

  19. Nippotaenia mogurndae Yamaguti et Myiata, 1940 (Cestoda, Nippotaeniidea): first data on spermiogenesis and sperm ultrastructure

    Czech Academy of Sciences Publication Activity Database

    Bruňanská, M.; Bílý, Tomáš; Nebesářová, Jana

    2015-01-01

    Roč. 114, č. 4 (2015), s. 1443-1453 ISSN 0932-0113 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:60077344 Keywords : Nippotaeniidea * Nippotaeniamogurndae * spermiogenesis * spermatozoon * ultrastructure Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.027, year: 2015

  20. Comparison of spermiogenesis in the externally fertilizing Hemigrammus erythrozonus and the inseminating Corynopoma riisei (Teleostei: Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Anna Pecio

    Full Text Available Spermiogenesis and sperm ultrastructure were analyzed in two species of characids with different modes of fertilization: externally fertilizing Hemigrammus erythrozonus and inseminating Corynopoma riisei. Spermiogenesis in H. erythrozonus is characterized by lateral development of the flagellum, nuclear rotation, formation of a shallow nuclear fossa, condensation of the chromatin by elimination of the electron-lucent area from the peripheral region of the nucleus, and renewal of the nuclear membrane. Multilammelated membrane and multivesicular bodies were also observed during elimination of the excess cytoplasm. The spermatozoon exhibits characters typical of "aquasperm," i.e. a spherical head containing a spherical nucleus with highly condensed chromatin, several small mitochondria located at the base of the nucleus within a cytoplasmic collar that extends into a long cytoplasmic sleeve surrounding the anterior part of the single flagellum, which is contained within a cytoplasmic canal. The flagellum lacks fins. The proximal and distal centrioles are nearly parallel to one another, with the anterior tips of both located within shallow nuclear fossae. Spermiogenesis in C. riisei is characterized by nuclear elongation alongside the forming flagellum, formation of an elongate cytoplasmic canal, displacement and elongation of the mitochondria, and uniform condensation of chromatin throughout the nucleus through enlargement of the diameter of the chromatin granules. The spermatozoon has an elongate nucleus with two elongate mitochondria localized to one side. Mitochondria are also located posterior to the nucleus forming a mitochondrial region. The single flagellum, which lacks fins, is lateral to the nucleus and initially contained within the greatly elongate cytoplasmic canal before exiting the canal at its posterior terminus. The spermatozoon of C. riisei exhibits several characters typical of "introsperm," such as an elongate nucleus and

  1. Spermiogenesis and spermatozoon of the tapeworm Parabothriocephalus gracilis (Bothriocephalidea): Ultrastructural and cytochemical studies

    Czech Academy of Sciences Publication Activity Database

    Šípková, Lenka; Levron, Céline; Freeman, M.; Scholz, Tomáš

    2010-01-01

    Roč. 55, č. 1 (2010), s. 58-65 ISSN 1230-2821 R&D Projects: GA ČR GP524/07/P039; GA ČR GA524/08/0885; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Eucestoda * Bothriocephalidea * Parabothriocephalus gracilis * spermiogenesis * spermatozoon * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.144, year: 2010

  2. Spermiogenesis and spermatozoa ultrastructure in five species of the Curimatidae with some considerations on spermatozoal ultrastructure in the Characiformes

    Directory of Open Access Journals (Sweden)

    Irani Quagio-Grassiotto

    Full Text Available Spermiogenesis in the curimatid species, Steindachnerina insculpta, Cyphocharax gillii, C. modestus, C. spilotus, and Potamorhina altamazonica, is characterized by lateral development of the flagellum, nuclear rotation, eccentric nuclear fossa formation, and chromatin compacted into thick fibers. These spermatozoa exhibit a spherical head containing a nucleus with the chromatin highly condensed into thick fibers with small electron-lucent areas, and no acrosome. The nuclear fossa is of the moderate type and eccentric and penetrated by the centriolar complex. The midpiece is small, has many elongate vesicles, and a short cytoplasmic channel. Mitochondria may be elongate, branched or C-shaped, and are separated from the initial segment of the axoneme by the cytoplasmic channel. The flagellum contains the classical axoneme structure (9+2 and has a membranous compartment in the initial region; it does not have lateral fins. Only small differences were observed among the analyzed species and genera of the Curimatidae. Spermiogenesis and spermatozoa in the Curimatidae have many of the characteristics found in almost all other characiform species. On the other hand, the presence of a membranous compartment in the initial region of curimatid flagella, a structure common in many Cypriniformes spermatozoa, is unknown in other characiforms. Spermiogenesis and the spermatozoa of the Characiformes are discussed.

  3. RNA synthesis during meiosis and spermiogenesis in Tylototriton verrucosus anderson - an annual testicular cycle

    International Nuclear Information System (INIS)

    Roy, R.R.; Ray, D.; Ghosal, S.K.

    1989-01-01

    RNA synthetic activity during various stages of meiosis and spermiogenesis in Tylotatriton verrucosus has been studied throughout the testicular cycle by autoradiographic technique. Meiocytes are 'hot' during breeding months while spermatids as well as spermatozoa has shown RNA synthetic activity during breeding and non breeding months. Continuation of RNA synthetic activity in spermatozoa suggests continued transcription necessary for sperm preservation of this seasonal breeder. (author). 8 refs., 1 tab

  4. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    International Nuclear Information System (INIS)

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E.

    2005-01-01

    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis

  5. Ultrastructural studies on spermiogenesis and postcopulatory modifications of spermatozoa of Actinarctus doryphorus Schulz, 1935 (Arthrotardigrada: Halechiniscidae)

    DEFF Research Database (Denmark)

    Jørgensen, Aslak; Møbjerg, Nadja; Kristensen, Reinhardt Møbjerg

    1999-01-01

    . The spermiogenesis is very unique for a tardigrade, as the early spermatids are attached to giant nurse cells through cytoplasmatic bridges formed close to the spermatid nucleus. The nurse cell is characterized by a conspicuous labyrinth of rough endoplasmatic reticulum. In the posterior part of the testis...

  6. CRIS-a novel cAMP-binding protein controlling spermiogenesis and the development of flagellar bending.

    Directory of Open Access Journals (Sweden)

    Anke Miriam Krähling

    Full Text Available The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD. Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca(2+ regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca(2+-regulated proteins that--in mature sperm--are involved in flagellar bending.

  7. Ultrastructure of spermiogenesis in Vampyroteuthis infernalis Chun — a relict cephalopod mollusc

    Science.gov (United States)

    Healy, John M.

    1990-03-01

    Spermiogenesis in the relict deep-sea cephalopod Vampyroteuthis infernalis Chun is examined using transmission electron microscopy (TEM), and the results compared with available data on other cephalopods. Early spermatids of Vampyroteuthis exhibit an ovoid nucleus (with dense irregular patches), numerous mitochondria and a pair of triplet substructure centrioles (arranged parallel to each other). Subsequently, the following morphological changes take place: (1) nuclear contents condense into a fibrous reticulum, then into thick fibres; (2) the acrosomal vesicle (presumably Golgi-derived) positions itself in a shallow depression at the nuclear apex; (3) the flagellum forms from one of the two centrioles; (4) mitochondria cluster around the flagellum at the base of the nucleus; (5) a dense, fibrous plug forms within the basal invagination of the nucleus. Microtubules surround the acrosome and condensing nucleus of spermatids. The dense plug is of special systematic importance since it also occurs in spermatids and spermatozoa of Octopus spp., but not in any investigated species of the Sepiida, Sepiolida or Teuthida. Late spermatids and mature spermatozoa of Vampyroteuthis strongly resemble developing spermatids of Octopus, suggesting a close phylogenetic relationship between Vampyroteuthis (and the Vampyromorpha) and octopods.

  8. Espermiogênese em Eupemphix nattereri (Anura, Leiuperidae: aspectos ultra-estruturais Spermiogenesis in Eupemphix nattereri (Anura, Leiuperidae: ultrastructural aspects

    Directory of Open Access Journals (Sweden)

    Rodrigo Zieri

    2008-06-01

    Full Text Available A maturação dos espermatozóides envolve um extenso e complexo processo que começa com a proliferação e diferenciação das espermatogônias, passa pela meiose e finaliza com a espermiogênese. Nessa fase, eventos envolvendo alterações morfológicas e bioquímicas transformam espermátides em espermatozóides. Aspectos ultra-estruturais da espermiogênese e do espermatozóide do anuro Eupemphix nattereri (Steindachner, 1863 foram analisados através de microscopia eletrônica de transmissão. A espermiogênese envolve condensação da cromatina e alongamento nuclear, com visível eliminação de citoplasma. Nesse estágio, grande quantidade de microtúbulos e glicogênio podem ser visualizados no citoplasma das células de Sertoli, rodeando cada espermátide. O espermatozóide é fusiforme e o acrossomo forma uma capa na região anterior do núcleo. A bainha mitocondrial é encontrada ao redor da porção proximal da cauda. A cauda apresenta o axonema com o modelo 9+2, uma fibra axonemal, a membrana ondulante e ausência de bastão axial. Esta organização apresenta algumas similaridades com espécies do gênero Physalaemus (Leiuperidae como P. biligonigerus (Cope, 1861, P. gracilis (Boulenger, 1883 e P. fuscomaculatus (Steindachner, 1864.Spermatozoon maturation involves an extense and complex process beginning with proliferation and differentiation of spermatogonia, passing through meiosis, and ending with spermiogenesis. The later event involves morphological and biochemical changes in order to transform spermatids into spermatozoa. Ultrastructural aspects of the spermiogenesis and testicular spermatozoa of the anuran Eupemphix nattereri (Steindachner, 1863 were analyzed by transmission electron microscopy. Spermiogenesis involves chromatin condensation and nuclear elongation, with visible cytoplasmic elimination. At this stage, a large amount of microtubules and glycogen can also be seen in Sertoli cell cytoplasm, surrounding each

  9. Ultrastructural study of spermiogenesis and the spermatozoon of the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009, a parasite of the catfish Clarias gariepinus (Burchell, 1822) (Siluriformes, Clariidae)

    Czech Academy of Sciences Publication Activity Database

    Marigo, A. M.; Levron, Céline; Bâ, Ch. T.; Miquel, J.

    2012-01-01

    Roč. 251, č. 2 (2012), s. 147-159 ISSN 0044-5231 R&D Projects: GA AV ČR KJB600960813 Institutional research plan: CEZ:AV0Z60220518 Keywords : Spermiogenesis * Spermatozoon * Ultrastructure * Barsonella lafoni * Proteocephalinae * Proteocephalidae * Proteocephalidea * Cestoda Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.400, year: 2012

  10. TSKS concentrates in spermatid centrioles during flagellogenesis.

    Science.gov (United States)

    Xu, Bingfang; Hao, Zhonglin; Jha, Kula N; Zhang, Zhibing; Urekar, Craig; Digilio, Laura; Pulido, Silvia; Strauss, Jerome F; Flickinger, Charles J; Herr, John C

    2008-07-15

    Centrosomal coiled-coil proteins paired with kinases play critical roles in centrosomal functions within somatic cells, however knowledge regarding gamete centriolar proteins is limited. In this study, the substrate of TSSK1 and 2, TSKS, was localized during spermiogenesis to the centrioles of post-meiotic spermatids, where it reached its greatest concentration during the period of flagellogenesis. This centriolar localization persisted in ejaculated human spermatozoa, while centriolar TSKS diminished in mouse sperm, where centrioles are known to undergo complete degeneration. In addition to the centriolar localization during flagellogenesis, mouse TSKS and the TSSK2 kinase localized in the tail and acrosomal regions of mouse epididymal sperm, while TSSK2 was found in the equatorial segment, neck and the midpiece of human spermatozoa. TSSK2/TSKS is the first kinase/substrate pair localized to the centrioles of spermatids and spermatozoa. Coupled with the infertility due to haploinsufficiency noted in chimeric mice with deletion of Tssk1 and 2 (companion paper) this centriolar kinase/substrate pair is predicted to play an indispensable role during spermiogenesis.

  11. Morphology of the Male Reproductive System and Spermiogenesis of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae).

    Science.gov (United States)

    Wu, Yi-Fei; Wei, Lu-Sha; Anthony Torres, Mark; Zhang, Xu; Wu, Shao-Ping; Chen, Hui

    2017-01-01

    Studying the reproductive attributes of pests is central to understanding their life cycle history and in crafting management strategies to regulate, if not bring down, their population below threshold levels. In this article, the morphology of the male reproductive tract, topology of the spermatozoa, and salient features of spermiogenesis in the Chinese white pine beetle, Dendroctonus armandi Tsai and Li was studied to provide baseline information for further pest management studies. Results showed that male reproductive tract of this species differs from those documented in other Coleopterans by having 20 testicular tubules in each testis and the presence of two types of accessory glands. The spermatozoon is seen having peculiar characteristics such as an "h"-shaped acrosomal vesicle with a "puff"-like expansion, one centriole, one large spongy body, and two accessory bodies. Despite with some morphological differences of the male reproductive organ, spermatogenesis in this organism is similar to other Coleopterans. Overall, detailed studies regarding the components of the primary male reproductive organ of this beetle species would expand the knowledge on the less-understood biology of Coleopteran pests and would help in designing regulatory measures to conserve endemic and indigenous pine trees in China. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  12. A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development.

    Directory of Open Access Journals (Sweden)

    Christine P Diggle

    Full Text Available Tubulin alpha 8 (Tuba8 is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.

  13. Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera).

    Science.gov (United States)

    Riparbelli, Maria Giovanna; Callaini, Giuliano; Mercati, David; Hertel, Horst; Dallai, Romano

    2009-05-01

    In addition to their role in centrosome organization, the centrioles have another distinct function as basal bodies for the formation of cilia and flagella. Centriole duplication has been reported to require two alternate assembly pathways: template or de novo. Since spermiogenesis in the termite Mastotermes darwiniensis lead to the formation of multiflagellate sperm, this process represents a useful model system in which to follow basal body formation and flagella assembly. We present evidence of a possible de novo pathway for basal body formation in the differentiating germ cell. This cell also contains typical centrosomal proteins, such as centrosomin, pericentrin-like protein, gamma-tubulin, that undergo redistribution as spermatid differentiation proceeds. The spermatid centrioles are long structures formed by nine doublet rather than triplet microtubules provided with short projections extending towards the surrounding cytoplasm and with links between doublets. The sperm basal bodies are aligned in parallel beneath the nucleus. They consist of long regions close to the nucleus showing nine doublets in a cartwheel array devoid of any projections; on the contrary, the short region close to the plasma membrane, where the sperm flagella emerge, is characterized by projections similar to those observed in the centrioles linking the basal body to the plasma membrane. It is hypothesized that this appearance is in connection with the centriole elongation and further with the flagellar axonemal organization. Microtubule doublets of sperm flagellar axonemes are provided with outer dynein arms, while inner arms are rarely visible. (c) 2009 Wiley-Liss, Inc.

  14. Spermiogenesis and sperm ultrastructure in Calicotyle affinis Scott, 1911 (Platyhelminthes, Monogenea, Monopisthocotylea, Monocotylidae

    Directory of Open Access Journals (Sweden)

    Bruňanská M.

    2017-12-01

    Full Text Available Spermatological characteristics of Calicotyle affinis Scott, 1911, an endoparasitic monocotylid monogenean from the cloaca of a holocephalan fish Chimaera monstrosa L, have been investigated by means of transmission electron microscopy for the first time. Spermiogenesis exhibits features basically similar to those of the congeneric Calicotyle kroyeri and Calicotyle australiensis, but there are some new findings with respect to the formation and fine structure of the spermatozoon including the remarkable complex end-piece (EP. Morphogenesis of the EP, which is located at the anterior (proximal region of the late spermatid, includes two stages: (1 the centriolar region is continuous with a cytoplasmic mass of the zone of differentiation, the electron-dense surface of the spermatid undergoes significant changes in the sculpturing and the inner core of developing spermatid is electron-lucent; (2 after central fusion of the arching membranes a definitive structure of the EP is subsequently evolved, finally comprising 3 – 4 electron-dense discs attached to a central common electron-lucent column. The EP is considered as a synapomorphy of the genera Calicotyle + Dictyocotyle. The mature spermatozoon of C. affinis comprises the EP, two parallel axonemes of almost equal lengths with the 9 + “1” trepaxonematan pattern, mitochondrion, nucleus, and a reduced number of parallel cortical microtubules (1 – 3. The posterior (distal extremity of the mature spematozoon contains a single tapering axoneme. Ultrastructural characteristics of the mature spermatozoon of C. affinis coincide mostly with those of congeneric C. australiensis. Variations of the spermatological characters within the genus Calicotyle, between Calicotyle and enigmatic Dictyocotyle as well as other monocotylid monogeneans are discussed.

  15. Disruption of sexual function, FSH secretion, and spermiogenesis in rabbits following developmental exposure to vinclozolin, a fungicide.

    Science.gov (United States)

    Veeramachaneni, D N R; Palmer, J S; Amann, R P; Kane, C M; Higuchi, T T; Pau, K-Y F

    2006-04-01

    We studied sequelae of prenatal plus infantile exposure of male rabbits to vinclozolin, because it is ingested by women and children. Female Dutch-Belted rabbits (7-10/group) were treated daily per orum from gestation day 15 through post-natal week 4 to provide 0, 7.2, or 72 mg vinclozolin/kg dam's body weight/day. Vinclozolin had no effect on maintenance of pregnancy, growth of pups, age at testicular descent or weight of organs. Concentrations of serum LH or testosterone at 6, 12, or 24 weeks of age were unaffected. However, FSH was lower (P vinclozolin groups at all three ages. Following injection of GnRH at 12 or 24 weeks, the increase in FSH was less (P vinclozolin groups, as was testosterone at 12 weeks of age. After full sexual maturity, 2 of 7 low dose rabbits were uninterested in female or male teasers and never achieved erection or ejaculation. Overall, rates of ejaculation failure were: control 0% (0/48), low dose 29% (12/42), and high dose 5% (3/60). Daily sperm production per gram of testis and total number of sperm per ejaculate in both vinclozolin groups were similar (P > 0.1) to controls. However, semen from vinclozolin rabbits contained over two times more (P vinclozolin rabbits than in controls. Lesions included syncytia of spherical spermatids and desquamation of germ cells. Hence, developmental exposure to vinclozolin caused presumably permanent changes in copulatory ability, secretion of FSH, and spermiogenesis.

  16. Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles

    Science.gov (United States)

    Shen, Xuening; Nagarkatti-Gude, David R.; Hess, Rex A.; Henderson, Scott C.; Strauss, Jerome F.; Zhang, Zhibing

    2012-01-01

    Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation. PMID:22768142

  17. Differential fracture healing resulting from fixation stiffness variability. A mouse model

    International Nuclear Information System (INIS)

    Gardner, M.J.; Putnam, S.M.; Wong, A.; Streubel, P.N.; Kotiya, A.; Silva, M.J.

    2011-01-01

    The mechanisms underlying the interaction between the local mechanical environment and fracture healing are not known. We developed a mouse femoral fracture model with implants of different stiffness, and hypothesized that differential fracture healing would result. Femoral shaft fractures were created in 70 mice, and were treated with an intramedullary nail made of either tungsten (Young's modulus=410 GPa) or aluminium (Young's modulus=70 GPa). Mice were then sacrificed at 2 or 5 weeks. Fracture calluses were analyzed using standard microCT, histological, and biomechanical methods. At 2 weeks, callus volume was significantly greater in the aluminium group than in the tungsten group (61.2 vs. 40.5 mm 3 , p=0.016), yet bone volume within the calluses was no different between the groups (13.2 vs. 12.3 mm 3 ). Calluses from the tungsten group were stiffer on mechanical testing (18.7 vs. 9.7 N/mm, p=0.01). The percent cartilage in the callus was 31.6% in the aluminium group and 22.9% in the tungsten group (p=0.40). At 5 weeks, there were no differences between any of the healed femora. In this study, fracture implants of different stiffness led to different fracture healing in this mouse fracture model. Fractures treated with a stiffer implant had more advanced healing at 2 weeks, but still healed by callus formation. Although this concept has been well documented previously, this particular model could be a valuable research tool to study the healing consequences of altered fixation stiffness, which may provide insight into the pathogenesis and ideal treatment of fractures and non-unions. (author)

  18. Iqcg is essential for sperm flagellum formation in mice.

    Directory of Open Access Journals (Sweden)

    Ren-Ke Li

    Full Text Available Mammalian spermatogenesis comprises three successive phases: mitosis phase, meiosis phase, and spermiogenesis. During spermiogenesis, round spermatid undergoes dramatic morphogenesis to give rise to mature spermatozoon, including the condensation and elongation of nucleus, development of acrosome, formation of flagellum, and removal of excessive cytoplasm. Although these transformations are well defined at the morphological level, the mechanisms underlying these intricate processes are largely unknown. Here, we report that Iqcg, which was previously characterized to be involved in a chromosome translocation of human leukemia, is highly expressed in the spermatogenesis of mice and localized to the manchette in developing spermatids. Iqcg knockout causes male infertility, due to severe defects of spermiogenesis and resultant total immobility of spermatozoa. The axoneme in the Iqcg knockout sperm flagellum is disorganized and hardly any typical ("9+2" pattern of microtubule arrangement could be found in Iqcg knockout spermatids. Iqcg interacts with calmodulin in a calcium dependent manner in the testis, suggesting that Iqcg may play a role through calcium signaling. Furthermore, cilia structures in the trachea and oviduct, as well as histological appearances of other major tissues, remain unchanged in the Iqcg knockout mice, suggesting that Iqcg is specifically required for spermiogenesis in mammals. These results might also provide new insights into the genetic causes of human infertility.

  19. 5-aza-2′-deoxycytidine impairs mouse spermatogenesis at multiple stages through different usage of DNA methyltransferases

    International Nuclear Information System (INIS)

    Song, Ning; Endo, Daisuke; Song, Bin; Shibata, Yasuaki; Koji, Takehiko

    2016-01-01

    Mammalian spermatogenesis is a progressive process comprising spermatogonial proliferation, spermatocytic meiosis, and later spermiogenesis, which is considered to be under the regulation of epigenetic parameters. To gain insights into the significance of DNA methylation in early spermatogenesis, 5-azadC was used as a molecular biological tool to mimic the level of DNA methylation in vivo. Since the drug is incorporated into DNA during the S-phase, spermatogonia and spermatocytes would be affected primarily in mouse spermatogenesis. Adult male ICR mice were intraperitoneally injected with 5-azadC at a dose of 0.25 mg/kg/day for 10 consecutive days, allowing us to examine its maximum effect on the kinetics of spermatogonia and spermatocytes. In this short-term protocol, 5-azadC induced significant histological abnormalities, such as a marked increase in apoptosis of spermatogonia and spermatocytes, followed by severe loss of spermatids, while after termination of 5-azadC treatment, normal histology was restored in the testis within 35 days. Quantification of the methylation level of CCGG sites as well as whole DNA showed spermatogonial hypomethylation, which correlated with increased apoptosis of spermatogonia. Interestingly, the hypomethylated cells were simultaneously positive for tri-methylated histone H3 at K4. On the other hand, no changes in methylation level were found in spermatocytes, but PCNA staining clearly showed disordered accumulation of S-phase spermatocytes, which increased their apoptosis in stage XII. In addition, different immunohistochemical staining pattern was found for DNA methyltransferases (DNMTs); DNMT1was expressed in the majority of all germ cells, but DNMT3a and b were only expressed in spermatogonia. Our results indicate that 5-azadC caused DNA hypomethylation in spermatogonia, but induced prolongation of S-phase in spermatocytes, resulting in the induction of apoptosis in both cases. Thus, 5-azadC affects spermatogenesis at more than

  20. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model.

    Science.gov (United States)

    Metildi, Cristina A; Kaushal, Sharmeela; Snyder, Cynthia S; Hoffman, Robert M; Bouvet, Michael

    2013-01-01

    We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes in fluorescent orthotopic nude mouse models of human colon cancer. We established fluorescent orthotopic mouse models of human colon cancer expressing a fluorescent protein. Tumors were resected under bright light surgery (BLS) or FGS. Pre- and post-operative images with the OV-100 Small Animal Imaging System (Olympus Corp, Tokyo Japan) were obtained to assess the extent of surgical resection. All mice with primary tumor that had undergone FGS had complete resection compared with 58% of mice in the BLS group (P = 0.001). FGS resulted in decreased recurrence compared with BLS (33% versus 62%, P = 0.049) and lengthened disease-free median survival from 9 to >36 wk. The median overall survival increased from 16 wk in the BLS group to 31 weeks in the FGS group. FGS resulted in a cure in 67% of mice (alive without evidence of tumor at >6 mo after surgery) compared with only 37% of mice that underwent BLS (P = 0.049). Surgical outcomes in orthotopic nude mouse models of human colon cancer were significantly improved with FGS. The present study can be translated to the clinic by various effective methods of fluorescently labeling tumors. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  3. Mouse Resource Browser-a database of mouse databases

    NARCIS (Netherlands)

    Zouberakis, Michael; Chandras, Christina; Swertz, Morris; Smedley, Damian; Gruenberger, Michael; Bard, Jonathan; Schughart, Klaus; Rosenthal, Nadia; Hancock, John M.; Schofield, Paul N.; Kollias, George; Aidinis, Vassilis

    2010-01-01

    The laboratory mouse has become the organism of choice for discovering gene function and unravelling pathogenetic mechanisms of human diseases through the application of various functional genomic approaches. The resulting deluge of data has led to the deployment of numerous online resources and the

  4. MouseMine: a new data warehouse for MGI.

    Science.gov (United States)

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface.

  5. Does PGE₁ vasodilator prevent orthopaedic implant-related infection in diabetes? Preliminary results in a mouse model.

    Directory of Open Access Journals (Sweden)

    Arianna B Lovati

    Full Text Available BACKGROUND: Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE₁ vasodilator on the incidence of surgical infections in diabetic mice was investigated. METHODOLOGY: A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE₁ vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. RESULTS: The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE₁ and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. CONCLUSIONS: The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model.

  6. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  7. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis

    OpenAIRE

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J.; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C. H.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn ?/? mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/? mouse models, we demonstrate the contribution of Dp427 (f...

  8. TELEOSTEI: MUGILIDAE

    African Journals Online (AJOL)

    Active. spermatocytogenesis, meiosis and spermiogenesis All testis lobules filled with cysts of primary and secondary spermato- cytes and spermatids. Sperm content of testis and main sperm duct varying from few sperm present to packed with sperm. Stage 6: Late spermiogenesis. More than 90% of testis filled with sperm.

  9. EuroPhenome and EMPReSS: online mouse phenotyping resource.

    Science.gov (United States)

    Mallon, Ann-Marie; Blake, Andrew; Hancock, John M

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).

  10. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  11. CRISPR/Cas9-Mediated Rapid Generation of Multiple Mouse Lines Identified Ccdc63 as Essential for Spermiogenesis

    Directory of Open Access Journals (Sweden)

    Samantha A. M. Young

    2015-10-01

    Full Text Available Spermatozoa are flagellated cells whose role in fertilization is dependent on their ability to move towards an oocyte. The structure of the sperm flagella is highly conserved across species, and much of what is known about this structure is derived from studies utilizing animal models. One group of proteins essential for the movement of the flagella are the dyneins. Using the advanced technology of CRISPR/Cas9 we have targeted three dynein group members; Dnaic1, Wdr63 and Ccdc63 in mice. All three of these genes are expressed strongly in the testis. We generated mice with amino acid substitutions in Dnaic1 to analyze two specific phosphorylation events at S124 and S127, and generated simple knockouts of Wdr63 and Ccdc63. We found that the targeted phosphorylation sites in Dnaic1 were not essential for male fertility. Similarly, Wdr63 was not essential for male fertility; however, Ccdc63 removal resulted in sterile male mice due to shortened flagella. This study demonstrates the versatility of the CRISPR/Cas9 system to generate animal models of a highly complex system by introducing point mutations and simple knockouts in a fast and efficient manner.

  12. Does PGE1 Vasodilator Prevent Orthopaedic Implant-Related Infection in Diabetes? Preliminary Results in a Mouse Model

    Science.gov (United States)

    Lovati, Arianna B.; Romanò, Carlo L.; Monti, Lorenzo; Vassena, Christian; Previdi, Sara; Drago, Lorenzo

    2014-01-01

    Background Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE1 vasodilator on the incidence of surgical infections in diabetic mice was investigated. Methodology A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE1 vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. Results The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE1 and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. Conclusions The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model. PMID:24718359

  13. Does PGE₁ vasodilator prevent orthopaedic implant-related infection in diabetes? Preliminary results in a mouse model.

    Science.gov (United States)

    Lovati, Arianna B; Romanò, Carlo L; Monti, Lorenzo; Vassena, Christian; Previdi, Sara; Drago, Lorenzo

    2014-01-01

    Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE₁ vasodilator on the incidence of surgical infections in diabetic mice was investigated. A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE₁ vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE₁ and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model.

  14. The Mouse That Soared

    Science.gov (United States)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  15. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  16. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  17. Mouse manipulation through single-switch scanning.

    Science.gov (United States)

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  18. Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice.

    Science.gov (United States)

    Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-12-01

    Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27: Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survived to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymides contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the "9+2″ axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the

  19. Intraflagellar Transporter Protein (IFT27), an IFT25 binding partner, Is Essential For Male Fertility and Spermiogenesis In Mice

    Science.gov (United States)

    Zhang, Yong; Liu, Hong; Li, Wei; Zhang, Zhengang; Shang, Xuejun; Zhang, David; Li, Yuhong; Zhang, Shiyang; Liu, Junpin; Hess, Rex A; Pazour, Gregory J; Zhang, Zhibing

    2017-01-01

    Intraflagellar transport (IFT) is an evolutionarily conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. In mice, mutations in IFT proteins have been shown to cause several ciliopathies including retinal degeneration, polycystic kidney disease, and hearing loss. However, little is known about its role in the formation of the sperm tail, which has the longest flagella of mammalian cells. IFT27 is a component of IFT-B complex and binds to IFT25 directly. In mice, IFT27 is highly expressed in the testis. To investigate the role of IFT27 in male germ cells, the floxed Ift27 mice were bred with Stra8-iCre mice so that the Ift27 gene was disrupted in spermatocytes/spermatids. The Ift27:Stra8-iCre mutant mice did not show any gross abnormalities, and all of the mutant mice survive to adulthood. There was no difference between testis weight/body weight between controls and mutant mice. All adult homozygous mutant males examined were completely infertile. Histological examination of the testes revealed abnormally developed germ cells during the spermiogenesis phase. The epididymis contained round bodies of cytoplasm. Sperm number was significantly reduced compared to the controls and only about 2% of them remained significantly reduced motility. Examination of epididymal sperm by light microscopy and SEM revealed multiple morphological abnormalities including round heads, short and bent tails, abnormal thickness of sperm tails in some areas, and swollen tail tips in some sperm. TEM examination of epididymal sperm showed that most sperm lost the “9+2” axoneme structure, and the mitochondria sheath, fibrous sheath, and outer dense fibers were also disorganized. Some sperm flagella also lost cell membrane. Levels of IFT25 and IFT81 were significantly reduced in the testis of the conditional Ift27 knockout mice, and levels of IFT20, IFT74, and IFT140 were not changed. Sperm lipid rafts, which were disrupted in the conditional

  20. The MAGIC Touch: Combining MAGIC-Pointing with a Touch-Sensitive Mouse

    Science.gov (United States)

    Drewes, Heiko; Schmidt, Albrecht

    In this paper, we show how to use the combination of eye-gaze and a touch-sensitive mouse to ease pointing tasks in graphical user interfaces. A touch of the mouse positions the mouse pointer at the current gaze position of the user. Thus, the pointer is always at the position where the user expects it on the screen. This approach changes the user experience in tasks that include frequent switching between keyboard and mouse input (e.g. working with spreadsheets). In a user study, we compared the touch-sensitive mouse with a traditional mouse and observed speed improvements for pointing tasks on complex backgrounds. For pointing task on plain backgrounds, performances with both devices were similar, but users perceived the gaze-sensitive interaction of the touch-sensitive mouse as being faster and more convenient. Our results show that using a touch-sensitive mouse that positions the pointer on the user’s gaze position reduces the need for mouse movements in pointing tasks enormously.

  1. mouseTube – a database to collaboratively unravel mouse ultrasonic communication [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nicolas Torquet

    2016-09-01

    Full Text Available Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1 the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2 the biological protocol used to elicit ultrasonic vocalisations; 3 the characteristics of the individual emitting ultrasonic vocalisations (e.g., strain, sex, age. To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

  2. Transplantation of mouse HSCs genetically modified to express a CD4-restricted TCR results in long-term immunity that destroys tumors and initiates spontaneous autoimmunity.

    Science.gov (United States)

    Ha, Sung P; Klemen, Nicholas D; Kinnebrew, Garrett H; Brandmaier, Andrew G; Marsh, Jon; Hangoc, Giao; Palmer, Douglas C; Restifo, Nicholas P; Cornetta, Kenneth; Broxmeyer, Hal E; Touloukian, Christopher E

    2010-12-01

    The development of effective cancer immunotherapies has been consistently hampered by several factors, including an inability to instigate long-term effective functional antitumor immunity. This is particularly true for immunotherapies that focus on the adoptive transfer of activated or genetically modified mature CD8+ T cells. In this study, we sought to alter and enhance long-term host immunity by genetically modifying, then transplanting, mouse HSCs. We first cloned a previously identified tumor-reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen tyrosinase-related protein 1 (Tyrp1), then constructed both a high-expression lentivirus vector and a TCR-transgenic mouse expressing the genes encoding this TCR. Using these tools, we demonstrated that both mouse and human HSCs established durable, high-efficiency TCR gene transfer following long-term transplantation into lethally irradiated mice transgenic for HLA-DR4. Recipients of genetically modified mouse HSCs developed spontaneous autoimmune vitiligo that was associated with the presence of a Th1-polarized memory effector CD4+ T cell population that expressed the Tyrp1-specific TCR. Most importantly, large numbers of CD4+ T cells expressing the Tyrp1-specific TCR were detected in secondary HLA-DR4-transgenic transplant recipients, and these mice were able to destroy subcutaneously administered melanoma cells without the aid of vaccination, immune modulation, or cytokine administration. These results demonstrate the creation of what we believe to be a novel translational model of durable lentiviral gene transfer that results in long-term effective immunity.

  3. Chemical Aspects of Lesser Mouse Deer Meat

    Directory of Open Access Journals (Sweden)

    Djalal Rosyidi

    2012-02-01

    Full Text Available An experiment aiming for studying chemical aspects of lesser mouse deer meat (Tragulus javanicus. This research explored the chemical aspects of lesser mouse deer meat (Tragulus javanicus. Eight lesser mouse deer (four female and four male were used in chemical aspects of lesser mouse deer meat. The parameters observed included proximate analysis, amino acid, fatty acid, cholesterol and EPA-DHA of the meat. The results showed that average meat chemical composition were content of water, protein, fat, ash and cholesterol were 76.33 %, 21.42 %, 0.51 %, 1.20% and 50.00 mg/100 g, respectively. Fatty acid consist of lauric acid, miristate, palmitate, stearic, oleic, linoleic, and linolenic were 1.04 % 3.09%, 30.97, 0.77%., 59.41%, 3.22% and 1.12%, respectively. The total EPA and DHA was 0.13% and 0.05%,   Keywords: amino acid, fatty acid, cholesterol and EPA-DHA

  4. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities

    Directory of Open Access Journals (Sweden)

    Merce TEIXIDO

    2014-03-01

    Full Text Available This paper presents the optimization of a virtual mouse called HeadMouse in order to foster its classroom use by children with physical disabilities. HeadMouse is an absolute virtual mouse that converts head movements in cursor displacement and facial gestures in click actions. The virtual mouse combines different image processing algorithms: face detection, pattern matching and optical flow in order to emulate the behaviour of a conventional computer mouse. The original implementation of HeadMouse requires large computational power and this paper proposes specific optimizations in order to enable its use by children with disabilities in standard low cost classroom computers.

  6. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  7. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  8. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    Science.gov (United States)

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  9. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  10. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    Science.gov (United States)

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  11. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  12. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  13. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    Science.gov (United States)

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  14. Assessment of plasminogen synthesis in vitro by mouse tumor cells using a competition radioimmunoassay for mouse plasminogen

    International Nuclear Information System (INIS)

    Roblin, R.O.; Bell, T.E.; Young, P.L.

    1978-01-01

    A sensitive, specific competition radioimmunoassay for mouse plasmin(ogen) has been developed in order to determine whether mouse tumor cells can synthesize plasminogen in vitro. The rabbit anti-BALB/c mouse plasminogen antibodies used in the assay react with the plasminogen present in serum from BALB/c, C3H, AKR and C57BL/6 mice, and also recognized mouse plasmin. The competition radiommunoassay can detect as little as 50 ng of mouse plasminogen. No competition was observed with preparations of fetal calf, human and rabbit plasminogens. A variety of virus-transformed and mouse tumor cell lines were all found to contain less than 100 ng mouse plasminogen/mg of cell extract protein. Thus, if the plasminogen activator/plasmin system is important in the growth or movement of this group of tumor cells, the cells will be dependent upon the circulatory system of the host for their plasminogen supply. (Auth.)

  15. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  16. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  17. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder.

    Science.gov (United States)

    Smith, Sheryl S; Ruderman, Yevgeniy; Frye, Cheryl; Homanics, Gregg; Yuan, Maoli

    2006-06-01

    3alpha-OH-5alpha[beta]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood. In order to test for conditions where THP might be anxiogenic, we developed a mouse model of THP withdrawal. Because delta-containing GABAR are highly sensitive to THP modulation, results were compared in wild-type and delta knockout mice. Finasteride, a 5alpha-reductase blocker, was administered for 3 days to female wild-type or delta knockout mice. Then, animals were tested in the elevated plus maze, following acute administration of THP, lorazepam, flumazenil, or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), and results compared to vehicle-injected controls. CA1 hippocampal GABAR alpha4 subunit levels were assessed by Western blot. After THP withdrawal, THP produced anxiogenic effects, decreasing open arm entries on the elevated plus maze, following a brief shock, in contrast to its expected anxiolytic effects. As we have shown in rats, THP withdrawal also resulted in increased expression of the alpha4 subunit in mouse CA1 hippocampus. As expected for increases in alpha4-containing GABAR, THP withdrawn mice were relatively insensitive to the benzodiazepine (BDZ) lorazepam and had atypical responses to the BDZ antagonist flumazenil when tested on the plus maze. In contrast, they showed a greater anxiolytic response to THIP, which has greater efficacy at alpha4betadelta than other GABAR. Although THP withdrawal in delta knockout mice also increased the alpha4 GABAR subunit, the anxiogenic effects of THP and the anxiolytic effects of THIP were not observed, implicating alpha4betadelta GABAR in these effects. Based on these behavioral and pharmacological findings, we suggest that THP withdrawal in the mouse may serve as a rodent model of PMDD.

  18. Downregulation of mouse CCR3 by lentiviral shRNA inhibits proliferation and induces apoptosis of mouse eosinophils.

    Science.gov (United States)

    Zhu, Xin-Hua; Liao, Bing; Xu, Yi; Liu, Ke; Huang, Yun; Huang, Quan-Long; Liu, Yue-Hui

    2017-02-01

    RNA interference has been considered as an effective gene silencing method in basic and preclinical investigations. The aims of the present study were to construct a lentiviral vector expressing a short hairpin RNA (shRNA) targeting the murine CC chemokine receptor 3 (mCCR3), and to investigate its effects on the proliferation and apoptosis of mouse eosinophils. A recombinant lentiviral vector expressing four fragments of mouse CCR3 shRNA (pLVX‑mCCR3‑1+2+3+4‑shRNA) was constructed using subcloning techniques. This novel lentivirus was then packaged into 293T cells by co‑transduction with plasmids, including Baculo p35, pCMV R8.2 and VSV. The interference effects of the vector were verified using polymerase chain reaction (PCR) and western blot analyses. The effects of the interference on the proliferation and apoptosis of mouse eosinophils were investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium and terminal deoxynucleotidyl transferase dUTP nick end labeling methods, respectively. The results of the PCR and western blot analyses confirmed that the novel recombinant vector, pLVX‑mCCR3‑1+2+3+4‑shRNA, had high efficiency in inhibiting the mRNA and protein expression levels of mCCR3 in mouse eosinophils. The downregulation of mCCR3 significantly inhibited proliferation of the eosinophils. Furthermore, the present study found that the downregulation of mCCR3 significantly promoted apoptosis of the eosinophils. Therefore, the downregulation of mCCR3 led to the inhibition of proliferation and induction of apoptosis in mouse eosinophils. The predominant characteristics of allergic rhinitis are eosinophil infiltration and release of inflammatory mediators, which appear in a variety of clinical manifestations. The results of the present study indicate that mCCR3 silencing may serve as a putative approach for the treatment of allergic rhinitis.

  19. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  20. 4D atlas of the mouse embryo for precise morphological staging.

    Science.gov (United States)

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  1. Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content.

    Science.gov (United States)

    Borth, N; Heider, R; Assadian, A; Katinger, H

    1992-09-01

    The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.

  2. A Transgenic Tri-Modality Reporter Mouse

    OpenAIRE

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent...

  3. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-01-01

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  4. Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).

    Science.gov (United States)

    Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y

    1996-02-01

    Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.

  5. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  6. Mouse embryonic stem cells efficiently lipofected with nuclear localization peptide result in a high yield of chimeric mice and retain germline transmission potency.

    Science.gov (United States)

    Ma, Haiching; Liu, Qin; Diamond, Scott L; Pierce, Eric A

    2004-06-01

    Embryonic stem (ES) cells are an important tool in developmental biology, genomics, and transgenic methods, as well as in potential clinical applications such as gene therapy or tissue engineering. Electroporation is the standard transfection method for mouse ES (mES) cells because lipofection is quite inefficient. It is also unclear if mES cells treated with cationic lipids maintain pluripotency. We have developed a simple lipofection method for high efficiency transfection and stable transgene expression by employing the nonclassical nuclear localization signal M9 derived from the heterogeneous nuclear ribonucleoprotein A1. In contrast to using 20 microg DNA for 10 x 10(6) cells via electroporation which resulted in 10-20 positive cells/mm2, M9-assisted lipofection of 2 x 10(5) cells with 2 microg DNA resulted in > 150 positive cells/mm2. Electroporation produced only 0.16% EGFP positive cells with fluorescence intensity (FI) > 1000 by FACS assay, while M9-lipofection produced 36-fold more highly EGFP positive cells (5.75%) with FI > 1000. Using 2.5 x 10(6) ES cells and 6 microg linearized DNA followed by selection with G418, electroporation yielded 17 EGFP expressing colonies, while M9-assisted lipofection yielded 72 EGFP expressing colonies. The mES cells that stably expressed EGFP following M9-assisted lipofection yielded > 66% chimeric mice (8 of 12) and contributed efficiently to the germline. In an example of gene targeting, a knock-in mouse was produced from an ES clone screened from 200 G418-resistant colonies generated via M9-assisted lipofection. To our knowledge, this is the first report of generation of transgenic or knock-in mice obtained from lipofected mES cells and this method may facilitate large scale genomic studies of ES developmental biology or large scale generation of mouse models of human disease. Copyright 2003 Elsevier Inc.

  7. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  8. Nrl-Cre transgenic mouse mediates loxP recombination in developing rod photoreceptors.

    Science.gov (United States)

    Brightman, Diana S; Razafsky, David; Potter, Chloe; Hodzic, Didier; Chen, Shiming

    2016-03-01

    The developing mouse retina is a tractable model for studying neurogenesis and differentiation. Although transgenic Cre mouse lines exist to mediate conditional genetic manipulations in developing mouse retinas, none of them act specifically in early developing rods. For conditional genetic manipulations of developing retinas, a Nrl-Cre mouse line in which the Nrl promoter drives expression of Cre in rod precursors was created. The results showed that Nrl-Cre expression was specific to the retina where it drives rod-specific recombination with a temporal pattern similar to endogenous Nrl expression during retinal development. This Nrl-Cre transgene does not negatively impact retinal structure and function. Taken together, the data suggested that the Nrl-Cre mouse line was a valuable tool to drive Cre-mediated recombination specifically in developing rods. © 2016 Wiley Periodicals, Inc.

  9. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  10. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  11. Formation of DNA adducts in mouse tissues after 1-nitropyrene administration

    International Nuclear Information System (INIS)

    Mitchell, C.E.

    1986-01-01

    DNA adducts were isolated and characterized in mouse lung, liver and kidney after intratracheal instillation of [ 3 H]-1-nitropyrene (1-NP). HPLC analysis of the enzymatically digested DNA indicated the presence of multiple DNA adducts in mouse lung, liver and kidney. These results indicate that DNA adducts of 1-NP are formed in mouse lung, liver and kidney after intratracheal instillation of 1-NP; the HPLC profiles of the multiple adducts suggests that adducts may be formed via metabolic pathways that involve both nitroreduction and ring-oxidation. 6 references, 1 figure

  12. Steroid metabolism in the mouse placenta

    International Nuclear Information System (INIS)

    Okker-Reitsma, G.H.

    1976-01-01

    The purpose of the study described in this thesis was to investigate the capacity for steroid synthesis of the mouse placenta - especially the production of progesterone, androgens and estrogens - and to determine, if possible, the relation of steroid synthesis to special cell types. In an introductory chapter the androgen production in the mouse placenta is surveyed by means of a histochemical and bioindicator study of different stages of development of the placenta. The metabolism of [ 3 H]-dehydroepiandrosterone and [ 3 H]-progesterone by mouse placental tissue in vitro is studied. The metabolism of [ 3 H]-progesterone by the mouse fetal adrenal in vitro is also studied

  13. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  14. Expression of HSG is essential for mouse blastocyst formation

    International Nuclear Information System (INIS)

    Jiang Guangjian; Pan Lei; Huang Xiuying; Han Mei; Wen Jinkun; Sun Fangzhen

    2005-01-01

    It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with β-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development

  15. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    International Nuclear Information System (INIS)

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-01-01

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development

  16. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  17. Comparison of three mouse strains by radiosensitivity of hemato-immune system

    International Nuclear Information System (INIS)

    Li, Deguan; Wu, Hongying; Wang, Yong; Zhang, Junling; Wang, Yueying; Lu, Lu; Meng, Aimin

    2008-01-01

    IRM-2, developed in our Lab, is an inbred strain mouse created by cross of a ICR/JCL female and 615 male mouse. Compared to the parent strains, the IRM-2 mouse exhibit increased resistance to radiation. We examine the damage of hemato-immune system induced by radiation in IRM-2, ICR and 615 mice in order to elucidate the radiation resistant mechanism of IRM-2 mouse. The hemato-immune function and radiosensitivities of three mouse strains (IRM-2, ICR/JCL, 615) have been compared using the following parameters: the white blood cells (WBC) in peripheral blood (PB), the bone marrow nucleated cells (BMC) per femur. Percent of phagocytosis of peritoneal macrophage (PM) was checked by chicken red blood cells. Lymphocyte phenotype in PB were analyzed by flow cytometry. Damage induced by radiation were analysed in the bone marrows cells, splenocytes and thymocyte exposed to irradiation in vitro by cell viability assay (ATP Bioluminescence assay) and apoptosis assay (Annexin V/PI). The WBC and BMC of IRM-2 mice were significantly higher than those in ICR mice and 615 mice, respectively (P<0.01). The ratio of CD4/CD8 in PB of IRM-2 mouse was lower than those in ICR and 615, P<0.01. Cell viability showed difference after 18 hs incubation post radiation in three mouse strains. The results of our primary study suggest that the hemato-immune function in IRM-2 mouse is different to its parent strains. The IRM-2 mouse provides an animal model to conducted further investigation to explore the role of hemato-immune system in radiation resistance. (author)

  18. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  19. Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity

    International Nuclear Information System (INIS)

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-01-01

    The carcinogenic mycotoxin aflatoxin B 1 (AFB 1 ) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G → T transversion mutation in K-ras, an early event in AFB 1 -induced mouse lung carcinogenesis, is thought to result from AFB 1 -8,9-exo-epoxide binding to DNA to form AFB 1 -N 7 -guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB 1 carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB 1 tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB 1 . Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB 1 group (8.81 ± 3.64, n = 47) was greater than that of the group treated with AFB 1 alone (7.05 ± 3.45, n = 42) (P 1 were larger than those from mice treated with AFB 1 alone (P 1 and PEG-CAT + AFB 1 groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [ 3 H]AFB 1 into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB 1 carcinogenicity in mouse lung despite preventing DNA oxidation

  20. Automated classification of mouse pup isolation syllables: from cluster analysis to an Excel based ‘mouse pup syllable classification calculator’

    Directory of Open Access Journals (Sweden)

    Jasmine eGrimsley

    2013-01-01

    Full Text Available Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified ten syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.

  1. The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines.

    Science.gov (United States)

    Stanley, Joanna L; Lincoln, Rachael J; Brown, Terry A; McDonald, Louise M; Dawson, Gerard R; Reynolds, David S

    2005-05-01

    The mouse rotarod test of motor coordination/sedation is commonly used to predict clinical sedation caused by novel drugs. However, past experience suggests that it lacks the desired degree of sensitivity to be predictive of effects in humans. For example, the benzodiazepine, bretazenil, showed little impairment of mouse rotarod performance, but marked sedation in humans. The aim of the present study was to assess whether the mouse beam walking assay demonstrates: (i) an increased sensitivity over the rotarod and (ii) an increased ability to predict clinically sedative doses of benzodiazepines. The study compared the effects of the full benzodiazepine agonists, diazepam and lorazepam, and the partial agonist, bretazenil, on the mouse rotarod and beam walking assays. Diazepam and lorazepam significantly impaired rotarod performance, although relatively high GABA-A receptor occupancy was required (72% and 93%, respectively), whereas beam walking performance was significantly affected at approximately 30% receptor occupancy. Bretazenil produced significant deficits at 90% and 53% receptor occupancy on the rotarod and beam walking assays, respectively. The results suggest that the mouse beam walking assay is a more sensitive tool for determining benzodiazepine-induced motor coordination deficits than the rotarod. Furthermore, the GABA-A receptor occupancy values at which significant deficits were determined in the beam walking assay are comparable with those observed in clinical positron emission tomography studies using sedative doses of benzodiazepines. These data suggest that the beam walking assay may be able to more accurately predict the clinically sedative doses of novel benzodiazepine-like drugs.

  2. Effect of potassium channel modulators in mouse forced swimming test

    Science.gov (United States)

    Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro

    1999-01-01

    The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599

  3. Enhancement of mouse sperm motility by trophinin-binding peptide

    Directory of Open Access Journals (Sweden)

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  4. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  5. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.

    2011-01-01

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  6. 9 CFR 113.33 - Mouse safety tests.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be...

  7. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  8. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  9. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  10. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin

    International Nuclear Information System (INIS)

    Kaji, Chiaki; Tsujimoto, Yuta; Kato Kaneko, Mika; Kato, Yukinari; Sawa, Yoshihiko

    2012-01-01

    This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG 2a ) and anti-human mAb NZ-1.2 (IgG 2a ) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections

  11. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    Science.gov (United States)

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  12. Dual effects of fluoxetine on mouse early embryonic development

    International Nuclear Information System (INIS)

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-01-01

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K + channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation

  13. Dual effects of fluoxetine on mouse early embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Woon [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723 (Korea, Republic of); Choe, Changyong [National Institute of Animal Science, RDA, Cheonan 330-801 (Korea, Republic of); Kim, Eun-Jin [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Lee, Jae-Ik [Department of Obstetrics and Gynecology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Yoon, Sook-Young [Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081 (Korea, Republic of); Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751 (Korea, Republic of)

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  14. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  15. Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat

    Directory of Open Access Journals (Sweden)

    Jin Hong

    2009-12-01

    Full Text Available Abstract Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain is its distant relative, α-dystrobrevin. The α-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most α-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse α-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms α-dystrobrevin-4 and -5 are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the α-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the α-dystrobrevins (and therefore the dystrophin glycoprotein complexes of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof.

  16. Immunostimulatory mouse granuloma protein.

    Science.gov (United States)

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  17. Delayed formation of chromosome aberrations in mouse pachytebne spermatocytes treated with triethylenemelamine (TEM)

    International Nuclear Information System (INIS)

    Generoso, W.M.; Krishna, M.; Sotomayor, R.E.; Cacheiro, N.L.A.

    1977-01-01

    Induction of chromosome aberrations in pachytene spermatocytes of mice by 2 mg/kg TEM was compared with induction by 400 R x rays. These doses induced comparably high dominant lethal effects in pachytene spermatocytes of mice. Cytological analysis at diakinesis-metaphase I stage showed that whereas 76.4% of the cells treated with x rays at pachytene stage had aberrations, the frequencies observed in two TEM experiments were only 0.8 and 2.2%. On the other hand, 5% of the progeny from TEM-treated pachytene spermatocytes were found to be translocation heterozygotes. This is the first report on the recovery of heritable translocations from treated spermatocytes of mice. The aberration frequencies observed for TEM in diakinesis-metaphase I were much too low to account for all the lethal mutations and heritable translocations. Thus, the formation of the bulk of aberrations induced by TEM in pachytene spermatocytes was delayed--a marked contrast to the more immediate formation of x-ray-induced aberrations. It is postulated that the formation of the bulk of TEM-induced aberrations in pachytene spermatocytes and in certain postmeiotic stages occurs sometime during spermiogenesis, and not through the operation of postfertilization pronuclear DNA synthesis

  18. Introduction of the human proα1(I) collagen gene into proα1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    International Nuclear Information System (INIS)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-01-01

    The Mov-13 mouse strain carries a retroviral insertion in the proα1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of proα2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse proα1(I) collagen gene into homozygous cell lines to assess whether the human or mouse proα1(I) chains can associate with the endogenous mouse proα2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human α1 chains and one mouse α2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both α1(I) and α2(I) chains in the human-mouse hybrid molecules were retarded, compared to the α(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse α1 and α2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human α chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected proα1(I) genes have on the synthesis, assembly, and function of collagen I

  19. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  20. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  1. SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torres, C [N Rancilio Purdue University, West Lafayette, IN (United States)

    2016-06-15

    Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars and a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.

  2. Teratology studies in the mouse.

    Science.gov (United States)

    Marsden, Edward; Leroy, Mariline

    2013-01-01

    The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.

  3. Lipopolysaccharide administration in the dominant mouse destabilizes social hierarchy.

    Science.gov (United States)

    Cohn, Daniel Wagner Hamada; Gabanyi, Ilana; Kinoshita, Denise; de Sá-Rocha, Luiz Carlos

    2012-09-01

    Sickness behavior is a set of behavioral changes that are part of an adaptive strategy to overcome infection. Mice that interact with conspecifics displaying sickness behavior also show relevant behavioral changes. In this work we sought to determine the role of sickness behavior display by a dominant mouse as a promoter of hierarchy instability. We treated the dominant mouse within a dyad with lipopolysaccharide (LPS) (400 μg/kg, i.p.) for three consecutive days and assessed social dominance behavior. Since elder animals display increased inflammatory responses and the behaviors toward conspecifics are influenced by kinship we also assessed whether kinship and age, might influence sickness related hierarchy instability. Our results show that administration of LPS in the dominant mouse promotes social instability within a dyad, and indicates that this instability could be influenced by kinship and age. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  5. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...... are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum...

  6. Design and analysis of sustainable computer mouse using design for disassembly methodology

    Science.gov (United States)

    Roni Sahroni, Taufik; Fitri Sukarman, Ahmad; Agung Mahardini, Karunia

    2017-12-01

    This paper presents the design and analysis of computer mouse using Design for Disassembly methodology. Basically, the existing computer mouse model consist a number of unnecessary part that cause the assembly and disassembly time in production. The objective of this project is to design a new computer mouse based on Design for Disassembly (DFD) methodology. The main methodology of this paper was proposed from sketch generation, concept selection, and concept scoring. Based on the design screening, design concept B was selected for further analysis. New design of computer mouse is proposed using fastening system. Furthermore, three materials of ABS, Polycarbonate, and PE high density were prepared to determine the environmental impact category. Sustainable analysis was conducted using software SolidWorks. As a result, PE High Density gives the lowers amount in the environmental category with great maximum stress value.

  7. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  8. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  9. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  10. Mousetrap: An integrated, open-source mouse-tracking package.

    Science.gov (United States)

    Kieslich, Pascal J; Henninger, Felix

    2017-10-01

    Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .

  11. The function analysis of full-length cDNA sequence from IRM-2 mouse cDNA library

    International Nuclear Information System (INIS)

    Wang Qin; Liu Xiaoqiu; Xu Chang; Du Liqing; Sun Zhijuan; Wang Yan; Liu Qiang; Song Li; Li Jin; Fan Feiyue

    2013-01-01

    Objective: To identify the function of full-length cDNA sequence from IRM-2 mouse cDNA library. Methods: Full-length cDNA products were amplified by PCR from IRM-2 mouse cDNA library according to twenty-one pieces of expressed sequence tag. The expression of full-length cDNAs were detected after mouse embryonic fibroblasts were exposed to 6.5 Gy γ-ray radiation. And the effect on the growth of radiosensitivity cells AT5B1VA transfected with full-length cDNAs was investigated. Results: The expression of No.4, 5 and 2 full-length cDNAs from IRM-2 mouse were higher than that of parental ICR and 615 mouse after mouse embryonic fibroblasts irradiated with γ-ray radiation. And the survival rate of AT5B1VA cells transfected with No.4, 5 and 2 full-length cDNAs was high. Conclusion: No.4, 5 and 2 full-length cDNAs of IRM-2 mouse are of high radioresistance. (authors)

  12. Mouse ribosomal RNA genes contain multiple differentially regulated variants.

    Directory of Open Access Journals (Sweden)

    Hung Tseng

    2008-03-01

    Full Text Available Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA. The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs, which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active, two are expressed in some tissues (selectively active, and two are not expressed (silent. These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.

  13. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  14. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  15. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  16. Age-related changes of MAO-A and -B distribution in human and mouse brain.

    Science.gov (United States)

    Mahy, N; Andrés, N; Andrade, C; Saura, J

    2000-01-01

    Age-related changes of MAO-A and -B were studied in human and BL/C57 mouse brain areas (substantia nigra, putamen and cerebellum). [3H]Ro41-1049 and [3H]lazabemide were used as selective radioligands to image and quantify MAO-A and MAO-B respectively by enzyme autoradiography. MAO-A binding was higher in mouse, whereas MAO-B binding was higher in human. With aging, mouse MAO-A was significantly reduced between 4 and 8 weeks and remained unchanged until 19 months followed by a slight increase between 19 and 25 months. In contrast, no clear variation was observed in humans between the age of 17-93 years. In most of the structures studied a clear age-related increase in MAO-B was observed beginning in mouse brain at 4 weeks, whereas in human tissue this increase started at the age of 50-60 years. These results show marked differences in the levels and variations of mouse and human MAO-A and -B associated with aging and should be taken into account when extrapolating experimental data from mouse to human.

  17. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    Science.gov (United States)

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Life history and bioeconomy of the house mouse.

    Science.gov (United States)

    Berry, R J; Bronson, F H

    1992-11-01

    1. More is known about the western European house mouse, Mus (musculus) domesticus than any other non-human mammal. If laboratory and field information is combined, an extremely valuable understanding of the species' bioeconomy could be obtained. 2. The seven stages of mouse life-history are surveyed (up to birth, nest life, sex life, social structure, population statics and stability, senescence, and death), and the interactions between the changing phenotype and the environment are described. 3. These interactions can be used to build up a model of the opportunities and compromises which result in the fitness of individual mice. It is not yet possible to quantify such a model, but this should in principle be achievable.

  19. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  20. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  1. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  2. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    15-LO-1 (a gene overexpressed in human PCa and HGPIN to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression.

  3. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  4. Effect of ionizing radiation on apoptosis in mouse Peyer's patches

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Dong; Liu Shuzheng

    1999-01-01

    The relationship of time-effect and dose-effect of apoptosis in mouse Peyer's patches after whole body irradiation (WBI) with different doses of X-rays was studied by the method of TdT-mediated dUTP nick end labelling (TUNEL). The results showed that the number of TUNEL positive cells in mouse Peyer's patches were significantly increased following WBI with 2 Gy irradiation, While the number of TUNEL positive cells were decreased after WBI with doses of 0.05 Gy and 0.075 Gy X-rays. the results support the view that 2 Gy irradiation promote the apoptosis of immune cells and the low doses of radiation suppress the apoptosis of immune cells

  5. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    International Nuclear Information System (INIS)

    Pavone, Luigi Michele; Spina, Anna; Lo Muto, Roberta; Santoro, Dionea; Mastellone, Vincenzo; Avallone, Luigi

    2008-01-01

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT Cre/+ ;ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

  6. High-performance liquid chromatography of rat and mouse islet polypeptides

    DEFF Research Database (Denmark)

    Linde, S; Hansen, B; Welinder, B S

    1990-01-01

    After preparative high-performance liquid chromatography of mouse islet culture medium, concentrated on disposable C18 cartridges (Sep-Pak), an unexpected insulin immunoreactive peak eluting earlier than mouse insulin I and II was detected. Molecular mass determination by mass spectrometry...... on the buffer, the organic modifier and the procedure. In particular the use of methanol-trifluoroacetic acid resulted in extensive oxidation. The oxidation could be minimized by adding 2 mM dithiothreitol to the buffer and by degassing and/or nitrogen-bubbling of the buffer. Minimal formation of Met...

  7. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  8. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme...

  9. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  10. Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains

    Directory of Open Access Journals (Sweden)

    Taro Kataoka

    2017-10-01

    Full Text Available Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15, has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4 on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.

  11. Characterization of Bovine 5′-flanking Region during Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hye-Jeong Jang

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs have been used as a powerful tool for research including gene manipulated animal models and the study of developmental gene regulation. Among the critical regulatory factors that maintain the pluripotency and self-renewal of undifferentiated ESCs, NANOG plays a very important role. Nevertheless, because pluripotency maintaining factors and specific markers for livestock ESCs have not yet been probed, few studies of the NANOG gene from domestic animals including bovine have been reported. Therefore, we chose mouse ESCs in order to understand and compare NANOG expression between bovine, human, and mouse during ESCs differentiation. We cloned a 600 bp (−420/+181 bovine NANOG 5′-flanking region, and tagged it with humanized recombinant green fluorescent protein (hrGFP as a tracing reporter. Very high GFP expression for bovine NANOG promoter was observed in the mouse ESC line. GFP expression was monitored upon ESC differentiation and was gradually reduced along with differentiation toward neurons and adipocyte cells. Activity of bovine NANOG (−420/+181 promoter was compared with already known mouse and human NANOG promoters in mouse ESC and they were likely to show a similar pattern of regulation. In conclusion, bovine NANOG 5-flanking region functions in mouse ES cells and has characteristics similar to those of mouse and human. These results suggest that bovine gene function studied in mouse ES cells should be evaluated and extrapolated for application to characterization of bovine ES cells.

  12. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    International Nuclear Information System (INIS)

    Xiang, Dong-Fang; Zhu, Jun-Quan; Jin, Shan; Hu, Yan-Jun; Tan, Fu-Qing; Yang, Wan-Xi

    2013-01-01

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  13. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong-Fang [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China); Zhu, Jun-Quan; Jin, Shan [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); Hu, Yan-Jun [Department of Reproductive Endocrinology, Women' s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Tan, Fu-Qing [The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Yang, Wan-Xi, E-mail: wxyang@spermlab.org [The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2013-09-15

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  14. Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum

    DEFF Research Database (Denmark)

    Lukácová, Slávka; Khalil, Azza Ahmed; Overgaard, Jens

    2005-01-01

    To investigate the possible relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin (OPN) levels measured in mouse serum. MATERIAL AND METHODS: Experiments were performed in CDF1 mice that were either non-tumour bearing or with different sized tumours implanted...... in the right rear foot. Osteopontin levels in extracted mouse blood serum and tissue from the transplanted tumours were measured using an ELISA assay. The tumour oxygenation status was estimated using the Eppendorf Histograph and the fraction of oxygen partial pressure (pO2) values =5 mm Hg (HF5...

  15. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  16. Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin.

    Science.gov (United States)

    Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab

    2011-03-01

    OBJECTIVES: The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. METHOD AND RESULTS: Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm(2), 746.32 ± 12.43 µg/cm(2), and 1882 ± 395.18 µg/cm(2), respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm(2) and 746.32 ± 12.43 µg/cm(2) while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm(2) and 653.43 ± 85.62 µg/cm(2) though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane.

  17. Sequence and chromosomal localization of the mouse brevican gene

    DEFF Research Database (Denmark)

    Rauch, U; Meyer, H; Brakebusch, C

    1997-01-01

    Brevican is a brain-specific proteoglycan belonging to the aggrecan family. Phage clones containing the complete mouse brevican open reading frame of 2649 bp and the complete 3'-untranslated region of 341 bp were isolated from a mouse brain cDNA library, and cosmid clones containing the mouse...

  18. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    Science.gov (United States)

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  19. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  20. The sensitivity of murine spermiogenesis to miglustat is a quantitative trait: a pharmacogenetic study

    Directory of Open Access Journals (Sweden)

    Boomkamp Stephanie

    2007-01-01

    Full Text Available Abstract Background A major event in the post-meiotic development of male germ cells is the formation of the acrosome. This process can be perturbed in C57BL/6 mice by administration of the small molecule miglustat (N-butyldeoxynojirimycin, NB-DNJ. The miglustat-treated mice produce morphologically abnormal spermatozoa that lack acrosomes and are poorly motile. In C57BL/6 mice, miglustat can be used to maintain long-term reversible infertility. In contrast, when miglustat was evaluated in normal men, it did not affect spermatogenesis. To gain more insight into this species difference we have now evaluated the reproductive effects of miglustat in rabbits, in multiple mouse strains and in interstrain hybrid mice. Methods Male mice of 18 inbred strains were administered miglustat orally or via miniosmotic pumps. Rabbits were given the compound in their food. Fourth-generation interstrain hybrid mice, bred from C57BL/6 and FVB/N mice (which differ in their response to miglustat, also received the drug. Data on fertility (natural mating, sperm motility and morphology, acrosome status, and serum drug levels were collected. Results In rabbits the drug did not induce aberrations of sperm shape or motility, although the serum level of miglustat in rabbits far exceeded the level in C57BL/6 mice (8.4 μM and 0.5 μM, respectively. In some strains of the Swiss and Castle lineages of inbred mice miglustat did not cause infertility, severe morphological sperm aberrations or reduced sperm motility. In these strains miglustat only had milder effects. However, miglustat strongly disturbed acrosome and sperm nucleus development in AKR/J and BALB/c mice and in a number of C57BL/6-related strains. The consequences of drug administration in the interstrain hybrid mice were highly variable. Judging by the number of grossly abnormal spermatozoa, these genetically heterogeneous mice displayed a continuous range of intermediate responses, distinct from either of their

  1. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  2. Overexpression of mouse TTF-2 gene causes cleft palate

    Science.gov (United States)

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  3. Mouse-tracking evidence for parallel anticipatory option evaluation.

    Science.gov (United States)

    Cranford, Edward A; Moss, Jarrod

    2017-12-23

    In fast-paced, dynamic tasks, the ability to anticipate the future outcome of a sequence of events is crucial to quickly selecting an appropriate course of action among multiple alternative options. There are two classes of theories that describe how anticipation occurs. Serial theories assume options are generated and evaluated one at a time, in order of quality, whereas parallel theories assume simultaneous generation and evaluation. The present research examined the option evaluation process during a task designed to be analogous to prior anticipation tasks, but within the domain of narrative text comprehension. Prior research has relied on indirect, off-line measurement of the option evaluation process during anticipation tasks. Because the movement of the hand can provide a window into underlying cognitive processes, online metrics such as continuous mouse tracking provide more fine-grained measurements of cognitive processing as it occurs in real time. In this study, participants listened to three-sentence stories and predicted the protagonists' final action by moving a mouse toward one of three possible options. Each story was presented with either one (control condition) or two (distractor condition) plausible ending options. Results seem most consistent with a parallel option evaluation process because initial mouse trajectories deviated further from the best option in the distractor condition compared to the control condition. It is difficult to completely rule out all possible serial processing accounts, although the results do place constraints on the time frame in which a serial processing explanation must operate.

  4. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  5. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  6. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  7. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  8. The effect of potassium quercetin phosphate on the nutritional blood flow of mouse heart

    International Nuclear Information System (INIS)

    Tang Yunzhao; Tao Ran; Hao Yibin; Wang Zhiping; Fan Guangcan; Gao Zhou

    1991-01-01

    The effect of potassium quercetin phosphate (PQP) on the nutritional blood flow of mouse heart was evaluated with the radioactive tracer 99m Tc-hexakis-2-methoxyisobutyl isonitrile (MIBI). The result showed that the uptake of 99m Tc-MIBI by mouse heart (per gram) in the PQP-treated group (ip 200 mg/kg) was increased by 55.36% as compared with control group. This suggests that PQP can increase the nutritional blood flow of mouse heart. 99m Tc-MIBI may take the place of 86 Rb in evaluating nutritional blood flow of myocardium in animals and men

  9. Molecular cloning, expression, and characterization of mouse amine N-sulfotransferases

    International Nuclear Information System (INIS)

    Takahashi, Saki; Sakakibara, Yoichi; Mishiro, Emi; Kouriki, Haruna; Nobe, Rika; Kurogi, Katsuhisa; Yasuda, Shin; Liu, M.-C.; Suiko, Masahito

    2008-01-01

    By searching the GenBank database, we recently identified a novel mouse cytosolic sulfotransferase (SULT) cDNA (IMAGE Clone ID 679629) and a novel mouse SULT gene (LOC 215895). Sequence analysis revealed that both mouse SULTs belong to the cytosolic SULT3 gene family. The recombinant form of these two newly identified SULTs, designated SULT3A1 and SULT3A2, were expressed using the pGEX-4T-1 glutathione S-transferase fusion system and purified from transformed BL21 Escherichia coli cells. Both purified SULT3A1 and SULT3A2 exhibited strong amine N-sulfonating activities toward 1-naphthylamine among a variety of endogenous and xenobiotic compounds tested as substrates. Kinetic constants of the sulfation of 1-naphthylamine and 1-naphthol by these two enzymes were determined. Collectively, these results imply that these two amine-sulfonating SULT3s may play essential roles in the metabolism and detoxification of aromatic amine compounds in the body

  10. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  11. Differences in both glycosylation and binding properties between rat and mouse liver prolactin receptors.

    Science.gov (United States)

    Lascols, O; Cherqui, G; Munier, A; Picard, J; Capeau, J

    1994-05-01

    To investigate whether glycanic chains of prolactin receptors (PRL-R) play a role in hormone binding activity, comparison was made of rat and mouse liver solubilized receptors with respect to both their affinity for the hormone and their glycosylation properties. As compared with rat receptors, mouse receptors exhibited a 2-fold higher affinity for human growth hormone (hGH), the hormone being bound by both tissues with a lactogenic specificity. Along with this increased affinity, mouse receptors had a 2 lower M(r) relative to rat receptors (62 kDa versus 64 kDa as measured on hGH cross-linked receptors). These differences could be ascribed to different glycosylation properties of the receptors from the two species, as supported by the followings. 1) After treatment with endoglycosidase F (endo F), rat and mouse PRL-R no longer exhibited any difference in their M(r) (54 kDa for both cross-linked receptors). 2) Neuraminidase treatment increased by 37% the binding of hGH to mouse receptors, but was ineffective on the hormone-binding to rat receptors. Conversely, wheat germ agglutinin (WGA), another sialic acid specific probe, decreased hGH binding to rat receptors by 25%, but had no effect on this process for mouse ones. 3) Marked differences were observed in the recoveries of rat and mouse hormone-receptor (HR) complexes from ricin-1- (RCA1-), concanavalin A- (ConA-) and WGA-immobilized lectins. These differences were reduced (RCA1 and ConA) or abolished (WGA) after rat and mouse receptor desialylation by neuraminidase, a treatment which decreased the M(r) of both receptors by 2 kDa. Taken together, these results strongly suggest that the PRL-R from rat and mouse liver contain biantennary N-linked oligosaccharidic chains with distinct type of sialylation, which may account for their differential hormone-binding affinities.

  12. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo

    International Nuclear Information System (INIS)

    Li, Jiasong; Wang, Shang; Singh, M; Larin, K V; Aglyamov, S; Emelianov, S; Twa, M D

    2014-01-01

    We demonstrate the use of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to assess the relaxation rate of deformation created by a focused air-pulse in tissue-mimicking gelatin phantoms of various concentrations and mouse corneas of different ages in vivo. The results show that the relaxation rate can be quantified and is different for gels with varying concentrations of gelatin and mouse corneas of different ages. The results indicate that gel phantoms with higher concentrations of gelatin as well as older mouse corneas have faster relaxation rates indicating stiffer material. This non-contact and non-invasive measurement technique utilizes low surface displacement amplitude (in µm scale) for tissue excitation and, therefore, can be potentially used to study the biomechanical properties of ocular and other sensitive tissues. (letter)

  13. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    Science.gov (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  14. Hydrogen isotope ratios of mouse tissues are influenced by a variety of factors other than diet

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    Hydrogen isotopes are fractionated during biochemical reactions in a variety of organisms. A number of experiments have shown that the D/H ratios of animals and their tissues are not controlled solely by the D/H ratios of their food. The authors performed a simple experiment which indicated that the D/H ratios of a significant fraction of the organically bonded hydrogen in animal tissues must be determined by the isotopic composition of water that the samples encounter. Aliquots of dried mouse brain and liver and mouse food were exposed to water vapors of different D/H ratios prior to isotopic analysis. The results of the experiment showed that at least 16 percent of the hydrogen in mouse brain is exchangeable with the hydrogen of water; the corresponding values for mouse liver and mouse food were 25 to 29 percent

  15. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  16. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, Bram F.; Moonen, Rik P. M.; Paulis, Leonie E. M.; Geelen, Tessa; Nicolay, Klaas; Strijkers, Gustav J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300-400 msec. The method was

  17. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  18. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mirjam C. Boelens

    2016-08-01

    Full Text Available Invasive lobular carcinoma (ILC is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC, the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K signaling as a potential therapeutic strategy for targeting CLC.

  19. Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images.

    Science.gov (United States)

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2012-01-01

    Micro-CT is widely used in preclinical studies of small animals. Due to the low soft-tissue contrast in typical studies, segmentation of soft tissue organs from noncontrast enhanced micro-CT images is a challenging problem. Here, we propose an atlas-based approach for estimating the major organs in mouse micro-CT images. A statistical atlas of major trunk organs was constructed based on 45 training subjects. The statistical shape model technique was used to include inter-subject anatomical variations. The shape correlations between different organs were described using a conditional Gaussian model. For registration, first the high-contrast organs in micro-CT images were registered by fitting the statistical shape model, while the low-contrast organs were subsequently estimated from the high-contrast organs using the conditional Gaussian model. The registration accuracy was validated based on 23 noncontrast-enhanced and 45 contrast-enhanced micro-CT images. Three different accuracy metrics (Dice coefficient, organ volume recovery coefficient, and surface distance) were used for evaluation. The Dice coefficients vary from 0.45 ± 0.18 for the spleen to 0.90 ± 0.02 for the lungs, the volume recovery coefficients vary from 0.96 ± 0.10 for the liver to 1.30 ± 0.75 for the spleen, the surface distances vary from 0.18 ± 0.01 mm for the lungs to 0.72 ± 0.42 mm for the spleen. The registration accuracy of the statistical atlas was compared with two publicly available single-subject mouse atlases, i.e., the MOBY phantom and the DIGIMOUSE atlas, and the results proved that the statistical atlas is more accurate than the single atlases. To evaluate the influence of the training subject size, different numbers of training subjects were used for atlas construction and registration. The results showed an improvement of the registration accuracy when more training subjects were used for the atlas construction. The statistical atlas-based registration was also compared with

  20. Inability of Kaplan radiation leukemia virus to replicate on mouse fibroblasts is conferred by its long terminal repeat

    International Nuclear Information System (INIS)

    Rassart, E.; Paquette, Y.; Jolicoeur, P.

    1988-01-01

    The molecularly cloned infectious Kaplan radiation leukemia virus has previously been shown to be unable to replicate on mouse fibroblasts. To map the viral sequences responsible for this, we constructed chimeric viral DNA genomes in vitro with parental cloned infectious viral DNAs from the nonfibrotropic (F-) BL/VL3 V-13 radiation leukemia virus and the fibrotropic (F+) endogenous BALB/c or Moloney murine leukemia viruses (MuLV). Infectious chimeric MuLVs, recovered after transfection of Ti-6 lymphocytes with these recombinant DNAs, were tested for capacity to replicate on mouse fibroblasts in vitro. We found that chimeric MuLVs harboring the long terminal repeat (LTR) of a fibrotropic MuLV replicated well on mouse fibroblasts. Conversely, chimeric MuLVs harboring the LTR of a nonfibrotropic MuLV were restricted on mouse fibroblasts. These results indicate that the LTR of BL/VL3 radiation leukemia virus harbors the primary determinant responsible for its inability to replicate on mouse fibroblasts in vitro. Our results also show that the primary determinant allowing F+ MuLVs (endogenous BALB/c and Moloney MuLVs) to replicate on mouse fibroblasts in vitro resides within the LTR

  1. Spontaneous Movements of a Computer Mouse Reveal Egoism and In-group Favoritism

    Science.gov (United States)

    Maliszewski, Norbert; Wojciechowski, Łukasz; Suszek, Hubert

    2017-01-01

    The purpose of the project was to assess whether the first spontaneous movements of a computer mouse, when making an assessment on a scale presented on the screen, may express a respondent’s implicit attitudes. In Study 1, the altruistic behaviors of 66 students were assessed. The students were led to believe that the task they were performing was also being performed by another person and they were asked to distribute earnings between themselves and the partner. The participants performed the tasks under conditions with and without distractors. With the distractors, in the first few seconds spontaneous mouse movements on the scale expressed a selfish distribution of money, while later the movements gravitated toward more altruism. In Study 2, 77 Polish students evaluated a painting by a Polish/Jewish painter on a scale. They evaluated it under conditions of full or distracted cognitive abilities. Spontaneous movements of the mouse on the scale were analyzed. In addition, implicit attitudes toward both Poles and Jews were measured with the Implicit Association Test (IAT). A significant association between implicit attitudes (IAT) and spontaneous evaluation of images using a computer mouse was observed in the group with the distractor. The participants with strong implicit in-group favoritism of Poles revealed stronger preference for the Polish painter’s work in the first few seconds of mouse movement. Taken together, these results suggest that spontaneous mouse movements may reveal egoism (in-group favoritism), i.e., processes that were not observed in the participants’ final decisions (clicking on the scale). PMID:28163689

  2. Spontaneous Movements of a Computer Mouse Reveal Egoism and In-group Favoritism.

    Science.gov (United States)

    Maliszewski, Norbert; Wojciechowski, Łukasz; Suszek, Hubert

    2017-01-01

    The purpose of the project was to assess whether the first spontaneous movements of a computer mouse, when making an assessment on a scale presented on the screen, may express a respondent's implicit attitudes. In Study 1, the altruistic behaviors of 66 students were assessed. The students were led to believe that the task they were performing was also being performed by another person and they were asked to distribute earnings between themselves and the partner. The participants performed the tasks under conditions with and without distractors. With the distractors, in the first few seconds spontaneous mouse movements on the scale expressed a selfish distribution of money, while later the movements gravitated toward more altruism. In Study 2, 77 Polish students evaluated a painting by a Polish/Jewish painter on a scale. They evaluated it under conditions of full or distracted cognitive abilities. Spontaneous movements of the mouse on the scale were analyzed. In addition, implicit attitudes toward both Poles and Jews were measured with the Implicit Association Test (IAT). A significant association between implicit attitudes (IAT) and spontaneous evaluation of images using a computer mouse was observed in the group with the distractor. The participants with strong implicit in-group favoritism of Poles revealed stronger preference for the Polish painter's work in the first few seconds of mouse movement. Taken together, these results suggest that spontaneous mouse movements may reveal egoism (in-group favoritism), i.e., processes that were not observed in the participants' final decisions (clicking on the scale).

  3. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, B.F.; Moonen, R.P.M.; Paulis, L.E.M.; Geelen, T.; Nicolay, K.; Strijkers, G.J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300–400 msec. The method was

  4. Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse.

    Science.gov (United States)

    Fukahori, M; Itoh, M

    1990-10-08

    The effects of dietary zinc status on the development of convulsive seizures, and zinc concentrations in discrete hippocampal areas and other parts of the limbic system were studied in the El mouse model receiving zinc-adequate, zinc-deficient or zinc-loaded diets. Seizure susceptibility of the El mouse was increased by zinc deficiency, and decreased by zinc loading, while an adequate diet had no effect. Zinc loading was accompanied by a marked increase in hippocampal zinc content in the El mouse. Conversely, hippocampal zinc content declined in the El mouse fed a zinc-deficient diet. These results suggest that zinc may have a preventive effect on the development of seizures in the El mouse, and hippocampal zinc may play an important role in the pathophysiology of convulsive seizures of epilepsy.

  5. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  6. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  7. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    Science.gov (United States)

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  8. Molecular characterization of a KIF3B-like kinesin gene in the testis of Octopus tankahkeei (Cephalopoda, Octopus).

    Science.gov (United States)

    Dang, Ran; Zhu, Jun-Quan; Tan, Fu-Qing; Wang, Wei; Zhou, Hong; Yang, Wan-Xi

    2012-05-01

    KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.

  9. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  10. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  11. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2014-09-01

    Full Text Available Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  12. Experimental investigation of mouse kidney aging with SR PCI technology

    Science.gov (United States)

    Yifeng, P.; Zehua, Z.; Guohao, D.; Tiqiao, X.; Hongjie, X.; Peiping, Z.

    2013-08-01

    Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.

  13. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses.

    Science.gov (United States)

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2011-07-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Radiosensitization of mouse spermatogenic stem cells by Ro-07-0582

    International Nuclear Information System (INIS)

    Suzuki, N.; Withers, R.; Hunter, N.

    1977-01-01

    The hypoxic character of the spermatogenic stem cells of the mouse testis was investigated by measuring the effect on radiosensitivity of treatment with the hypoxic cell radiosensitizer, Ro-07-0582 or hyperbaric oxygen (30 psi). The D 0 values obtained were 181 (161-207) rad for irradiation alone, 140 (133-148) rad for irradiation after treatment with Ro-07-0582, and about 100 rad for irradiation in the presence of hyperbaric oxygen. Ro-07-0582 alone was slightly cytotoxic. The results demonstrate that mouse spermatogenic stem cells are radiosensitized by Ro-07-0582 or hyperbaric oxygen and are not as well oxygenated as other normal tissues

  15. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  16. Interactions of mouse pinworms and trichomonads

    OpenAIRE

    Choutková, Jana

    2012-01-01

    Oxyurid nematodes Aspiculuris tetraptera and Syphacia obvelata are both common mouse intestinal parasites; in the same location several species of trichomonads occur. Tritrichomonas muris is the most often found, but there are also some others: Tritrichomonas minuta, Pentatrichomonas hominis or Hexamastix muris. It is known that, under some circumstances, trichomonads can be found in the intestine of mouse pinworms, as reported by Theiler and Farber (1936) for T. muris in A. tetraptera and S....

  17. Accesion number Protein name ENOA_MOUSE Alpha-enolase ...

    Indian Academy of Sciences (India)

    Sandra Feijoo Bandin

    Mitochondrial inner membrane protein. CMC1_MOUSE. Calcium-binding mitochondrial carrier protein Aralar1. CMC2_MOUSE. Calcium-binding mitochondrial carrier protein Aralar2. Biological process. Metabolic process. Glycolysis. Lipid metabolism. Respiratory electron transport chain. Others. Calcium ion homeostasis.

  18. Stimulation of growth in the little mouse.

    Science.gov (United States)

    Beamer, W H; Eicher, E M

    1976-10-01

    The new mouse mutation little (lit) in the homozygous state causes a pituitary deficiency involving at least growth hormone (GH) and prolactin. The resultant growth failure of lit/lit mice was shown to be reversed by experimental conditions that enhanced levels of GH or GH and prolactin in the circulation. Two measures of growth, actual weight gain and bone dimension, were significantly improved by the physiological processes of pregnancy and pseudopregnancy, by extra-sellar graft of a normal mouse pituitary, and by treatment with GH but not prolactin. These data confirmed pituitary dysfunction as the basic defect caused by the mutation lit and showed that the GH deficiency is responsible for growth failure. However, the biological site of gene action, the pituitary or hypothalamus, has not been established. Little mice exhibit a number of characteristics similar to those of human genetic ateleotic dwarfism Type 1, namely genetic inheritance, time of onset of growth retardation, proportionate skeletal size reduction, and pituitary GH deficiency.

  19. A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion

    Directory of Open Access Journals (Sweden)

    James P. Charles

    2018-05-01

    Full Text Available Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.

  20. A retrotransposon insertion in the 5' regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth's short tail mouse.

    Directory of Open Access Journals (Sweden)

    Francesca Lugani

    Full Text Available Danforth's short tail mutant (Sd mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a. This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes.

  1. A dose-surviving fraction curve for mouse colonic mucosa

    International Nuclear Information System (INIS)

    Tucker, S.L.; Thames, H.D. Jr.; Withers, H.R.; Mason, K.A.

    1983-01-01

    A dose-surviving fraction curve representing the response of the mouse colonic mucosa to single doses of 137 Cs gamma radiation was obtained from the results of a multifraction in vivo colony assay. Construction of the curve required an estimated of the average number of clonogens initially present per colonic crypt. The estimated clonogen count (88) was determined by a statistical method based on the use of doses per fraction common to different fractionation protocols. Parameters for the LQ and TC models of cell survival were obtained by weighted least-squares fits to the data. A comparison of the survival characteristics of cells from the mouse colonic and jejunal crypts suggested that the epithelium of the colon is less radiosensitive than that of the jejunum. (author)

  2. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    NARCIS (Netherlands)

    van der Geld, Ymke M.; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G.; Limburg, Pieter C.; Kallenberg, Cees G. M.

    2007-01-01

    Aim: In this study, we employed chimeric human/ mouse Proteinase 3 ( PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method: Rats and mice were immunised with recombinant human PR3 ( HPR3), recombinant murine PR3 ( mPR3), single chimeric human/ mouse PR3 ( HHm,

  3. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  4. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  5. Fast and Reliable Mouse Picking Using Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Hanli Zhao

    2009-01-01

    Full Text Available Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications. High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small number of objects (or sub-objects are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing real-time rendering systems.

  6. Atypical centrioles are present in Tribolium sperm.

    Science.gov (United States)

    Fishman, E L; Jo, Kyoung; Ha, Andrew; Royfman, Rachel; Zinn, Ashtyn; Krishnamurthy, Malathi; Avidor-Reiss, Tomer

    2017-03-01

    Typical centrioles are made of microtubules organized in ninefold symmetry. Most animal somatic cells have two centrioles for normal cell division and function. These centrioles originate from the zygote, but because the oocyte does not provide any centrioles, it is surprising that the zygotes of many animals are thought to inherit only one centriole from the sperm. Recently, in the sperm of Drosophila melanogaster , we discovered a second centriolar structure, the proximal centriole-like structure (PCL), which functions in the zygote. Whether the sperm of other insects has a second centriolar structure is unknown. Here, we characterized spermiogenesis in the red flour beetle, Tribolium castaneum Electron microscopy suggests that Tribolium has one microtubule-based centriole at the tip of the axoneme and a structure similar to the PCL, which lacks microtubules and lies in a cytoplasmic invagination of the nucleus. Immunostaining against the orthologue of the centriole/PCL protein, Ana1, also recognizes two centrioles near the nucleus during spermiogenesis: one that is microtubule-based at the tip of the axoneme, suggesting it is the centriole; and another that is more proximal and appears during early spermiogenesis, suggesting it is the PCL. Together, these findings suggest that Tribolium sperm has one microtubule-based centriole and one microtubule-lacking centriole. © 2017 The Authors.

  7. A chimeric human-mouse model of Sjögren's syndrome.

    Science.gov (United States)

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology. Copyright © 2014. Published by Elsevier Inc.

  8. 40 CFR 798.5195 - Mouse biochemical specific locus test.

    Science.gov (United States)

    2010-07-01

    ...-induced variants are bred to determine the genetic nature of the change. (f) Data and reports—(1... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5195 Mouse...) A biochemical specific locus mutation is a genetic change resulting from a DNA lesion causing...

  9. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  10. Expression of the metastasis-associated mts1 gene during mouse development

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Ambartsumian, N S; Lukanidin, E M

    1997-01-01

    motility. In order to understand the function of this gene, we studied the expression of the mts1 mRNA and protein in vivo during mouse development. Both mRNA and protein were present in high concentrations from 12.5 to 18.5 days post coitum (dpc) in a variety of developing embryonic tissue of mesodermal....... In developing bone, Mts1 was expressed in invasive mesenchymal cells and in osteoclasts. The results presented here suggest that Mtsl plays an important role in mouse development during differentiation and function of macrophages and might be involved in different processes associated with mesenchymal...

  11. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  12. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  13. Approximating transcranial magnetic stimulation with electric stimulation in mouse: a simulation study.

    Science.gov (United States)

    Barnes, Walter L; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Rodent models are valuable for preclinical examination of novel therapeutic techniques, including transcranial magnetic stimulation (TMS). However, comparison of TMS effects in rodents and humans is confounded by inaccurate scaling of the spatial extent of the induced electric field in rodents. The electric field is substantially less focal in rodent models of TMS due to the technical restrictions of making very small coils that can handle the currents required for TMS. We examine the electric field distributions generated by various electrode configurations of electric stimulation in an inhomogeneous high-resolution finite element mouse model, and show that the electric field distributions produced by human TMS can be approximated by electric stimulation in mouse. Based on these results and the limits of magnetic stimulation in mice, we argue that the most practical and accurate way to model focal TMS in mice is electric stimulation through either cortical surface electrodes or electrodes implanted halfway through the mouse cranium. This approach could allow much more accurate approximation of the human TMS electric field focality and strength than that offered by TMS in mouse, enabling, for example, focal targeting of specific cortical regions, which is common in human TMS paradigms.

  14. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  15. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  16. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma.

    Science.gov (United States)

    Boelens, Mirjam C; Nethe, Micha; Klarenbeek, Sjoerd; de Ruiter, Julian R; Schut, Eva; Bonzanni, Nicola; Zeeman, Amber L; Wientjens, Ellen; van der Burg, Eline; Wessels, Lodewyk; van Amerongen, Renée; Jonkers, Jos

    2016-08-23

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  19. Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive organs

    Directory of Open Access Journals (Sweden)

    Tomas Eija

    2004-10-01

    Full Text Available Abstract Background Carbonic anhydrase (CA classically catalyses the reversible hydration of dissolved CO2 to form bicarbonate ions and protons. The twelve active CA isozymes are thought to regulate a variety of cellular functions including several processes in the reproductive systems. Methods The present study was designed to investigate the expression of transmembrane CAs, CA IX and XII, in the mouse uterus, ovary and placenta. The expression of CA IX and XII was examined by immunoperoxidase staining method and western blotting. CA II and XIII served as positive controls since they are known to be present in the mouse reproductive tract. Results The data of our study indicated that CA XII is expressed in the mouse endometrium. Only very faint signal was observed in the corpus luteum of the ovary and the placenta remained mainly negative. CA IX showed weak reaction in the endometrial epithelium, while it was completely absent in the ovary and placenta. Conclusion The conservation of CA XII expression in both mouse and human endometrium suggests a role for this isozyme in reproductive physiology.

  20. Endonucleases : new tools to edit the mouse genome

    NARCIS (Netherlands)

    Wijshake, Tobias; Baker, Darren J.; van de Sluis, Bart

    2014-01-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it

  1. Rational Design of Mouse Models for Cancer Research

    NARCIS (Netherlands)

    Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W.

    2018-01-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models.

  2. Male-like sexual behavior of female mouse lacking fucose mutarotase

    Directory of Open Access Journals (Sweden)

    Lim Dae-sik

    2010-07-01

    Full Text Available Abstract Background Mutarotases are recently characterized family of enzymes that are involved in the anomeric conversions of monosaccharides. The mammalian fucose mutarotase (FucM was reported in cultured cells to facilitate fucose utilization and incorporation into protein by glycosylation. However, the role of this enzyme in animal has not been elucidated. Results We generated a mutant mouse specifically lacking the fucose mutarotase (FucM gene. The FucM knockout mice displayed an abnormal sexual receptivity with a drastic reduction in lordosis score, although the animals were fertile due to a rare and forced intromission by a typical male. We examined the anteroventral periventricular nucleus (AVPv of the preoptic region in brain and found that the mutant females showed a reduction in tyrosine hydoxylase positive neurons compared to that of a normal female. Furthermore, the mutant females exhibited a masculine behavior, such as mounting to a normal female partner as well as showing a preference to female urine. We found a reduction of fucosylated serum alpha-fetoprotein (AFP in a mutant embryo relative to that of a wild-type embryo. Conclusions The observation that FucM-/- female mouse exhibits a phenotypic similarity to a wild-type male in terms of its sexual behavior appears to be due to the neurodevelopmental changes in preoptic area of mutant brain resembling a wild-type male. Since the previous studies indicate that AFP plays a role in titrating estradiol that are required to consolidate sexual preference of female mice, we speculate that the reduced level of AFP in FucM-/- mouse, presumably resulting from the reduced fucosylation, is responsible for the male-like sexual behavior observed in the FucM knock-out mouse.

  3. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.

    Science.gov (United States)

    Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G

    2014-09-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Communication Framework For the Mionix Naos QG Mouse

    DEFF Research Database (Denmark)

    Wulff-Jensen, Andreas

    2017-01-01

    The Mionix Naos QG mouse has multiple sensors integrated. It can record all the metrics native to mice: being scroll, clicks and mouse movements. Moreover, this mouse has heart rate (HR) and Galvanic Skin Response (GSR) sensors embedded. Through Mionics API [1] WebSocket can be used to access all...... or be recorded. Another Unity implementation have been developed as well. This was directly connected to the WebSocket, and has the same properties as the first Unity development. Since two nearly identical implementations were made, the quality of their recordings and data communication were tested. Based...

  5. A Comprehensive Atlas of the Adult Mouse Penis

    Science.gov (United States)

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  6. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  7. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  8. Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users

    DEFF Research Database (Denmark)

    Sandfeld, Jesper; Jensen, Bente R.

    2005-01-01

    and three levels of target size were used. All subjects demonstrated a reduced working speed and hit rate at the highest mouse gain (1:8) when the target size was small. The young group had an optimum at mouse gain 1:4. The elderly group was most sensitive to the combination of high mouse gain and small...

  9. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2006-09-01

    Full Text Available Abstract Background Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs. Results We infected E15 SMG explants with mouse CMV (mCMV. Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. Conclusion mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.

  10. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  11. A Functional Assay for Putative Mouse and Human Definitive Endoderm using Chick Whole-Embryo Cultures

    DEFF Research Database (Denmark)

    Johannesson, Martina; Semb, Tor Henrik; Serup, Palle

    2012-01-01

    . Thus, the purpose of this study is to describe a method whereby the in vivo functionality of DE derived from ESCs can be assessed. Methods: By directed differentiation, putative DE was derived from human and mouse ESCs. This putative DE was subsequently transplanted into the endoderm of chick embryos...... to determine any occurrence of integration. Putative DE was analyzed by gene and protein expression prior to transplantation and 48 h post transplantation. Results: Putative DE, derived from mouse and human ESCs, was successfully integrated within the chick endoderm. Endoderm-specific genes were expressed...... result show that putative DE integrates with the chick endoderm and participate in the development of the chicken gut, indicating the generation of functional DE from ESCs. This functional assay can be used to assess the generation of functional DE derived from both human and mouse ESCs and provides...

  12. KATNAL1 regulation of sertoli cell microtubule dynamics is essential for spermiogenesis and male fertility.

    Directory of Open Access Journals (Sweden)

    Lee B Smith

    Full Text Available Spermatogenesis is a complex process reliant upon interactions between germ cells (GC and supporting somatic cells. Testicular Sertoli cells (SC support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1. We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC from 15.5 days post-coitum (dpc and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

  13. Resistance of human and mouse myeloid leukemia cells to UV radiation

    International Nuclear Information System (INIS)

    Poljak-Blazi, M.; Osmak, M.; Hadzija, M.

    1989-01-01

    Sensitivity of mouse bone marrow and myeloid leukemia cells and sensitivity of human myeloid leukemia cells to UV light was tested. Criteria were the in vivo colony-forming ability of UV exposed cells and the inhibition of DNA synthesis during post-irradiation incubation for 24 h in vitro. Mouse bone marrow cells irradiated with a small dose of UV light (5 J/m 2 ) and injected into x-irradiated animals did not form hemopoietic colonies on recipient's spleens, and recipients died. However, mouse leukemia cells, after irradiation with higher doses of UV light, retained the ability to form colonies on the spleens, and all recipient mice died with typical symptoms of leukemia. In vitro, mouse bone marrow cells exhibited high sensitivity to UV light compared to mouse myeloid leukemia cells. Human leukemia cells were also resistant to UV light, but more sensitive than mouse leukemia cells. (author)

  14. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    Science.gov (United States)

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  15. Single-mass mutations associated with mouse lymphomas

    International Nuclear Information System (INIS)

    Guerrero, I.; Berman, J.W.; Diamond, L.E.; Newcomb, E.W.; Villasante, A.

    1986-01-01

    The authors study the induction of mouse lymphomas after treatment with a chemical carcinogen, nitrosomethyl urea (NMU), or with gamma irradiation. The koplan fractionated gamma radiation scheme and an established protocol for NMU tumor formation were chosen as protocols for induction of mouse lymphomas. In both cases, the mice developed thymic lymphomas with up to 90% incidence. In NMU induction, the latency period is shorter than irradiation

  16. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  17. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  18. Meeting Report: The Twelfth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  19. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  20. Photoeffects of near ultraviolet light upon a polycyclic aromatic hydrocarbon exposed to mouse skin microsomes

    International Nuclear Information System (INIS)

    Peirano, W.B.

    1991-01-01

    Near ultraviolet (UV) light has been reported to both enhance and inhibit the tumor incidence in mice dermally exposed to benzo(a)pyrene (BaP) or polycyclic aromatic hydrocarbon (PAH) mixtures. Near UV light interacts with PAHs producing a variety of oxygenated products such as phenols, endoperoxides and quinones. However, little is known about BaP products formed from near UV irradiation of BaP-exposed mouse skin. Therefore, 14 C-BaP was incubated with 3-methylcholanthrene (3-MC) induced C 3 H/HeJ and DBA/2J mouse skin microsomes with or without a 365 nm light source. The results indicated that the concurrent 365 nm light irradiation of induced mouse skin microsomes and BaP greatly enhanced the total conversion of BaP to its products, approximately 3-fold for the C 3 H/HeJ and approximately 7-fold for the DBA/2J mouse microsomes, compared to the induced mouse skin microsomes and BaP alone. HPLC analyses of organic extracts indicated a more than additive enhancement of the formation of most of the individual cochromatographed BaP metabolites due to the combined interaction of 365 nm light with BaP and skin microsomes. Similar interactions were observed using benz(a)anthracene (BaA) in this system. These data show that near UV light alters the metabolic profile of PAHs produced by mouse skin microsomes

  1. The Mouse SAGE Site: database of public mouse SAGE libraries

    Czech Academy of Sciences Publication Activity Database

    Divina, Petr; Forejt, Jiří

    2004-01-01

    Roč. 32, - (2004), s. D482-D483 ISSN 0305-1048 R&D Projects: GA MŠk LN00A079; GA ČR GV204/98/K015 Grant - others:HHMI(US) 555000306 Institutional research plan: CEZ:AV0Z5052915 Keywords : mouse SAGE libraries * web -based database Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.260, year: 2004

  2. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Directory of Open Access Journals (Sweden)

    Aleksandra Somogyi

    2018-02-01

    Full Text Available Juvenile neuronal ceroid lipofuscinosis (JNCL is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase, which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.

  3. Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Science.gov (United States)

    Somogyi, Aleksandra; Petcherski, Anton; Beckert, Benedikt; Huebecker, Mylene; Priestman, David A.; Banning, Antje; Cotman, Susan L.; Platt, Frances M.; Ruonala, Mika O.

    2018-01-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis. PMID:29470438

  4. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  5. Immunohistochemical visualization of mouse interneuron subtypes

    DEFF Research Database (Denmark)

    Jensen, Simon Mølgaard; Ulrichsen, Maj; Boggild, Simon

    2014-01-01

    , and calretinin are also commonly used as markers to narrow down the specific interneuron subtype. Here, we describe a journey to find the necessary immunological reagents for studying GABAergic interneurons of the mouse hippocampus. Based on web searches there are several hundreds of different antibodies...... of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, stainings with high signal-to-noise ratios and location...

  6. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione...

  7. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    Science.gov (United States)

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  8. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  9. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  10. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  11. Simple and efficient expression of codon-optimized mouse leukemia ...

    African Journals Online (AJOL)

    Purpose: To obtain a higher yield of mouse leukemia inhibitory factor to maintain the proliferation potential of pluripotent ... It induces mouse myeloid leukemic M1 cells of terminal ... induces the production of acute phase proteins by lipocyte ...

  12. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  13. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  14. A self-reconfiguring metamorphic nanoinjector for injection into mouse zygotes

    International Nuclear Information System (INIS)

    Aten, Quentin T.; Jensen, Brian D.; Howell, Larry L.; Burnett, Sandra H.

    2014-01-01

    This paper presents a surface-micromachined microelectromechanical system nanoinjector designed to inject DNA into mouse zygotes which are ≈90 μm in diameter. The proposed injection method requires that an electrically charged, DNA coated lance be inserted into the mouse zygote. The nanoinjector's principal design requirements are (1) it must penetrate the lance into the mouse zygote without tearing the cell membranes and (2) maintain electrical connectivity between the lance and a stationary bond pad. These requirements are satisfied through a two-phase, self-reconfiguring metamorphic mechanism. In the first motion subphase a change-point six-bar mechanism elevates the lance to ≈45 μm above the substrate. In the second motion subphase, a compliant folded-beam suspension allows the lance to translate in-plane at a constant height as it penetrates the cell membranes. The viability of embryos following nanoinjection is presented as a metric for quantifying how well the nanoinjector mechanism fulfills its design requirements of penetrating the zygote without causing membrane damage. Viability studies of nearly 3000 nanoinjections resulted in 71.9% of nanoinjected zygotes progressing to the two-cell stage compared to 79.6% of untreated embryos

  15. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  16. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  17. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans

    Directory of Open Access Journals (Sweden)

    Daniel ePrieto

    2015-08-01

    Full Text Available Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 107 cells/g of stools. Using fluorescent labeled strains we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1-3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections.

  18. Polycystic Ovary Induction in Mouse by Testosterone Enanthate

    Directory of Open Access Journals (Sweden)

    Zahra Kalhori

    2014-03-01

    Full Text Available Background &Objective: Polycystic ovary is the most common cause of infertility in Women. Animal models are required for understanding the pathogenesis of polycystic ovary. The objective of this study then was to develop an animal model for inducing the polycystic ovaries using testosterone enanthate.Materials & Methods: In this study, for inducing the polycystic ovary phenotype, female rats about12-14 days-old were injected daily with testosterone enanthate for 2 and 4 weeks (experiment groups: 1 and 2, while the control groups (1 and 2 were injected only with vehicle.The ovaries from both groups were fixed and then were used for histological studies.Results: Testosterone enanthate treatment causes the histological changes in mouse ovary and significantly increased the percentage of preantral and cystic follicles and decreased the percentage of antral follicles in the experiment group, comparing with the control group (P<0.05.Conclusion: It concluded that testosterone enanthate can induces polycystic ovary in mouse.

  19. Functional analysis of lysosomes during mouse preimplantation embryo development.

    Science.gov (United States)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  20. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  1. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  2. Inhibiting Effects of Achyranthes Bidentata Polysaccharide and Lycium Barbarum Polysaccharide on Nonenzyme Glycation in D-galactose Induced Mouse Aging Model

    Institute of Scientific and Technical Information of China (English)

    HONG-BIN DENG; DA-PENG CUI; JIAN-MING JIANG; YAN-CHUN FENG; NIAN-SHENG CAI; DIAN-DONG LI

    2003-01-01

    To investigate the inhibiting effects and mechanism of achyranthes bidentata polysaccharide (ABP) and lycium barbarum polysaccharide (LBP) on nonenzyme glycation in D-galactose induced mouse aging model. Methods Serum AGE levels were determined by AGE-ELISA, MTT method was used to determine lymphocyte proliferation, IL-2 activity was determined by a bioassay method. Spontaneous motor activity was used to detect mouse's neuromuscular movement, latency of step-through method was used to examine learning and memory abilities of mouse, colormetric assay was used to determine hydroxyproline concentration in mouse skin, pyrogallol autoxidation method was used to determine superoxide dismutase (SOD) activity of erythrocytes. Results Decreased levels of serum AGE, hydroxyproline concentration in mouse skin and spontaneous motor activity in D-galactose mouse aging model were detected after treated with ABP or LBP, while lymphocyte proliferation and IL-2 activity, learning and memory abilities,SOD activity of erythrocytes, were enhanced. Conclusions ABP and LBP could inhibit nonenzyme glycation in D-galactose induced mouse aging model in vivo and ABP has a better inhibiting effect than LBP.

  3. Suppression of mouse-killing in rats following irradiation

    International Nuclear Information System (INIS)

    O'Boyle, M.

    1976-01-01

    Suppression of mouse-killing was produced following pairings of mouse-presentations (CS) with 96 roentgens of ionizing radiation (US) at 0 (less than 2 min.) and 30 min. US-CS interstimulus intervals. No suppression was found at CS-US intervals of 30 min., 1 hr., and 2 hr., or at US-CS intervals of 1 hr. and 2 hr

  4. Tributyltin Exposure Alters Cytokine Levels in Mouse Serum

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T.; Shanker, Anil; Whalen, Margaret M.

    2016-01-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, KC, MIP1β, MIP2 and RANTES was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40, and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in serum of mice exposed to TBT for less than 24 hr. IL1-β, IL-12βp40, IL-5 and IL-15 were also modulated in mouse serum depending on the specific experiment and the exposure concentration. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES, and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines. PMID:27602597

  5. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    Science.gov (United States)

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  6. Improving mouse controlling and movement for people with Parkinson's disease and involuntary tremor using adaptive path smoothing technique via B-spline.

    Science.gov (United States)

    Hashem, Seyed Yashar Bani; Zin, Nor Azan Mat; Yatim, Noor Faezah Mohd; Ibrahim, Norlinah Mohamed

    2014-01-01

    Many input devices are available for interacting with computers, but the computer mouse is still the most popular device for interaction. People who suffer from involuntary tremor have difficulty using the mouse in the normal way. The target participants of this research were individuals who suffer from Parkinson's disease. Tremor in limbs makes accurate mouse movements impossible or difficult without any assistive technologies to help. This study explores a new assistive technique-adaptive path smoothing via B-spline (APSS)-to enhance mouse controlling based on user's tremor level and type. APSS uses Mean filtering and B-spline to provide a smoothed mouse trajectory. Seven participants who have unwanted tremor evaluated APSS. Results show that APSS is very promising and greatly increases their control of the computer mouse. Result of user acceptance test also shows that user perceived APSS as easy to use. They also believe it to be a useful tool and intend to use it once it is available. Future studies could explore the possibility of integrating APSS with one assistive pointing technique, such as the Bubble cursor or the Sticky target technique, to provide an all in one solution for motor disabled users.

  7. Digestibily of Some Kind of Alternative Diets on Lesser Mouse Deer (Tragulus javanicus

    Directory of Open Access Journals (Sweden)

    WR Farida

    2004-01-01

    Full Text Available Four female lesser mouse deer (Tragulus javanicus were used in this study to observe their feed consumption and digestibility given alternative diets in captive.  The results showed that 125g/head/day sweet potatoes supplementation in ration increased the consumption and digestibility of dry matter intake, ash, ether extract, and N-free extract. Supplementation of commercial concentrate in lesser mouse deer’s diet decreased the digestion of dry matter, ash, crude protein, and crude fiber. Animal Production 6(1: 17-22 (2004   Key Words: Digestibility, Consumption, Alternative Diets, Tragulus javanicus

  8. Effect of ionizing radiation on apoptosis in the cortex of mouse lymph node

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Liu Shuzheng

    1999-01-01

    Objective: To study the alteration of apoptosis in the cortex of mouse lymph node following whole body X-irradiation. Methods: The method of TdT-mediated dUTP nick end labelling (TUNEL) was used to detect apoptosis the cortex of mouse lymph node. Results: The sensitivity to high and low dose ionizing radiation was distinct in different area of the cortex. Conclusion: The decrease of apoptotic cells in the inter nodular and deep cortex indicate that low dose radiation may suppress the apoptosis of T lymphocytes and play a role in immune regulation

  9. Optimization of a protocol for cryopreservation of mouse spermatozoa using cryotubes.

    Science.gov (United States)

    Hasegawa, Ayumi; Yonezawa, Kazuya; Ohta, Akihiko; Mochida, Keiji; Ogura, Atsuo

    2012-01-01

    The rapid increase in the number of genetically modified mouse strains has produced a high demand for their frozen spermatozoa from laboratories and mouse banking facilities. Historically, plastic straws have been used preferentially as containers for frozen mammalian spermatozoa because spermatozoa frozen in plastic straws have a high survival rate after thawing. However, plastic straws are more fragile and are used less often than the cryotubes used for conventional cell freezing. In this study, we sought to develop a new protocol for sperm freezing using cryotubes as the container to increase the accessibility of mouse sperm cryopreservation. Epididymal spermatozoa were collected from mature ICR or C57BL/6J (B6) males and were suspended in 18% raffinose and 3% skim milk solution. We then optimized the following conditions using the sperm survival rate as an index: 1) distance of cryotubes from the surface of the liquid nitrogen at freezing, 2) volume of the sperm suspension in the cryotube and 3) temperature of warming sperm during thawing. The best result was obtained when cryotubes containing 10 µl of sperm suspension were immersed 1 cm below the surface of the liquid nitrogen and then thawed at 50 C. The fertilization rates using spermatozoa frozen and thawed using this method were 63.1% in ICR mice and 28.2% in B6 mice. The latter rate was increased to 62.3% by adding reduced glutathione to the fertilization medium. After embryo transfer, 68% and 62% of the fertilized oocytes developed into normal offspring in the ICR and B6 strains, respectively. These results show that cryotubes can be used for cryopreservation of mouse spermatozoa under optimized conditions. This protocol is easy and reproducible, and it may be used in laboratories that do not specialize in sperm cryopreservation.

  10. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  11. Multiple RNAs from the mouse carboxypeptidase M locus: functional RNAs or transcription noise?

    Directory of Open Access Journals (Sweden)

    Castilho Beatriz A

    2009-02-01

    Full Text Available Abstract Background A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Results Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE and directional cloning. Conclusion This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological

  12. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  13. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level

    Directory of Open Access Journals (Sweden)

    David Núñez

    2017-12-01

    Full Text Available The interaction between intercellular adhesion molecules (ICAM and the integrin leukocyte function-associated antigen-1 (LFA-1 is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  14. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level.

    Science.gov (United States)

    Núñez, David; Comas, Laura; Lanuza, Pilar M; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  15. Infra Red 3D Computer Mouse

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2000-01-01

    The infra red 3D mouse is a three dimensional input device to a computer. It works by determining the position of an arbitrary object (like a hand) by emitting infra red signals from a number of locations and measuring the reflected intensities. To maximize stability, robustness, and use of bandw......The infra red 3D mouse is a three dimensional input device to a computer. It works by determining the position of an arbitrary object (like a hand) by emitting infra red signals from a number of locations and measuring the reflected intensities. To maximize stability, robustness, and use...

  16. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  17. Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics

    Directory of Open Access Journals (Sweden)

    Yingyu Zhou

    2018-01-01

    Full Text Available The active compounds in Acanthopanax senticosus (AS have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC of mouse brain included tubulin protein family (α-, β-tubulin subunits, dihydropyrimidinase-related protein 2 (CRMP2, γ-actin, 14-3-3 protein family (14-3-3ζ, ε, heat shock protein 90β (HSP90β, and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B, Neurotrophin, Rap1 (Ras-related protein RAP-1A, gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1 signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could

  18. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...... the complexity of glycoconjugate synthesis in mouse vagina and reveal the distinct cycle-specific patterns of individual glycoprotein expression. These cyclic glycoproteins could serve as vaginal biochemical markers for the specific phases of the estrous cycle....

  19. High-throughput mouse genotyping using robotics automation.

    Science.gov (United States)

    Linask, Kaari L; Lo, Cecilia W

    2005-02-01

    The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.

  20. Providing training enhances the biomechanical improvements of an alternative computer mouse design

    NARCIS (Netherlands)

    Houwink, A.; Oude Hengel, K.M.; Odell, D.; Dennerlein, J.T.

    2009-01-01

    To determine if an alternative mouse promotes more neutral postures and decreases forearm muscle activity and if training enhances these biomechanical benefits is the purpose of the study. Computer mouse use is a risk factor for developing musculoskeletal disorders; alternative mouse designs can

  1. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    Science.gov (United States)

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  3. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    Science.gov (United States)

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?

    Science.gov (United States)

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…

  5. A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies

    Science.gov (United States)

    Asokan, Priyadarsini; Mitra, Rajendra N.; Periasamy, Ramesh; Han, Zongchao

    2018-01-01

    Purpose Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally. PMID:29392320

  6. Qualitative and quantitative differences between taste buds of the rat and mouse

    Directory of Open Access Journals (Sweden)

    Ma Huazhi

    2007-01-01

    Full Text Available Abstract Background Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT, PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume. Results There are significant differences (p 3 is smaller than a rat taste bud (64,200 μm3. The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3 is significantly higher than that in the rat (1.2 cells/1000 μm3. Conclusion These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.

  7. Defining the molecular pathologies in cloaca malformation: similarities between mouse and human

    Directory of Open Access Journals (Sweden)

    Laura A. Runck

    2014-04-01

    Full Text Available Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations

  8. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum

    DEFF Research Database (Denmark)

    Banda, Nirmal K; Mehta, Gaurav; Chao, Ying

    2014-01-01

    BACKGROUND: The complement system is a key component of innate immunity implicated in the neutralization and clearance of invading pathogens. Dextran coated superparamagnetic iron oxide (SPIO) nanoparticle is a promising magnetic resonance imaging (MRI) contrast agent. However, dextran SPIO has...... the mechanisms of human complement activation. Mouse data were analyzed by non-paired t-test, human data were analyzed by ANOVA followed by multiple comparisons with Student-Newman-Keuls test. RESULTS: In mouse sera, SPIO NW triggered the complement activation via the LP, whereas the AP contributes via...... the CP, but that did not affect the total level of C3 deposition on the particles. CONCLUSIONS: There were important differences and similarities in the complement activation by SPIO NW in mouse versus human sera. Understanding the mechanisms of immune recognition of nanoparticles in mouse and human...

  9. Tamoxifen-independent recombination in the RIP-CreER mouse.

    Directory of Open Access Journals (Sweden)

    Yanmei Liu

    Full Text Available BACKGROUND: The inducible Cre-lox system is a valuable tool to study gene function in a spatial and time restricted fashion in mouse models. This strategy relies on the limited background activity of the modified Cre recombinase (CreER in the absence of its inducer, the competitive estrogen receptor ligand, tamoxifen. The RIP-CreER mouse (Tg (Ins2-cre/Esr1 1Dam is among the few available β-cell specific CreER mouse lines and thus it has been often used to manipulate gene expression in the insulin-producing cells of the endocrine pancreas. PRINCIPAL FINDINGS: Here, we report the detection of tamoxifen-independent Cre activity as early as 2 months of age in RIP-CreER mice crossed with three distinct reporter strains. SIGNIFICANCE: Evidence of Cre-mediated recombination of floxed alleles even in the absence of tamoxifen administration should warrant cautious use of this mouse for the study of pancreatic β-cells.

  10. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  11. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Directory of Open Access Journals (Sweden)

    Christian Much

    2016-06-01

    Full Text Available Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  12. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    Science.gov (United States)

    Much, Christian; Auchynnikava, Tania; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O'Carroll, Dónal

    2016-06-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.

  13. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  14. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.

    Science.gov (United States)

    Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A

    2017-08-19

    We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.

  15. Responses of the mouse to microwave radiation during estrous cycle and pregnancy

    International Nuclear Information System (INIS)

    Rugh, R.; Ginns, E.I.; Ho, H.S.; Leach, W.M.

    1975-01-01

    A new facility for microwave irradiation of mice that will provide reproducible dosimetry is described. The waveguide used provided the integral dose rate to experimental animals under stable and controlled environmental conditions of relative humidity and temperature, variables which have been found to be critical in microwave studies. In terms of average absorbed lethal dose, the female mouse was found to be more sensitive to microwave irradiation during estrus than during diestrus. Teratogenesis (e.g., exencephalies) after sublethal irradiation of pregnant mice at 8 gestation days resulted from absorbed doses within the range of 3 to 5 calories per gram of body weight, and was never an all-or-none response. The incidence and variety of effects produced (hemorrhage, resorption, stunting, and fetal death) indicate that the cause and effect relationships are neither linear nor well enough established and understood to permit prediction of the biological effects either in the mouse of other species. As the absorbed dose of radiant energy is increased to the 8-day pregnant mouse, the probability of it producing at least one exencephaly is likewise increased. Nevertheless, the determination of the absorbed dose of microwave energy in each mouse is one step closer to determining the precise absorbed-dose-effect relationship for microwave exposures. A total of 1096 mice were exposed to microwave radiation and separately monitored to gather the related data. (U.S.)

  16. 'Too much good news' - are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease?

    Science.gov (United States)

    Zahs, Kathleen R; Ashe, Karen H

    2010-08-01

    Scores of compounds ameliorate cognitive deficits or neuropathology in transgenic mouse models of Alzheimer's disease (AD), yet these triumphs in mice have not translated into successful therapies for people. Why have studies in mice failed to predict results of human trials? We argue that most transgenic mouse 'models of AD' actually simulate the asymptomatic phase of the disease, and the results of interventional studies in these mice should be considered in the context of disease prevention. In addition, recent advances in imaging technology and biomarker discovery should aid in comparisons of mouse and human neurological status and, importantly, might allow us to predict better the response of people to drugs tested in mice. Copyright 2010. Published by Elsevier Ltd.

  17. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy; Suzuki, Harukazu; Cannistraci, Carlo; Katayama, Shintaro; Bajic, Vladimir B.; Tan, Kai; Akalin, Altuna; Schmeier, Sebastian; Kanamori-Katayama, Mutsumi; Bertin, Nicolas; Carninci, Piero; Daub, Carsten O.; Forrest, Alistair R.R.; Gough, Julian; Grimmond, Sean; Han, Jung-Hoon; Hashimoto, Takehiro; Hide, Winston; Hofmann, Oliver; Kamburov, Atanas; Kaur, Mandeep; Kawaji, Hideya; Kubosaki, Atsutaka; Lassmann, Timo; van Nimwegen, Erik; MacPherson, Cameron Ross; Ogawa, Chihiro; Radovanovic, Aleksandar; Schwartz, Ariel; Teasdale, Rohan D.; Tegné r, Jesper; Lenhard, Boris; Teichmann, Sarah A.; Arakawa, Takahiro; Ninomiya, Noriko; Murakami, Kayoko; Tagami, Michihira; Fukuda, Shiro; Imamura, Kengo; Kai, Chikatoshi; Ishihara, Ryoko; Kitazume, Yayoi; Kawai, Jun; Hume, David A.; Ideker, Trey; Hayashizaki, Yoshihide

    2010-01-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  18. An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man

    KAUST Repository

    Ravasi, Timothy

    2010-03-01

    Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.

  19. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed...

  20. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Science.gov (United States)

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  1. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Directory of Open Access Journals (Sweden)

    Biljana Musicki

    Full Text Available Testosterone deficiency is associated with sickle cell disease (SCD, but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH levels compared with wild type (WT mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR, but not cholesterol side-chain cleavage enzyme (P450scc, in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  2. Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone?

    Directory of Open Access Journals (Sweden)

    Dufková Petra

    2008-10-01

    Full Text Available Abstract Background The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies. Results We identify a triangular area (approximately 330 km2 where the musculus Y chromosome introgresses across this front for up to 22 km into domesticus territory. Introgression of the Y chromosome is accompanied by a perturbation of the census sex ratio: the sex ratio is significantly female biased in musculus localities and domesticus localities lacking Y chromosome introgression. In contrast, where the musculus Y is detected in domesticus localities, the sex ratio is close to parity, and significantly different from both classes of female biased localities. The geographic position of an abrupt cline in an X chromosome marker, and autosomal clines centred on the same position, seem unaffected by the musculus Y introgression. Conclusion We conclude that sex ratio distortion is playing a role in the geographic separation of speciation genes in this section of the mouse hybrid zone. We suggest that clines for genes involved in sex-ratio distortion have escaped from the centre of the mouse hybrid zone, causing a decay in the barrier to gene flow between the two house mouse taxa.

  3. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  4. Global similarity and local divergence in human and mouse gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-09-01

    Full Text Available Abstract Background A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species. Results At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction ( Conclusion The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.

  5. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  6. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross.

    Science.gov (United States)

    Buckwalter, M S; Katz, R W; Camper, S A

    1991-07-01

    Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.

  7. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  8. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail

    Science.gov (United States)

    Chen, Su-Ren; Batool, Aalia; Wang, Yu-Qian; Hao, Xiao-Xia; Chang, Chawn-Shang; Cheng, C Yan; Liu, Yi-Xun

    2016-01-01

    Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms ‘spermiogenesis failure', ‘globozoospermia', ‘spermatid-specific', ‘acrosome', ‘infertile', ‘manchette', ‘sperm connecting piece', ‘sperm annulus', ‘sperm ADAMs', ‘flagellar abnormalities', ‘sperm motility loss', ‘sperm ion exchanger' and ‘contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid

  9. Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos

    OpenAIRE

    Guo, Jitong; Wu, Baojiang; Li, Shuyu; Bao, Siqin; Zhao, Lixia; Hu, Shuxiang; Sun, Wei; Su, Jie; Dai, Yanfeng; Li, Xihe

    2014-01-01

    Blastocyst injection and morula aggregation are commonly used to evaluate stem cell pluripotency based on chimeric contribution of the stem cells. To assess the protocols for generating chimeras from stem cells, 8-cell mouse embryos were either injected or cocultured with mouse embryonic stem cells and induced pluripotent stem cells, respectively. Although a significantly higher chimera rate resulted from blastocyst injection, the highest germline contribution resulted from injection of 8-cel...

  10. Micronuclei induced by municipal landfill leachate in mouse bone marrow cells in vivo

    International Nuclear Information System (INIS)

    Li Guangke; Sang Nan; Zhao Youcai

    2004-01-01

    The induction of micronuclei (MN) in polychromatic erythrocytes (PCE) of mouse bone marrow by municipal landfill leachate was studied in vivo. Results showed that mouse exposure via drinking water containing various concentrations of leachate caused a significant increase of MN frequencies in a concentration (Chemical oxygen demand measured with potassium dichromate oxidation, COD Cr )-dependent manner. MN induction in female and male mice was different at higher concentrations. This implies that leachate is a genotoxic agent in mammalian cells and that exposure to leachate in an aquatic environment may pose a potential genotoxic risk to human beings

  11. The effect of interferon-β on mouse neural progenitor cell survival and differentiation

    International Nuclear Information System (INIS)

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-01-01

    Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  12. Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs γ-ray irradiation

    International Nuclear Information System (INIS)

    Kusakabe, Hirokazu; Kamiguchi, Yujiroh

    2004-01-01

    This study demonstrated that freeze-dried mouse spermatozoa possess strong resistance to 137 Cs γ-ray irradiation at doses of up to 8 Gy. Freeze-dried mouse spermatozoa were rehydrated and injected into mouse oocytes with an intracytoplasmic sperm injection (ICSI) technique. Most oocytes can be activated after ICSI by using spermatozoa irradiated with γ-rays before and after freeze-drying. Sperm chromosome complements were analyzed at the first cleavage metaphase. Chromosome aberrations increased in a dose-dependent manner in the spermatozoa irradiated before freeze-drying. However, no increase in oocytes with chromosome aberrations was observed when fertilized by spermatozoa that had been irradiated after freeze-drying, as compared with freeze-dried spermatozoa that had not been irradiated. These results suggest that both the chromosomal integrity of freeze-dried spermatozoa, as well as their ability to activate oocytes, were protected from γ-ray irradiation at doses at which chromosomal damage is found to be strongly induced in spermatozoa suspended in solution

  13. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Marek [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Knight, Julia [Neuroscience Department, University of Vermont College of Medicine, Burlington, VT (United States); Tobita, Mari; Soltys, John; Panitch, Hillel [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States); Mao-Draayer, Yang, E-mail: yang.mao-draayer@vtmednet.org [Neurology Department, University of Vermont College of Medicine, Burlington, VT (United States)

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  14. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    Directory of Open Access Journals (Sweden)

    DWI RAMADHANI

    2014-03-01

    Full Text Available The presence of malarial pigment (haemozoin due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional light microscope and simple polarized light microscope were collected. All images were analyzed using ImageJ 1.47 software to measure the haemozoin areas. Our results showed that non birefringent haemozoin and birefringent haemozoin area was significantly different. This was because when using conventional light microscope the brown area that contained images of non birefringent haemozoin images also contained Kupffer cells which appeared as the same brown color as haemozoin. In contrast, haemozoin gave bright effect and can be easily differentiated with Kupffer cells in the birefringent haemozoin images. This study concluded that haemozoin detection in mouse liver histology using a simple polarized light microscope was more accurate compared to that of conventional light microscope.

  15. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China); Morishita, Kazuhiro; Ichikawa, Tomonaga [Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-shi, Miyazaki 889-1692 Japan (Japan); Jessberger, Rolf [Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany); Fukui, Yasuhisa, E-mail: 990412@nhri.org.tw [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China)

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.

  16. Further characterization of protein kinase C in mouse mast cells

    International Nuclear Information System (INIS)

    White, J.R.; Ishizaka, T.

    1986-01-01

    Bridging of cell-bound IgE antibody molecules on colony stimulating factor dependent mouse mast cell line (PT-18) cells by multivalent antigen induces the mobilization and uptake of Ca 2+ monitored by Quin-2 and the production of diacylglycerol. Exposure of the sensitized cells to antigen also induces a substantial increase in protein kinase C (PKC) activity in the plasma membrane (340 units to 1375 units: 1 unit = 1 pmol of 32 P incorporated into Histone H-1/min/10 7 cells), within 30 seconds. There is also an increase in 3 H phorbol-12, 13-dibutyrate ( 3 H-PDB) binding which parallels the increase in PKC activity both in kinetics and antigen dose dependency. Determination of K/sub m/ and V/sub max/ for PKC revealed no difference between the cytosolic and membranous forms of PKC. Partial purification of PKC from the membrane of sensitized mast cells which had been labeled with 32 P and stimulated with DNP-HSA revealed a protein of 80-84,000 molecular weight, which migrated on polyacrylamide gel electrophoresis just above an authentic standard of PKC purified from rat brain. Treatment of the PKC from mouse mast cell membrane with alkaline phosphatase resulted in a reduction of phosphorylating activity and bindability of 3 H-PDB. In conclusion, the authors speculate that activation of mouse mast cells by cross-linking IgE results in the phosphorylation of a silent-pool of PKC converting it from an inactive state to an activated form

  17. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    Science.gov (United States)

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  18. Imaging and differentiation of mouse embryo tissues by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L; Lu, X; Kulp, K; Knize, M; Berman, E; Nelson, E; Felton, J; Wu, K J

    2006-06-16

    Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) equipped with a gold ion gun was used to image mouse embryos and differentiate tissue types (brain, spinal cord, skull, rib, heart and liver). Embryos were paraffin-embedded and then de-paraffinized. The robustness and repeatability of the method was determined by analyzing nine tissue slices from three different embryos over a period of several weeks. Using Principal Component Analysis (PCA) to reduce the spectral data generated by ToF-SIMS, histopathologically identified tissue types of the mouse embryos can be differentiated based on the characteristic differences in their mass spectra. These results demonstrate the ability of ToF-SIMS to determine subtle chemical differences even in fixed histological specimens.

  19. Staphylococcus sciuri associated to subcutaneous abscess and dermatitis in ICR mouse

    Directory of Open Access Journals (Sweden)

    K. Kengkoom

    Full Text Available ABSTRACT Subcutaneous mass was found in ICR mouse during daily health observation in the breeding colony of the National Laboratory Animal Center, Mahidol University, Thailand. The animal was subsequently culled and humanely sacrificed due to the institutional preventive medicine policy. Microbiological and histopathological studies were performed for definitive diagnosis. The results described that the case was subcutaneous abscess and chronic dermatitis in association with Staphylococcus sciuri infection without epizootic and mortality. This was determined as the first reported case in Thailand occurring in mouse. Reproductive stress and abrasion skin wound may be the predisposing factors. Although pathogenic staphylococci in laboratory animals are limited to S. aureus and S. xylosus, S. sciuri opportunistic properties, natural history, and heterogeneity should not be forgotten.

  20. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism.

    Science.gov (United States)

    Liao, J W; Kang, J J; Liu, S H; Jeng, C R; Cheng, Y W; Hu, C M; Tsai, S F; Wang, S C; Pang, V F

    2000-06-01

    Cartap, a nereistoxin analogue pesticide, is reported to have no irritation to eyes in rabbits. However, we have demonstrated recently that cartap could actually cause acute death in rabbits via ocular exposure. Our preliminary study with isolated mouse phrenic nerve diaphragms has shown that instead of neuromuscular blockade, cartap caused muscular contracture. The objective of the study was to examine the effect of cartap on the neuromuscular junction in more detail and to investigate its possible underlying mechanism with isolated mouse phrenic nerve diaphragms and sarcoplasmic reticulum (SR) vesicles. Cartap or nereistoxin at various concentrations was added in the organ bath with isolated mouse phrenic nerve diaphragm and both nerve- and muscle-evoked twitches were recorded. Instead of blocking the neuromuscular transmission as nereistoxin did, cartap caused contracture in stimulated or quiescent isolated mouse phrenic nerve diaphragm. Both the cartap-induced muscular contracture force and the time interval to initiate the contracture were dose-dependent. The contracture induced by cartap was not affected by the pretreatment of the diaphragm with the acetylcholine receptor blocker alpha-bungarotoxin; the Na(+) channel blocker tetrodotoxin; or various Ca(2+) channel blockers, NiCl(2), verapamil, and nifedipine. On the contrary, the contracture was significantly inhibited when the diaphragm was pretreated with ryanodine or EGTA containing Ca(2+)-free Krebs solution or in combination. This suggested that both internal and extracellular Ca(2+) might participate in cartap-induced skeletal muscle contracture. Moreover, cartap inhibited the [(3)H]-ryanodine binding to the Ca(2+) release channel of SR in a dose-dependent manner. Additionally, cartap could induce a significant reduction in Ca(2+)-ATPase activity of SR vesicles at a relatively high dose. The results suggested that cartap might cause the influx of extracellular Ca(2+) and the release of internal Ca(2

  1. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    Science.gov (United States)

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  2. SU-E-T-463: Quantification of Rotational Variation in Mouse Setup for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    McCarroll, R; Rubinstein, A; Kingsley, C; Yang, J; Yang, P; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: New small-animal irradiators include extremely precise IGRT capabilities. However, mouse immobilization and localization remains a challenge. In particular, unlike week-to-week translational displacements, rotational changes in positioning are not easily corrected for in subject setup. Using two methods of setup, we aim to quantify week-to-week rotational variation in mice for the purpose of IGRT planning in small animal studies. Methods: Ten mice were imaged weekly using breath-hold CBCT (X-RAD 225 Cx), with the mouse positioned in a half-pipe support, providing 40 scans. A second group of two mice were positioned in a 3D printed immobilization device, which was created using a CT from a similarly shaped mouse, providing 10 scans. For each mouse, the first image was taken to be the reference image. Subsequent CT images were then rigidly registered, based on bony anatomy. Rotations in the axial (roll), sagittal (pitch), and coronal (yaw) planes were recorded and used to quantify variation in angular setup. Results: For the mice imaged in the half pipe, average magnitude of roll was found to be 5.4±4.6° (range: −12.9:18.86°), of pitch 1.6±1.3° (range: −1.4:4.7°), and of yaw 1.9±1.5° (range −5.4:1.1°). For the mice imaged in the printed setup; average magnitude of roll was found to be 0.64±0.6° (range: −2.1:1.0°), of pitch 0.6±0.4° (range: 0.0:1.3°), and of yaw 0.2±0.1° (range: 0.0:0.4°). The printed setup provided reduction in roll, pitch, and yaw by 88, 62, and 90 percent, respectively. Conclusion: For the typical setup routine, roll in mouse position is the dominant source of rotational variation. However, when a printed device was used, drastic improvements in mouse immobilization were seen. This work provides a promising foundation for mouse immobilization, required for full scale small animal IGRT. Currently, we are making improvements to allo±w the use of a similar system for MR, PET, and bioluminescence.

  3. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  4. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    International Nuclear Information System (INIS)

    Wohlman, Irene M.; Composto, Gabriella M.; Heck, Diane E.; Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D.; Casillas, Robert P.; Croutch, Claire R.; Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B.; Laskin, Jeffrey D.

    2016-01-01

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  5. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Wohlman, Irene M.; Composto, Gabriella M. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D.; Lacey, C. Jeffrey; Guillon, Christophe D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Casillas, Robert P.; Croutch, Claire R. [MRIGlobal, Kansas City, MO (United States); Gerecke, Donald R.; Laskin, Debra L.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ (United States)

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.

  6. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  7. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses.

    Science.gov (United States)

    Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-09-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2

  8. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-m...

  9. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  10. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    OpenAIRE

    Vanderperre, Beno?t; Herzig, S?bastien; Krznar, Petra; H?rl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic p...

  11. Cloning, characterization and targeting of the mouse HEXA gene

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  12. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  13. Three-Dimensional Reconstruction of the Mouse Nephron

    DEFF Research Database (Denmark)

    Zhai, Xiao-Yue; Thomsen, Jesper Skovhus; Birn, Henrik

    2006-01-01

    Renal function is crucially dependent on renal microstructure which provides the basis for the regulatory mechanisms that control the transport of water and solutes between filtrate and plasma and the urinary concentration. This study provides new, detailed information on mouse renal architecture...... and collecting ducts was performed on aligned digital images, obtained from 2.5-µm-thick serial sections of mouse kidneys. Important new findings were highlighted: (1) A tortuous course of the descending thin limbs of long-looped nephrons and a winding course of the thick ascending limbs of short-looped nephrons...

  14. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr...

  15. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration

    Science.gov (United States)

    Bora, Puran S.; Hu, Zhiwei; Tezel, Tongalp H.; Sohn, Jeong-Hyeon; Kang, Shin Goo; Cruz, Jose M. C.; Bora, Nalini S.; Garen, Alan; Kaplan, Henry J.

    2003-03-01

    Age-related macular degeneration (AMD) is the leading cause of blindness after age 55 in the industrialized world. Severe loss of central vision frequently occurs with the exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature (CNV) that damages the macular region of the retina. We tested the effect of an immunotherapy procedure, which had been shown to destroy the pathological neovasculature in solid tumors, on the formation of laser-induced CNV in a mouse model simulating exudative AMD in humans. The procedure involves administering an Icon molecule that binds with high affinity and specificity to tissue factor (TF), resulting in the activation of a potent cytolytic immune response against cells expressing TF. The Icon binds selectively to TF on the vascular endothelium of a CNV in the mouse and pig models and also on the CNV of patients with exudative AMD. Here we show that the Icon dramatically reduces the frequency of CNV formation in the mouse model. After laser treatment to induce CNV formation, the mice were injected either with an adenoviral vector encoding the Icon, resulting in synthesis of the Icon by vector-infected mouse cells, or with the Icon protein. The route of injection was i.v. or intraocular. The efficacy of the Icon in preventing formation of laser-induced CNV depends on binding selectively to the CNV. Because the Icon binds selectively to the CNV in exudative AMD as well as to laser-induced CNV, the Icon might also be efficacious for treating patients with exudative AMD.

  16. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  17. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  18. Description of spermatogenesis and sperm ultrastructure of Acanthostomum (Atrophocaecum aswaninesis Wannas, 1977 (Digenea, Acanthostomatidae, a parasite of Bagrus bayad in Egypt

    Directory of Open Access Journals (Sweden)

    A.A. Taeleb

    2013-03-01

    The spermiogenesis process and spermatozoon organization of A. (A. aswaninesis match the general pattern found in the digenea, but certain peculiarities are characteristic and differentiate the sperm of this fluke from that of other digenetic trematodes.

  19. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Visesato Mor

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer, is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  20. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Science.gov (United States)

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  1. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Directory of Open Access Journals (Sweden)

    Xinhua Shu

    Full Text Available A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  2. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    Directory of Open Access Journals (Sweden)

    Jelena Reste

    2015-08-01

    Full Text Available Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad. The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C, while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  3. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei

    2017-08-29

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  4. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Mummery, Christine L.; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Nakachi, Yutaka; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Nakahara, Fumio; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Nakamura, Toshiyuki; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Nakamura, Yukio; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Orlando, Valerio; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Nozaki, Tadasuke; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Ogishima, Soichi; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Kojima, Miki; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Kubosaki, Atsutaka; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Manabe, Ri-ichiroh; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Murata, Mitsuyoshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Nagao-Sato, Sayaka; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Nakazato, Kenichi; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Ninomiya, Noriko; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  5. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  6. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    International Nuclear Information System (INIS)

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji

    2007-01-01

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS

  7. An intron capture strategy used to identify and map a lysyl oxidase-like gene on chromosome 9 in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.S.; Passmore, H.C. [Rutgers Univ., Piscataway, NJ (United States); Kim, Houngho; Csiszar, K.; Boyd, C.D. [UMDNJ, New Brunswick, NJ (United States)

    1997-03-01

    An intron capture strategy involving use of polymerase chain reaction was used to identify and map the mouse homologue of a human lysyl oxidase-like gene (LOXL). Oligonucleotides complementary to conserved domains within exons 4 and 5 of the human lysyl oxidase-like gene were used to amplify the corresponding segment from mouse genomic DNA. Sequencing of the resulting mouse DNA fragment of approximately 1 kb revealed that the exon sequences at the ends of the amplified fragment are highly homologous (90% nucleotide identity) to exons 4 and 5 of the human lysyl oxidase-like gene. An AluI restriction site polymorphism within intron 4 was used to map the mouse lysyl oxidase-like gene (Loxl) to mouse Chromosome 9 in a region that shares linkage conservation with human chromosome 15q24, to which the LOXL was recently mapped. 22 refs., 3 figs.

  8. Mouse Activity across Time Scales: Fractal Scenarios

    Science.gov (United States)

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  9. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  10. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  11. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  12. EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars.

    Science.gov (United States)

    Xie, Ming; Jiao, Ting; Chen, Yuqin; Xu, Chun; Li, Jing; Jiang, Xinquan; Zhang, Fuqiang

    2010-05-01

    The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.

  13. Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line

    Energy Technology Data Exchange (ETDEWEB)

    Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P

    1988-03-25

    The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human x-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, the authors introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated.

  14. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome

    International Nuclear Information System (INIS)

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon

    2007-01-01

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein

  15. Reduction in sperm levels after testicular irradiation of the mouse: a comparison with man

    International Nuclear Information System (INIS)

    Meistrich, M.L.; Samuels, R.C.

    1985-01-01

    The potential and limitations of applying extrapolation factors (EFs) to the results of animal studies to predict effects of toxic agents on human male fertility were evaluated using radiation data. The EF is the ratio of the dose to produce a given effect in the mouse to that necessary to produce the same effect in man. Sperm counts in mouse testes were compared to those in the ejaculates of human males. Sperm counts performed at times at which the sperm develop from irradiated stem cells in both species yielded EFs between 11 and 44. However, if sufficient time was allowed for maximum recovery in both species, the EF was less than 1.7. These results indicate that man appears to be much more sensitive than the mouse to the testicular effects of irradiation at 2 to 9 months postexposure, but both species are comparable in their sensitivity to irreversible damage. The use of EFs may be appropriate, but since the EF is very dependent on the time at which the comparison was made, different values must be used for prompt and permanent testicular injury

  16. MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging.

    Science.gov (United States)

    Bates, David J; Li, Na; Liang, Ruqiang; Sarojini, Harshini; An, Jin; Masternak, Michal M; Bartke, Andrzej; Wang, Eugenia

    2010-02-01

    The Ames dwarf mouse is well known for its remarkable propensity to delay the onset of aging. Although significant advances have been made demonstrating that this aging phenotype results primarily from an endocrine imbalance, the post-transcriptional regulation of gene expression and its impact on longevity remains to be explored. Towards this end, we present the first comprehensive study by microRNA (miRNA) microarray screening to identify dwarf-specific lead miRNAs, and investigate their roles as pivotal molecular regulators directing the long-lived phenotype. Mapping the signature miRNAs to the inversely expressed putative target genes, followed by in situ immunohistochemical staining and in vitro correlation assays, reveals that dwarf mice post-transcriptionally regulate key proteins of intermediate metabolism, most importantly the biosynthetic pathway involving ornithine decarboxylase and spermidine synthase. Functional assays using 3'-untranslated region reporter constructs in co-transfection experiments confirm that miRNA-27a indeed suppresses the expression of both of these proteins, marking them as probable targets of this miRNA in vivo. Moreover, the putative repressed action of this miRNA on ornithine decarboxylase is identified in dwarf mouse liver as early as 2 months of age. Taken together, our results show that among the altered aspects of intermediate metabolism detected in the dwarf mouse liver--glutathione metabolism, the urea cycle and polyamine biosynthesis--miRNA-27a is a key post-transcriptional control. Furthermore, compared to its normal siblings, the dwarf mouse exhibits a head start in regulating these pathways to control their normality, which may ultimately contribute to its extended health-span and longevity.

  17. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    Science.gov (United States)

    Taylor, Richard S.; Wilson, William R.

    2010-01-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration…

  18. Experimental photoallergic contact dermatitis: a mouse model

    International Nuclear Information System (INIS)

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-01-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model

  19. Mouse allergen-specific immunoglobulin G4 and risk of mouse skin test sensitivity

    NARCIS (Netherlands)

    Matsui, E. C.; Diette, G. B.; Krop, E. J. M.; Aalberse, R. C.; Smith, A. L.; Eggleston, P. A.

    2006-01-01

    High serum levels of cat-specific IgG and IgG4 are associated with protection against allergic sensitization to cat, but whether this association applies to other animal allergens remains unclear. To determine if high levels of mouse-specific IgG and IgG4 are associated with a decreased risk of

  20. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    Science.gov (United States)

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  1. Tributyltin exposure alters cytokine levels in mouse serum.

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  2. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  3. Radiation-induced adaptive response in the intact mouse

    International Nuclear Information System (INIS)

    Yonezawa, Morio

    2009-01-01

    The author and coworkers have revealed that radiation adaptive response (AR) is seen also in the bone marrow of the intact mouse, of which details are described here. First, SPF ICR mice were pre-irradiated (PI) with 0-0.1 Gy of X-ray and after 2 months, subsequently irradiated (SI) with 7.75 Gy. Survival rates at 30 days after SI were about 14% in mice with PI 0-0.025 Gy whereas 40% or more in animals with PI 0.05-0.1 Gy: bone marrow death was found significantly suppressed in this effective PI dose range. The death 2 weeks after SI was found also inhibited at PI 0.3-0.5 Gy. Second, PI doses and interval between PI and SI for acquiring the radio-resistance (RR) were studied and third, the PI 0.3-0.5 Gy with SI 8.0 Gy at 9-17 days later revealed that regional PI of the head (central nervous system) was found unnecessary for RR and of abdomen (systems of hemopoiesis, immunity and digestion), essential. Fourth, strain difference of RR was shown by the fact that RR was observed only in C57BL mouse as well, but neither in BALB/c nor C3H strain. Next, at 12 days after SI 4.25-6.75 Gy (PI 0.5 Gy at 14 days before), mouse spleen cells were subjected to colony formation analysis by counting the endogenous hemopoietic stem cells, which revealed that those cells were increased to about 5 times by PI. Suppression of SI-induced hemorrhage was found in mice with PI by the decreased fecal hemoglobin content. Finally, AR was similarly studied in p53 +/+ and its knockout C57BL mice and was not found in the latter animal, indicating the participation of p53 in AR of the intact mouse. Elucidation of AR mechanisms in the intact animal seems to require somewhat different aspect from that in cells. The results were controvertible to the general concept that radiation risk is proportional to cumulative dose, suggesting that low dose radiation differs from high dose one in biological effect. (K.T.)

  4. Hypothalamic neurosecretory and circadian vasopressinergic neuronal systems in the blind cone-rod homeobox knock out mouse (Crx(-/-) ) and the 129sv wild type mouse

    DEFF Research Database (Denmark)

    Rovsing, Louise; Rath, Martin Fredensborg; Møller, Morten

    2013-01-01

    circadian AVP-rhythm. We have in this study of the brown 129sv mouse and the visual blind cone-rod homeobox gene knock out mouse (Crx(-/-) ) with degeneration of the retinal rods and cones, but a preserved non-image forming optic system, studied the temporal Avp-expression in both the neurosecretory...

  5. Low-cost computer mouse for the elderly or disabled in Taiwan.

    Science.gov (United States)

    Chen, C-C; Chen, W-L; Chen, B-N; Shih, Y-Y; Lai, J-S; Chen, Y-L

    2014-01-01

    A mouse is an important communication interface between a human and a computer, but it is still difficult to use for the elderly or disabled. To develop a low-cost computer mouse auxiliary tool. The principal structure of the low-cost mouse auxiliary tool is the IR (infrared ray) array module and the Wii icon sensor module, which combine with reflective tape and the SQL Server database. This has several benefits including cheap hardware cost, fluent control, prompt response, adaptive adjustment and portability. Also, it carries the game module with the function of training and evaluation; to the trainee, it is really helpful to upgrade the sensitivity of consciousness/sense and the centralization of attention. The intervention phase/maintenance phase, with regard to clicking accuracy and use of time, p value (p< 0.05) reach the level of significance. The development of the low cost adaptive computer mouse auxiliary tool was completed during the study and was also verified as having the characteristics of low cost, easy operation and the adaptability. To patients with physical disabilities, if they have independent control action parts of their limbs, the mouse auxiliary tool is suitable for them to use, i.e. the user only needs to paste the reflective tape by the independent control action parts of the body to operate the mouse auxiliary tool.

  6. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  7. Development of the mouse cochlea database (MCD).

    Science.gov (United States)

    Santi, Peter A; Rapson, Ian; Voie, Arne

    2008-09-01

    The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: (http://mousecochlea.umn.edu). The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice.

  8. Generation of Knock-in Mouse by Genome Editing.

    Science.gov (United States)

    Fujii, Wataru

    2017-01-01

    Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.

  9. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    Science.gov (United States)

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  10. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  12. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

    Directory of Open Access Journals (Sweden)

    Enders Greg H

    2010-06-01

    Full Text Available Abstract Background Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF, that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. Results We show that mouse embryo fibroblasts (MEFs and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. Conclusions In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types to become immortalized and transformed, compared to human cells.

  13. New Insights on the Morphology of Adult Mouse Penis1

    Science.gov (United States)

    Rodriguez, Esequiel; Weiss, Dana A.; Yang, Jennifer H.; Menshenina, Julia; Ferretti, Max; Cunha, Tristan J.; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Cunha, Gerald R.; Baskin, Laurence S.

    2011-01-01

    ABSTRACT The adult mouse penis represents the end point of masculine sex differentiation of the embryonic genital tubercle and contains bone, cartilage, the urethra, erectile bodies, several types of epithelium, and many individual cell types arrayed into specific anatomical structures. Using contemporary high-resolution imaging techniques, we sought to provide new insights to the current description of adult mouse penile morphology to enable understanding of penile abnormalities, including hypospadias. Examination of serial transverse and longitudinal sections, scanning electron microscopy, and three-dimensional (3D) reconstruction provided a new appreciation of the individual structures in the adult mouse penis and their 3D interrelationships. In so doing, we discovered novel paired erectile bodies, the male urogenital mating protuberance (MUMP), and more accurately described the urethral meatus. These morphological observations were quantified by morphometric analysis and now provide accurate morphological end points of sex differentiation of mouse penis that will be the foundation of future studies to identify normal and abnormal penile development. PMID:21918128

  14. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    Science.gov (United States)

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  15. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    International Nuclear Information System (INIS)

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-01-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 o C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  16. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  17. Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro.

    Science.gov (United States)

    Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V

    2017-02-01

    Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    Science.gov (United States)

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  19. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Tolker-Nielsen, Tim; Holmstrøm, Kim

    1999-01-01

    . We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial...... content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA....

  20. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin

    International Nuclear Information System (INIS)

    Ito, Shinobu; Itoga, Kazuyoshi; Yamato, Masayuki; Akamatsu, Hirohiko; Okano, Teruo

    2010-01-01

    The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH 3 MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA·) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA· decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA· in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA· peak (AA·/H· > 4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA· inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.

  1. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  2. Impaired spatial processing in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2018-05-17

    Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Comparative mapping in the beige-satin region of mouse chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Perou, C.M.; Pryor, R.; Kaplan, J. [Univ. of Utah School of Medicine, Salt Lake City, UT (United States)] [and others

    1997-01-15

    The proximal end of mouse chromosome (Chr) 13 contains regions conserved on human chromosomes 1q42-q44, 6p23-p21, and 7p22-p13. This region also contains mutations that may be models for human disease, including beige (human Chediak-Higashi syndrome). An interspecific backcross of SB/Le and Mus spretus mice was used to generate a molecular genetic linkage map of mouse chromosome 13 with an emphasis on the proximal region including beige (bg) and satin (sa). This map provides the gene order of the two phenotypic markers bg and sa relative to restriction fragment length polymorphisms and simple sequence length polymorphisms in 131 backcross animals. In parallel, we have created a physical map of the region using Nidogen (Nid) as a molecular starting point for cloning a YAC contig that was used to identify the beige gene. The physical map provides the fine-structure order of genes and anonymous DNA fragments that was not resolved by the genetic linkage mapping. The results show that the bg region of mouse Chr 13 is highly conserved on human Chr 1q42-q44 and provide a starting point for a complete functional analysis of the entire bg-sa interval. 37 refs., 4 figs., 1 tab.

  4. A mouse radiation-induced liver disease model for stereotactic body radiation therapy validated in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wu, Zhi-Feng; Zhang, Jian-Ying; Shen, Xiao-Yun; Gao, Ya-Bo; Hu, Yong; Zeng, Zhao-Chong; Zhou, Le-Yuan

    2016-01-01

    Purpose: Lower radiation tolerance of the whole liver hinders dose escalations of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) treatment. This study was conducted to define the exact doses that result in radiation-induced liver disease (RILD) as well as to determine dose constraints for the critical organs at risk (OARs) in mice; these parameters are still undefined in HCC SBRT. Methods: This study consisted of two phases. In the primary phase, mice treated with helical tomotherapy-based SBRT were stratified according to escalating radiation doses to the livers. The pathological differences, signs [such as mouse performance status (MPS)], and serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT)/albumin levels were observed. Radiation-induced disease severities of the OARs were scored using systematic evaluation standards. In the validation phase in humans, 13 patients with HCC who had undergone radiotherapy before hepatectomy were enrolled to validate RILD pathological changes in a mouse study. Results: The evaluation criteria of the mouse liver radiotherapy-related signs were as follows: MPS ≥ 2.0 ± 0.52, AST/ALT ≥ 589.2 ± 118.5/137.4 ± 15.3 U/L, serum albumin ≤ 16.8 ± 2.29 g/L. The preliminary dose constraints of the OARs were also obtained, such as those for the liver (average dose ≤ 26.36 ± 1.71 Gy) and gastrointestinal tract (maximum dose ≤ 22.63 Gy). Mouse RILD models were able to be developed when the livers were irradiated with average doses of ≥31.76 ± 1.94 Gy (single fraction). RILD pathological changes in mice have also been validated in HCC patients. Conclusions: Mouse RILD models could be developed with SBRT based on the dose constraints for the OARs and evaluation criteria of mouse liver radiotherapy-related signs, and the authors’ results favor the study of further approaches to treat HCC with SBRT.

  5. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Science.gov (United States)

    Suzuki, Kentaro; Adachi, Yasuha; Numata, Tomokazu; Nakada, Shoko; Yanagita, Motoko; Nakagata, Naomi; Evans, Sylvia M; Graf, Daniel; Economides, Aris; Haraguchi, Ryuma; Moon, Anne M; Yamada, Gen

    2012-01-01

    Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein) signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox)) and the Isl1 (Islet1)-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox) conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme) and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  6. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Directory of Open Access Journals (Sweden)

    Kentaro Suzuki

    Full Text Available Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox and the Isl1 (Islet1-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  7. Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus).

    Science.gov (United States)

    Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R

    2017-08-01

    Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.

  8. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  9. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett

    2013-09-01

    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  10. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  11. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  12. Zinc-enriched (ZEN) terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Jo, S M; Danscher, G; Schrøder, H D

    2000-01-01

    The general distribution of zinc-enriched (ZEN) terminals in mouse spinal cord was investigated at light microscopic level by means of zinc transporter-3 immunohistochemistry (ZnT3(IHC)) and zinc selenium autometallography (ZnSe(AMG)). Staining for ZnT3(IHC) corresponded closely to the Zn...... dendrites. These ZEN terminals in the ventral horn were in general larger than those in the dorsal horn. This is the first description of the pattern of ZEN terminals in mouse spinal cord....

  13. The PPARδ Ligand GW501516 Reduces Growth but Not Apoptosis in Mouse Inner Medullary Collecting Duct Cells

    Directory of Open Access Journals (Sweden)

    Jordan Clark

    2009-01-01

    Full Text Available The collecting duct (CD expresses considerable amounts of PPARδ. While its role is unknown in the CD, in other renal cells it has been shown to regulate both growth and apoptosis. We thus hypothesized that PPARδ reduces apoptotic responses and stimulates cell growth in the mouse CD, and examined the effect of GW501516, a synthetic PPARδ ligand, on these responses in mouse IMCD-K2 cells. High doses of GW501516 decreased both DNA and protein synthesis in these cells by 80%, but had no overall effect on cell viability. Although anisomycin treatment resulted in an increase of caspase-3 levels of about 2.59-fold of control, GW501516 did not affect anisomycin-induced changes in active caspase-3 levels. These results show that a PPARδ ligand inhibits growth but does not affect anisomycin-apoptosis in a mouse IMCD cell line. This could have therapeutic implications for renal diseases associated with increased CD growth responses.

  14. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test.

    Science.gov (United States)

    Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2013-06-01

    Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes

    International Nuclear Information System (INIS)

    Rosen, Mitchell B.; Das, Kaberi P.; Wood, Carmen R.; Wolf, Cynthia J.; Abbott, Barbara D.; Lau, Christopher

    2013-01-01

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) detected in the environment. Using a transient transfection assay developed in COS-1 cells, our group has previously evaluated a variety of PFAAs for activity associated with activation of peroxisome proliferator-activated receptor alpha (PPARα). Here we use primary heptatocytes to further assess the biological activity of a similar group of PFAAs using custom designed Taqman Low Density Arrays. Primary mouse and human hepatoyctes were cultured for 48 h in the presence of varying concentrations of 12 different PFAAs or Wy14,643, a known activator of PPARα. Total RNA was collected and the expression of 48 mouse or human genes evaluated. Gene selection was based on either in-house liver microarray data (mouse) or published data using primary hepatocytes (human). Gene expression in primary mouse hepatocytes was more restricted than expected. Genes typically regulated in whole tissue by PPARα agonists were not altered in mouse cells including Acox1, Me1, Acaa1a, Hmgcs1, and Slc27a1. Cyp2b10, a gene regulated by the constitutive androstane receptor and a transcript normally up-regulated by in vivo exposure to PFAAs, was also unchanged in cultured mouse hepatocytes. Cyp4a14, Ehhadh, Pdk4, Cpt1b, and Fabp1 were regulated as expected in mouse cells. A larger group of genes were differentially expressed in human primary hepatocytes, however, little consistency was observed across compounds with respect to which genes produced a significant dose response making the determination of relative biological activity difficult. This likely reflects weaker activation of PPARα in human versus rodent cells as well as variation among individual cell donors. Unlike mouse cells, CYP2B6 was up-regulated in human hepatocytes by a number of PFAAs as was PPARδ. Rankings were conducted on the limited

  16. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting

    Directory of Open Access Journals (Sweden)

    Amanda M. Ackermann

    2017-03-01

    Full Text Available Objective: α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER “knock-in” mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreERT2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. Methods: We utilized CRISPR-Cas9 technology to insert an IRES-CreERT2 sequence into the 3′ UTR of the Glucagon (Gcg locus in mouse embryonic stem cells (ESCs. Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreERT2 mice. Recombination efficiency in GCG+ pancreatic α-cells and glucagon-like peptide 1 positive (GLP1+ enteroendocrine L-cells was measured in Gcg-CreERT2;Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Results: Tamoxifen injection of Gcg-CreERT2;Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively, as well as in first-wave fetal α-cells (36% and adult enteroendocrine L-cells (33%. Mice homozygous for the Gcg-CreERT2 allele were phenotypically normal. Conclusions: We successfully derived a Gcg-CreERT2 mouse line that expresses CreERT2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice

  17. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  18. Isolation and characterization of proteins of the mouse mammary tumour virus

    International Nuclear Information System (INIS)

    Westenbrink, F.

    1980-01-01

    A vaccination procedure was developed to mouse mammary tumor virus (MuMTV) induced mouse mammary tumorigenesis. The structural proteins of MuMTV were purified so that their immunogenic qualities were retained. Radioimmunoassays were developed for the proteins. (Auth.)

  19. Activation of farnesoid X receptor induces RECK expression in mouse liver

    International Nuclear Information System (INIS)

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-01

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver

  20. Activation of farnesoid X receptor induces RECK expression in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaomin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wu, Weibin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Zhou, Lei, E-mail: yhchloech@gmail.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  1. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  2. Regulation of cytochrome P-450 monooxygenases in the mouse

    International Nuclear Information System (INIS)

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis[2-(3,4-dichloropyridyloxy)] benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16α-carbonitrile (PCN) and (4) the binding of [ 3 H] TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2α-, 6β- and 15β- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of [ 3 H] TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of [ 3 H] TCPOBOP to cytosolic marcomolecular elements

  3. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo

    2011-01-01

    abnormalities was evaluated by G banding. RESULTS: The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were...

  4. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP).

    Science.gov (United States)

    Bitar, A; Lisbona, A; Thedrez, P; Sai Maurel, C; Le Forestier, D; Barbet, J; Bardies, M

    2007-02-21

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  5. An X-linked Myh11-CreERT2 mouse line resulting from Y to X chromosome-translocation of the Cre allele.

    Science.gov (United States)

    Liao, Mingmei; Zhou, Junmei; Wang, Fen; Ali, Yasmin H; Chan, Kelvin L; Zou, Fei; Offermanns, Stefan; Jiang, Zhisheng; Jiang, Zhihua

    2017-09-01

    The Myh11-CreER T2 mouse line (Cre + ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/Y Cre+ ), which excluded its application in female mice. Our group established a Cre + colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/X Cre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/Y Cre+ mice. This mosaicism, however, diminished in homozygous X Cre+ /X Cre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous X Cre+ /X Cre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/X Cre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous X Cre+ /X Cre+ mice produce uniform Cre activity in arterial SMCs. © 2017 Wiley Periodicals, Inc.

  6. Spatial integration in mouse primary visual cortex.

    Science.gov (United States)

    Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura

    2013-08-01

    Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.

  7. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  8. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Zhu

    2015-05-01

    Full Text Available Bone pain is a common and severe symptom in cancer patients. The present study employed a mouse model of leukemia bone pain by injection K562 cells into tibia of mouse to evaluate the analgesic effects of lappacontine. Our results showed that the lappaconitine treatment at day 15, 17 and 19 could effectively reduce the spontaneous pain scoring values, restore reduced degree in the inclined-plate test induced by injection of K562 cells, as well as restore paw mechanical withdrawal threshold and paw withdrawal thermal latency induced by injection of K562 cells to the normal levels. Additionally, the molecular mechanisms of lappaconitine’s analgesic effects may be related to affect the expression levels of endogenous opioid system genes (POMC, PENK and MOR, as well as apoptosis-related genes (Xiap, Smac, Bim, NF-κB and p53. Our present results indicated that lappaconitine may become a new analgesic agent for leukemia bone pain management.

  9. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin.

    Directory of Open Access Journals (Sweden)

    Itsuo Murakami

    Full Text Available Resveratrol (RESV is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV.

  10. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  11. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  12. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo.

    Directory of Open Access Journals (Sweden)

    Minyan Li

    Full Text Available Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2 is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo.

  13. A cytocidal tissue kallikrein isolated from mouse submandibular glands.

    Science.gov (United States)

    Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T

    1989-11-06

    A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.

  14. Radioprotection of normal tissues of the mouse by hypoxic breathing

    International Nuclear Information System (INIS)

    Stevens, G.N.; Joiner, B.; Denekamp, J.

    1989-01-01

    Hypoxic breathing during irradiation has been advocated as a therapeutic modality, to increase the efficacy of radiotherapy. In this form of treatment, the total and daily X-ray dose is increased by a factor of 1.25, on the assumption that all normal tissues in the beam will be protected to a similar extent by breathing gas containing a reduced oxygen concentration (usually 10%). To test this concept, we have determined the effect of varying the inspired oxygen tension on the radiosensitivity of 3 normal tissues in the mouse (kidney, jejunum and skin), and have compared these results with data from the literature for mouse lung. Reduction of the inspired oxygen tension from 21% (air) to 7-8% led to much greater radioprotection of skin (protection factor 1.37) than of lung (1.09). Protection factors for jejunum and kidney were 1.16 and 1.36 respectively. The results show that the extent of radioprotection afforded by hypoxic breathing is tissue dependent, and that great care must be taken clinically in choosing the increased radiation dose to be used in conjunction with hypoxic breathing

  15. Take care of your mouse!

    CERN Multimedia

    IT Department

    2011-01-01

    “Stop --- Think --- Click" is the basic recommendation for securely browsing the Internet and for securely reading e-mails. Users who have followed this recommendation in the past were less likely to have their computer infected or their computing account compromised. We would like to thank all those who donated their mouse to the CERN Animal Shelter for Computer Mice (http://cern.ch/c-a-s). For those who still use a mouse, please stay vigilant and  alert: do not click on links whose origin you do not trust or which look like gibberish. Do not install untrusted software or plug-ins, since software from untrusted sources may infect or compromise your computer, or violate copyrights. Finally, take particular care with e-mails: Do not open unexpected or suspicious e-mails or attachments. Delete them if they do not concern you or if they appear strange. If in doubt, or if you have questions, please do not hesitate to contact Computer.Security@cern.ch

  16. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  17. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  18. EMPReSS: European mouse phenotyping resource for standardized screens.

    Science.gov (United States)

    Green, Eain C J; Gkoutos, Georgios V; Lad, Heena V; Blake, Andrew; Weekes, Joseph; Hancock, John M

    2005-06-15

    Standardized phenotyping protocols are essential for the characterization of phenotypes so that results are comparable between different laboratories and phenotypic data can be related to ontological descriptions in an automated manner. We describe a web-based resource for the visualization, searching and downloading of standard operating procedures and other documents, the European Mouse Phenotyping Resource for Standardized Screens-EMPReSS. Direct access: http://www.empress.har.mrc.ac.uk e.green@har.mrc.ac.uk.

  19. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ

    Directory of Open Access Journals (Sweden)

    Tobias eAckels

    2014-11-01

    Full Text Available The mouse vomeronasal organ (VNO is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs / V2Rs or members of the formyl peptide receptor (FPR family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, the basic biophysical characteristics of the more recently identified FPR-expressing vomeronasal neurons have not been studied. Here, we employ a transgenic mouse strain that coexpresses an enhanced variant of yellow fluorescent protein together with FPR-rs3 allowing to identify and analyze FPR-rs3-expressing neurons in acute VNO tissue slices. Single neuron electrophysiological recordings allow comparative characterization of the biophysical properties inherent to a prototypical member of the FPR-expressing subpopulation of VNO neurons. In this study, we provide an in-depth analysis of both passive and active membrane properties, including detailed characterization of several types of voltage-activated conductances and action potential discharge patterns, in fluorescently labeled versus unmarked vomeronasal neurons. Our results reveal striking similarities in the basic (electrophysiological architecture of both transgene-expressing and non-expressing neurons, confirming the suitability of this genetically engineered mouse model for future studies addressing more specialized issues in vomeronasal FPR neurobiology.

  20. Evaluation of 10 aliphatic halogenated hydrocarbons in the mouse bone marrow micronucleus test.

    Science.gov (United States)

    Crebelli, R; Carere, A; Leopardi, P; Conti, L; Fassio, F; Raiteri, F; Barone, D; Ciliutti, P; Cinelli, S; Vericat, J A

    1999-03-01

    Ten halogenated aliphatic hydrocarbons (carbon tetrachloride, 1-chlorohexane, 2,3-dichlorobutane, 1,2-dichloroethane, 1,2-dichloroethylene, 1,3-dichloropropane, hexachloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane and 1,1,3-trichloropropene), previously assayed in genetic assays in fungi, were evaluated in the mouse bone marrow micronucleus test in order to assess their genotoxicity in vivo. All chemicals were administered once i.p. at 40 and 70-80% of their respective LD50 to male and female CD-1 mice, 24 and 48 h before killing. All treatments produced evident clinical symptoms, but no marked depression of bone marrow proliferation. No statistically significant increases in the incidence of micronucleated polychromatic erythrocytes over the control values were observed at any sampling time with any of the 10 halogenated hydrocarbons assayed. The comparison of the results obtained in this study with the findings provided by in vitro micronucleus assays on the same chemicals, reported by other authors, indicate that mouse bone marrow is weakly sensitive to the genotoxic effects induced by halogenated hydrocarbons in other test systems. This suggests that the role of such an assay in carcinogen screening may be questionable for this chemical class. An examination of mouse bone marrow micronucleus test results with the halogenated aliphatic hydrocarbons classified as carcinogens by IARC supports this conclusion.

  1. The acute effects of different energy beta-emitters on pig and mouse skin

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Hamlet, R.; Wells, J.; Charles, M.W.

    1986-01-01

    Acute changes were studied in the skin of mice and pigs following irradiation with Sr 90 (Esub(max) 2.27 MeV), Tm 170 (Esub(max) 0.97 MeV) and Pm 147 (Esub(max) 0.225 MeV). Sr 90 irradiation in the pig and Sr 90 and Tm 170 exposure in the mouse resulted in a distinct field-size effect for sources of 5-22.5 mm diameter; ED 50 values for moist desquamation were 22.0-27.5 Gy from the 22.5 mm source and 75-90 Gy for the 5 mm source. Tm 170 irradiation in the pig produced no distinct area effect for sources of 5-19 mm diameter (ED 50 approx.= 80 Gy). Acute tissue breakdown was only achieved in pig and mouse skin by very high doses (ED 50 >= 140 Gy) from sources of 147 produced acute epithelial breakdown, only after high skin-surface doses (ED 50 550-725 Gy). Area-and energy-related changes can, in part be explained by an hypothesis based on repopulation of the epithelium in the irradiated area by the migration of either cells from the edge of that area and/or cells surviving at the base of hair follicles. Differences in the results in pig and mouse can be explained on the basis of the distribution of target cells in the epidermis at varying depths. (author)

  2. Radiosensitivity of mouse germ cells

    International Nuclear Information System (INIS)

    Matsuda, Yoichi; Takeuchi, Toyoko; Maemori, Mamiko; Seki, Naohiko; Tobari, Izuo

    1991-01-01

    To estimate radiosensitivity of mouse germ cells the analysis of chromosome aberrations was performed at diakinesis-metaphase I of spermatocytes and first-cleavage metaphase of one-cell embryos after exposure to radiations at various stages of primary spermatocytes and spermatids. The result provided evidence that there are two major types of DNA damage in X-irradiated sperm : (1) short-lived DNA lesions ; the lesions are subject to repair inhibition by agents added in G 1 , and are converted into chromosome-type aberrations during G 1 , and (2) long-lived DNA lesions ; the lesions persist until S phase and repair of the lesions is inhibited by caffeine, hydroxyurea and arabinofuranosyl cytosine in G 2 . The characteristic of X-ray damage induced in spermiogenic stage and repair mechanism for the damage in the fertilized egg were discussed comparing with the results with two chemicals, methyl methanesulfonate (MMS) and mitomycin C (MMC). (J.P.N.)

  3. Growth Arrest-Specific 6 (Gas6) and TAM Receptors in Mouse Platelets.

    Science.gov (United States)

    Uras, Fikriye; Küçük, Burhanettin; Bingöl Özakpınar, Özlem; Demir, Ahmet Muzaffer

    2015-03-05

    Growth arrest-specific 6 (Gas6) is a newly discovered vitamin K-dependent protein, which is a ligand for TAM receptors [Tyro3 (Sky), Axl, and Mer] from the tyrosine kinase family. Gas6 knockout mice were resistant to venous and arterial thrombosis. There are contradictory reports on the presence of Gas6 and its receptors in mouse platelets. The objective of this study was to investigate whether Gas6 and its receptors were present in mouse platelets or not. Specific pathogen-free BALB/c male and female mice of 8-10 weeks old and 25-30 g in weight were anesthetized under light ether anesthesia and blood samples were taken from their hearts. RNAs were isolated from isolated platelets, and then mRNAs encoding Gas6 and TAM receptors were detected by reverse transcription-polymerase chain reaction (RT-PCR). Protein concentrations of Gas6 and TAM receptors in platelets were measured by ELISA, but not those of Mer, because of the absence of any commercial ELISA kit for mouse specimens. RT-PCR results indicated the presence of mRNAs encoding Gas6 and Mer in mouse platelets. However, although RT-PCR reactions were performed at various temperatures and cycles, we could not detect the presence of mRNAs encoding Axl and Tyro3 (Sky). Receptor protein levels of Axl and Tyro3 were below the detection limits of the ELISA method. We found the presence of mRNAs encoding Gas6 and the receptor Mer in mouse platelets, but not Axl and Tyro3. Gas6, Axl, and Tyro3 protein levels were below the detection limits of the ELISA. The presence of mRNA is not obvious evidence of protein expression in platelets that have no nucleus or DNA. Further studies are required to clarify the presence of Gas6/TAM receptors in platelets using real-time PCR and more sensitive immunological methods, and future studies on mechanisms will indicate whether the Gas6/TAM pathway is a strategy for treatment of disorders.

  4. IL-6 and mouse oocyte spindle.

    Directory of Open Access Journals (Sweden)

    Jashoman Banerjee

    Full Text Available Interleukin 6 (IL-6 is considered a major indicator of the acute-phase inflammatory response. Endometriosis and pelvic inflammation, diseases that manifest elevated levels of IL-6, are commonly associated with higher infertility. However, the mechanistic link between elevated levels of IL-6 and poor oocyte quality is still unclear. In this work, we explored the direct role of this cytokine as a possible mediator for impaired oocyte spindle and chromosomal structure, which is a critical hurdle in the management of infertility. Metaphase-II mouse oocytes were exposed to recombinant mouse IL-6 (50, 100 and 200 ng/mL for 30 minutes and subjected to indirect immunofluorescent staining to identify alterations in the microtubule and chromosomal alignment compared to untreated controls. The deterioration in microtubule and chromosomal alignment were evaluated utilizing both fluorescence and confocal microscopy, and were quantitated with a previously reported scoring system. Our results showed that IL-6 caused a dose-dependent deterioration in microtubule and chromosomal alignment in the treated oocytes as compared to the untreated group. Indeed, IL-6 at a concentration as low as 50 ng/mL caused deterioration in the spindle structure in 60% of the oocytes, which increased significantly (P<0.0001 as IL-6 concentration was increased. In conclusion, elevated levels of IL-6 associated with endometriosis and pelvic inflammation may reduce the fertilizing capacity of human oocyte through a mechanism that involves impairment of the microtubule and chromosomal structure.

  5. Validity of questionnaire self-reports on computer, mouse and keyboard usage during a four-week period

    DEFF Research Database (Denmark)

    Mikkelsen, S.; Vilstrup, Imogen; Lassen, C. F.

    2007-01-01

    OBJECTIVE: To examine the validity and potential biases in self-reports of computer, mouse and keyboard usage times, compared with objective recordings. METHODS: A study population of 1211 people was asked in a questionnaire to estimate the average time they had worked with computer, mouse...... and keyboard during the past four working weeks. During the same period, a software program recorded these activities objectively. The study was part of a one-year follow-up study from 2000-1 of musculoskeletal outcomes among Danish computer workers. RESULTS: Self-reports on computer, mouse and keyboard usage...... times were positively associated with objectively measured activity, but the validity was low. Self-reports explained only between a quarter and a third of the variance of objectively measured activity, and were even lower for one measure (keyboard time). Self-reports overestimated usage times...

  6. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Wu, Li-An; Yuan, Guohua; Yang, Guobin; Ortiz-Gonzalez, Iris; Yang, Wuchen; Cui, Yong; MacDougall, Mary; Donly, Kevin J.; Harris, Stephen; Chen, Shuo

    2009-01-01

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  7. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  8. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    Science.gov (United States)

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  9. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  10. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    Science.gov (United States)

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  11. Immunological characteristics and response to lipopolysaccharide of mouse lines selectively bred with natural and acquired immunities.

    Science.gov (United States)

    Narahara, Hiroki; Sakai, Eri; Katayama, Masafumi; Ohtomo, Yukiko; Yamamoto, Kanako; Takemoto, Miki; Aso, Hisashi; Ohwada, Shyuichi; Mohri, Yasuaki; Nishimori, Katsuhiko; Isogai, Emiko; Yamaguchi, Takahiro; Fukuda, Tomokazu

    2012-05-01

    Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  12. Induction of micronuclei in the mouse. Revised timing of the final stage of erythropoiesis

    International Nuclear Information System (INIS)

    Hart, J.W.; Hartley-Asp, B.

    1983-01-01

    the early effects of X-rays, vincristine, cyclophosphamide, quinacrine dihydrochloride, cycloheximide, actinomycin D and hydroxyurea on the induction of micronuclei in mouse bone-marrow erythrocytes were studied. A significant increase in the incidence of micronuclei in polychromatic erythrocytes was seen as early as 5 h after a single treatment with vincristine, 6 h after treatment with X-rays and 10 h after treatment with cyclophosphamide. The cell kinetics of the mouse erythropoietic system described by Cole et al. (1981) can be modified to fit these results. According to this revised model, the final mitosis takes place only 5 h before the expulsion of the nucleus. (orig.)

  13. Induction of micronuclei in the mouse. Revised timing of the final stage of erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Hart, J.W. (Leo Pharmaceutical Products Ltd., Ballerup (Denmark)); Hartley-Asp, B. (AB Leo, Helsingborg (Sweden))

    1983-05-01

    the early effects of X-rays, vincristine, cyclophosphamide, quinacrine dihydrochloride, cycloheximide, actinomycin D and hydroxyurea on the induction of micronuclei in mouse bone-marrow erythrocytes were studied. A significant increase in the incidence of micronuclei in polychromatic erythrocytes was seen as early as 5 h after a single treatment with vincristine, 6 h after treatment with X-rays and 10 h after treatment with cyclophosphamide. The cell kinetics of the mouse erythropoietic system described by Cole et al. (1981) can be modified to fit these results. According to this revised model, the final mitosis takes place only 5 h before the expulsion of the nucleus.

  14. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: rcmosca@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  15. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz

    2013-01-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  16. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  17. Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis

    Science.gov (United States)

    Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto

    2006-12-01

    We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.

  18. Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models.

    Science.gov (United States)

    Upadhyay, Mamta; Agarwal, Saloni; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2017-04-01

    Lafora disease (LD) is an autosomal recessive form of a fatal disorder characterized by the myoclonus epilepsy, ataxia, psychosis, dementia, and dysarthria. A hallmark of LD is the presence of abnormal glycogen inclusions called Lafora bodies in the affected tissues including the neurons. LD can be caused by defects either in the laforin phosphatase coded by the EPM2A gene or in the malin E3 ubiquitin ligase coded by the NHLRC1 gene. The mouse models of LD, created by the targeted disruption of the LD genes, display several neurodegenerative changes. Prominent among them are the autophagic defects, abnormally large lysosomes, neurofibrillary tangles, amyloid beta deposits, and abnormal mitochondria. However, whether or not such neurodegenerative changes are a direct effect of the loss of laforin/malin was not unequivocally established. Here, we show that laforin- or malin-deficient neurons and fibroblasts display a significantly higher number of fragmented mitochondria. Loss of laforin or malin resulted in increased levels of the mitochondrial fission GTPase Drp1, its enhanced mitochondrial targeting, and increased intracellular calcium levels. Intriguingly, laforin and malin display opposite effects on the cellular level of parkin, an ubiquitin ligase of Drp1; loss of laforin led to reduced levels of parkin while the loss of malin resulted in increased parkin levels. Laforin and malin, however, interact with and positively regulate the activity of parkin, thus explaining the molecular basis of increased Drp1 levels in LD tissues. Our results suggest that laforin and malin are novel regulators of mitochondrial quality control pathway and that the mitochondrial dysfunction resulting from the increased Drp1 levels could underlie neuropathology in LD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of teeth in chick embryos after mouse neural crest transplantations.

    Science.gov (United States)

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  20. Digital three-dimensional reconstruction and ultrastructure of the mouse proximal tubule

    DEFF Research Database (Denmark)

    Zhai, X.Y.; Birn, H.; Jensen, K.B.

    2003-01-01

    . In the medullary rays, these are arranged in layers outside the clusters of more superficial tubules. In contrast to rat and human kidney, no major segmental variation in the ultrastructure of the proximal tubule was identified, and no parameters enabled definition of distinct segments in this strain of mice......, detailed analyses of normal mouse kidney structure and organization are lacking. This study describes the 3D organization and ultrastructural, segmental variation of the mouse kidney proximal tubule. A total of 160 proximal tubules in three C57/BL/6J mouse kidneys were analyzed on 800 serial sections from...

  1. X-ray-induced chromosome aberrations in the leucocytes of mouse and man

    International Nuclear Information System (INIS)

    Preston, R.J.; Brewen, J.G.

    1978-01-01

    In earlier studies it was shown that the frequency of dicentrics induced by X-rays in human leucocytes was about twice that induced in mouse leucocytes. The frequencies of deletions were similar in both species. However, the mouse cultures were fixed at 60 h and the human cultures at 54 h. In both cases it was likely that some of the cells analysed were in their second post-treatment mitosis. Further studies were carried out using fixation times of 48 h for both mouse and human cultures (three different human donors were used). The same relationships held here, namely twice as many dicentrics in humans, and similar deletion frequencies in both. The aberration frequencies observed were corrected to take account of second-diversion cells by assuming that cells containing a dicentric without an accompanying fragment were in their second division. There were more such cells in mouse than in human cultures. Further to increase reliance on the conclusions, cultures were fixed at the earliest times that 300 cells per dose could be obtained - 36 h for the mouse, 42 h for the human. The frequencies of dicentrics were increased in both, and a relationship of about 2:1 for human to mouse was obtained. Deletion frequencies were similar in both. Since no dicentrics without fragments were obtained, it appeared that aberration frequencies in first-division cells only were being compared. (author)

  2. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    International Nuclear Information System (INIS)

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Meertens, Laurent; Dragic, Tanya; Davey, Robert A.; Ross, Susan R.

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment

  3. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  4. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries.

    Science.gov (United States)

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-07-31

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26(rbw/+);Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries.

  5. Patch clamp study of mouse glomus cells using a whole carotid body.

    Science.gov (United States)

    Yamaguchi, Shigeki; Lande, Boris; Kitajima, Toshimitsu; Hori, Yuichi; Shirahata, Machiko

    2004-03-04

    Some electrophysiological characteristics of mouse glomus cells (DBA/2J strain) were investigated using an undissociated carotid body. The carotid body with major carotid arteries was placed in a recording chamber, and glomus cells were visualized with a water immersion lens combined with an infrared differential interference video camera. Patch clamp experiments revealed that voltage-gated outward current, but not inward current, was easily observed in glomus cells. Pharmacological experiments and the kinetics of the current suggest that outward current is via delayed rectifier, A type, and large conductance calcium-activated K channels. Furthermore, K current was reversibly attenuated by mild hypoxia. The results suggest electrophysiological similarities of glomus cells among the cat, the rat, and the DBA/2J mouse. The method appears useful for physiological experiments.

  6. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus

    DEFF Research Database (Denmark)

    Fabricius, K.; Wörtwein, Gitta; Pakkenberg, B.

    2008-01-01

    , the number of errors made by the MS24 mice compared to controls and in total distance moved. The mice were subsequently sacrificed and the total number of neurons estimated in the hippocampus using the optical fractionator. We found a significant loss of neurons in the dentate gyrus in MS mice compared...... to controls. Apparently a single maternal separation can impact the number of neurons in mouse hippocampus either by a decrease of neurogenesis or as an increase in neuron apoptosis. This study is the first to assess the result of maternal separation combining behaviour and stereology Udgivelsesdato: 2008/2...

  7. Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes

    Science.gov (United States)

    White, Jennifer; Barro, Marietta V.; Makarenkova, Helen P.; Sanger, Joseph W.; Sanger, Jean M.

    2014-01-01

    It is important to understand how muscle forms normally in order to understand muscle diseases that result in abnormal muscle formation. Although the structure of myofibrils is well understood, the process through which the myofibril components form organized contractile units is not clear. Based on the staining of muscle proteins in avian embryonic cardiomyocytes, we previously proposed that myofibrils formation occurred in steps that began with premyofibrils followed by nascent myofibrils and ending with mature myofibrils. The purpose of this study was to determine whether the premyofibril model of myofibrillogenesis developed from studies developed from studies in avian cardiomyocytes was supported by our current studies of myofibril assembly in mouse skeletal muscle. Emphasis was on establishing how the key sarcomeric proteins, F-actin, non-muscle myosin II, muscle myosin II, and α-actinin were organized in the three stages of myofibril assembly. The results also test previous reports that non-muscle myosins II A and B are components of the Z-Bands of mature myofibrils, data that are inconsistent with the premyofibril model. We have also determined that in mouse muscle cells, telethonin is a late assembling protein that is present only in the Z-Bands of mature myofibrils. This result of using specific telethonin antibodies supports the approach of using YFP-tagged proteins to determine where and when these YFP-sarcomeric fusion proteins are localized. The data presented in this study on cultures of primary mouse skeletal myocytes are consistent with the premyofibril model of myofibrillogenesis previously proposed for both avian cardiac and skeletal muscle cells. PMID:25125171

  8. Anti-EGFR therapy radiosensitizes human lung adenocarcinoma xenograft in nude mouse

    International Nuclear Information System (INIS)

    Wang Hui; Li Tianran; Tian Jiahe; Qu Baolin; Zhu Hui

    2008-01-01

    Objective: To investigate the effect of Gefitinib on radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. Methods: Human lung adenocarcinoma cell line A549 was used to establish nude mouse xenograft tumor model. The mice were derided into 4 groups: control, irradiation alone, Gefinitib alone and radiation combined with Genifitib. Radiation schedule was 3 fractions of 5 Gy, once daily. Gefitinib was daily administered by gavage at 100 mg/(kg·day -1 ) for 14 days. In the combination group, radiotherapy was performed 2 hours after Gefitinib administration. Tumor diameter was measured every other day. Percentage of tumor growth inhibition, growth delay time and regrowth delay time were evaluated. Results: For A549 xenografts in radiation alone, gefitinib alone and combination therapy groups, the percentage of tumor growth inhibition was 22.7%, 12.4% and 38.2%, respectively (F=25.75, P=0.000). Tumor growth delay time was 6.0, 7.8 and 21.6 days, respectively (F=70.49, P=0.000). Tumor regrowth delay time in combination therapy and irradiation alone groups was 23.4 and 10.2 days. (F=174.24, P= 0.000). Sensitizing enhancement ratio of combination group was 1.5 in growth and 1.7 in regrowth. Conclusions: Anti-EGFR therapy enhances the radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. (authors)

  9. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  10. A comparison of some organizational characteristics of the mouse central retina and the human macula.

    Science.gov (United States)

    Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.

  11. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    Science.gov (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model.

    Science.gov (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B

    2015-02-01

    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  14. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    Science.gov (United States)

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  16. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    Science.gov (United States)

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  17. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  18. A sensitive radioimmunoassay for a component of mouse casein

    International Nuclear Information System (INIS)

    Enami, Jumpei; Nandi, S.; California Univ. Berkeley

    1977-01-01

    Mouse casein (m.w. 22,000 daltons) has been purified by employing Sephadex G-100 and DEAE-cellulose column chromatographies. A sensitive radioimmunoassay method has been developed by using [ 125 I]-labelled casein and antiserum elicited in rabbits after injection of glutaraldehyde-treated casein. The assay method is capable of detecting as little as 0.1 ng of casein. The use of the present radioimmunoassay method in detecting casein production in cultured mouse mammary explants has also been demonstrated

  19. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  20. Radiation response of spermatogonial stem cells in the mouse

    International Nuclear Information System (INIS)

    Bootsma, A.L.

    1978-01-01

    Spermatogonial stem cells are able to repopulate the testis by forming clones that elongate along the walls of the seminiferous tubules depleted of spermatogenetic cells as a result of an irradiation. The surviving number of stem cells after irradiation was estimated by determining the fraction of repopulated tubules in cross-sections of the testis 11 weeks after irradiation. This fraction, called the 'repopulation index', is assumed to be directly proportional to the number of surviving stem cells. The response of spermatogonial stem cells in the CBA mouse to 1-MeV fission neutrons was investigated. Radioresistant, colony forming stem cells in the mouse testis move into a much more radiosensitive phase of their cell cycle shortly after irradiation. This is demonstrated in publication II in experiments in which total doses of 300 rad of neutrons and 1200 rad of X-rays were split into two equal fractions. The radiation response of spermatogonial stem cells in the mouse which survived various doses of fission neutrons 24 hours before was studied in publication III. Twenty four hours after a dose of 150 rad of fission neutrons all first-dose survivors have moved from a radioresistant (D 0 89+-4 rad in this study) towards a radiosensitive phase of their cell cycle. Spermatogonial stem cells which survive a neutron dose of 150 rad all belong to a radioresistant stem cell population in the seminiferous epithelium. The data in publication IV show that during the first 26 days after a dose of 150 rad of neutrons the stem cell population first increases and then slowly decreases its radiosensitivity, to stay fixed at a relatively high level. (Auth.)

  1. Variation in the timing of reproduction of the four-striped field mouse ...

    African Journals Online (AJOL)

    Variation in the timing of reproduction of the four-striped field mouse, Rhabdomys pumilio , in ... Open Access DOWNLOAD FULL TEXT ... We used the four-striped field mouse, Rhabdomys pumilio (Sparrmann, 1784), to test the hypothesis that ...

  2. Histologic scoring of gastritis and gastric cancer in mouse models.

    Science.gov (United States)

    Rogers, Arlin B

    2012-01-01

    Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.

  3. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  4. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  5. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  6. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  7. Expression of casein kinase 2 during mouse embryogenesis

    DEFF Research Database (Denmark)

    Mestres, P; Boldyreff, B; Ebensperger, C

    1994-01-01

    This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level by immunohisto......This paper deals with the expression and distribution of casein kinase 2 (CK-2) subunits in mouse embryos at different developmental stages. Expression was investigated at the mRNA level of CK-2 alpha- and beta-subunits by in situ hybridization and distribution at the protein level...

  8. Automatic Detection of Wild-type Mouse Cranial Sutures

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Hermann, Nuno V.

    , automatic detection of the cranial sutures becomes important. We have previously built a craniofacial, wild-type mouse atlas from a set of 10 Micro CT scans using a B-spline-based nonrigid registration method by Rueckert et al. Subsequently, all volumes were registered nonrigidly to the atlas. Using......, the observer traced the sutures on each of the mouse volumes as well. The observer outperforms the automatic approach by approximately 0.1 mm. All mice have similar errors while the suture error plots reveal that suture 1 and 2 are cumbersome, both for the observer and the automatic approach. These sutures can...

  9. DigiWarp: a method for deformable mouse atlas warping to surface topographic data

    International Nuclear Information System (INIS)

    Joshi, Anand A; Shattuck, David W; Toga, Arthur W; Chaudhari, Abhijit J; Li Changqing; Cherry, Simon R; Dutta, Joyita; Leahy, Richard M

    2010-01-01

    For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L 2 pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder.

  10. Carbonic anhydrases and their functional differences in human and mouse sperm physiology.

    Science.gov (United States)

    José, O; Torres-Rodríguez, P; Forero-Quintero, L S; Chávez, J C; De la Vega-Beltrán, J L; Carta, F; Supuran, C T; Deitmer, J W; Treviño, C L

    2015-12-25

    Fertilization is a key reproductive event in which sperm and egg fuse to generate a new individual. Proper regulation of certain parameters (such as intracellular pH) is crucial for this process. Carbonic anhydrases (CAs) are among the molecular entities that control intracellular pH dynamics in most cells. Unfortunately, little is known about the function of CAs in mammalian sperm physiology. For this reason, we re-explored the expression of CAI, II, IV and XIII in human and mouse sperm. We also measured the level of CA activity, determined by mass spectrometry, and found that it is similar in non-capacitated and capacitated mouse sperm. Importantly, we found that CAII activity accounts for half of the total CA activity in capacitated mouse sperm. Using the general CA inhibitor ethoxyzolamide, we studied how CAs participate in fundamental sperm physiological processes such as motility and acrosome reaction in both species. We found that capacitated human sperm depend strongly on CA activity to support normal motility, while capacitated mouse sperm do not. Finally, we found that CA inhibition increases the acrosome reaction in capacitated human sperm, but not in capacitated mouse sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    OpenAIRE

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  12. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    Science.gov (United States)

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.

  13. Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q.

    Science.gov (United States)

    Seldin, M F; Morse, H C; LeBoeuf, R C; Steinberg, A D

    1988-01-01

    A linkage map of distal mouse chromosome 1 was constructed by restriction fragment length polymorphism analysis of DNAs from seven sets of recombinant inbred (RI) strains. The data obtained with seven probes on Southern hybridization combined with data from previous studies suggest the gene order Cfh, Pep-3/Ren-1,2, Ly-5, Lamb-2, At-3, Apoa-2/Ly-17,Spna-1. These results confirm and extend analyses of a large linkage group which includes genes present on a 20-30 cM span of mouse chromosome 1 and those localized to human chromosome 1q21-32. Moreover, the data indicate similar relative positions of human and mouse complement receptor-related genes REN, CD45, LAMB2, AT3, APOA2, and SPTA. These results suggest that mouse gene analyses may help in detailed mapping of human genes within such a syntenic group.

  14. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria.

    Science.gov (United States)

    Salzman, Nita H; de Jong, Hendrik; Paterson, Yvonne; Harmsen, Hermie J M; Welling, Gjalt W; Bos, Nicolaas A

    2002-11-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including Lactobacillus spp., Helicobacter spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the Cytophaga-Flavobacter-Bacteroides phylum, which the authors named 'mouse intestinal bacteria'. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the Eubacterium rectale-Clostridium coccoides group and three clustered within the Bacteroides group. One of the novel sequences was distantly related to Verrucomicrobium spinosum and one was distantly related to Bacillus mycoides. Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence in situ hybridization (FISH).

  15. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  16. In vitro metabolism studies of 18F-labeled 1-phenylpiperazine using mouse liver S9 fraction

    International Nuclear Information System (INIS)

    Ryu, Eun Kyoung; Choe, Yearn Seong; Kim, Dong Hyun; Ko, Bong-Ho; Choi, Yong; Lee, Kyung-Han; Kim, Byung-Tae

    2006-01-01

    The in vitro metabolism of 1-(4-[ 18 F]fluoromethylbenzyl)-4-phenylpiperazine ([ 18 F]1) and 1-(4-[ 18 F]fluorobenzyl)-4-phenylpiperazine ([ 18 F]2) was investigated using mouse liver S9 fraction. Results were compared to those of in vivo metabolism using mouse blood and bone and to in vitro metabolism using mouse liver microsomes. Defluorination was the main metabolic pathway for [ 18 F]1 in vitro and in vivo. Based on TLC, HPLC and LC-MS data, [ 18 F]fluoride ion and less polar radioactive metabolites derived from aromatic ring oxidation were detected in vitro, and the latter metabolites were rapidly converted into the former with time, whereas only the [ 18 F]fluoride ion was detected in vivo. Similarly, the in vitro metabolism of [ 18 F]2 using either S9 fraction or microsomes showed the same pattern as the in vivo method using blood; however, the radioactive metabolites derived from aromatic ring oxidation were not detected in vivo. These results demonstrate that liver S9 fraction can be widely used to investigate the intermediate radioactive metabolites and to predict the in vivo metabolism of radiotracers

  17. Histological and reference system for the analysis of mouse intervertebral disc.

    Science.gov (United States)

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  19. Human and mouse mononuclear phagocyte networks: a tale of two species?

    Directory of Open Access Journals (Sweden)

    Gary eReynolds

    2015-06-01

    Full Text Available Dendritic cells (DCs, monocytes and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumour and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonise findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organisation of human and mouse mononuclear phagocyte networks.

  20. Characterization of a male reproductive transcriptome for Peromyscus eremicus (Cactus mouse

    Directory of Open Access Journals (Sweden)

    Lauren L. Kordonowy

    2016-10-01

    Full Text Available Rodents of the genus Peromyscus have become increasingly utilized models for investigations into adaptive biology. This genus is particularly powerful for research linking genetics with adaptive physiology or behaviors, and recent research has capitalized on the unique opportunities afforded by the ecological diversity of these rodents. Well characterized genomic and transcriptomic data is intrinsic to explorations of the genetic architecture responsible for ecological adaptations. Therefore, this study characterizes the transcriptome of three male reproductive tissues (testes, epididymis and vas deferens of Peromyscus eremicus (Cactus mouse, a desert specialist. The transcriptome assembly process was optimized in order to produce a high quality and substantially complete annotated transcriptome. This composite transcriptome was generated to characterize the expressed transcripts in the male reproductive tract of P. eremicus, which will serve as a crucial resource for future research investigating our hypothesis that the male Cactus mouse possesses an adaptive reproductive phenotype to mitigate water-loss from ejaculate. This study reports genes under positive selection in the male Cactus mouse reproductive transcriptome relative to transcriptomes from Peromyscus maniculatus (deer mouse and Mus musculus. Thus, this study expands upon existing genetic research in this species, and we provide a high quality transcriptome to enable further explorations of our proposed hypothesis for male Cactus mouse reproductive adaptations to minimize seminal fluid loss.

  1. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  2. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model.

    Science.gov (United States)

    Yadav, Satyndra Kumar; Prakash, Jay; Chouhan, Shikha; Singh, Surya Pratap

    2013-06-01

    Parkinson's disease (PD) is a neurodegenerative disease which causes rigidity, resting tremor and postural instability. Treatment for this disease is still under investigation. Mucuna pruriens (L.), is a traditional herbal medicine, used in India since 1500 B.C., as a neuroprotective agent. In this present study, we evaluated the therapeutic effects of aqueous extract of M. pruriens (Mp) seed in Parkinsonian mouse model developed by chronic exposure to paraquat (PQ). Results of our study revealed that the nigrostriatal portion of Parkinsonian mouse brain showed significantly increased levels of nitrite, malondialdehyde (MDA) and reduced levels of catalase compared to the control. In the Parkinsonian mice hanging time was decreased, whereas narrow beam walk time and foot printing errors were increased. Treatment with aqueous seed extract of Mp significantly increased the catalase activity and decreased the MDA and nitrite level, compared to untreated Parkinsonian mouse brain. Mp treatment also improved the behavioral abnormalities. It increased hanging time, whereas it decreased narrow beam walk time and foot printing error compared to untreated Parkinsonian mouse brain. Furthermore, we observed a significant reduction in tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN) and striatum region of the brain, after treatment with PQ which was considerably restored by the use of Mp seed extract. Our result suggested that Mp seed extract treatment significantly reduced the PQ induced neurotoxicity as evident by decrease in oxidative damage, physiological abnormalities and immunohistochemical changes in the Parkinsonian mouse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    Science.gov (United States)

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-08-14

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.

  4. Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes.

    Science.gov (United States)

    Chu, S; Montrose, M H

    1997-10-01

    We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.

  5. Changes in the radiation sensitivity of mouse skin during fractionated and prolonged treatments

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; Mason, K.A.; Hunter, N.; Thames, H.D.

    1994-01-01

    Reactions of the skin of the right thigh of mice were used as an experimental model to test possible changes in the radiosensitivity of mouse skin, as represented by changes in the linear-quadratic (LQ) model parameters α and β, as a function of fractionation interval and overall treatment time. In the first series of experiments, variable numbers of 3-Gy fractions with intervals of 6, 24 or 48 h were applied, followed by top-up doses to increase the skin damage to a level that could be scored. The results showed that mouse skin is more sensitive to 3-Gy fractions applied with 48-h intervals than to 3-Gy fractions applied with 6- or 24-h intervals. In the second series of experiments we used single-dose or fractonated test treatments for previously unirradiated mice and mice treated with priming doses of 10, 20 or 30 Gy given 1-18 days before the test treatment. The sensitivity appeared to be higher after intervals of 14-18 days than after 1-10 days after priming treatments of 20 and 30 Gy. The increased sensitivity 18 days after 20 Gy was mainly the result of an increase in the β component of the LQ model; higher values of α were also determined. We conclude that the radiosensitivity of mouse skin is higher during a radiation-induced proliferative response. 28 refs., 3 figs., 7 tabs

  6. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2 tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.

  7. Providing Training Enhances the Biomechanical Improvements of an Alternative Computer Mouse Design

    NARCIS (Netherlands)

    Houwink, A.; Oude Hengel, K.M.; Odell, D.; Dennerlein, J.T.

    2009-01-01

    Objective: The purpose of this study is to determine if an alternative mouse promotes more neutral postures and decreases forearm muscle activity and if training enhances these biomechanical benefits. Background: Computer mouse use is a risk factor for developing musculoskeletal disorders;

  8. Reproductive cycle of the Namib giant ground gecko ...

    African Journals Online (AJOL)

    The reproductive cycle of the Namib giant ground gecko, Chondrodactylus angulifer, from southern Africa was described from a histological examination of gonadal material from museum specimens. Males followed a seasonal testicular cycle in which (based on available specimens) the major period of spermiogenesis ...

  9. The simplicity of males: Dwarf males of four species of Osedax (Siboglinidae; Annelida) investigated by confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Worsaae, Katrine; Rouse, Greg W

    2010-01-01

    . Here, we present the first investigation of the entire muscle and nervous system in dwarf males of Osedax frankpressi, O. roseus, O. rubiplumus, and O. spiral analyzed by multistaining and confocal laser scanning microscopy. Sperm shape and spermiogenesis, the sperm duct and internal and external...

  10. Cytogenetic comparison of the responses of mouse and human peripheral blood lymphocytes to 60Co gamma radiation

    International Nuclear Information System (INIS)

    Kligerman, A.D.; Halperin, E.C.; Erexson, G.L.; Honore, G.; Westbrook-Collins, B.; Allen, J.W.

    1988-01-01

    Experiments were conducted to compare the chromosome damaging effects of 60 Co gamma radiation on mouse and human peripheral blood lymphocytes (PBLs). Either whole blood or isolated and pelleted mononuclear leucocytes (MNLs) were irradiated with a 60 Co unit to yield exposures of 1, 2, 3, or 4 Gy. In addition, mice were whole-body irradiated in vivo with the same doses so that an in vitro-in vivo comparison could be made. The results indicate that mouse PBLs irradiated in whole blood, whether in vivo or in vitro, respond similarly to 60 Co gamma rays as measured by dicentric chromosome formation. In addition, mouse and human PBLs showed a similar radiosensitivity, but because the mouse PBL data were best fitted to an exponential function and the human PBL data to a quadratic function, direct comparisons were difficult to make. Pelleted MNLs from mice were much less sensitive to the clastogenic effects of gamma radiation than whole blood. This is believed to be due to hypoxic conditions that developed during irradiation and transport. Human PBLs did not show a marked difference whether irradiated in whole blood or as pelleted MNLs in tissue culture medium

  11. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Picq

    Full Text Available The mouse lemur (Microcebus murinus is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12 and aged (n = 8 adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  12. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues.

    Science.gov (United States)

    Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin

    2009-01-01

    Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.

  13. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  14. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  15. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  16. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    Directory of Open Access Journals (Sweden)

    Cremer Thomas

    2005-12-01

    Full Text Available Abstract Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

  17. Spermatic characteristics and sperm evolution on the subfamily Stevardiinae (Ostariophysi: Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Clarianna Martins Baicere-Silva

    Full Text Available The monophyly and phylogenetic relationships among the members of Clade A characids (sensu Malabarba & Weitzman, later redefined and named as the Stevardiinae (sensu Mirande, have been primarily supported by traditional morphological and molecular data. Herein were examined, described and compared spermiogenesis and sperm ultrastructure of 12 species of the genera Boehlkea, Bryconacidnus, Bryconamericus, Creagrutus, Cyanocharax, Hemibrycon, Knodus, Odontostoechus, Piabina, and Rhinobrycon in order to evaluate possible phylogenetic signals and their potential use in recovering relationships of the Stevardiinae. All examined species demonstrated a nuclear rotation equal or less than 95º resulting in a lateral position of the double nuclear fossa and flagellum. In all species, sperm nuclei are slightly elongate toward the flagellum, the proximal centriole is partially inside the nuclear fossa and lies anterior and oblique to the distal centriole, and the midpiece is short and strongly asymmetric. All species analyzed herein and other species previously examined for these systems in the Stevardiinae share homologous sperm characteristics as evidenced by spermiogenesis, further supporting the monophyly of this clade. Spermatozoa of the Stevardiinae further show three morphotypes (M1, M2, M3 of arrangement of centrioles, flagellum, nucleus and midpiece, hypothesized as successively derived in a series of transformation from the most basal morphotype (M1.

  18. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse

    International Nuclear Information System (INIS)

    Bollard, Mary E.; Keun, Hector C.; Beckonert, Olaf; Ebbels, Tim M.D.; Antti, Henrik; Nicholls, Andrew W.; Shockcor, John P.; Cantor, Glenn H.; Stevens, Greg; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.

    2005-01-01

    Interspecies variation between rats and mice has been studied for hydrazine toxicity using a novel metabonomics approach. Hydrazine hydrochloride was administered to male Sprague-Dawley rats (30 mg/kg, n = 10 and 90 mg/kg, n = 10) and male B6C3F mice (100 mg/kg, n = 8 and 250 mg/kg, n = 8) by oral gavage. In each species, the high dose was selected to produce the major histopathologic effect, hepatocellular lipid accumulation. Urine samples were collected at sequential time points up to 168 h post dose and analyzed by 1 H NMR spectroscopy. The metabolites of hydrazine, namely diacetyl hydrazine and 1,4,5,6-tetrahydro-6-oxo-3-pyridazine carboxylic acid (THOPC), were detected in both the rat and mouse urine samples. Monoacetyl hydrazine was detected only in urine samples from the rat and its absence in the urine of the mouse was attributed to a higher activity of N-acetyl transferases in the mouse compared with the rat. Differential metabolic effects observed between the two species included elevated urinary β-alanine, 3-D-hydroxybutyrate, citrulline, N-acetylcitrulline, and reduced trimethylamine-N-oxide excretion unique to the rat. Metabolic principal component (PC) trajectories highlighted the greater degree of toxic response in the rat. A data scaling method, scaled to maximum aligned and reduced trajectories (SMART) analysis, was used to remove the differences between the metabolic starting positions of the rat and mouse and varying magnitudes of effect, to facilitate comparison of the response geometries between the rat and mouse. Mice followed 'biphasic' open PC trajectories, with incomplete recovery 7 days after dosing, whereas rats followed closed 'hairpin' time profiles, indicating functional reversibility. The greater magnitude of metabolic effects observed in the rat was supported by the more pronounced effect on liver pathology in the rat when compared with the mouse

  19. End Sequencing and Finger Printing of Human & Mouse BAC Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, C

    2005-09-27

    This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

  20. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.