WorldWideScience

Sample records for mouse retinal vascular

  1. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Directory of Open Access Journals (Sweden)

    Susanne C Beck

    Full Text Available Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  2. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Science.gov (United States)

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  3. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  4. Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M.; Hurst, Christian G.; Cui, Zhenghao; Evans, Lucy P.; Hatton, Colman J.; Pei, Dorothy T.; Ju, Meihua; Sinclair, David A.; Smith, Lois E. H.; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. PMID:24416337

  5. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy.

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M; Hurst, Christian G; Cui, Zhenghao; Evans, Lucy P; Hatton, Colman J; Pei, Dorothy T; Ju, Meihua; Sinclair, David A; Smith, Lois E H; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.

  6. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  7. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...

  8. Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    Olachi J. Mezu-Ndubuisi

    2017-01-01

    Full Text Available Background. Retinopathy of prematurity (ROP is a condition of abnormal retinal vascular development (RVD in premature infants. Fluorescein angiography (FA has depicted phases (early, mid, late, and mature of RVD in oxygen-induced retinopathy (OIR mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT. Method. 63 mice were exposed to 77% oxygen at postnatal day 7 (P7 for 5 days, while 63 mice remained in room air (RA. Total retinal thickness (TRT, inner retinal thickness (IRT, and outer retinal thickness (ORT were calculated at early (P19, mid (P24, late (P32, and mature (P47 phases of RVD. Results. TRT was reduced in OIR (162.66 ± 17.75 μm, n=13 compared to RA mice at P19 (197.57 ± 3.49 μm, n=14, P24, P32, and P49 (P0.05. IRT was reduced in OIR (71.60 ± 17.14 μm compared to RA (103.07 ± 3.47 μm mice at P19 and all ages (P<0.0001. Conclusion. We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.

  9. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion

    DEFF Research Database (Denmark)

    Traustason, Sindri; la Cour, Morten; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate the effect of intravitreal injections of the vascular endothelial growth factor inhibitor ranibizumab on retinal oxygenation in patients with central retinal vein occlusion (CRVO). METHODS: Retinal oxygen saturation in patients with CRVO was analysed using the Oxymap Retin...

  10. Retinal vascular and structural dynamics during acute hyperglycaemia

    DEFF Research Database (Denmark)

    Klefter, Oliver N; Lauritsen, Tina Vilsbøll; Knop, Filip K

    2015-01-01

    PURPOSE: To compare retinal vascular dynamics during acute hyperglycaemia in patients with type 2 diabetes and healthy volunteers. METHODS: Twenty-one patients with type 2 diabetes and 27 healthy controls were examined with fundus photographic measurement of retinal vessel diameters, retinal...

  11. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    Science.gov (United States)

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  12. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  13. Retinal vascular calibres are significantly associated with cardiovascular risk factors

    DEFF Research Database (Denmark)

    von Hanno, T.; Bertelsen, G.; Sjølie, Anne K.

    2014-01-01

    . Association between retinal vessel calibre and the cardiovascular risk factors was assessed by multivariable linear and logistic regression analyses. Results: Retinal arteriolar calibre was independently associated with age, blood pressure, HbA1c and smoking in women and men, and with HDL cholesterol in men......Purpose: To describe the association between retinal vascular calibres and cardiovascular risk factors. Methods: Population-based cross-sectional study including 6353 participants of the TromsO Eye Study in Norway aged 38-87years. Retinal arteriolar calibre (central retinal artery equivalent...... cardiovascular risk factors were independently associated with retinal vascular calibre, with stronger effect of HDL cholesterol and BMI in men than in women. Blood pressure and smoking contributed most to the explained variance....

  14. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  15. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  16. Retinal vascular speed prematurity requiring treatment.

    Science.gov (United States)

    Solans Pérez de Larraya, Ana M; Ortega Molina, José M; Fernández, José Uberos; Escudero Gómez, Júlia; Salgado Miranda, Andrés D; Chaves Samaniego, Maria J; García Serrano, José L

    2018-03-01

    To analyse the speed of temporal retinal vascularisation in preterm infants included in the screening programme for retinopathy of prematurity. A total of 185 premature infants were studied retrospectively between 2000 and 2017 in San Cecilio University Hospital of Granada, Spain. The method of binocular indirect ophthalmoscopy with indentation was used for the examination. The horizontal disc diameter was used as a unit of length. Speed of temporal retinal vascularisation (disc diameter/week) was calculated as the ratio between the extent of temporal retinal vascularisation (disc diameter) and the time in weeks. The weekly temporal retinal vascularisation (0-1.25 disc diameter/week, confidence interval) was significantly higher in no retinopathy of prematurity (0.73 ± 0.22 disc diameter/week) than in stage 1 retinopathy of prematurity (0.58 ± 0.22 disc diameter/week). It was also higher in stage 1 than in stages 2 (0.46 ± 0.14 disc diameter/week) and 3 of retinopathy of prematurity (0.36 ± 0.18 disc diameter/week). The rate of temporal retinal vascularisation (disc diameter/week) decreases when retinopathy of prematurity stage increases. The area under the receiver operating characteristic curve was 0.85 (95% confidence interval: 0.79-0.91) for retinopathy of prematurity requiring treatment versus not requiring treatment. The best discriminative cut-off point was a speed of retinal vascularisation prematurity may be required. However, before becoming a new standard of care for treatment, it requires careful documentation, with agreement between several ophthalmologists.

  17. Trypsin digest protocol to analyze the retinal vasculature of a mouse model.

    Science.gov (United States)

    Chou, Jonathan C; Rollins, Stuart D; Fawzi, Amani A

    2013-06-13

    Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.

  18. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    Science.gov (United States)

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  19. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan.

    Directory of Open Access Journals (Sweden)

    San-Ni Chen

    Full Text Available This is an observational study of fluorescein angiography (FA in consecutive patients with rhegmatogenous retinal detachment (RRD in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL, and refraction status (RF recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8% in group 1, 3 eyes (4.1% in group 2, 40 eyes (54.8% in group 3 and 17 eyes (23.3% in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion.

  20. Heritability of retinal vascular fractals: a twin study

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    . The retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficents. Falconer´s formula and quantitative genetic models were used to determine the genetic component of variation. Results: The retinal...... for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, p=0.0002) in monozygotic twins than in dizygotic twins (0.108, p=0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, 54% of the variation was explained...

  1. The Ins2Akita mouse as a model of early retinal complications in diabetes.

    Science.gov (United States)

    Barber, Alistair J; Antonetti, David A; Kern, Timothy S; Reiter, Chad E N; Soans, Rohit S; Krady, J Kyle; Levison, Steven W; Gardner, Thomas W; Bronson, Sarah K

    2005-06-01

    This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P cell bodies in the retinal ganglion cell layer (P retinal complications of diabetes.

  2. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants.

    Science.gov (United States)

    Wang, Yujiao; Zhou, Yi; Xiao, Lirong; Zheng, Shijie; Yan, Naihong; Chen, Danian

    2017-10-02

    Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1 -/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl 2 ) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.

  3. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Vavilala, Divya Teja [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); O’Bryhim, Bliss E. [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ponnaluri, V.K. Chaithanya [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); White, R. Sid; Radel, Jeff [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Symons, R.C. Andrew [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ophthalmology Department, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Mukherji, Mridul, E-mail: mukherjim@umkc.edu [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States)

    2013-09-06

    Highlights: •Aberrant activation of HIF pathway is the underlying cause of ischemic neovascularization. •Honokiol has better therapeutic index as a HIF inhibitor than digoxin and doxorubicin. •Daily IP injection of honokiol in OIR mouse model reduced retinal neovascularization. •Honokiol also prevents vaso-obliteration, the characteristic feature of the OIR model. •Honokiol enhanced physiological revascularization of the retinal vascular plexuses. -- Abstract: Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.

  4. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  5. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    Science.gov (United States)

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  6. Genomic analysis of mouse retinal development.

    Directory of Open Access Journals (Sweden)

    Seth Blackshaw

    2004-09-01

    Full Text Available The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE. The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length ("noncoding RNAs" were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.

  7. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  8. Characterization of Retinal Vascular and Neural Damage in a Novel Model of Diabetic Retinopathy.

    Science.gov (United States)

    Weerasekera, Lakshini Y; Balmer, Lois A; Ram, Ramesh; Morahan, Grant

    2015-06-01

    Diabetic retinopathy (DR) is a major cause of blindness globally. Investigating the underlying mechanisms of DR would be aided by a suitable mouse model that developed key features seen in the human disease, and did so without carrying genetic modifications. This study was undertaken to produce such a model. Our panel of Collaborative Cross strains was screened for DR-like features after induction of diabetes by intravenous injection with alloxan or streptozotocin. Both flat-mounted whole-retina and histologic sections were studied for the presence of retinal lesions. Progression of DR was also studied by histologic examination of the retinal vascular and neural structure at various time points after diabetes onset. In addition, microarray investigations were conducted on retinas from control and diabetic mice. Features of DR such as degenerated pericytes, acellular capillaries, minor vascular proliferation, gliosis of Müller cells, and loss of ganglion cells were noted as early as day 7 in some mice. These lesions became more evident with time. After 21 days of diabetes, severe vascular proliferation, microaneurysms, preretinal damage, increased Müller cell gliosis, and damage to the outer retina were all obvious. Microarray studies found significant differential expression of multiple genes known to be involved in DR. The FOT_FB strain provides a useful model to investigate the pathogenesis of DR and to develop treatments for this vision-threatening disease.

  9. Fluorescein angiography and retinal vascular development in premature infants.

    Science.gov (United States)

    Purcaro, Velia; Velia, Purcaro; Baldascino, Antonio; Antonio, Baldascino; Papacci, Patrizia; Patrizia, Papacci; Giannantonio, Carmen; Carmen, Giannantonio; Molisso, Anna; Anna, Molisso; Molle, Fernando; Fernando, Molle; Lepore, Domenico; Domenico, Lepore; Romagnoli, Costantino; Costantino, Romagnoli

    2012-10-01

    To investigate the role of fluorescein angiography (FA) in the management of retinopathy of prematurity (ROP) in preterm newborns. An observational case series of 13 extremely low birth weight infants. From September 2009 to March 2010, 13 newborn infants with a gestational age <29 weeks end/or birth weight <1000 g underwent serial fluorescein angiography with RetCam (Clarity, Pleasanton, CA) every 2 weeks. The fluorescein angiograms were examined to optimize the timing of diagnosis of ROP and to investigate development of retinal and choroidal vascularization. There were no side effects related to FA. Variable features of retinal and choroidal circulation in preterm infants with a high risk of developing ROP were noted. FA allows vessels branching at the junction between vascular and avascular retina (V-Av junction) to be viewed easily and shows the ROP findings that sometimes cannot be seen by indirect ophthalmoscopy. Dye leakage is the most significant sign of progression to severe ROP or the need for surgery in newborn babies with ROP. RetCam-assisted intravenous FA is safe and allows a more objective assessment of the ROP stage and zone.

  10. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Do, Ji Yeon; Choi, Young Keun [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kook, Hyun [Department of Pharmacology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, In-Kyu [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Dong Ho, E-mail: sarasate2222@gmail.com [Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  11. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    International Nuclear Information System (INIS)

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-01-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O 2 ). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice

  12. Transscleral diode photocoagulation of large retinal and choroidal vascular lesions.

    Directory of Open Access Journals (Sweden)

    Yun Feng

    Full Text Available BACKGROUND: Transscleral retinal photocoagulation with a diode laser is used in glaucoma refractory to medical and surgical treatment. Our main research question was how the technique performed in large vascular lesions associated with hemangiomas of the retina and choroid. METHODOLOGY/CLINICAL FINDINGS: Patient charts were retrieved from the hospital files for patients who underwent the procedure and were followed for at least 24 months. Five patients (6 eyes fit the criteria. Cases included Von Hippel's disease (2 eyes, Coats' disease (1 eye and choroidal hemangioma (3 cases. Transscleral diode laser treatment was performed under retrobulbar and topical anesthesia with a retinopexy probe (IRIS DioPexy, IRIS Medical Instruments, Mountain View, CA applied transsclerally under indirect ophthalmoscope visualization. We found an improvement in best-corrected visual acuity at 24 months postoperatively. CONCLUSIONS/SIGNIFICANCE: Transscleral photocoagulation may have a clinical application in these diseases as an alternate to the high cost of photodynamic therapy with photosensitizing agents.

  13. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    Science.gov (United States)

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  14. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  15. Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Purpose. To assess the ability of optical coherence tomography-angiography (OCT-A to show and analyze retinal vascular patterns and the choroidal neovascularization (CNV in retinal vascular diseases. Methods. Seven eyes of seven consecutive patients with retinal vascular diseases were examined. Two healthy subjects served as controls. All eyes were scanned with the SD-OCT XR Avanti (Optovue Inc, Fremont CA, USA. Split spectrum amplitude decorrelation angiography algorithm was used to identify the blood flow within the tissue. Fluorescein angiography (FA and indocyanine green angiography (ICGA with Spectralis HRA + OCT (Heidelberg Engineering GmbH were performed. Results. In healthy subjects OCT-A visualized major macular vessels and detailed capillary networks around the foveal avascular zone. Patients were affected with myopic CNV (2 eyes, age-related macular degeneration related (2, branch retinal vein occlusion (BRVO (2, and branch retinal artery occlusion (BRAO (1. OCT-A images provided distinct vascular patterns, distinguishing perfused and nonperfused areas in BRVO and BRAO and recognizing the presence, location, and size of CNV. Conclusions. OCT-A provides detailed images of retinal vascular plexuses and quantitative data of pathologic structures. Further studies are warranted to define the role of OCT-A in the assessment of retinovascular diseases, with respect to conventional FA and ICG-A.

  16. Adaptive optics retinal imaging in the living mouse eye

    Science.gov (United States)

    Geng, Ying; Dubra, Alfredo; Yin, Lu; Merigan, William H.; Sharma, Robin; Libby, Richard T.; Williams, David R.

    2012-01-01

    Correction of the eye’s monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo. PMID:22574260

  17. Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity

    Institute of Scientific and Technical Information of China (English)

    Fei; Feng; Yan; Cheng; Qing-Huai; Liu

    2014-01-01

    ·AIM: To evaluate the effect of different bevacizumab concentrations on retinal neovascularization in a retinopathy of prematurity(ROP) mouse model.·METHODS: A total of 60 of C57BL/6 J mice were exposed to 75% ±2% oxygen from postnatal d7 to postnatal d12. Fifteen nonexposed mice served as negative controls(group A). On d12, 30 mice(group C)were injected with 2.5 μg intravitreal bevacizumab(IVB),30 mice(group D) were injected with 1.25 μg IVB in one eye. The contralateral eyes were injected with balanced salt solution(BSS)(control group =group B). The adenosine diphosphatase(ADPase) histochemical technique was used for retinal flat mount to assess the oxygen-induced changes of retinal vessels.Neovascularization was quantified by counting the endothelial cell proliferation on the vitreal side of the inner limiting membrane of the retina. Histological changes were examined by light microscopy. The mRNA levels of vascular endothelial growth factor(VEGF) were quantified by Real-time PCR. Western-blotting analysis was performed to examine the expression of P-VEGFR.· RESULTS: Comparing with the control group B,regular distributions and reduced tortuosity of vessels were observed in our retinal flat mounts in groups C and D. The endothelial cell count per histological section was lower in groups C(P <0.0001) and D(P <0.0001) compared with the control group B. Histological evaluation showed no retinal toxicity in any group. In all oxygen treated groups VEGF mRNA expression was significantly increased as compared to age-matched controls. No significant change in VEGF mRNA expression could be achieved in either of the treatments or the oxygen controls. The results of the Western blot were consistent with that of the Real-time PCR analysis.·CONCLUSION: An intravitreal injection of bevacizumab is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy.

  18. Fundus autofluorescence findings in a mouse model of retinal detachment.

    Science.gov (United States)

    Secondi, Roberta; Kong, Jian; Blonska, Anna M; Staurenghi, Giovanni; Sparrow, Janet R

    2012-08-07

    Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.

  19. Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Rasmussen, Malin Lundberg; Lundberg, Lars Kristian; Frydkjær-Olsen, Ulrik

    retinopathy ranged between no retinopathy (20 eyes, 55.6%), mild NPDR (15 eyes, 41.6%) and moderate NPDR (1 eye, 2.8%). From baseline retinal photos, central retinal artery and vein equivalent (CRAE and CRVE) was calculated in the validated semi-automated computer program IVAN using the Big6 method. Two eyes......Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes Purpose To examine the association between retinal vascular calibre and incident blindness caused by diabetic retinopathy in young patients with type 1 diabetes. Methods A case-control study of 6...... years. Incident blindness was defined for patients who registered between 1995 and 2010 in the Danish Association of the Blind, which is a voluntary organization open for patients with a visual acuity at or below 6/60 (0.1) in the best eye. Each blind patient was matched with 3 controls regarding age...

  20. Feasibility study on retinal vascular bypass surgery in isolated arterially perfused caprine eye model

    Science.gov (United States)

    Chen, Y; Wu, W; Zhang, X; Fan, W; Shen, L

    2011-01-01

    Purpose To investigate the feasibility of bypassing occluded segments of retinal venous main vessels in isolated, arterially perfused caprine eyes via the closed-sky vitrectomy approach using keratoprosthesis. Methods Isolated caprine eyes were used in this study. For each eye, the retinal vessel was perfused by Krebs solution via ophthalmic artery, and pars plana vitrectomy was performed using temporary keratoprosthesis. All retinal micro-vascular maneuvers were performed in a closed-sky eyeball. The main retinal vein was blocked by endodiathermy at the site of the vessel's first branching. Two openings, several millimeters apart, were created by vascular punctures in both the main vein and its branch vein wall straddling the induced occluded segment. Catheterization was achieved using a flexible polyimide tube, with each end inserted into the vessel wall opening. A sealed connection between the vessel and the tube was obtained by endodiathermy. Bypass of the occluded retinal vein segment was thus achieved, and the patency of this vascular bypass was confirmed by intravascular staining. Results Puncturing, catheterization, and endodiathermy were viable by closed-sky approach using keratoprosthesis. Bypassing of the occluded retinal main vein segment was accomplished with the combination of these maneuvers. Good results were obtained in 23 of 38 (60%) caprine eyes. Conclusions This study demonstrated that bypassing the occluded segment of retinal main vein can be successfully performed in a closed-sky eyeball model of isolated, arterially perfused caprine eye. This early work indicated that the more advanced retinal vascular bypass surgery in in vivo eye may be feasible in the future. PMID:21921946

  1. Oral contraceptive pills: A risk factor for retinal vascular occlusion in in-vitro fertilization patients

    Directory of Open Access Journals (Sweden)

    Rohina S Aggarwal

    2013-01-01

    Full Text Available Retinal vascular occlusion is the most common cause of retinopathy leading to severe visual loss in all age groups. Central retinal vein occlusion (CRVO is usually seen in older age group and is often associated with systemic vascular diseases. Although the exact cause and effect relationship has not been proven, central retinal vein occlusion has been associated with various systemic pathological conditions, hence a direct review of systems toward the various systemic and local factors predisposing the central retinal vein occlusion is advocated. We describe the development of central retinal venous occlusion with associated cystoid macular edema (CME in two healthy infertile women who were recruited for in vitro fertilization cycle for infertility. Predisposing risk factors associated with central retinal vein occlusion are obesity, sedentary life style, smoking, and some systemic diseases such as hyperlipidemia, hypertension, associated autoimmune disorders e.g., antiphospholipid antibody syndrome, lupus, diabetes mellitus, cardiovascular disorders, bleeding or clotting disorders, vasculitis, closed-head trauma, alcohol consumption, primary open-angle glaucoma or angle-closure glaucoma.In our patients, they were ruled out afterdoing allpertaining investigations. The cases were managed with further avoidance of oral contraceptives and intra-vitreal injections of Bevacizumab (Avastin, an anti-vascular endothelial growth factor (anti-VEGF drug and Triamcinolone acetonide (a long acting synthetic steroid. Hence, even if no systemic diseases are detected. Physical examinations are recommended periodically for young women on oral contraceptive pills.

  2. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Oluleye ST

    2016-08-01

    Full Text Available Sunday Tunji Oluleye,1 Bolutife Ayokunu Olusanya,1 Abiodun Moshood Adeoye2 1Department of Ophthalmology, 2Department of Medicine, College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria Background: Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria.Patients and methods: Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21.Results: The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5% patients. In all, 175 (19.4% patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%, of which branch retinal vein occlusion, 43 (4.7%, and central retinal vein occlusion, 30 (3.3%, were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%, and central retinal artery occlusion, 17 (1.9%, were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6% patients, hypertensive choroidopathy in seven (0.8% patients, and hemorrhagic choroidal detachment in five (0.6% patients. Left ventricular (LV geometry was abnormal in 85 (55.5% patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%, 26 (17.2%, and 15 (9.7% patients, respectively. LV

  3. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration.

    Science.gov (United States)

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.

  4. Novel cellular bouton structure activated by ATP in the vascular wall of porcine retinal arterioles.

    Science.gov (United States)

    Misfeldt, Mikkel Wölck; Aalkjaer, Christian; Simonsen, Ulf; Bek, Toke

    2010-12-01

    The retinal blood flow is regulated by the tone of resistance arterioles, which is influenced by purinergic compounds such as adenosine and adenosine 5'-triphosphate (ATP) released from the retinal tissue. However, it is unknown what cellular elements in the perivascular retina are responsible for the effect of purines on the tone of retinal arterioles. Porcine retinal arterioles were loaded with the calcium-sensitive fluorophore Oregon green. The vessels were mounted in a confocal myograph for simultaneous recordings of tone and calcium activity in cells of the vascular wall during stimulation with ATP and adenosine, with and without modifiers of these compounds. Additionally, immunohistochemistry was used to localize elements with calcium activity in the vascular wall. Hyperfluorescence indicating calcium activity was recorded in a population of abundant round boutons interspersed in a network of vimentin-positive processes located immediately external to the smooth muscle cell layer but internal to the perivascular glial cells. These structures showed calcium activity when the vessel was relaxed with ATP but not when it was relaxed with adenosine. Ryanodine reduced calcium activity in the boutons, whereas the ATP antagonist adenosine-5'-O-(α, β- methylene diphosphate) reduced calcium activity in both the boutons and vascular tone. The vasodilating effect of purines in porcine retinal tissue involves ATP-dependent calcium activity in a layer of cellular boutons located external to the vascular smooth muscle cells and internal to the perivascular glial cells.

  5. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  6. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  7. A consonant construction of the hyaloid and retinal vascular systems by the angiogenic process.

    Science.gov (United States)

    Gergely, K; Gerinec, A

    2011-01-01

    There has been much debate as to whether the retinal vasculature forms by angiogenesis or vasculogenesis, thus angiogenesis is now accepted. We suppose that signals necessary for proper localization and development of the hyaloid and retinal vascular systems are already in place prior to the time at which these systems are developed. The remarkable conservation of vascular patterning suggests that specific genetic programs coordinate its formation. Evidence for a genetic program comes particularly from the characterization of gene-targeted mice and mutational analysis in zebrafish, but the exact genetic pathways remain poorly defined. Considering all the things from the aspect of angiogenesis significant differences exist between the mentioned vascular systems only in their lifetime (a) and location (b): (a) The hyaloid vasculature is a complex of transient intraocular vessels, while the retinal vessels are adapted for the whole life. (b) The hyaloid system fills the interior of the optic cup and this way "occupies" three-dimensional space while the distribution of the retinal vessels is relatively planar (two-dimensional) in the retina. We assume that retinal vessels are "built" in the same manner as the hyaloid vasculature and the outcomes at the embryological, histological, cellular and molecular levels confirm it. We show a consonant construction of both systems. The human organism does not have any rational reason to build up one system (i.e. the hyaloid vasculature) by angiogenesis and practically the same system (i.e. the retinal vessels) by another, de novo process, in the eye. It would be a waste of energy and various essential molecules. Thus, it seems that the retinal vascular system is an advanced copy of the hyaloid vessels (Tab. 1, Ref. 143).

  8. Comparison of retinal vascular geometry in obese and non-obese children.

    Directory of Open Access Journals (Sweden)

    Evelyn Li Min Tai

    Full Text Available Childhood obesity is associated with adult cardiometabolic disease. We postulate that the underlying microvascular dysfunction begins in childhood. We thus aimed to compare retinal vascular parameters between obese and non-obese children.This was a cross-sectional study involving 166 children aged 6 to 12 years old in Malaysia. Ocular examination, biometry, retinal photography, blood pressure and body mass index measurement were performed. Participants were divided into two groups; obese and non-obese. Retinal vascular parameters were measured using validated software.Mean age was 9.58 years. Approximately 51.2% were obese. Obese children had significantly narrower retinal arteriolar caliber (F(1,159 = 6.862, p = 0.010, lower arteriovenous ratio (F(1,159 = 17.412, p < 0.001, higher venular fractal dimension (F(1,159 = 4.313, p = 0.039 and higher venular curvature tortuosity (F(1,158 = 5.166, p = 0.024 than non-obese children, after adjustment for age, gender, blood pressure and axial length.Obese children have abnormal retinal vascular geometry. These findings suggest that childhood obesity is characterized by early microvascular abnormalities that precede development of overt disease. Further research is warranted to determine if these parameters represent viable biomarkers for risk stratification in obesity.

  9. NUTRITION AND VASCULAR SUPPLY OF RETINAL GANGLION CELLS DURING HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Paul eRutkowski

    2016-04-01

    Full Text Available Purpose. To review the roles of the different vascular beds nourishing the inner retina (retinal ganglion cells during normal development of the human eye and using our own tissue specimens to support our conclusions.Methods. An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated.Results. The first critical interaction between vascular bed and retinal ganglion cell (RGC formation occurs in the 6th-8th month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first three years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail.Conclusion. This delicately balanced situation of retinal ganglion cell nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.

  10. Retinal vascular diameters in relation to physical activity in Danish children - The CHAMPS Eye Study

    DEFF Research Database (Denmark)

    Lundberg, Kristian; Tarp, Jakob; Vestergaard, Anders Højslet

    2018-01-01

    Our objective was to determine associations between retinal vascular caliber and physical activity (PA) in a school-based child cohort. In a prospective study we created a childhood cumulative average PA-index using objectively measured PA (accelerometry) assessed at four periods between 2009...

  11. INTRAOCULAR AND SERUM LEVELS OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN ACUTE RETINAL NECROSIS AND OCULAR TOXOPLASMOSIS

    NARCIS (Netherlands)

    Wiertz, Karin; De Visser, Lenneke; Rijkers, Ger; De Groot-Mijnes, Jolanda; Los, Leonie; Rothova, Aniki

    2010-01-01

    Purpose: To determine the intraocular and serum vascular endothelial growth factor (VEGF) levels in patients with acute retinal necrosis (ARN) and compare those with VEGF levels found in patients with ocular toxoplasmosis (OT). Methods: Paired intraocular fluid and serum samples of 17 patients with

  12. Vision deficits precede structural losses in a mouse model of mitochondrial dysfunction and progressive retinal degeneration.

    Science.gov (United States)

    Laliberté, Alex M; MacPherson, Thomas C; Micks, Taft; Yan, Alex; Hill, Kathleen A

    2011-12-01

    Current animal models of retinal disease often involve the rapid development of a retinal disease phenotype; however, this is at odds with age-related diseases that take many years to manifest clinical symptoms. The present study was performed to examine an apoptosis-inducing factor (Aif)-deficient model, the harlequin carrier mouse (X(hq)X), and determine how mitochondrial dysfunction and subsequent accelerated aging affect the function and structure of the mouse retina. Vision and eye structure for cohorts of 6 X(hq)X and 6 wild type mice at 3, 11, and 15 months of age were studied using in vivo electroretinography (ERG), and optical coherence tomography (OCT). Retinal superoxide levels were determined in situ using dihydroethidium (DHE) histochemistry. Retinal cell counts were quantified post mortem using hematoxylin and eosin (H&E) staining. ERG analysis of X(hq)X retinal function indicated a reduction in b-wave amplitude significant at 3 months of age (p retina (p retina may account for the early and significant reduction in retinal function. This remodeling of retinal neurochemistry in response to stress may be a relevant mechanism in the progression of normal retinal aging and early stages of some retinal degenerative diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  14. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  15. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  16. Microscope-Integrated Optical Coherence Tomography Angiography in the Operating Room in Young Children With Retinal Vascular Disease.

    Science.gov (United States)

    Chen, Xi; Viehland, Christian; Carrasco-Zevallos, Oscar M; Keller, Brenton; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2017-05-01

    Intraoperative optical coherence tomography (OCT) has gained traction as an important adjunct for clinical decision making during vitreoretinal surgery, and OCT angiography (OCTA) has provided novel insights in clinical evaluation of retinal diseases. To date, these two technologies have not been applied in combination to evaluate retinal vascular disease in the operating suite. To conduct microscope-integrated, swept-source OCTA (MIOCTA) in children with retinal vascular disease. In this case report analysis, OCT imaging in pediatric patients, MIOCTA images were obtained during examination under anesthesia from a young boy with a history of idiopathic vitreous hemorrhage and a female infant with familial exudative vitreoretinopathy. Side-by-side comparison of research MIOCT angiograms and clinically indicated fluorescein angiograms. In 2 young children with retinal vascular disease, the MIOCTA images showed more detailed vascular patterns than were visible on the fluorescein angiograms although within a more posterior field of view. The MIOCTA system allowed visualization of small pathological retinal vessels in the retinal periphery that were obscured in the fluorescein angiograms by fluorescein staining from underlying, preexisting laser scars. This is the first report to date of the use of MIOCTA in the operating room for young children with retinal vascular disease. Further optimization of this system may allow noninvasive detailed evaluation of retinal vasculature during surgical procedures and in patients who could not cooperate with in-office examinations.

  17. Retinal Vascular Tortuosity in a Patient with Weill-Marchesani Syndrome

    Directory of Open Access Journals (Sweden)

    Kevin Gallagher

    2011-01-01

    Full Text Available Weill-Marchesani syndrome (WMS is a rare connective tissue disorder with characteristic phenotypic skeletal and ocular manifestations. A 28-year-old myopic female presented with an 8-month history of bilateral blurred vision. On examination, she was noted to be of short stature with brachydactyly. On ocular examination, she was found to be spherophakic with bilateral inferiorly subluxated lenses. Serum and urine homocysteine were normal and a syphilis screen was negative. A diagnosis of Weill-Marchesani syndrome was made. Fundoscopy revealed bilateral tortuous retinal vessels. We report the first illustrated case of retinal vascular tortuosity as an ocular manifestation of Weill-Marchesani syndrome.

  18. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption.

    Directory of Open Access Journals (Sweden)

    Michelle Lajko

    Full Text Available Bronchopulmonary dysplasia (BPD is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD. The retinal phenotype of this model, which we termed hyperoxia-induced proliferative retinopathy (HIPR, shows severe disruption of retinal vasculature and loss of vascular patterning, disorganized intra-retinal angiogenesis, inflammation and retinal detachment. Neonatal mice were subjected to 75% oxygen exposure from postnatal day (P0 to P14 to model BPD, then allowed to recover in room air for 1 (P15, 7 (P21, or 14 days (P28. We quantified retinal thickness, protein levels of HIF-1α, NOX2, and VEGF, and examined the cellular locations of these proteins by immunohistochemistry. We examined the retinal blood vessel integrity and inflammatory markers, including macrophages (F4/80 and lymphocytes (CD45R. Compared to controls, normal retinal vascular development was severely disrupted and replaced by a disorganized sheet of intra-retinal angiogenesis in the HIPR mice. At all time-points, HIPR showed persistent hyaloidal vasculature and a significantly thinner central retina compared to controls. HIF-1α protein levels were increased at P15, while VEGF levels continued to increase until P21. Intra-retinal fibrinogen was observed at P21 followed by sub-retinal deposition in at P28. Inflammatory lymphocytes and macrophages were observed at P21 and P28, respectively. This model presents a severe phenotype of disrupted retinal vascular development, intra-retinal angiogenesis inflammation and retinal detachment.

  19. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  20. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: Optical coherence tomography (OCT is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis, retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical

  1. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  2. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M. C.; van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  3. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology.

    Directory of Open Access Journals (Sweden)

    Shaomei Wang

    Full Text Available BACKGROUND: Retinitis pigmentosa (RP is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS rat, a well-established animal model for RP. METHODOLOGY/PRINCIPAL FINDINGS: Animals received syngeneic MSCs (1x10(6 cells by tail vein at an age before major photoreceptor loss. PRINCIPAL RESULTS: both rod and cone photoreceptors were preserved (5-6 cells thick at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs. CONCLUSIONS/SIGNIFICANCE: These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort

  4. Vascular resistance of central retinal artery is reduced in postmenopausal women after use of estrogen.

    Science.gov (United States)

    Faria, Alice Fátima Melgaço; de Souza, Marco Aurélio Martins; Geber, Selmo

    2011-08-01

    The aim of this study was to evaluate the effect of estrogen on the vascular resistance of the central retinal artery in postmenopausal women, compared with placebo, using transorbital ultrasound with Doppler velocimetry. We performed a prospective, randomized, triple-blinded placebo-controlled study. A total of 51 healthy postmenopausal women (follicle-stimulating hormone, >40 IU/L) with a mean (SD) age of 53.6 (4.8) years were studied. Participants were randomly allocated into two groups: placebo (n = 23) and estrogen (0.625 mg conjugated estrogens; n = 28). Transorbital Doppler velocimetric ultrasound was performed before and after treatment in sitting and supine positions. The mean age was similar in both groups. The pulsatility index of the central retinal arteries had a significant decrease after the use of estrogen, when women were evaluated in the sitting position. Women who received placebo did not show any difference in pulsatility index of the central retinal arteries after treatment. When the same comparison was done with participants in the supine position, no difference was observed in either group. Our study demonstrates that estrogen reduces the vascular resistance of the central retinal artery in postmenopausal women because of a vasodilatory effect.

  5. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    Science.gov (United States)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  6. Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang

    2017-09-01

    To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into

  7. Comprehensive automatic assessment of retinal vascular abnormalities for computer-assisted retinopathy grading.

    Science.gov (United States)

    Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.

  8. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  9. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis.

    Science.gov (United States)

    Feucht, Nikolaus; Maier, Mathias; Lepennetier, Gildas; Pettenkofer, Moritz; Wetzlmair, Carmen; Daltrozzo, Tanja; Scherm, Pauline; Zimmer, Claus; Hoshi, Muna-Miriam; Hemmer, Bernhard; Korn, Thomas; Knier, Benjamin

    2018-01-01

    Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.

  10. Anti vascular endothelial growth factor (bevacizumab) in central retinal vein occlusion: an interventional case series

    International Nuclear Information System (INIS)

    Jan, S.; Khan, M.N.; Karim, S.; Khan, M.T.; Hussain, Z.; Khan, S.; Nazim, M.

    2010-01-01

    Vascular endothelial growth factor plays major role in ocular angio genesis and retinal edema production and is a step forward in the management of ocular neovascularization and retinal edematous pathologies. To determine the efficacy and safety of intra-vitreal Avastin (Bevacizumab) in cases having central retinal vein occlusion. All patients with central retinal occlusion occurring in the past 3 months and seen between the study period were included in the study. Diagnosis of central retinal vein occlusion was made clinically by slit lamp biomicroscopy with 78D examination Patients who had received any treatment for and eyes which already had developed Anterior Segment Neovascularization, Neovascularization elsewhere or Neovascularization on disc at presentation were excluded. Dose of 0.05 ml (1.25mg) of Avastin (Bevacizumab) was used as intra vitreal injection every month for 3 months in cases that presented within a month of occlusion and less injections were given in dose presenting later. Follow-up was done at 30th, 60th, 90th and 120th day after the onset of disease. Visual outcome was defined as Snellen's or LogMar Best Corrected Visual Acuity at final follow up, of 120th day, compared to the visual acuity at presentation. Data were analyzed by SPSS version 17. Total of 17 eyes of 17 patients were included in this study. Eleven (64.7%) patients were males while 6(35.3%) were females. Total of 40 intra-vitreal injections of Avastin were given to patients with a mean of 2.35 injections per eye. Good visual outcome was achieved in 10(58.8%) eyes, while 7(41.2%) had stable visual outcome. Mean initial Best Corrected Visual Acuity (LogMar) in all 17 eyes was 1.79(SD+0.87) which significantly improved to a mean of 1.18 (SD+0.77) at final follow up. Mean improvement in Best Corrected Visual Acuity (LogMar) after paired sample test in all patients at final follow up on day 120 was 0.61(SD+0.84). Retinal hemorrhages and macular edema decreased clinically on

  11. Specialized mouse embryonic stem cells for studying vascular development.

    Science.gov (United States)

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  12. Bioprinting of a functional vascularized mouse thyroid gland construct.

    Science.gov (United States)

    Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A

    2017-08-18

    Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.

  13. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    Science.gov (United States)

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  14. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization.

    Directory of Open Access Journals (Sweden)

    Elisa Dominguez

    Full Text Available Branch retinal vein occlusion (BRVO leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined.We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO.Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease.

  15. Retinal vascular geometry and its association to microvascular complications in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Rasmussen, M L; Broe, Rebecca; Frydkjaer-Olsen, Ulrik

    2017-01-01

    PURPOSE: To examine associations between retinal vascular geometry (tortuosity, branching coefficient [BC] and length-diameter ratio [LDR]) and diabetic proliferative retinopathy (PDR), nephropathy, and peripheral neuropathy in patients with type 1 diabetes mellitus (T1DM). METHODS: A cohort...... of patients with T1DM participated in a clinical examination in 2011. Blood and urine analyses were done and retinal images taken. PDR was defined as Early Treatment Diabetic Retinopathy Study level 61 or above, nephropathy as albumin-creatinin ratio ≥300 mg/g, and neuropathy as vibration perception threshold.......8% were male. Prevalence of PDR, nephropathy, and neuropathy were 26.5%, 6.8%, and 10.1% , respectively. Patients with increased arteriolar BC had a higher risk of nephropathy (OR: 3.10, 95% CI: [1.01-9.54]). Patients with increased venular BC had a higher risk of neuropathy (OR: 2.11, 95% CI: [1...

  16. Temporal changes in retinal vascular parameters associated with successful panretinal photocoagulation in proliferative diabetic retinopathy

    DEFF Research Database (Denmark)

    Torp, Thomas Lee; Kawasaki, Ryo; Wong, Tien Yin

    2018-01-01

    PURPOSE: We aimed to investigate changes in retinal vascular geometry over time after panretinal photocoagulation (PRP) in patients with proliferative diabetic retinopathy (PDR). METHODS: Thirty-seven eyes with PDR were included. Wide-field fluorescein angiography (Optomap, Optos PLC., Dunfermline......, Scotland, UK) was used to diagnose PDR at baseline and to assess activity at follow-up month three and six. At each time-point, a trained grader measured retinal vessel geometry on optic disc (OD) centred images using semiautomated software (SIVA, Singapore I Vessel Assessment, National University...... of Singapore, Singapore) according to a standardized protocol. RESULTS: At baseline, the mean age and duration of diabetes were 52.8 and 22.3 years, and 65% were male. Mean HbA1c was 69.9 mmol/mol, and blood pressure was 155/84 mmHg. Of the 37 eyes with PDR, eight (22%) eyes had progression at month three...

  17. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  18. Morphology and Topography of Retinal Pericytes in the Living Mouse Retina Using In Vivo Adaptive Optics Imaging and Ex Vivo Characterization

    Science.gov (United States)

    Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.

    2013-01-01

    Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762

  19. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  20. Retinal vascular imaging technology to monitor disease severity and complications in type 1 diabetes mellitus: A systematic review.

    Science.gov (United States)

    Kee, Ae Ra; Wong, Tien Yin; Li, Ling-Jun

    2017-02-01

    Type 1 diabetes mellitus (T1DM) is a major disease affecting a large number of young patients. In the recent years, retinal vascular imaging has provided an objective assessment of vascular health in patients with T1DM. Our study aimed to review the current literature on retinal vascular parameters in young patients with T1DM in order to understand the following: (i) How retinal vessels are affected in T1DM (ii) How such vascular changes can be predictive of future diabetic microvascular complications METHODS: We performed a systematic review and extracted relevant data from 17 articles. We found significant correlations between retinal vessel changes and diabetes-related risk factors (eg, hypertension, hyperlipidemia, and obesity), diabetes-related features (eg, diabetes duration and glycemic control), and diabetes-related microvascular complications (eg, diabetic retinopathy, nephropathy, and neuropathy). Our findings suggest that retinal microvasculature is associated with both disease severity and complications in young patients with T1DM. © 2016 John Wiley & Sons Ltd.

  1. Intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases.

    Science.gov (United States)

    HodjatJalali, Kamran; Mehravaran, Shiva; Faghihi, Hooshang; Hashemi, Hassan; Kazemi, Pegah; Rastad, Hadith

    2017-09-01

    To investigate the short-term outcomes after intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases. Thirty-four eyes of 29 patients with age-related macular degeneration (AMD), diabetic retinopathy, and retinal vein occlusion (RVO) received a single dose intravitreal injection of 0.05 ml ziv-aflibercept (1.25 mg). Visual acuity, spectral domain optical coherence tomography (SD-OCT) activity, and possible side effects were assessed before and at 1 week and 1 month after the intervention. At 1 month after treatment, mean central macular thickness (CMT) significantly decreased from 531.09 μm to 339.5 μm ( P  < 0.001), and no signs of side effects were observed in any subject. All patients responded to treatment in terms of reduction in CMT. The improvement in visual acuity was statistically non-significant. Our findings suggest that a single dose intravitreal injection of ziv-aflibercept may have acceptable relative safety and efficacy in the treatment of patients with intraocular vascular disease. The trial was registered in the Iranian Registry of Clinical Trials (IRCT2015081723651N1).

  2. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration.

    Science.gov (United States)

    Dai, Xufeng; Zhang, Hua; Han, Juanjuan; He, Ying; Zhang, Yangyang; Qi, Yan; Pang, Ji-Jing

    2016-01-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency.

  3. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases.

    Science.gov (United States)

    Le, Yun-Zheng

    2017-10-01

    Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  5. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Science.gov (United States)

    Yao, Lu; Zhang, Lei; Qi, Lin-Song; Liu, Wei; An, Jing; Wang, Bin; Xue, Jun-Hui; Zhang, Zuo-Ming

    2016-01-01

    Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  6. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Directory of Open Access Journals (Sweden)

    Lu Yao

    Full Text Available Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  7. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion.

    Science.gov (United States)

    Kasza, M; Balogh, Z; Biro, L; Ujhelyi, B; Damjanovich, J; Csutak, A; Várdai, J; Berta, A; Nagy, V

    2015-09-01

    We measured vascular endothelial growth factor (VEGF) levels in tear fluid and serum in patients with retinal vein occlusion (RVO). Eight patients with RVO due to secondary macular oedema were examined. VEGF levels were measured by enzyme-linked immunosorbent assay. All patients had a full ophthalmic examination (visual acuity, slit lamp biomicroscopy, perimetry, and fluorescein angiography). Central retinal thickness (CRT) was examined using optical coherence tomography (OCT). Tear and serum samples were collected and examinations were performed at diagnosis and 1 and 4 weeks later. VEGF levels in the tears of RVO eyes were significantly higher than in fellow eyes at diagnosis and after both 1 and 4 weeks (paired t test, p1 = 0.01, p2 = 0.02, p3 = 0.006). We found a weak but significant positive correlation between VEGF levels in tear fluid and serum of patients with RVO (r = 0.21), while this correlation tended to be stronger between the fellow eyes and serum levels (r = 0.33). To the best of our knowledge, we are the first to report an increased level of VEGF in the tear fluid of patients with RVO. Alterations of VEGF levels in tears may be useful for determining stages of RVO. This non-invasive and objective method may also be helpful for estimating the severity of macular oedema and efficacy of treatment.

  8. Vascular resistance of central retinal and ophthalmic arteries in postmenopausal women after use of tibolone.

    Science.gov (United States)

    de Souza, Marco Aurélio Martins; de Souza, Bruno Martins; Geber, Selmo

    2012-03-01

    The aim of this study was to evaluate the effect of tibolone on vascular resistance of the central retinal and ophthalmic artery in postmenopausal women and to compare this effect with that of placebo using transorbital ultrasound with Doppler velocimetry. We performed a prospective randomized, double-blinded, placebo-controlled study. A total of 100 healthy postmenopausal women (follicle-stimulating hormone, >40 IU/L) younger than 65 years were studied. The participants were randomly allocated to two groups: placebo (n = 50) and tibolone (2.5 mg; n = 50). Transorbital Doppler velocimetric ultrasound was performed before treatment and 80 days after. The mean age was similar in both groups. Participants who received tibolone did not show any difference in pulsatility index, resistance index, and systole/diastole ratio of the central retinal and ophthalmic arteries after treatment. The same was observed in participants who received placebo. Our study demonstrates that tibolone administration to healthy postmenopausal women does not affect the resistance of small-caliber cerebral arteries.

  9. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    Science.gov (United States)

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  10. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee

    2014-08-01

    Full Text Available Epigalloccatechin-3-gallate (EGCG is the main polyphenol component of green tea (leaves of Camellia sinensis. EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs and vascular endothelial growth factor (VEGF play a key role in the processes of extracellular matrix (ECM remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA and tumor necrosis factor alpha (TNF-α in human retinal pigment epithelial cells (HRPECs. EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2 by inhibiting generation of reactive oxygen species (ROS. EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs. Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31 on corneal neovascularization (CNV induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  11. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Miao Chen

    Full Text Available Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP in one subset of cone bipolar cells (type 7 into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.

  12. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    Directory of Open Access Journals (Sweden)

    Patrick Arbogast

    Full Text Available A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2 and cone densities of 3000-6500/mm(2. Two cone opsins, shortwave sensitive (S and middle-to-longwave sensitive (M, are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones. In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2. Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.

  13. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia.

    Science.gov (United States)

    Ueki, Yumi; Ramirez, Grisela; Salcedo, Ernesto; Stabio, Maureen E; Lefcort, Frances

    2016-01-01

    Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein ( IKBKAP ). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre ( Tα1-Cre ). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.

  14. Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in a zebrafish model of retinal vascular occlusion and remodeling

    Science.gov (United States)

    Li, Xiaoyue; Spitz, Kathleen; Bozic, Ivan; Tao, Yuankai K.

    2018-02-01

    Neovascularization in diabetic retinopathy (DR) and age-related macular degeneration (AMD) result in severe vision-loss and are two of the leading causes of blindness. The structural, metabolic, and vascular changes underlying retinal neovascularization are unknown and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a robust ophthalmological model because its retina has comparable structure to the human retina and its fecundity and life-cycle enable development of mutant phenotypes of human pathologies. Here, we perform multimodal imaging with OCT and fluorescence confocal scanning laser ophthalmoscopy (cSLO) to identify changes in retinal structure and function in a zebrafish model of vascular leakage. Transgenic zebrafish with EGFP tagged plasma protein were imaged longitudinally at six time points over two weeks to visualize vascular perfusion changes from diethylaminobenzaldehyde (DEAB) treatment. Complementary contrast from OCT-A perfusion maps and cSLO imaging of plasma protein EGFP shows vascular occlusions posttreatment. cSLO images confirm presence of vessels despite loss of OCT-A signal. Plasma protein EGFP contrast also shows significant changes in vessel structure as compared to baseline images. OCT structural volumes show empty vessel cross-sections confirming non-perfusion. In addition, we present algorithms for automated biometric identification of OCT datasets using OCT-A vascular patterns in the presence of significant vascular perfusion changes. These results establish a framework for large-scale in vivo assays to identify novel anti-angiogenic compounds and understand the mechanisms ofneovascularization associated with retinal ocular pathologies.

  15. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.

    Science.gov (United States)

    Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L

    2009-08-15

    Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.

  16. The long noncoding RNA RNCR2 directs mouse retinal cell specification

    Directory of Open Access Journals (Sweden)

    Blackshaw Seth

    2010-05-01

    Full Text Available Abstract Background Recent work has identified that many long mRNA-like noncoding RNAs (lncRNAs are expressed in the developing nervous system. Despite their abundance, the function of these ncRNAs has remained largely unexplored. We have investigated the highly abundant lncRNA RNCR2 in regulation of mouse retinal cell differentiation. Results We find that the RNCR2 is selectively expressed in a subset of both mitotic progenitors and postmitotic retinal precursor cells. ShRNA-mediated knockdown of RNCR2 results in an increase of both amacrine cells and Müller glia, indicating a role for this lncRNA in regulating retinal cell fate specification. We further report that RNCR2 RNA, which is normally nuclear-retained, can be exported from the nucleus when fused to an IRES-GFP sequence. Overexpression of RNCR2-IRES-GFP phenocopies the effects of shRNA-mediated knockdown of RNCR2, implying that forced mislocalization of RNCR2 induces a dominant-negative phenotype. Finally, we use the IRES-GFP fusion approach to identify specific domains of RNCR2 that are required for repressing both amacrine and Müller glial differentiation. Conclusion These data demonstrate that the lncRNA RNCR2 plays a critical role in regulating mammalian retinal cell fate specification. Furthermore, we present a novel approach for generating dominant-negative constructs of lncRNAs, which may be generally useful in the functional analysis of this class of molecules.

  17. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  18. Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy

    Science.gov (United States)

    Kowalczuk, Laura; Touchard, Elodie; Omri, Samy; Jonet, Laurent; Klein, Christophe; Valamanes, Fatemeh; Berdugo, Marianne; Bigey, Pascal; Massin, Pascale; Jeanny, Jean-Claude; Behar-Cohen, Francine

    2011-01-01

    Objective There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). Materials and Methods pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. Results After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. Conclusion This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease. PMID:21408222

  19. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, A.; Gorgels, T.G.M.F.; ten Brink, J.B.; van der Spek, P.J.; Bossers, K.; Heine, V.M.; Bergen, A.A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  20. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles : Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G M F; Ten Brink, Jacoline B; van der Spek, Peter J; Bossers, Koen; Heine, Vivi M; Bergen, Arthur A

    2015-01-01

    BACKGROUND: The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  1. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new

  2. Relationship between Retinal Vascular Caliber and Coronary Artery Disease in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Marmor Alon

    2013-08-01

    Full Text Available Objective: To evaluate the relationship between retinal vascular caliber and cardiovascular disease in non-alcoholic fatty liver disease (NAFLD patients without diabetes and hypertension. Methods: Intention to treat study of individuals who underwent cardiac computed tomography (CT during a two year period. Coronary artery disease (CAD was defined as stenosis of >50% in at least one major coronary artery. Liver and spleen density were measured by abdominal (CT; intima-media thickness (IMT by Doppler ultrasound; retinal artery and vein diameter by colored-retinal angiography; and metabolic syndrome by ATP III guidelines. Serum biomarkers of insulin resistance, inflammation, and oxidant-antioxidant status were assessed. Results: Compared with 22 gender and age matched controls, the 29 NAFLD patients showed higher prevalence of coronary plaques (70% vs. 30%, p < 0.001, higher prevalence of coronary stenosis (30% vs. 15%, p < 0.001, lower retinal arteriole-to-venule ratio (AVR (0.66 ± 0.06 vs. 0.71 ± 0.02, p < 0.01, higher IMT (0.98 ± 0.3 vs. 0.83 ± 0.1, p < 0.04, higher carotid plaques (60% vs. 40%, p < 0.001, higher homeostasis model assessment of insulin resistance (HOMA (4.0 ± 3.4 vs. 2.0 ± 1.0, p < 0.005, and higher triglyceride levels (200 ± 80 vs. 150 ± 60, p < 0.005 than controls. Multivariate analysis showed fatty liver (OR 2.5; p < 0.01, IMT (OR 2.3 p < 0.001, and retinal AVR ratio (OR 1.5, p < 0.01 to be strongly associated with CAD independent of metabolic syndrome (OR 1.2, p < 0.05. Conclusions: Patients with smaller retinal AVR (<0.7 are likely to be at increased risk for CAD and carotid atherosclerosis in patients with NAFLD even without hypertension or diabetes.

  3. Changes in Retinal and Choroidal Vascular Blood Flow after Oral Sildenafil: An Optical Coherence Tomography Angiography Study

    Directory of Open Access Journals (Sweden)

    David Berrones

    2017-01-01

    Full Text Available Purpose. To describe changes in the retina and choroidal flow by optical coherence tomography angiography (OCT-A after a single dose of oral sildenafil. Method. A case-control study. Patients in the study group received 50 mg of oral sildenafil. Patients in the control group received a sham pill. Retinal and choroidal images were obtained at baseline (before pill ingestion and 1 hour after ingestion. Central macular and choroidal thickness, choroidal and outer retina flow, and the retinal and choroidal vascular density were compared using a Mann-Whitney U test. Results. Twenty eyes were enrolled into the study group and 10 eyes in the control group. There was a significant difference in central choroidal thickness and outer retina blood flow between groups after 1 hour of sildenafil ingestion (p<0.01. There were no differences in central macular thickness, choroidal flow, and retinal vascular density among groups. Conclusions. A single dose of oral sildenafil increases choroidal thickness, probably due to sildenafil-induced vasodilation.

  4. Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Broe, Rebecca; Rasmussen, Malin L; Frydkjaer-Olsen, Ulrik

    2014-01-01

    : We included 180 patients with type 1 diabetes in a 16 year follow-up study. In baseline retinal photographs (from 1995), all vessels in a zone 0.5-2.0 disc diameters from the disc margin were traced using Singapore Institute Vessel Assessment-Fractal image analysis software. Artefacts were removed......AIMS/HYPOTHESIS: Fractal analysis of the retinal vasculature provides a global measure of the complexity and density of retinal vessels summarised as a single variable: the fractal dimension. We investigated fractal dimensions as long-term predictors of microvasculopathy in type 1 diabetes. METHODS....... Retinal fractal analysis therefore is a potential tool for risk stratification in type 1 diabetes....

  5. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Patricia Bogdanov

    Full Text Available BACKGROUND: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse. METHODS: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks. The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG]. Histological markers of neurodegeneration (glial activation and apoptosis were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. RESULTS: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01. In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. CONCLUSIONS: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the

  6. Relationship Between Visual Acuity and Retinal Thickness During Anti-Vascular Endothelial Growth Factor Therapy for Retinal Diseases.

    Science.gov (United States)

    Ou, William C; Brown, David M; Payne, John F; Wykoff, Charles C

    2017-08-01

    To investigate the relationship between best-corrected visual acuity (BCVA) and central retinal thickness (CRT) in eyes receiving ranibizumab for 3 common retinal diseases. Retrospective analysis of clinical trial data. Early Treatment Diabetic Retinopathy Study BCVA and spectral-domain optical coherence tomography-measured CRT of 387 eyes of 345 patients enrolled in 6 prospective clinical trials for management of neovascular age-related macular degeneration (AMD), diabetic macular edema (DME), and retinal vein occlusion (RVO) were evaluated by Pearson correlation and linear regression. At baseline, there was a small correlation between BCVA and CRT in pooled AMD trial data (r = -0.24). A medium correlation was identified in pooled DME trial data (r = -0.42). No correlation was found in pooled RVO trial data. At month 12, no correlation was found between changes from baseline in BCVA and CRT in pooled AMD trial data. Medium correlations were identified in both pooled DME (r = -0.45) and pooled RVO (r = -0.35) trial data at month 12. Changes in BCVA and CRT associated with edema recurrence upon transition from monthly to pro re nata (PRN) dosing were correlated in AMD (r = -0.27) and RVO (r = -0.72) trials, but not in DME trial data. DME demonstrated a convincing relationship between BCVA and CRT. Correlations appear to be more complex in AMD and RVO. At the inflection point between monthly and PRN dosing, when recurrence of edema is anticipated in many patients, CRT appears strongly correlated with loss of BCVA in RVO. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  8. Long-term changes in retinal vascular diameter and cognitive impairment in type 1 diabetes.

    Science.gov (United States)

    Nunley, Karen A; Metti, Andrea L; Klein, Ronald; Klein, Barbara E; Saxton, Judith A; Orchard, Trevor J; Costacou, Tina; Aizenstein, Howard J; Rosano, Caterina

    2018-05-01

    To assess associations between cognitive impairment and longitudinal changes in retinal microvasculature, over 18 years, in adults with type 1 diabetes. Participants of the Pittsburgh Epidemiology of Diabetes Complications Study received ≥3 fundus photographs between baseline (1986-1988) and time of cognitive assessment (2010-2015: N = 119; 52% male; mean age and type 1 diabetes duration 43 and 34 years, respectively). Central retinal arteriolar equivalent and central retinal venular equivalent were estimated via computer-based methods; overall magnitude and speed of narrowing were quantified as cumulative average and slope, respectively. Median regression models estimated associations of central retinal arteriolar equivalent and central retinal venular equivalent measures with cognitive impairment status, adjusted for type 1 diabetes duration. Interactions with HbA1c, proliferative retinopathy and white matter hyperintensities were assessed. Compared with participants without cognitive impairment, those with clinically relevant cognitive impairment experienced 1.8% greater and 31.1% faster central retinal arteriolar equivalent narrowing during prior years (t = -2.93, p = 0.004 and t = -3.97, p impairment. Long-term arterial retinal changes could indicate type 1 diabetes-related cognitive impairment. Studies examining longitudinal central retinal arteriolar equivalent changes as early biomarkers of cognitive impairment risk are warranted.

  9. Impact of Lycium Barbarum Polysaccharide and Danshensu on vascular endothelial growth factor in the process of retinal neovascularization of rabbit

    Directory of Open Access Journals (Sweden)

    Xue-Min Tian

    2013-02-01

    Full Text Available AIM:To discuss the impact of Lycium Barbarum Polysaccharide (LBP and Danshensu purified from Traditional Chinese Medicine (TCM on vascular endothelial growth factor (VEGF of rabbits with retinal neovascularization.METHODS:Forty rabbits were divided into normal control group, model control group, LBP group and Danshensu group. Animals in the normal control group were fed in the normal oxygen environment. Animals in the other three groups were put into the environment with 70% oxygen for 5 days in order to build the model of oxygen-induced vascular proliferation retinopathy. And then different TCM extract was injected into the abdominal cavities of these annimals. After 7 days, the VEGF content of in the serum of rabbit was measured by double antibody sandwich method.RESULTS:Data analysis indicated that VEGF content was as follows:Danshensu group was lower than model control group (12.92±3.84ng/L vs 19.32±4.15ng/L, Pvs 19.32±4.15ng/L, P<0.01; total blood viscosity, plasma viscosity, cholesterol content, fibrinogen content and triacylglycerol content after peritoneal injection of LBP and Danshensu were obviously lower than before injection.CONCLUSION:TCM extract-LBP and Danshensu can prominently reduce the content of VEGF in the process of vascular proliferative retinopathy of rabbit; can prevent the occurrence of retinal microvascular disease by improving partial oxygen-deficient environment or affecting all kinds of new growth factor.

  10. Retinal vascular caliber, iris color, and age-related macular degeneration in the Irish Nun Eye Study.

    Science.gov (United States)

    McGowan, Amy; Silvestri, Giuliana; Moore, Evelyn; Silvestri, Vittorio; Patterson, Christopher C; Maxwell, Alexander P; McKay, Gareth J

    2014-12-18

    To evaluate the relationship between retinal vascular caliber (RVC), iris color, and age-related macular degeneration (AMD) in elderly Irish nuns. Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study were assessed from digital photographs with a standardized protocol using computer-assisted software. Macular images were graded according to the modified Wisconsin Age-related Maculopathy Grading System. Regression models were used to assess associations, adjusting for age, mean arterial blood pressure, body mass index, refraction, and fellow RVC. In total, 1122 (91%) participants had gradable retinal images of sufficient quality for vessel assessment (mean age: 76.3 years [range, 56-100 years]). In an unadjusted analysis, we found some support for a previous finding that individuals with blue iris color had narrower retinal venules compared to those with brown iris color (P < 0.05), but this was no longer significant after adjustment. Age-related macular degeneration status was categorized as no AMD, any AMD, and late AMD only. Individuals with any AMD (early or late AMD) had significantly narrower arterioles and venules compared to those with no AMD in an unadjusted analysis, but this was no longer significant after adjustment. A nonsignificant reduced risk of any AMD or late AMD only was observed in association with brown compared to blue iris color, in both unadjusted and adjusted analyses. Retinal vascular caliber was not significantly associated with iris color or early/late AMD after adjustment for confounders. A lower but nonsignificant AMD risk was observed in those with brown compared to blue iris color. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  11. Review of the mechanisms and therapeutic avenues for retinal and choroidal vascular dysfunctions in retinopathy of prematurity.

    Science.gov (United States)

    Rivera, José Carlos; Madaan, Ankush; Zhou, Tianwei Ellen; Chemtob, Sylvain

    2016-12-01

    Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  12. Inter-Eye Agreement in Measurement of Retinal Vascular Fractal Dimension in Patients with Type 1 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Pedersen, Knud B; Broe, Rebecca; Grauslund, Jakob

    2016-01-01

    PURPOSE: To investigate inter-eye agreement in retinal vascular fractal dimension (FD) in patients with type 1 diabetes. METHODS: In a cross-sectional study, both eyes were exained in 178 patients with type 1 diabetes. All vessels in a zone 0.5-2.0 disc diameters from the optic disc were traced...... and FD calculated with the box-counting method using SIVA-Fractal semiautomatic software. The modified Early Treatment Diabetic Retinopathy Study (ETDRS) scale was used to grade diabetic retinopathy (DR). Pitman's test of difference in variance was used to calculated inter-eye agreement in FD according...

  13. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  14. Summarising the retinal vascular calibres in healthy, diabetic and diabetic retinopathy eyes.

    Science.gov (United States)

    Leontidis, Georgios; Al-Diri, Bashir; Hunter, Andrew

    2016-05-01

    Retinal vessel calibre has been found to be an important biomarker of several retinal diseases, including diabetic retinopathy (DR). Quantifying the retinal vessel calibres is an important step for estimating the central retinal artery and vein equivalents. In this study, an alternative method to the already established branching coefficient (BC) is proposed for summarising the vessel calibres in retinal junctions. This new method combines the mean diameter ratio with an alternative to Murray׳s cube law exponent, derived by the fractal dimension,experimentally, and the branch exponent of cerebral vessels, as has been suggested in previous studies with blood flow modelling. For the above calculations, retinal images from healthy, diabetic and DR subjects were used. In addition, the above method was compared with the BC and was also applied to the evaluation of arteriovenous ratio as a biomarker of progression from diabetes to DR in four consecutive years, i.e. three/two/one years before the onset of DR and the first year of DR. Moreover, the retinal arteries and veins around the optic nerve head were also evaluated. The new approach quantifies the vessels more accurately. The decrease in terms of the mean absolute percentage error was between 0.24% and 0.49%, extending at the same time the quantification beyond healthy subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  16. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    Science.gov (United States)

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  17. Long-term results of repeated anti-vascular endothelial growth factor therapy in eyes with retinal pigment epithelial tears.

    Science.gov (United States)

    Moreira, Carlos A; Arana, Luis A; Zago, Rommel J

    2013-02-01

    To evaluate the long-term results of retinal pigment epithelium tears in eyes treated with repeated anti-vascular endothelial growth factor (VEGF) therapy. Five patients with retinal pigment epithelial tears (without foveal center involvement) after anti-VEGF injection were studied retrospectively. Mean follow-up time was 52 months, with measurements of visual acuity and evaluation of macular findings by angiography and optical coherence tomography during this period. All eyes had a persistent submacular neovascular membrane 30 days after the tear. An anti-VEGF drug was reinjected until the membranes stopped leaking. The mean initial visual acuity immediately after the tear was 20/160, and the mean final visual acuity was 20/60. The number of anti-VEGF reinjections varied from two to eight during the follow-up period. Long-term optical coherence tomography analysis showed reduced fluid and remodeling of the torn retinal pigment epithelium. Long-term visual results with repeated anti-VEGF therapy are not as devastating as suggested previously. Visual acuity and metamorphopsia improve with time as long as the neovascular membrane is inactive. Optical coherence tomography changes in the macular area reflect the visual acuity improvement.

  18. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    Science.gov (United States)

    Wavre-Shapton, Silène T; Tolmachova, Tanya; Lopes da Silva, Mafalda; da Silva, Mafalda Lopes; Futter, Clare E; Seabra, Miguel C

    2013-01-01

    The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox), Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox), Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  19. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Silène T Wavre-Shapton

    Full Text Available The retinal pigment epithelium (RPE is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1. REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox, Tyr-Cre+. Transmission electron microscopy (TEM was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  20. Rescue of retinal function by BDNF in a mouse model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Luciano Domenici

    Full Text Available Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP elevation that mimics primary open-angle glaucoma (POAG. IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG and visual cortical evoked potentials (VEP. RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl; the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.

  1. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ito

    2017-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs, which can be differentiated into various tissues and cell types, have been used for clinical research and disease modeling. Self-organizing three-dimensional (3D tissue engineering has been established within the past decade and enables researchers to obtain tissues and cells that almost mimic in vivo development. However, there are no reports of practical experimental procedures that reproduce photoreceptor degeneration. In this study, we induced photoreceptor cell death in mouse iPSC-derived 3D retinal organoids (3D-retinas by 4-hydroxytamoxifen (4-OHT, which induces photoreceptor degeneration in mouse retinal explants, and then established a live-cell imaging system to measure degeneration-related properties. Furthermore, we quantified the protective effects of representative ophthalmic supplements for treating the photoreceptor degeneration. This drug evaluation system enables us to monitor drug effects in photoreceptor cells and could be useful for drug screening.

  2. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.

    Science.gov (United States)

    Elmasry, Khaled; Ibrahim, Ahmed S; Saleh, Heba; Elsherbiny, Nehal; Elshafey, Sally; Hussein, Khaled A; Al-Shabrawey, Mohamed

    2018-05-01

    Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo -/- ); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2 -/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 μmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca 2+ ) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO

  3. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool.

    Directory of Open Access Journals (Sweden)

    Yuko Iwasaki

    Full Text Available To establish a novel protocol for differentiation of retinal pigment epithelium (RPE with high purity from mouse induced pluripotent stem cells (iPSC.Retinal progenitor cells were differentiated from mouse iPSC, and RPE differentiation was then enhanced by activation of the Wnt signaling pathway, inhibition of the fibroblast growth factor signaling pathway, and inhibition of the Rho-associated, coiled-coil containing protein kinase signaling pathway. Expanded pigmented cells were purified by plate adhesion after Accutase® treatment. Enriched cells were cultured until they developed a cobblestone appearance with cuboidal shape. The characteristics of iPS-RPE were confirmed by gene expression, immunocytochemistry, and electron microscopy. Functions and immunologic features of the iPS-RPE were also evaluated.We obtained iPS-RPE at high purity (approximately 98%. The iPS-RPE showed apical-basal polarity and cellular structure characteristic of RPE. Expression levels of several RPE markers were lower than those of freshly isolated mouse RPE but comparable to those of primary cultured RPE. The iPS-RPE could form tight junctions, phagocytose photoreceptor outer segments, express immune antigens, and suppress lymphocyte proliferation.We successfully developed a differentiation/purification protocol to obtain mouse iPS-RPE. The mouse iPS-RPE can serve as an attractive tool for functional and morphological studies of RPE.

  4. RETINAL VASCULAR PATHOLOGY RISK DEVELOPMENT IN THE IRRADIATED AT DIFFERENT AGES AS A RESULT OF CHERNOBYL NPP ACCIDENT.

    Science.gov (United States)

    Fedirko, P A; Babenko, T F; Dorichevska, R Yu; Garkava, N A

    2015-12-01

    To assess the relationship between the age at which a person undergoes radiation exposure and risk of developing eye lesions (case study of the retinal angiopathy prevalence). The object of the study was the state of the retinal vessels in 2,531 persons (1,948 evacuated from the city of Pripyat under the age of 20 and 583 exposed to radiation in utero as a result of the Chernobyl NPP disaster. The results of standardized ophthalmic examination conducted from 1993 to 2000 within the framework of Clinical and epidemiological registry are used for the analysis. The evacuees were subdivided into different age groups of the exposed to radiation. The cohort of control group formed corresponding age groups of the unirradiated control. Statistical analysis of the survey results was carried out using the free trial version of «Open Epi 2.2.1» software package. The results obtained revealed a significant prevalence of retinal vessels pathology in all groups. The difference in angiopathy prevalence in exposed in utero persons was significant compared to age-control. The prevalence of retinal vascular pathology was also significantly higher in all groups of evacuees. Angiopathy prevalence was higher in the group exposed in utero and at the age of 8-12 years, and in the group of people who were exposed at the age of 4-7 years, the risk of angiopathy was lower. It is proved that the occurrence of distant radiation effects mainly depends on the age at which a person has undergone irradiation. It should be noted that all the other conditions were approximately the same. If working conditions of the persons who were exposed in utero or were aged 8 to 20 years when the Chernobyl disaster happened are connected with occupational radiation exposure it is necessary to take additional preventive measures. P. А. Fedirko, T. F. Babenko, R. Yu. Dorichevska, N. А. Garkava.

  5. Protective effect of sulforaphane against retinal degeneration in the Pde6rd10 mouse model of retinitis pigmentosa.

    Science.gov (United States)

    Kang, Kai; Yu, Minzhong

    2017-12-01

    Retinitis pigmentosa (RP) is a group of inherited diseases characterized by the death of rod photoreceptors, followed by the death of cone photoreceptors, progressively leading to partial or complete blindness. Currently no specific treatment is available for RP patients. Sulforaphane (SFN) has been confirmed to be an effective antioxidant in the treatment of many diseases. In this study, we tested the therapeutic effects of SFN against photoreceptor degeneration in Pde6b rd10 mice. rd10 mice and C57/BL6 wild-type (WT) mice were treated with SFN and saline, respectively, from P6 to P20. Electroretinography (ERG), terminal deoxynucleotidyl transferase dUTP nick end labeling and western blot were tested, respectively, at P21 for the analysis of retinal function, retinal cell apoptosis or death and the protein express of GRP78/BiP (TUNEL) as a marker of endoplasmic reticulum (ER) stress. Compared with the saline group, the SFN-treated group showed significantly higher ERG a-wave and b-wave amplitudes, less photoreceptor death, and the downregulation of GRP78/BiP. Our data showed that SFN ameliorated the retinal degeneration of rd10 mice, which is possibly related to the downregulation of GRP78 expression.

  6. An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina.

    Science.gov (United States)

    Rana, T; Shinde, V M; Starr, C R; Kruglov, A A; Boitet, E R; Kotla, P; Zolotukhin, S; Gross, A K; Gorbatyuk, M S

    2014-12-18

    Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1, as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a recombinant IL-1β. We observed ~19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with

  7. Retinal Vascular Fractals and Microvascular and Macrovascular Complications in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Grauslund, Jakob; Green, Anders; Kawasaki, Ryo

    2010-01-01

    diabetes. DESIGN: Cross-sectional study. PARTICIPANTS: This was a cross-sectional study of 208 long-term surviving type 1 diabetes patients from a population-based Danish cohort identified in 1973. METHODS: Retinal photographs were obtained at a clinical examination in 2007 or 2008. D(f) was measured......, respectively. Median D(f) was 1.4610 (range, 1.3774-1.5188). After adjustments for age, gender, duration of diabetes, systolic blood pressure, and smoking, persons with lower D(f) were more likely to have proliferative retinopathy (odds ratio [OR], 1.45 per standard deviation [SD] decrease in D(f); 95......PURPOSE: Fractal analysis is a method to quantify the geometric pattern and complexity of the retinal vessels. This study examined the association of retinal fractal dimension (D(f)) and microvascular and macrovascular complications in a population-based cohort of Danish patients with type 1...

  8. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    Science.gov (United States)

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (Poxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Reliability of using retinal vascular fractal dimension as a biomarker in the diabetic retinopathy detection

    NARCIS (Netherlands)

    Huang, F.; Dashtbozorg, B.; Zhang, J.; Bekkers, E.J.; Abbasi-Sureshjani, S.; Berendschot, T.T.J.M.; ter Haar Romenij, B.M.

    2016-01-01

    The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the reported literature regarding the

  10. Retinal artery occlusion and associated recurrent vascular risk with underlying etiologies.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Hong

    Full Text Available RAO is caused by various etiologies and subsequent vascular events may be associated with underlying etiologies. Our aim is to investigate the etiologies of RAO, the occurrence of subsequent vascular events and their association in patients with RAO.We analyzed data from 151 consecutive patients presenting with acute non-arteritic RAO between 2003 and 2013 in a single tertiary-care hospital. The primary outcome was the occurrence of a vascular event defined as stroke, myocardial infarction, and vascular death within 365 days of the RAO onset. The Kaplan-Meier survival analysis and Cox proportional hazard model were used to estimate the hazard ratio of the vascular events.Large artery atherosclerosis (LAA was the etiology more frequently associated with of RAO (41.1%, 62/151. During the one year follow-up, ischemic stroke and vascular events occurred in 8.6% and 9.9% of patients, respectively. Ten vascular events occurred in RAO patients attributed to LAA and 4 occurred in undetermined etiology. RAO patients with LAA had a nearly four times higher risk of vascular events compared to those without LAA (hazard ratio 3.94, 95% confidence interval 1.21-12.81. More than a half of all events occurred within one month and over three fourths of ischemic strokes occurred ipsilateral to the RAO.After occurrence of RAO, there is a high risk of a subsequent vascular event, particularly ipsilateral stroke, within one month. LAA is an independent factor for the occurrence of a subsequent vascular event. Management for the prevention of secondary vascular events is necessary in patients with RAO especially with LAA. Large clinical trials are needed to confirm these findings.

  11. Retinal Vascular and Oxygen Temporal Dynamic Responses to Light Flicker in Humans.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Blair, Norman P; Shahidi, Mahnaz

    2017-11-01

    To mathematically model the temporal dynamic responses of retinal vessel diameter (D), oxygen saturation (SO2), and inner retinal oxygen extraction fraction (OEF) to light flicker and to describe their responses to its cessation in humans. In 16 healthy subjects (age: 60 ± 12 years), retinal oximetry was performed before, during, and after light flicker stimulation. At each time point, five metrics were measured: retinal arterial and venous D (DA, DV) and SO2 (SO2A, SO2V), and OEF. Intra- and intersubject variability of metrics was assessed by coefficient of variation of measurements before flicker within and among subjects, respectively. Metrics during flicker were modeled by exponential functions to determine the flicker-induced steady state metric values and the time constants of changes. Metrics after the cessation of flicker were compared to those before flicker. Intra- and intersubject variability for all metrics were less than 6% and 16%, respectively. At the flicker-induced steady state, DA and DV increased by 5%, SO2V increased by 7%, and OEF decreased by 13%. The time constants of DA and DV (14, 15 seconds) were twofold smaller than those of SO2V and OEF (39, 34 seconds). Within 26 seconds after the cessation of flicker, all metrics were not significantly different from before flicker values (P ≥ 0.07). Mathematical modeling revealed considerable differences in the time courses of changes among metrics during flicker, indicating flicker duration should be considered separately for each metric. Future application of this method may be useful to elucidate alterations in temporal dynamic responses to light flicker due to retinal diseases.

  12. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas.

    Science.gov (United States)

    Chintalapudi, Sumana R; Djenderedjian, Levon; Stiemke, Andrew B; Steinle, Jena J; Jablonski, Monica M; Morales-Tirado, Vanessa M

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2(hi)CD48(neg)CD15(neg)CD57(neg) surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases.

  13. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    Science.gov (United States)

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes associated with retinal cells; (2) intracellular labeling of homogeneous sorted cells for the intracellular RGC-markers SNCG, brain-specific homeobox/POU domain protein 3A (BRN3A), TUJ1, and RNA-binding protein with multiple splicing (RBPMS); and (3) by applying the methodology on RGC from a mouse model with elevated intraocular pressure (IOP) and optic nerve damage. Use of primary RGC cultures will allow for future careful assessment of important cell specific pathways in RGC to provide mechanistic insights into the declining of visual acuity in aged populations and those suffering from retinal neurodegenerative diseases. PMID:27242509

  14. Retinal vascular pathology risk development in the irradiated at different ages as a result if Chornobyl NPP accident

    International Nuclear Information System (INIS)

    Fedyirko, P.A.; Babenko, T.F.; Doryichevs'ka, R.Yu.; Gar'kava, N.A.

    2015-01-01

    The object of the study was the state of the retinal vessels in 2,531 persons (1,948 evacuated from the city of Pripyat under the age of 20 and 583 exposed to radiation in utero as a result of the Chornobyl NPP disaster. The results of standardized ophthalmic examination conducted from 1993 to 2000 within the framework of Clinical and epidemiological registry are used for the analysis. The evacuees were subdivided into different age groups of the exposed to radiation. The cohort of control group formed corresponding age groups of the unirradiated control. Statistical analysis of the survey results was carried out using the free trial version of ''Open Epi 2.2.1'' software package. The results obtained revealed a significant prevalence of retinal vessels pathology in all groups. The difference in angiopathy prevalence in exposed in utero persons was significant compared to age control. The prevalence of retinal vascular pathology was also significantly higher in all groups of evacuees. Angiopathy prevalence was higher in the group exposed in utero and at the age of 8-12 years, and in the group of people who were exposed at the age of 4-7 years, the risk of angiopathy was lower. It is proved that the occurrence of distant radiation effects mainly depends on the age at which a person has undergone irradiation. It should be noted that all the other conditions were approximately the same. If working conditions of the persons who were exposed in utero or were aged 8 to 20 years when the Chornobyl disaster happened are connected with occupational radiation exposure it is necessary to take additional preventive measures

  15. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tagami, Mizuki [Department of Surgery Related, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Kusuhara, Sentaro, E-mail: kusu@med.kobe-u.ac.jp [Department of Surgery Related, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Imai, Hisanori [Department of Surgery Related, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Uemura, Akiyoshi [Department of Surgery Related, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Department of Vascular Biology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira [Department of Surgery Related, Division of Ophthalmology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-10-01

    Research highlights: {yields} Exogenous VEGF decreases MRP4 expression in a dose-dependent manner. {yields} MRP4 knockdown leads to enhanced cell migration. {yields} MRP4 knockdown suppresses caspase-3-mediated cell apoptosis. {yields} MRP4 knockdown produces cell assembly and cell aggregation. -- Abstract: The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  16. Quantification of Macular Vascular Density Using Optical Coherence Tomography Angiography and Its Relationship with Retinal Thickness in Myopic Eyes of Young Adults

    Directory of Open Access Journals (Sweden)

    Shiqi Yang

    2017-01-01

    Full Text Available Purpose. To quantify macular vascular density using optical coherence tomography angiography (OCTA and to investigate its relationship with retinal thickness in myopic eyes of young adults. Methods. In this cross-sectional study, 268 myopic eyes without pathological changes were recruited and divided into three groups: mild myopia (n=81, moderate myopia (n=117, and high myopia (n=70. Macular vascular density was quantified by OCTA and compared among three groups. Average retinal thickness, central subfield thickness, and macular ganglion cell complex (mGCC thickness were also evaluated and compared. Correlations among these variables were analyzed. Results. There was no statistical difference in superficial (62.3 ± 5.7% versus 62.7 ± 5.9% versus 63.8 ± 5.5% and deep macular vascular densities (58.3 ± 9.6% versus 59.2 ± 9.3% versus 60.9 ± 7.9% among mild-myopia, moderate-myopia, and high-myopia groups (both P>0.05. Superficial and deep macular vascular densities both had correlations with mean arterial pressure. Furthermore, superficial macular vascular density was significantly correlated with mGCC thickness. Conclusions. Varying degrees of myopia did not affect macular vascular density in young healthy adults. In addition, superficial macular vascular density, as an independent factor, was positively correlated with mGCC thickness.

  17. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    Science.gov (United States)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  18. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  19. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage.

    Science.gov (United States)

    Lulli, Matteo; Witort, Ewa; Papucci, Laura; Torre, Eugenio; Schipani, Christian; Bergamini, Christian; Dal Monte, Massimo; Capaccioli, Sergio

    2012-12-17

    To evaluate if coenzyme Q10 (CoQ10) can protect retinal ganglion cells (RGCs) from apoptosis and, when instilled as eye drops on the cornea, if it can reach the retina and exert its antiapoptotic activity in this area in a mouse model of kainate (KA)-induced retinal damage. Rat primary or cultured RGCs were subjected to glutamate (50 μM) or chemical hypoxia (Antimycin A, 200 μM) or serum withdrawal (FBS, 0.5%) in the presence or absence of CoQ10 (10 μM). Cell viability was evaluated by light microscopy and fluorescence-activated cell sorting analyses. Apoptosis was evaluated by caspase 3/7 activity and mitochondrion depolarization tetramethylrhodamine ethyl ester analysis. CoQ10 transfer to the retina following its instillation as eye drops on the cornea was quantified by HPLC. Retinal protection by CoQ10 (10 μM) eye drops instilled on the cornea was then evaluated in a mouse model of KA-induced excitotoxic retinal cell apoptosis by cleaved caspase 3 immunohistofluorescence, caspase 3/7 activity assays, and quantification of inhibition of RGC loss. CoQ10 significantly increased viable cells by preventing RGC apoptosis. Furthermore, when topically applied as eye drops to the cornea, it reached the retina, thus substantially increasing local CoQ10 concentration and protecting retinal layers from apoptosis. The ability of CoQ10 eye drops to protect retinal cells from apoptosis in the mouse model of KA-induced retinal damage suggests that topical CoQ10 may be evaluated in designing therapies for treating apoptosis-driven retinopathies.

  20. An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.

    Science.gov (United States)

    Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin

    2015-08-01

    This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.

  1. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  2. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  3. Reliability of Using Retinal Vascular Fractal Dimension as a Biomarker in the Diabetic Retinopathy Detection.

    Science.gov (United States)

    Huang, Fan; Dashtbozorg, Behdad; Zhang, Jiong; Bekkers, Erik; Abbasi-Sureshjani, Samaneh; Berendschot, Tos T J M; Ter Haar Romeny, Bart M

    2016-01-01

    The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the FD measurement with respect to (1) different vessel annotations obtained from human observers, (2) automatic segmentation methods, (3) various regions of interest, (4) accuracy of vessel segmentation methods, and (5) different imaging modalities. Our results demonstrate that the relative errors for the measurement of FD are significant and FD varies considerably according to the image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications.

  4. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis.

    Science.gov (United States)

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-04-01

    Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.

  5. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis.

    Science.gov (United States)

    Lanzillo, Roberta; Cennamo, Gilda; Criscuolo, Chiara; Carotenuto, Antonio; Velotti, Nunzio; Sparnelli, Federica; Cianflone, Alessandra; Moccia, Marcello; Brescia Morra, Vincenzo

    2017-09-01

    Optical coherence tomography (OCT) angiography is a new method to assess the density of the vascular networks. Vascular abnormalities are considered involved in multiple sclerosis (MS) pathology. To assess the presence of vascular abnormalities in MS and to evaluate their correlation to disease features. A total of 50 MS patients with and without history of optic neuritis (ON) and 46 healthy subjects were included. All underwent spectral domain (SD)-OCT and OCT angiography. Clinical history, Expanded Disability Status Scale (EDSS), Multiple Sclerosis Severity Score (MSSS) and disease duration were collected. Angio-OCT showed a vessel density reduction in eyes of MS patients when compared to controls. A statistically significant reduction in all SD-OCT and OCT angiography parameters was noticed both in eyes with and without ON when compared with control eyes. We found an inverse correlation between SD-OCT parameters and MSSS ( p = 0.003) and between vessel density parameters and EDSS ( p = 0.007). We report a vessel density reduction in retina of MS patients. We highlight the clinical correlation between vessel density and EDSS, suggesting that angio-OCT could be a good marker of disease and of disability in MS.

  6. Retinal arterioles narrow with increasing duration of anti-retroviral therapy in HIV infection: a novel estimator of vascular risk in HIV?

    Directory of Open Access Journals (Sweden)

    Sophia Pathai

    Full Text Available HIV infection is associated with an increased risk of age-related morbidity mediated by immune dysfunction, atherosclerosis and inflammation. Changes in retinal vessel calibre may reflect cumulative structural damage arising from these mechanisms. The relationship of retinal vessel calibre with clinical and demographic characteristics was investigated in a population of HIV-infected individuals in South Africa.Case-control study of 491 adults ≥30 years, composed of 242 HIV-infected adults and 249 age- and gender-matched HIV-negative controls. Retinal vessel calibre was measured using computer-assisted techniques to determine mean arteriolar and venular diameters of each eye.The median age was 40 years (IQR: 35-48 years. Among HIV-infected adults, 87.1% were receiving highly active antiretroviral therapy (HAART (median duration, 58 months, their median CD4 count was 468 cells/µL, and 84.3% had undetectable plasma viral load. Unadjusted mean retinal arteriolar diameters were 163.67±17.69 µm in cases and 161.34±17.38 µm in controls (p = 0.15. Unadjusted mean venular diameters were 267.77±18.21 µm in cases and 270.81±18.98 µm in controls (p = 0.07. Age modified the effect of retinal arteriolar and venular diameters in relation to HIV status, with a tendency towards narrower retinal diameters in HIV cases but not in controls. Among cases, retinal arteriolar diameters narrowed with increasing duration of HAART, independently of age (167.83 µm 6 years, p-trend = 0.02, and with a HIV viral load >10,000 copies/mL while on HAART (p = 0.05. HIV-related venular changes were not detected.Narrowing of retinal arteriolar diameters is associated with HAART duration and viral load, and may reflect heightened inflammatory and pro-atherogenic states of the systemic vasculature. Measurement of retinal vascular calibre could be an innovative non-invasive method of estimating vascular risk in HIV-infected individuals.

  7. Spontaneous oscillatory rhythms in the degenerating mouse retina modulate retinal ganglion cell responses to electrical stimulation

    Directory of Open Access Journals (Sweden)

    Yong Sook eGoo

    2016-01-01

    Full Text Available Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD and retinitis pigmentosa (RP, but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice, where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs. Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

  8. Multipronged approach to identify and validate a novel upstream regulator of Sncg in mouse retinal ganglion cells.

    Science.gov (United States)

    Chintalapudi, Sumana R; Morales-Tirado, Vanessa M; Williams, Robert W; Jablonski, Monica M

    2016-02-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Mechanistic studies on RGCs are hindered by the lack of sufficient primary cells and consensus regarding their signature markers. Recently, γ-synuclein (SNCG) has been shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the role of Sncg in RGCs, we used a novel systems genetics approach to identify a gene that modulates Sncg expression, followed by confirmatory studies in both healthy and diseased retinae. We found that chromosome 1 harbors an expression quantitative trait locus that modulates Sncg expression in the mouse retina, and identified the prefoldin-2 (PFDN2) gene as the candidate upstream modulator of Sncg expression. Our immunohistochemical analyses revealed similar expression patterns in both mouse and human healthy retinae, with PFDN2 colocalizing with SNCG in RGCs and their axons. In contrast, in retinae from glaucoma subjects, SNCG levels were significantly reduced, although PFDN2 levels were maintained. Using a novel flow cytometry-based RGC isolation method, we obtained viable populations of murine RGCs. Knocking down Pfdn2 expression in primary murine RGCs significantly reduced Sncg expression, confirming that Pfdn2 regulates Sncg expression in murine RGCs. Gene Ontology analysis indicated shared mitochondrial function associated with Sncg and Pfdn2. These data solidify the relationship between Sncg and Pfdn2 in RGCs, and provide a novel mechanism for maintaining RGC health. © 2015 FEBS.

  9. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  10. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  11. Combined treatment with atorvastatin and imipenem improves survival and vascular functions in mouse model of sepsis.

    Science.gov (United States)

    Choudhury, Soumen; Kannan, Kandasamy; Pule Addison, M; Darzi, Sazad A; Singh, Vishakha; Singh, Thakur Uttam; Thangamalai, Ramasamy; Dash, Jeevan Ranjan; Parida, Subhashree; Debroy, Biplab; Paul, Avishek; Mishra, Santosh Kumar

    2015-08-01

    We have recently reported that pre-treatment, but not the post-treatment with atorvastatin showed survival benefit and improved hemodynamic functions in cecal ligation and puncture (CLP) model of sepsis in mice. Here we examined whether combined treatment with atorvastatin and imipenem after onset of sepsis can prolong survival and improve vascular functions. At 6 and 18h after sepsis induction, treatment with atorvastatin plus imipenem, atorvastatin or imipenem alone or placebo was initiated. Ex vivo experiments were done on mouse aorta to examine the vascular reactivity to nor-adrenaline and acetylcholine and mRNA expressions of α1D AR, GRK2 and eNOS. Atorvastatin plus imipenem extended the survival time to 56.00±4.62h from 20.00±1.66h observed in CLP mice. The survival time with atorvastatin or imipenem alone was 20.50±1.89h and 27.00±4.09h, respectively. The combined treatment reversed the hyporeactivity to nor-adrenaline through preservation of α1D AR mRNA/protein expression and reversal of α1D AR desensitization mediated by GRK2/Gβγ pathway. The treatment also restored endothelium-dependent relaxation to ACh through restoration of aortic eNOS mRNA expression and NO availability. In conclusion, combined treatment with atorvastatin and imipenem exhibited survival benefit and improved vascular functions in septic mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Retinal Vascular Fractals Correlate With Early Neurodegeneration in Patients With Type 2 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Pedersen, Knud

    2015-01-01

    . In a randomly selected eye of each patient, Fd was calculated using SIVA-Fractal, a specialized semiautomatic software. Retinal neurodegeneration was evaluated by Topcon 3D OCT-2000 spectral-domain optical coherence tomography (OCT) and by a RETI-scan multifocal ERG (mf-ERG) system in rings one to six. Level...... were 10 (42.7%), 20 (35.0%), and 35 (22.3%), respectively. Fd correlated inversely with mf-ERG implicit time of ring one (r = -0.25, P = 0.01) and present diabetic neuropathy (P = 0.02), and positively with OCT ganglion cell layer (GCL) thickness (r = 0.20, P = 0.04). In a multivariable linear...... regression model, Fd was associated with mf-ERG implicit time of ring one (coefficient -0.0021/ms, P = 0.040) and the presence of diabetic neuropathy (coefficient -0.0209 for neuropathy present versus absent, P = 0.041). Conclusions: In patients with T2DM and no or minimal DR, independent correlations were...

  13. Diabetes Accelerates Retinal neuronal cell Death in A Mouse Model of endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-01-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase ( cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs +/– mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs +/– and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs +/– non-DB cbs +/– DB cbs +/+ ; non-DB cbs +/+ . One group of diabetic cbs +/– mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs +/– had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs +/– and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 μm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  14. Diabetes Accelerates Retinal Neuronal Cell Death In A Mouse Model of Endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-07-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase (cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs+/- mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs+/- and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs+/-; non-DB cbs+/-; DB cbs+/+; non-DB cbs+/+. One group of diabetic cbs+/- mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs+/- had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs+/- and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 µm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  15. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  16. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  17. Vascular defects and sensorineural deafness in a mouse model of Norrie disease.

    Science.gov (United States)

    Rehm, Heidi L; Zhang, Duan-Sun; Brown, M Christian; Burgess, Barbara; Halpin, Chris; Berger, Wolfgang; Morton, Cynthia C; Corey, David P; Chen, Zheng-Yi

    2002-06-01

    Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.

  18. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  19. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    Science.gov (United States)

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  20. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    Science.gov (United States)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (Ppopulations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  1. Interferon-gamma (IFN-γ-mediated retinal ganglion cell death in human tyrosinase T cell receptor transgenic mouse.

    Directory of Open Access Journals (Sweden)

    Shahid Husain

    Full Text Available We have recently demonstrated the characterization of human tyrosinase TCR bearing h3T-A2 transgenic mouse model, which exhibits spontaneous autoimmune vitiligo and retinal dysfunction. The purpose of current study was to determine the role of T cells and IFN-γ in retina dysfunction and retinal ganglion cell (RGC death using this model. RGC function was measured by pattern electroretinograms (ERGs in response to contrast reversal of patterned visual stimuli. RGCs were visualized by fluorogold retrograde-labeling. Expression of CD3, IFN-γ, GFAP, and caspases was measured by immunohistochemistry and Western blotting. All functional and structural changes were measured in 12-month-old h3T-A2 mice and compared with age-matched HLA-A2 wild-type mice. Both pattern-ERGs (42%, p = 0.03 and RGC numbers (37%, p = 0.0001 were reduced in h3T-A2 mice when compared with wild-type mice. The level of CD3 expression was increased in h3T-A2 mice (h3T-A2: 174 ± 27% vs. HLA-A2: 100%; p = 0.04. The levels of effector cytokine IFN-γ were also increased significantly in h3T-A2 mice (h3T-A2: 189 ± 11% vs. HLA-A2: 100%; p = 0.023. Both CD3 and IFN-γ immunostaining were increased in nerve fiber (NF and RGC layers of h3T-A2 mice. In addition, we have seen a robust increase in GFAP staining in h3T-A2 mice (mainly localized to NF layer, which was substantially reduced in IFN-γ ((-/- knockout h3T-A2 mice. We also have seen an up-regulation of caspase-3 and -9 in h3T-A2 mice. Based on our data we conclude that h3T-A2 transgenic mice exhibit visual defects that are mostly associated with the inner retinal layers and RGC function. This novel h3T-A2 transgenic mouse model provides opportunity to understand RGC pathology and test neuroprotective strategies to rescue RGCs.

  2. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.

    Directory of Open Access Journals (Sweden)

    Astrid Menning

    Full Text Available Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.

  3. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.

    Science.gov (United States)

    Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica

    2017-07-18

    Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.

  4. Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Huntington disease (HD is an inherited neurodegenerative disease that affects multiple brain regions. It is caused by an expanded polyglutamine tract in huntingtin (Htt. The development of therapies for HD and other neurodegenerative diseases has been hampered by multiple factors, including the lack of clear therapeutic targets, and the cost and complexity of testing lead compounds in vivo. The R6/2 HD mouse model is widely used for pre-clinical trials because of its progressive and robust neural dysfunction, which includes retinal degeneration. Profilin-1 is a Htt binding protein that inhibits Htt aggregation. Its binding to Htt is regulated by the rho-associated kinase (ROCK, which phosphorylates profilin at Ser-137. ROCK is thus a therapeutic target in HD. The ROCK inhibitor Y-27632 reduces Htt toxicity in fly and mouse models. Here we characterized the progressive retinopathy of R6/2 mice between 6-19 weeks of age to determine an optimal treatment window. We then tested a clinically approved ROCK inhibitor, HA-1077, administered intravitreally via liposome-mediated drug delivery. HA-1077 increased photopic and flicker ERG response amplitudes in R6/2 mice, but not in wild-type littermate controls. By targeting ROCK with a new inhibitor, and testing its effects in a novel in vivo model, these results validate the in vivo efficacy of a therapeutic candidate, and establish the feasibility of using the retina as a readout for CNS function in models of neurodegenerative disease.

  5. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection.ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated

  6. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off

  7. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration.

    Science.gov (United States)

    Ueda, Keiko; Zhao, Jin; Kim, Hye Jin; Sparrow, Janet R

    2016-06-21

    Adducts of retinaldehyde (bisretinoids) form nonenzymatically in photoreceptor cells and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin; these fluorophores are implicated in the pathogenesis of inherited and age-related macular degeneration (AMD). Here we demonstrate that bisretinoid photodegradation is ongoing in the eye. High-performance liquid chromatography (HPLC) analysis of eyes of dark-reared and cyclic light-reared wild-type mice, together with comparisons of pigmented versus albino mice, revealed a relationship between intraocular light and reduced levels of the bisretinoids A2E and A2-glycero-phosphoethanolamine (A2-GPE). Analysis of the bisretinoids A2E, A2-GPE, A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE), and all-trans-retinal dimer-phosphatidylethanolamine (all-trans-retinal dimer-PE) also decreases in albino Abca4(-/-) mice reared in cyclic light compared with darkness. In albino Abca4(-/-) mice receiving a diet supplemented with the antioxidant vitamin E, higher levels of RPE bisretinoid were evidenced by HPLC analysis and quantitation of fundus autofluorescence; this effect is consistent with photooxidative processes known to precede bisretinoid degradation. Amelioration of outer nuclear layer thinning indicated that vitamin E treatment protected photoreceptor cells. Conversely, in-cage exposure to short-wavelength light resulted in reduced fundus autofluorescence, decreased HPLC-quantified A2E, outer nuclear layer thinning, and increased methylglyoxal (MG)-adducted protein. MG was also released upon bisretinoid photodegradation in cells. We suggest that the lower levels of these diretinal adducts in cyclic light-reared and albino mice reflect photodegradative loss of bisretinoid. These mechanisms may underlie associations among AMD risk, oxidative mechanisms, and lifetime light exposure.

  8. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma

    Science.gov (United States)

    Akaiwa, Kei; Namekata, Kazuhiko; Azuchi, Yuriko; Guo, Xiaoli; Kimura, Atsuko; Harada, Chikako; Mitamura, Yoshinori; Harada, Takayuki

    2017-01-01

    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP. PMID:28703795

  9. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    Science.gov (United States)

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. © 2016 The Authors.

  10. Mechanism of Retinal Pigment Epithelium Tear Formation Following Intravitreal Anti–Vascular Endothelial Growth Factor Therapy Revealed by Spectral-Domain Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Nagiel, Aaron; Freund, K Bailey; Spaide, Richard F

    2013-01-01

    to the retracted RPE. In all eyes, the RPE ruptured along a segment of bare RPE not in contact with the CNV or Bruch membrane. CONCLUSIONS: Eyes with vascularized PEDs secondary to AMD may show specific OCT findings that increase the risk for RPE tear following intravitreal anti-VEGF injection. Rapid involution......PURPOSE: To demonstrate the mechanism by which retinal pigment epithelium (RPE) tears occur in eyes with neovascular age-related macular degeneration (AMD) treated with intravitreal anti-vascular endothelial growth factor (VEGF) agents using spectral-domain optical coherence tomography (OCT......). DESIGN: Retrospective observational case series. METHODS: OCT images of 8 eyes that developed RPE tears following the administration of intravitreal anti-VEGF agents for neovascular AMD were evaluated. Pretear and posttear images were compared in order to elucidate the mechanism by which RPE tears occur...

  11. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Directory of Open Access Journals (Sweden)

    Xinhua Shu

    Full Text Available A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  12. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    2009-11-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space.These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  13. Detection of DNA Double Strand Breaks by γH2AX Does Not Result in 53bp1 Recruitment in Mouse Retinal Tissues

    Directory of Open Access Journals (Sweden)

    Brigitte Müller

    2018-05-01

    Full Text Available Gene editing is an attractive potential treatment of inherited retinopathies. However, it often relies on endogenous DNA repair. Retinal DNA repair is incompletely characterized in humans and animal models. We investigated recruitment of the double stranded break (DSB repair complex of γH2AX and 53bp1 in both developing and mature mouse neuroretinas. We evaluated the immunofluorescent retinal expression of these proteins during development (P07-P30 in normal and retinal degeneration models, as well as in potassium bromate induced DSB repair in normal adult (3 months retinal explants. The two murine retinopathy models used had different mutations in Pde6b: the severe rd1 and the milder rd10 models. Compared to normal adult retina, we found increased numbers of γH2AX positive foci in all retinal neurons of the developing retina in both model and control retinas, as well as in wild type untreated retinal explant cultures. In contrast, the 53bp1 staining of the retina differed both in amount and character between cell types at all ages and in all model systems. There was strong pan nuclear staining in ganglion, amacrine, and horizontal cells, and cone photoreceptors, which was attenuated. Rod photoreceptors did not stain unequivocally. In all samples, 53bp1 stained foci only rarely occurred. Co-localization of 53bp1 and γH2AX staining was a very rare event (< 1% of γH2AX foci in the ONL and < 3% in the INL, suggesting the potential for alternate DSB sensing and repair proteins in the murine retina. At a minimum, murine retinal DSB repair does not appear to follow canonical pathways, and our findings suggests further investigation is warranted.

  14. Differential diagnosis of retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2009-10-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  15. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  16. Primo Vascular System in the Subarachnoid Space of a Mouse Brain

    Directory of Open Access Journals (Sweden)

    Sang-Ho Moon

    2013-01-01

    Full Text Available Objective. Recently, a novel circulatory system, the primo vascular system (PVS, was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4',6-diamidino-2-phenylindole (DAPI and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work.

  17. Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization

    Directory of Open Access Journals (Sweden)

    Takahito Nakama

    2017-03-01

    Full Text Available Retinal neovascularization (NV due to retinal ischemia remains one of the principal causes of vision impairment in patients with ischemic retinal diseases. We recently reported that periostin (POSTN may play a role in the development of preretinal fibrovascular membranes, but its role in retinal NV has not been determined. The purpose of this study was to examine the expression of POSTN in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of POSTN on retinal NV using Postn KO mice and human retinal endothelial cells (HRECs in culture. In addition, we used a novel RNAi agent, NK0144, which targets POSTN to determine its effect on the development of retinal NV. Our results showed that the expression of POSTN was increased in the vascular endothelial cells, pericytes, and M2 macrophages in ischemic retinas. POSTN promoted the ischemia-induced retinal NV by Akt phosphorylation through integrin αvβ3. NK0144 had a greater inhibitory effect than canonical double-stranded siRNA on preretinal pathological NV in vivo and in vitro. These findings suggest a causal relationship between POSTN and retinal NV, and indicate a potential therapeutic role of intravitreal injection of NK0144 for retinal neovascular diseases.

  18. Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

    Science.gov (United States)

    Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing

    2016-10-01

    Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    Science.gov (United States)

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  20. Α-Melanocyte-Stimulating Hormone Protects Early Diabetic Retina from Blood-Retinal Barrier Breakdown and Vascular Leakage via MC4R.

    Science.gov (United States)

    Cai, Siwei; Yang, Qianhui; Hou, Mengzhu; Han, Qian; Zhang, Hanyu; Wang, Jiantao; Qi, Chen; Bo, Qiyu; Ru, Yusha; Yang, Wei; Gu, Zhongxiu; Wei, Ruihua; Cao, Yunshan; Li, Xiaorong; Zhang, Yan

    2018-01-01

    Blood-retinal barrier (BRB) breakdown and vascular leakage is the leading cause of blindness of diabetic retinopathy (DR). Hyperglycemia-induced oxidative stress and inflammation are primary pathogenic factors of this severe DR complication. An effective interventional modality against the pathogenic factors during early DR is needed to curb BRB breakdown and vascular leakage. This study sought to examine the protective effects of α-Melanocyte-stimulating hormone (α-MSH) on early diabetic retina against vascular hyperpermeability, electrophysiological dysfunction, and morphological deterioration in a rat model of diabetes and probe the mechanisms underlying the α-MSH's anti-hyperpermeability in both rodent retinas and simian retinal vascular endothelial cells (RF6A). Sprague Dawley rats were injected through tail vein with streptozotocin to induce diabetes. The rats were intravitreally injected with α-MSH or saline at Week 1 and 3 after hyperglycemia. In another 2 weeks, Evans blue assay, transmission electron microscopy, electroretinogram (ERG), and hematoxylin and eosin (H&E) staining were performed to examine the protective effects of α-MSH in diabetic retinas. The expression of pro-inflammatory factors and tight junction at mRNA and protein levels in retinas was analyzed. Finally, the α-MSH's anti-hyperpermeability was confirmed in a high glucose (HG)-treated RF6A cell monolayer transwell culture by transendothelial electrical resistance (TEER) measurement and a fluorescein isothiocyanate-Dextran assay. Universal or specific melanocortin receptor (MCR) blockers were also employed to elucidate the MCR subtype mediating α-MSH's protection. Evans blue assay showed that BRB breakdown and vascular leakage was detected, and rescued by α-MSH both qualitatively and quantitatively in early diabetic retinas; electron microscopy revealed substantially improved retinal and choroidal vessel ultrastructures in α-MSH-treated diabetic retinas; scotopic ERG suggested

  1. The role of whiskers in compensation of visual deficit in a mouse model of retinal degeneration.

    Science.gov (United States)

    Voller, Jaroslav; Potužáková, Barbora; Šimeček, Vojtěch; Vožeh, František

    2014-01-13

    Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of the C3H strain suffer from RD1 retinal degeneration that leads to visual impairment at weaning age. We examined a role of whiskers in compensation of the visual deficit. In order to differentiate the contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. Three-month-old mice were used. We examined motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and CNS excitability to an acoustic stimulus for assessment of compensatory changes in auditory system (audiogenic epilepsy). In the sighted mice, the only effect was a decline in their rotarod test performance after acute whisker removal. In the blind animals, chronic tactile deprivation caused changes in their gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the whiskers are essential for the compensation as it emerged from more marked change of gait and the worsening of the motor performance after the acute whisker removal. Both chronic and acute tactile deprivation induced anxiety-like behaviour. Only a combination of blindness and chronic tactile deprivation led to an increased sense of hearing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Progressive retinal degeneration and glial activation in the CLN6 (nclf mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation.

    Directory of Open Access Journals (Sweden)

    Myriam Mirza

    Full Text Available Neuronal ceroid lipofuscinosis (NCL is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6 (nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6 (nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6 (nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA, could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6 (nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6 (nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6 (nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.

  3. VE-cadherin Y685F knock-in mouse is sensitive to vascular permeability in recurrent angiogenic organs.

    Science.gov (United States)

    Sidibé, Adama; Polena, Helena; Pernet-Gallay, Karin; Razanajatovo, Jeremy; Mannic, Tiphaine; Chaumontel, Nicolas; Bama, Soumalamaya; Maréchal, Irène; Huber, Philippe; Gulino-Debrac, Danielle; Bouillet, Laurence; Vilgrain, Isabelle

    2014-08-01

    Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary

  4. Light adaptation alters the source of inhibition to the mouse retinal OFF pathway

    Science.gov (United States)

    Mazade, Reece E.

    2013-01-01

    Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light. PMID:23926034

  5. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  6. Role of the mouse retinal photoreceptor ribbon synapse in visual motion processing for optokinetic responses.

    Science.gov (United States)

    Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro

    2015-01-01

    The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.

  7. Role of the mouse retinal photoreceptor ribbon synapse in visual motion processing for optokinetic responses.

    Directory of Open Access Journals (Sweden)

    Yuko Sugita

    Full Text Available The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs. The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz. The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz. These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.

  8. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model.

    Directory of Open Access Journals (Sweden)

    Kevin P Kennelly

    Full Text Available PURPOSE: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC. We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE cell line, DH01. METHODS: Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS: Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01. Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1% that did not increase following TC (4.8%±0.5%. However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%. Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001. Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001. CONCLUSION: Pre-confluent cells should be used to maximize graft cell viability.

  9. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  10. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  11. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    Science.gov (United States)

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  12. Sildenafil Citrate Increases Fetal Weight in a Mouse Model of Fetal Growth Restriction with a Normal Vascular Phenotype

    Science.gov (United States)

    Dilworth, Mark Robert; Andersson, Irene; Renshall, Lewis James; Cowley, Elizabeth; Baker, Philip; Greenwood, Susan; Sibley, Colin Peter; Wareing, Mark

    2013-01-01

    Fetal growth restriction (FGR) is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5th centile of customised growth charts. Sildenafil citrate (SC, Viagra™), a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8%) in P0 mice following maternal SC treatment (0.4 mg/ml) via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056). Additionally, 75% of the P0 fetal weights were below the 5th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. 14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity) per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR. PMID:24204949

  13. Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype.

    Directory of Open Access Journals (Sweden)

    Mark Robert Dilworth

    Full Text Available Fetal growth restriction (FGR is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5(th centile of customised growth charts. Sildenafil citrate (SC, Viagra™, a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8% in P0 mice following maternal SC treatment (0.4 mg/ml via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056. Additionally, 75% of the P0 fetal weights were below the 5(th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. (14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR.

  14. RETINAL PIGMENT EPITHELIAL TEAR AND ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY IN EXUDATIVE AGE-RELATED MACULAR DEGENERATION: Clinical Course and Long-Term Prognosis.

    Science.gov (United States)

    Heimes, Britta; Farecki, Marie-Louise; Bartels, Sina; Barrelmann, Anna; Gutfleisch, Matthias; Spital, Georg; Lommatzsch, Albrecht; Pauleikhoff, Daniel

    2016-05-01

    To document the long-term outcome in cases of retinal pigment epithelial (RPE) tears after treatment of vascularized pigment epithelial detachments with anti-vascular endothelial growth factor therapy. A retrospective analysis of the long-term outcome of a consecutive series of eyes with RPE tear developed during anti-vascular endothelial growth factor therapy for pigment epithelial detachment associated with choroidal neovascularization or retinal angiomatous proliferation (vascularized pigment epithelial detachment) was performed. Best-corrected visual acuity (BCVA), spectral domain optical coherence tomography, and autofluorescence images and also fluorescein angiograms were analyzed to determine the functional and morphologic development over time. The long-term outcome of 22 eyes (21 patients, 13 women and 8 men; 65-85 years; mean: 76 years) with RPE tear was performed with minimal follow-up of 3 years (range: 3-5 years, mean: 44 months) and re-treatment with different therapeutic strategies. The eyes were differentiated in 2 groups according to the course of BCVA after the first 2 years of follow-up: Group 1 (11 eyes) demonstrated a stabilized or improved BCVA after 2 years and Group 2 (11 eyes) demonstrated a decrease in BCVA after 2 years. The initial BCVA between both groups was comparable. Also the mean initial size of the RPE tear was the same between the 2 groups, the area of the RPE tear decreased continuously during follow-up in Group 1, whereas this was the case in Group 2 only at the beginning of treatment with a further increase of the size of the RPE tear with longer follow-up. This corresponded with a different morphologic development between the two groups. In Group 1, increasing recovery of autofluorescence at the RPE-free area was visible beginning from the outer border, whereas in Group 2, further growth of the neovascular complex in the area of the RPE tear was observed resulting in larger fibrovascular scars. In addition, in both groups

  15. Vascular Response to Intra-arterial Injury in the Thrombospondin-1 Null Mouse

    OpenAIRE

    Budhani, Faisal; Leonard, Katherine A.; Bergdahl, Andreas; Gao, Jimin; Lawler, Jack; Davis, Elaine C.

    2007-01-01

    Thrombospondin-1 (TSP-1) is a multifunctional, extracellular matrix protein that has been implicated in the regulation of smooth muscle cell proliferation, migration and differentiation during vascular development and injury. Vascular injury in wildtype and TSP-1 null mice was carried out by insertion of a straight spring guidewire into the femoral artery via a muscular arterial branch. Blood flow was restored after the muscular branch was ligated. The injury completely denuded the endotheliu...

  16. Screening for retinitis in children with probable systemic ...

    African Journals Online (AJOL)

    CMV retinitis may be prevented by timely diagnosis and treatment. This study aimed to .... retinitis are: 'a fulminant picture of retinal vasculitis and vascular sheathing with areas of yellow-white, full thickness, retinal necrosis producing retinal oedema associated ... and intravenous foscarnet as alternatives.[4] Although CMV- ...

  17. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Kelly E Beazley

    Full Text Available Cartilaginous metaplasia of vascular smooth muscle (VSM is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP. A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification.This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling.Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae.Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin.

  18. The arterial circle of Willis of the mouse helps to decipher secrets of cerebral vascular accidents in the human.

    Science.gov (United States)

    Okuyama, Shinichi; Okuyama, Jun; Okuyama, Junko; Tamatsu, Yuichi; Shimada, Kazuyuki; Hoshi, Hajime; Iwai, Junichi

    2004-01-01

    The human brain represents an elaborate product of hominizing evolution. Likewise, its supporting vasculature may also embody evolutionary consequences. Thus, it is conceivable that the human tendency to develop cerebral vascular accidents (CVAs) might represent a disease of hominization. In a search for hominizing changes on the arterial circle of Willis (hWAC), we attempted an anatomical comparison of the hWAC with that of the mouse (mWAC) by injecting aliquots of resin into the vasculature of the mouse and then creating vascular endocasts of the mWAC. The internal carotid artery of the mouse (mICA) unites with the mWAC midway between the middle cerebral artery (mMCA) and posterior cerebral artery (mPCA). The mWAC does not complete a circle: the mWAC nourishes the anterior portion of the circle which branches out to the olfactory artery (OlfA) and mPCA, along with the mMCA, and the basilar artery (mBA) does not connect to the mPCA. The OlfA is thicker than the mMCA. The relative brain weight of the mouse was 74 g on average for a 60 kg male and 86 g for a 60 kg female, respectively, as compared with 1424 g for a 60 kg man. These findings are consistent with the mouse being a nocturnal carnivore that lives on olfactory information in contrast to the human that lives diurnally and depends on visual and auditory information. In man, the human ICA (hICA) unites with the hWAC at a point where the human middle cerebral artery (hMCA) branches out, and thus, blood from the hICA does not flow through the hWAC but drains into the hMCA directly. The hMCA is thicker than the anterior cerebral artery. The hPCA receives blood from the hBA rather than from the hICA, and thus, the entire hWAC forms a closed circuit. Since the hICA drains directly into the hMCA without flowing a distance through the hWAC, the capacitor and equalizer functions of the WAC will be mitigated so much that the resultant hemodynamic changes would render the hMCA more likely to contribute to CVAs. Thus

  19. Cadherins in the retinal pigment epithelium (RPE revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo.

    Directory of Open Access Journals (Sweden)

    Xue Yang

    Full Text Available The retinal pigment epithelium (RPE supports the health and function of retinal photoreceptors and is essential for normal vision. RPE cells are post-mitotic, terminally differentiated, and polarized epithelial cells. In pathological conditions, however, they lose their epithelial integrity, become dysfunctional, even dedifferentiate, and ultimately die. The integrity of epithelial cells is maintained, in part, by adherens junctions, which are composed of cadherin homodimers and p120-, β-, and α-catenins linking to actin filaments. While E-cadherin is the major cadherin for forming the epithelial phenotype in most epithelial cell types, it has been reported that cadherin expression in RPE cells is different from other epithelial cells based on results with cultured RPE cells. In this study, we revisited the expression of cadherins in the RPE to clarify their relative contribution by measuring the absolute quantity of cDNAs produced from mRNAs of three classical cadherins (E-, N-, and P-cadherins in the RPE in vivo. We found that P-cadherin (CDH3 is highly dominant in both mouse and human RPE in situ. The degree of dominance of P-cadherin is surprisingly large, with mouse Cdh3 and human CDH3 accounting for 82-85% and 92-93% of the total of the three cadherin mRNAs, respectively. We confirmed the expression of P-cadherin protein at the cell-cell border of mouse RPE in situ by immunofluorescence. Furthermore, we found that oxidative stress induces dissociation of P-cadherin and β-catenin from the cell membrane and subsequent translocation of β-catenin into the nucleus, resulting in activation of the canonical Wnt/β-catenin pathway. This is the first report of absolute comparison of the expression of three cadherins in the RPE, and the results suggest that the physiological role of P-cadherin in the RPE needs to be reevaluated.

  20. Vascular risk factors and Alzheimer’s disease. Therapeutic approaches in mouse models

    NARCIS (Netherlands)

    Wiesmann, M.

    2017-01-01

    The first aim of this thesis was to elucidate the impact of major vascular risk factors like hypertension, apoE4 and stroke during the very early phase of Alzheimer’s disease (AD) using several mice models. Hypertension has proven to be associated with cerebrovascular impairment already at young age

  1. Isolation and Molecular Profiling of Primary Mouse Retinal Ganglion Cells: Comparison of Phenotypes from Healthy and Glaucomatous Retinas

    OpenAIRE

    Chintalapudi, Sumana R.; Djenderedjian, Levon; Stiemke, Andrew B.; Steinle, Jena J.; Jablonski, Monica M.; Morales-Tirado, Vanessa M.

    2016-01-01

    Loss of functional retinal ganglion cells (RGC) is an element of retinal degeneration that is poorly understood. This is in part due to the lack of a reliable and validated protocol for the isolation of primary RGCs. Here we optimize a feasible, reproducible, standardized flow cytometry-based protocol for the isolation and enrichment of homogeneous RGC with the Thy1.2hiCD48negCD15negCD57neg surface phenotype. A three-step validation process was performed by: (1) genomic profiling of 25-genes ...

  2. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  3. Accumulation of phosphorylated alpha-synuclein (p129S) and retinal pathology in a mouse model of Parkinson's disease

    Science.gov (United States)

    Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...

  4. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes.

    Science.gov (United States)

    Uemura, Akiyoshi; Kusuhara, Sentaro; Wiegand, Stanley J; Yu, Ruth T; Nishikawa, Shin-ichi

    2006-02-01

    In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.

  5. Organ culture of C57BL/6 mouse arteries with LPS as an in vitro model of vascular inflammation

    DEFF Research Database (Denmark)

    Outzen, Emilie Middelbo; Mehryar, Rahila; Boonen, Harrie C.M.

    Background: Vascular inflammation is believed to be involved in the pathogenesis of various cardiovascular diseases, the study of which often involves use of the mouse strain C57BL/6. In vivo studies can, however, be difficult to control and interpret. Aim of the study: To set up and characterise...... an in vitro model for studying vascular inflammation and function in cultured arteries from C57BL/6 mice. Methods: Segments of abdominal aorta and mesenteric arteries (MA) were incubated for 24 hours at 37̊C and 95% O2/5% CO2 in DMEM ± 100 ng/mL LPS. Aorta segments were frozen for molecular studies...... was achieved at a normalisation factor of 0.9 (0.91 ± 0.06, mean ± SEM, n = 9) as observed (0.85 ± 0.06, mean ± SEM, n = 3) and previously described in rat MA (Mulvany and Halpern, 1977). Furthermore, preliminary findings show that organ culture with 100 ng/mL LPS decreases endothelium-dependent dilation of C...

  6. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  7. Vascular and hepatic impact of short-term intermittent hypoxia in a mouse model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wojciech Trzepizur

    Full Text Available Experimental models of intermittent hypoxia (IH have been developed during the last decade to investigate the consequences of obstructive sleep apnea. IH is usually associated with detrimental metabolic and vascular outcomes. However, paradoxical protective effects have also been described depending of IH patterns and durations applied in studies. We evaluated the impact of short-term IH on vascular and metabolic function in a diet-induced model of metabolic syndrome (MS.Mice were fed either a standard diet or a high fat diet (HFD for 8 weeks. During the final 14 days of each diet, animals were exposed to either IH (1 min cycle, FiO2 5% for 30s, FiO2 21% for 30s; 8 h/day or intermittent air (FiO2 21%. Ex-vivo vascular reactivity in response to acetylcholine was assessed in aorta rings by myography. Glucose, insulin and leptin levels were assessed, as well as serum lipid profile, hepatic mitochondrial activity and tissue nitric oxide (NO release.Mice fed with HFD developed moderate markers of dysmetabolism mimicking MS, including increased epididymal fat, dyslipidemia, hepatic steatosis and endothelial dysfunction. HFD decreased mitochondrial complex I, II and IV activities and increased lactate dehydrogenase (LDH activity in liver. IH applied to HFD mice induced a major increase in insulin and leptin levels and prevented endothelial dysfunction by restoring NO production. IH also restored mitochondrial complex I and IV activities, moderated the increase in LDH activity and liver triglyceride accumulation in HFD mice.In a mouse model of MS, short-term IH increases insulin and leptin levels, restores endothelial function and mitochondrial activity and limits liver lipid accumulation.

  8. MIAMI cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J.-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F.; Armour, Maxime R.; Montero, Ramon B.; Schiller, Paul C.; Andreopoulos, Fotios M.; D’Ippolito, Gianluca

    2017-01-01

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of 2 layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration. PMID:28211362

  9. Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye.

    Science.gov (United States)

    Boneva, S K; Groß, T R; Schlecht, A; Schmitt, S I; Sippl, C; Jägle, H; Volz, C; Neueder, A; Tamm, E R; Braunger, B M

    2016-06-14

    Mice with a constitutive or tamoxifen-induced Cre recombinase (Cre) expression are frequently used research tools to allow the conditional deletion of target genes via the Cre-loxP system. Here we analyzed for the first time in a comprehensive and comparative way, whether retinal Cre expression or topical tamoxifen treatment itself would cause structural or functional changes, including changes in the expression profiles of molecular markers, glial reactivity and photoreceptor vulnerability. To this end, we characterized the transgenic α-Cre, Lmop-Cre and the tamoxifen-inducible CAGG-CreER™ mouse lines, all having robust Cre expression in the neuronal retina. In addition, we characterized the effects of topical tamoxifen treatment itself in wildtype mice. We performed morphometric analyses, immunohistochemical staining, in vivo ERG and angiography analyses and realtime RT-PCR analyses. Furthermore, the influence of Cre recombinase or topical tamoxifen exposure on neuronal vulnerability was studied by using light damage as a model for photoreceptor degeneration. Taken together, neither the expression of Cre, nor topical tamoxifen treatment caused detectable changes in retinal structure and function, the expression profiles of investigated molecular markers, glial reactivity and photoreceptor vulnerability. We conclude that the Cre-loxP system and its induction through tamoxifen is a safe and reliable method to delete desired target genes in the neural retina. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Wennan Lu

    2018-04-01

    Full Text Available The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

  11. Chronic hindlimb ischemia impairs functional vasodilation and vascular reactivity in mouse feed arteries

    Directory of Open Access Journals (Sweden)

    Trevor R Cardinal

    2011-12-01

    Full Text Available Vasodilation of lower leg arterioles is impaired in animal models of chronic peripheral ischemia. In addition to arterioles, feed arteries are a critical component of the vascular resistance network, accounting for as much as 50% of the pressure drop across the arterial circulation. Despite the critical importance of feed arteries in blood flow control, the impact of ischemia on feed artery vascular reactivity is unknown. At 14 days following unilateral resection of the femoral-saphenous artery-vein pair, functional vasodilation of the profunda femoris artery was severely impaired, 11 ± 9% versus 152 ± 22%. Although endothelial and smooth muscle-dependent vasodilation were both impaired in ischemic arteries compared to control arteries (Ach: 40 ± 14% vs 81 ± 11%, SNP: 43 ± 12% vs and 85 ± 11%, the responses to acetylcholine and sodium nitroprusside were similar, implicating impaired smooth muscle-dependent vasodilation. Conversely, vasoconstriction responses to norepinephrine were not different between ischemic and control arteries, -68 ± 3% versus -66 ± 3%, indicating that smooth muscle cells were functional following the ischemic insult. Finally, maximal dilation responses to acetylcholine, in vitro, were significantly impaired in the ischemic artery compared to control, 71 ± 9% versus 97 ± 2%, despite a similar generation of myogenic tone to the same intravascular pressure (80 mmHg. These data indicate that ischemia impairs feed artery vasodilation by impairing the vascular wall’s responsiveness to vasodilating stimuli. Future studies to examine the mechanistic basis for these observations or treatment strategies to improve feed artery vasodilation following ischemia could provide the foundation for an alternative therapeutic paradigm for peripheral arterial occlusive disease.

  12. Mouse Retinal Pigmented Epithelial Cell Lines retain their phenotypic characteristics after transfection with Human Papilloma Virus: A new tool to further the study of RPE biology

    Science.gov (United States)

    Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.

    2009-01-01

    Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153

  13. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Kamil Kruczek

    2017-06-01

    Full Text Available The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs. Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.

  14. Late vascular effects of whole brain X-irradiation in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Y [Tsukuba Univ., Sakma, Ibaraki (Japan). Inst. of Clinical Medicine; Phillips, T L [California Univ., San Francisco (USA). Dept. of Radiation Oncology

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min/sup -1/ (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis.

  15. Late vascular effects of whole brain X-irradiation in the mouse

    International Nuclear Information System (INIS)

    Yoshii, Y.; Phillips, T.L.

    1982-01-01

    The whole brains of mice were irradiated with 250kVp X-rays at 120 rads min -1 (1.6 mm Cu HVL, TSD 50 cm), and a histological study was carried out. The dose range of X-irradiation was from 1,300 to 2,500 rads, i.e., 1,300, 1,500, 1,750, 2,000, and 2,500 rads. Eighty-six mice were used for histological examination. For microscopic examination, the mice were killed at regular postirradiation intervals between 15 and 20, 31 and 40, 41 and 50, 51 and 60, 61 and 70, 71 and 80, 81 and 90, 139 and 177 weeks. The brains were removed immediately thereafter, fixed in Bouin's solution, and embedded in paraffin. A histological examination was performed by a morphometric estimation of vascular lesions, in which the degree of the damage to the arterial system was scored in whole serial brain section. Necrosis (encephalomalacia), atrophy, cell infiltration, and telangiectactic vascular change of the brain, caused as a result of the fibrinoid necrosis of the large arteries, were observed. Dose-dependent incidence of the fibrinoid necrosis increased between 41 and 87 weeks after irradiation. Mean score of fibrinoid necrosis increased dose dependently approximately 60 weeks after irradiation. It is suggested that scores of large vessel damage do relate to dose at 41 to 87 weeks, and can be used to quantify the vessel injury, and that fibrinoid necrosis of the large vessels may relate to the incidence of radionecrosis. (Author)

  16. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    Science.gov (United States)

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  17. Noninvasive Retinal Markers in Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber...... and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only...... retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long...

  18. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific, EIAV-CMV-MYO7A (UshStat or EIAV-CMV-Null (control vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.

  19. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.

    Science.gov (United States)

    Zallocchi, Marisa; Binley, Katie; Lad, Yatish; Ellis, Scott; Widdowson, Peter; Iqball, Sharifah; Scripps, Vicky; Kelleher, Michelle; Loader, Julie; Miskin, James; Peng, You-Wei; Wang, Wei-Min; Cheung, Linda; Delimont, Duane; Mitrophanous, Kyriacos A; Cosgrove, Dominic

    2014-01-01

    Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.

  20. The effect of vascular occulsion on the thermal sensitization of a mouse tumour

    International Nuclear Information System (INIS)

    Hill, S.A.; Denekamp, J.

    1978-01-01

    The effect of occluding the blood supply to a mouse tumour (with a metal clamp) has been studied for both irradiation and heating. Local heat was applied by immersion in a water bath for one hour at 42.8 0 C or for 15 minutes at 44.8 0 C. Occlusion of the blood supply during heating has a profound cytotoxic effect on the tumour, even in the absence of irradiation. Most tumours treated with 42.8 0 C for one hour under clamped conditions were locally controlled whether they were irradiated or not. Tumours heated with their blood supply unobstructed showed a lesser sensitivity to heat, seen as an increased sensitivity to X rays with a thermal enhancement ratio of 1.8-2.6. With the shorter period of more intense heat (44.8 0 C for 15 min), the effect of increasing the clamping time before heating was studied. The proportion of tumours locally controlled increased from 33% if the clamp was applied immediately before heating to 83% if the clamp was present for 60 minutes before heating commenced. No cures were observed for heat applied immediately before clamping, or immediately after release of the clamp. Accumulation of metabolic products or pH changes are implicated as the factors which alter the thermal sensitivity of these tumour cells. (author)

  1. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1, preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN, superior colliculus, and accessory optic system (AOS. In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs. Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs.

  2. Microultrasound Molecular Imaging of Vascular Endothelial Growth Factor Receptor 2 in a Mouse Model of Tumor Angiogenesis

    Directory of Open Access Journals (Sweden)

    Joshua J. Rychak

    2007-09-01

    Full Text Available High-frequency microultrasound imaging of tumor progression in mice enables noninvasive anatomic and functional imaging at excellent spatial and temporal resolution, although microultrasonography alone does not offer molecular scale data. In the current study, we investigated the use of microbubble ultrasound contrast agents bearing targeting ligands specific for molecular markers of tumor angiogenesis using high-frequency microultrasound imaging. A xenograft tumor model in the mouse was used to image vascular endothelial growth factor receptor 2 (VEGFR-2 expression with microbubbles conjugated to an anti-VEGFR-2 monoclonal antibody or an isotype control. Microultrasound imaging was accomplished at a center frequency of 40 MHz, which provided lateral and axial resolutions of 40 and 90 μm, respectively. The B-mode (two-dimensional mode acoustic signal from microbubbles bound to the molecular target was determined by an ultrasound-based destruction-subtraction scheme. Quantification of the adherent microbubble fraction in nine tumor-bearing mice revealed significant retention of VEGFR-2-targeted microbubbles relative to control-targeted microbubbles. These data demonstrate that contrast-enhanced microultrasound imaging is a useful method for assessing molecular expression of tumor angiogenesis in mice at high resolution.

  3. Vascular pattern of the spontaneous C3H mouse mammary carcinoma and its significance in radiation response and in hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Falk, P [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1980-02-01

    This study showed that the vascular pattern of the spontaneous C3H mouse mammary carcinoma develops from a capillary network into an afferent system lacking arterioles and consisting only of capillary-like vessels and an efferent system characterized by large sinuses. Lack of correlation between the growth of stroma and parenchyma leads to a circuitous and uneven supply of blood and to a high degree of occlusion of the efferent system with consequent reduction in the rate of flow of blood. The parenchyma consists of tubules formed of single or multiple layers of cells between which capillaries do not penetrate. The diffusion pathway of oxygen and nutrients to the inner cells of the multi-layered tubules is considerably longer than that to their outer cells or to the cells of the single-layered tubules. Consequently it is in the former parts that anoxia and severe hypoxia are likely to prevail. The pattern of necrosis agrees with this supposition. It is predicted that radiation hyperthermia will act differentially and in opposite senses on these two tumour components, hyperthermia being more effective on the former, radiation on the latter.

  4. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  5. Vascular and epithelial damage in the lung of the mouse after X rays or neutrons

    International Nuclear Information System (INIS)

    Law, M.P.; Ahier, R.G.

    1989-01-01

    The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year

  6. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    Science.gov (United States)

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  7. Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature.

    Science.gov (United States)

    Luhmann, Ulrich F O; Lin, Jihong; Acar, Niyazi; Lammel, Stefanie; Feil, Silke; Grimm, Christian; Seeliger, Mathias W; Hammes, Hans-Peter; Berger, Wolfgang

    2005-09-01

    To characterize developmental defects and the time course of Norrie disease in retinal and hyaloid vasculature during retinal development and to identify underlying molecular angiogenic pathways that may be affected in Norrie disease, exudative vitreoretinopathy, retinopathy of prematurity, and Coats' disease. Norrie disease pseudoglioma homologue (Ndph)-knockout mice were studied during retinal development at early postnatal (p) stages (p5, p10, p15, and p21). Histologic techniques, quantitative RT-PCR, ELISA, and Western blot analyses provided molecular data, and scanning laser ophthalmoscopy (SLO) angiography and electroretinography (ERG) were used to obtain in vivo data. The data showed that regression of the hyaloid vasculature of Ndph-knockout mice occurred but was drastically delayed. The development of the superficial retinal vasculature was strongly delayed, whereas the deep retinal vasculature did not form because of the blockage of vessel outgrowth into the deep retinal layers. Subsequently, microaneurysm-like lesions formed. Several angiogenic factors were differentially transcribed during retinal development. Increased levels of hypoxia inducible factor-1alpha (HIF1alpha) and VEGFA, as well as a characteristic ERG pattern, confirmed hypoxic conditions in the inner retina of the Ndph-knockout mouse. These data provide evidence for a crucial role of Norrin in hyaloid vessel regression and in sprouting angiogenesis during retinal vascular development, especially in the development of the deep retinal capillary networks. They also suggest an early and a late phase of Norrie disease and may provide an explanation for similar phenotypic features of allelic retinal diseases in mice and patients as secondary consequences of pathologic hypoxia.

  8. Clinical utilization of anti-vascular endothelial growth-factor agents and patient monitoring in retinal vein occlusion and diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Kiss S

    2014-08-01

    .03; IVTA, 3.3 versus 3.0, P<0.05.Conclusion: During the study period (2008–2011, bevacizumab was the main anti-VEGF therapy used in clinical practice for BRVO, CRVO, and DME. Patients treated with bevacizumab were monitored less frequently and received fewer injections than patients in major clinical trials of ranibizumab. Keywords: anti-vascular endothelial growth factor, bevacizumab, ranibizumab, diabetic macular edema, retinal vein occlusion, intravitreal

  9. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  10. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.

  11. CCR7 signaling pathway and retinal neovascularization

    Directory of Open Access Journals (Sweden)

    Lin-Hui Yuan

    2015-11-01

    Full Text Available Retinal neovascularization diseases are the major causes of blindness. C-C chemokine receptor type 7(CCR7can promote the expression of vascular endothelial growth factor(VEGFthrough the extracellular signal regulated kinase(ERKpathway, leading to vascular leakage, proliferation of vascular endothelial cell, neovascularization and etc. The detection of CCR7 can guide the diagnosis and treatments of retinal neovascularization diseases.

  12. Protective effects of a composition of Chinese herbs-Gurigumu-13 on retinal ganglion cell apoptosis in DBA/2J glaucoma mouse model

    Directory of Open Access Journals (Sweden)

    Qiu-Li Zhang

    2018-03-01

    Full Text Available AIM: To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM for glaucoma treatment. METHODS: DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs. The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA was examined by ELISA assay. RESULTS: GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION: GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.

  13. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression.

    Science.gov (United States)

    Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P

    2018-02-14

    Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.

  14. Circulating Reactive Oxidant Causes Apoptosis of Retinal Pigment Epithelium and Cone Photoreceptors in the Mouse Central Retina

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2011-01-01

    Full Text Available Reactive oxidants damage the retinal pigment epithelium (RPE, which is required for viability of overlying photoreceptors. Smoking which leads to chronic accumulation of reactive oxidants in the circulation is linked to age-related macular degeneration (AMD where RPE death is seen along with photoreceptor loss in the central macular region of the retina. It is unclear why this damage is concentrated in the central retina. We asked whether circulating oxidant might specifically target the central retina. Mice were administered the classic reactive oxidant iodate through tail vein injection, and visual acuity was followed by optokinetic response. Histology and apoptosis was examined by H&E and immunostaining. Iodate indeed selectively damaged the central retina, and this damage was highlighted by early apoptosis of RPE in the central retina followed by apoptosis of photoreceptors adjacent to the region of RPE loss–-cones were lost preferentially. The pattern and extent of this damage was independent of exposure to light. We then conclude that circulating oxidant is sufficient to selectively damage the central retina highlighted by sequential apoptosis of RPE and photoreceptors, with cones being the most sensitivity to this RPE loss.

  15. A clinical approach to the diagnosis of retinal vasculitis.

    Science.gov (United States)

    El-Asrar, Ahmed M Abu; Herbort, Carl P; Tabbara, Khalid F

    2010-04-01

    Retinal vasculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and is confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  16. Studies of Scleral Biomechanical Behavior Related to Susceptibility for Retinal Ganglion Cell Loss in Experimental Mouse Glaucoma

    Science.gov (United States)

    Nguyen, Cathy; Cone, Frances E.; Nguyen, Thao D.; Coudrillier, Baptiste; Pease, Mary E.; Steinhart, Matthew R.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.

    2013-01-01

    Purpose. To study anatomical changes and mechanical behavior of the sclera in mice with experimental glaucoma by comparing CD1 to B6 mice. Methods. Chronic experimental glaucoma for 6 weeks was produced in 2- to 4-month-old CD1 (43 eyes) and B6 mice (42 eyes) using polystyrene bead injection into the anterior chamber with 126 control CD1 and 128 control B6 eyes. Intraocular pressure (IOP) measurements were made with the TonoLab at baseline and after bead injection. Axial length and scleral thickness were measured after sacrifice in the CD1 and B6 animals and compared to length data from 78 eyes of DBA/2J mice. Inflation testing of posterior sclera was conducted, and circumferential and meridional strain components were determined from the displacement response. Results. Experimental glaucoma led to increases in axial length and width by comparison to fellow eyes (6% in CD1 and 10% in B6; all P glaucoma, the remainder of the sclera uniformly thinned in CD1, but thickened in B6. Peripapillary sclera in CD1 controls had significantly greater temporal meridional strain than B6 and had differences in the ratios of meridional to effective circumferential strain from B6 mice. In both CD1 and B6 mice, exposure to chronic IOP elevation resulted in stiffer pressure–strain responses for both the effective circumferential and meridional strains (multivariable regression model, P = 0.01–0.03). Conclusions. Longer eyes, greater scleral strain in some directions at baseline, and generalized scleral thinning after glaucoma were characteristic of CD1 mice that have greater tendency to retinal ganglion cell damage than B6 mice. Increased scleral stiffness after glaucoma exposure in mice mimics findings in monkey and human glaucoma eyes. PMID:23404116

  17. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  18. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  19. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  20. Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia

    International Nuclear Information System (INIS)

    Frechou, M.; Beray-Berthat, V.; Plotkine, M.; Marchand-Leroux, C.; Margaill, I.; Raynaud, J.S.; Gombert, F.; Lancelot, E.; Ballet, S.; Robert, P.; Louin, G.; Meriaux, S.

    2013-01-01

    Vascular damage plays a critical role after stroke, leading notably to edema, hemorrhages and stroke recurrence. Tools to characterize the vascular lesion are thus a real medical need. In this context, the specific nano-particular contrast agent P03011, an USPIO (ultra-small superparamagnetic iron oxide) conjugated to a peptide that targets VCAM-1 (vascular cell adhesion molecule-1), was developed to detect this major component of the vascular inflammatory response. This study aimed to make the proof of concept of the capacity of this targeted USPIO to detect VCAM-1 with MRI after cerebral ischemia in mouse. The time course of VCAM-1 expression was first examined by immunohistochemistry in our model of cerebral ischemia-reperfusion. Secondly, P03011 or non-targeted USPIO P03007 were injected 5 h after ischemia (100 mmol iron kg -1 ; i.v.) and in vivo and ex vivo MRI were performed 24 h after ischemia onset. Double labeling immunofluorescence was then performed on brain slices in order to detect both USPIO and VCAM-1. VCAM-1 expression was significantly up-regulated 24 h after ischemia in our model. In animals receiving P03011, both in vivo and ex vivo MRI performed 24 h after ischemia onset showed hypointense foci which could correspond to iron particles. Histological analysis showed a co-localization of the targeted USPIO and VCAM-1. This study demonstrates that VCAM-1 detection is possible with the USPIO P03011 in a model of cerebral ischemia. This kind of contrast agent could be an interesting clinical tool to characterize ischemic lesions in terms of vascular damage. (authors)

  1. Risk factor profile in retinal detachment

    Directory of Open Access Journals (Sweden)

    Azad Raj

    1988-01-01

    Full Text Available 150 cases of retinal detachment comprising 50 patients each of bilateral retinal detachment, unilateral retinal detachment without any retinal lesions in the fellow eve and unilateral retinal detachment with retinal lesions in the fellow eye were studied and the various associated risk factors were statistically analysed. The findings are discussed in relation to their aetiological and prognostic significance in the different types of retinal detachment. Based on these observations certain guidelines are offered which may be of value in decision making, in prophylactic detachment surgery. Tractional breaks in the superior temporal quadrant especially when symptomatic. mandate prophylactic treatment. Urgency is enhanced it′ the patient is aphakic. Associated myopia adds to the urgency. The higher incidence of initial right e′ e involvement in all groups suggests a vascular original possibly ischaemic.

  2. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  3. Avascular Retinal Findings in a Child With Achondroplasia.

    Science.gov (United States)

    Hua, Hong-Uyen T; Tran, Kimberly D; Medina, Carlos A; Fallas, Brenda; Negron, Cathy; Berrocal, Audina M

    2017-03-01

    The authors present clinical and angiographic findings in a 12-year-old girl with achondroplasia who presented with bilateral retinal peripheral nonperfusion and unilateral rhegmatogenous retinal detachment, which has not been previously described in achondroplasia. This report contributes incremental knowledge regarding aberrant retinal vascular phenomena observed in pediatric disease states and implicates the possible role of mutations in the FGFR3 gene in peripheral vascular abnormalities. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:272-274.]. Copyright 2017, SLACK Incorporated.

  4. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  5. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  6. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  7. Optical Coherence Tomography Angiography in Retinal Diseases.

    Science.gov (United States)

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  8. [Indications for Retinal Laser Therapy Revisited].

    Science.gov (United States)

    Enders, P; Schaub, F; Fauser, S

    2017-02-10

    Background Laser therapy is an important treatment option in retinal diseases, especially in cases of vascular involvement. Most approaches are based on coagulation of retinal structures. As there is increasing use of agents targetting vascular endothelial growth factor in the treatment of macular diseases, indications for the use of laser treatment need to be reviewed carefully, especially with respect to their significance in first line therapy. This article explains recent strategies and treatment protocols. Materials and Methods Review of current literature in PubMed as well as synopsis of relevant guidelines. Results and Conclusion Retinal laser therapy is still widely used within retinal opthalmology and covers a large spectrum of indications. Despite the success of medical approaches, retinal laser therapy remains an indispensable treatment option for proliferative diabetic retinopathy, central or peripheral vein occlusion and less frequent pathologies, such as retinopathy of prematurity or Coats's disease. Georg Thieme Verlag KG Stuttgart · New York.

  9. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  10. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  11. LPS, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Outzen, Emilie M; Zaki, Marina; Mehryar, Rahila

    2017-01-01

    resistance-sized arteries (MRA) supported by experiments in cultured human primary endothelial and vascular smooth muscle cells. Results showed that 24-hr organ culture of mouse MRA with 10 nM Ang II had, unlike 100 ng/mL LPS, no effects on IL-6 or MCP-1 secretion, VCAM1 mRNA expression or endothelial......]-Ang II had no concentration- or time-dependent effects on IL-6 and MCP-1 secretion in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMC). AGTR1 or AGTR2 mRNA expression were undetectable in HUVEC, whereas HASMC expressed only AGTR1 mRNA. In summary, contrary...... rights reserved....

  12. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease.

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca

    2017-02-17

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.

  13. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  14. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  15. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  16. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  17. Hypoxia inducible factor-2α regulates the development of retinal astrocytic network by maintaining adequate supply of astrocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Li-Juan Duan

    Full Text Available Here we investigate the role of hypoxia inducible factor (HIF-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26(CreERT2, Tie2(Cre, and GFAP(Cre. Global Hif-2α disruption by Rosa26(CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2(Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAP(Cre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP(+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2(+ and PDGFRα(+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other

  18. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Directory of Open Access Journals (Sweden)

    Anna Machalińska

    2015-01-01

    Full Text Available We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  19. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  20. Retinitis pigmentosa

    Science.gov (United States)

    ... treatments for retinitis pigmentosa, including the use of DHA, which is an omega-3 fatty acid. Other ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 630. ...

  1. Cytomegalovirus retinitis

    Science.gov (United States)

    ... have weakened immune systems as a result of: HIV/AIDS Bone marrow transplant Chemotherapy Drugs that suppress the immune system Organ transplant Symptoms Some people with CMV retinitis have no symptoms. ...

  2. Retinal Detachment

    Science.gov (United States)

    ... to your brain. It provides the sharp, central vision needed for reading, driving, and seeing fine detail. A retinal detachment lifts or pulls the retina from its normal position. It can occur at ...

  3. Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease.

    Science.gov (United States)

    Husi, Holger; Van Agtmael, Tom; Mullen, William; Bahlmann, Ferdinand H; Schanstra, Joost P; Vlahou, Antonia; Delles, Christian; Perco, Paul; Mischak, Harald

    2014-04-01

    Macrovascular complications of diabetes mellitus are a major risk factor for cardiovascular morbidity and mortality. Currently, studies only partially described the molecular pathophysiology of diabetes mellitus-associated effects on vasculature. However, better understanding of systemic effects is essential in unraveling key molecular events in the vascular tissue responsible for disease onset and progression. Our overall aim was to get an all-encompassing view of diabetes mellitus-induced key molecular changes in the vasculature. An integrative proteomic and bioinformatics analysis of data from aortic vessels in the low-dose streptozotocin-induced diabetic mouse model (10 animals) was performed. We observed pronounced dysregulation of molecules involved in myogenesis, vascularization, hypertension, hypertrophy (associated with thickening of the aortic wall), and a substantial reduction of fatty acid storage. A novel finding is the pronounced downregulation of glycogen synthase kinase-3β (Gsk3β) and upregulation of molecules linked to the tricarboxylic acid cycle (eg, aspartate aminotransferase [Got2] and hydroxyacid-oxoacid transhydrogenase [Adhfe1]). In addition, pathways involving primary alcohols and amino acid breakdown are altered, potentially leading to ketone-body production. A number of these findings were validated immunohistochemically. Collectively, the data support the hypothesis that in this diabetic model, there is an overproduction of ketone-bodies within the vessels using an alternative tricarboxylic acid cycle-associated pathway, ultimately leading to the development of atherosclerosis. Streptozotocin-induced diabetes mellitus in animals leads to a reduction of fatty acid biosynthesis and an upregulation of an alternative ketone-body formation pathway. This working hypothesis could form the basis for the development of novel therapeutic intervention and disease management approaches.

  4. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.

    Science.gov (United States)

    Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David

    2016-05-10

    Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.

  5. An evidence-based meta-analysis of vascular endothelial growth factor inhibition in pediatric retinal diseases: part 1. Retinopathy of prematurity.

    Science.gov (United States)

    Mititelu, Mihai; Chaudhary, Khurram M; Lieberman, Ronni M

    2012-01-01

    Recently there has been interest in the novel, off-label use of anti-vascular endothelial growth factor (anti-VEGF) agents for various stages of retinopathy of prematurity (ROP). The authors report on the quality and depth of new evidence published from 2009 to 2011 concerning the treatment of retinopathy of prematurity (ROP) with bevacizumab (Avastin; Genentech Inc., South San Francisco, CA) as either primary or adjunctive treatment for ROP. There is significant variability in the evidence, quality, and design of the studies available in the literature. There has been a trend in the scientific literature of the past 2 years toward larger, multi-center, randomized studies investigating the role of bevacizumab in the treatment of ROP. More recent evidence suggests that monotherapy with intravitreal bevacizumab may be a viable first-line treatment for select cases of zone I ROP and possibly for posterior zone II disease. Adjunctive treatment with bevacizumab may enhance outcomes in patients treated with laser photocoagulation or pars plana vitrectomy. However, there are significant concerns regarding its long-term safety profile. Further prospective studies are warranted to more fully determine the role of anti-VEGF therapy in this disease. Copyright 2012, SLACK Incorporated.

  6. The vascular pattern of the spontaneous C3H mouse mammary carcinoma and its significance in radiation response and in hyperthermia

    International Nuclear Information System (INIS)

    Falk, P.

    1980-01-01

    This study showed that the vascular pattern of the spontaneous C3H mouse mammary carcinoma develops from a capillary network into an afferent system lacking arterioles and consisting only of capillary-like vessels and an efferent system characterized by large sinuses. Lack of correlation between the growth of stroma and parenchyma leads to a circuitous and uneven supply of blood and to a high degree of occlusion of the efferent system with consequent reduction in the rate of flow of blood. The parenchyma consists of tubules formed of single or multiple layers of cells between which capillaries do not penetrate. The diffusion pathway of oxygen and nutrients to the inner cells of the multi-layered tubules is considerably longer than that to their outer cells or to the cells of the single-layered tubules. Consequently it is in the former parts that anoxia and severe hypoxia are likely to prevail. The pattern of necrosis agrees with this supposition. It is predicted that radiation hyperthermia will act differentially and in opposite senses on these two tumour components, hyperthermia being more effective on the former, radiation on the latter. (author)

  7. RETINAL NEOVASCULARIZATION FROM A PATIENT WITH CUTIS MARMORATA TELANGIECTATICA CONGENITA.

    Science.gov (United States)

    Sassalos, Thérèse M; Fields, Taylor S; Levine, Robert; Gao, Hua

    2018-03-14

    To report a rare case of peripheral retinal neovascularization in a patient diagnosed with cutis marmorata telangiectatica congenita (CMTC). Observational case report. A 16-year-old girl was referred to clinic for retinal evaluation. The patient had a clinical diagnosis of CMTC later confirmed by skin biopsy. Examination revealed temporal peripheral retinal sheathing, as well as lattice degeneration in both eyes. Wide-field fluorescein angiogram showed substantive peripheral retinal nonperfusion with evidence of vascular leakage from areas of presumed retinal neovascularization. The patient subsequently had pan retinal photocoagulation laser treatment to each eye without complication. Cutis marmorata telangiectatica congenita is a rare vascular condition known to affect multiple organ systems including the eyes. Although ocular manifestations of CMTC are rare, instances of congenital glaucoma, suprachoroidal hemorrhage, and bilateral total retinal detachments resulting in secondary neovascular glaucoma have been reported. Our patient demonstrates the first reported findings of peripheral nonperfusion and retinal neovascularization related to CMTC in a 16-year-old girl. We propose early retinal examination, wide-field fluorescein angiogram, and early pan retinal photocoagulation laser treatment in patients with peripheral nonperfusion and retinal neovascularization from CMTC.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  8. Histological Study on the Protective Effect of Simvastatin on the Retinal Changes Induced by High-Fat Diet in Mice

    Directory of Open Access Journals (Sweden)

    Fayza Ezz Ahmad

    2017-09-01

    Full Text Available Background: High-fat diet (HFD feeding is an important model to study the changes induced by insulin resistance, Type 2 diabetes mellitus and obesity including retinopathy. Vascular endothelial growth factor (VEGF and p53 have been implicated in the development of retinopathy. Objectives: The aim of his study was to analyze histological retinal changes in a high-fat atherogenic mouse model and to evaluate the possible protective effect of simvastatin on these changes including its effects on the expression of VEGF and p53. Materials and Methods: A total of 27 mice (6 weeks old were divided into 3 study groups according to their diet and treatment given; Group I - normal balanced diet-fed mice, Group II - HFD-fed mice, and Group III - HFD-fed mice treated with simvastatin daily for 30 weeks. All mice were followed up for 30 weeks. At the end of the study at 36 weeks of age, eye tissues were collected and retinal sections were examined using light microscopy. Comparison of the thickness of retinal layers in the three groups was carried out. The localization of VEGF in the retina was determined by immunohistochemical analysis, and apoptotic cell death was assessed using the p53. Results: In the HFD-fed mice, there was an increase in the retinal thickness associated with presence of wide intercellular spaces in the outer nuclear layer. Many cells in the inner nuclear layer showed cytoplasmic vacuolations. Expression of VEGF was significantly increased in the retinal ganglion cell layers and nuclear cell layers. Elevated p53 reaction was demonstrated within the inner retina. The histological changes were significantly improved in the simvastatin treated group. Conclusions: HFD-induced structural changes in the retinal layers and simultaneous upregulation of VEGF and p53. Administration of simvastatin improved these retinal alterations. [J Interdiscip Histopathol 2017; 5(3.000: 83-91

  9. Quantitative and qualitative retinal microvascular characteristics and blood pressure.

    Science.gov (United States)

    Cheung, Carol Y; Tay, Wan T; Mitchell, Paul; Wang, Jie J; Hsu, Wynne; Lee, Mong L; Lau, Qiangfeng P; Zhu, Ai L; Klein, Ronald; Saw, Seang M; Wong, Tien Y

    2011-07-01

    The present study examined the effects of blood pressure on a spectrum of quantitative and qualitative retinal microvascular signs. Retinal photographs from the Singapore Malay Eye Study, a population-based cross-sectional study of 3280 (78.7% response) persons aged 40-80 years, were analyzed. Quantitative changes in the retinal vasculature (branching angle, vascular tortuosity, fractal dimension, and vascular caliber) were measured using a semi-automated computer-based program. Qualitative signs, including focal arteriolar narrowing (FAN), arteriovenous nicking (AVN), opacification of the arteriolar wall (OAW), and retinopathy (e.g., microaneurysms, retinal hemorrhages), were assessed from photographs by trained technicians. After excluding persons with diabetes and ungradable photographs, 1913 persons provided data for this analysis. In multivariable linear regression models controlling for age, sex, BMI, use of antihypertensive medication, and other factors, retinal arteriolar branching asymmetry ratio, arteriolar tortuosity, venular tortuosity, fractal dimension, arteriolar caliber, venular caliber, FAN, AVN, and retinopathy were independently associated with mean arterial blood pressure. In contrast, arteriolar/venular branching angle, venular branching asymmetry ratio and OAW were not related to blood pressure. Retinal arteriolar caliber (sβ = -0.277) and FAN (sβ = 0.170) had the strongest associations with mean arterial blood pressure, and higher blood pressure levels were associated with increasing number of both quantitative and qualitative retinal vascular signs (P trend qualitative retinal vascular signs, with the number of signs increasing with higher blood pressure levels.

  10. Multiple evanescent white dot syndrome associated with retinal vasculitis

    Directory of Open Access Journals (Sweden)

    Takahashi A

    2015-09-01

    Full Text Available Akihiro Takahashi, Wataru Saito, Yuki Hashimoto, Susumu Ishida Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan Purpose: A recent study revealed thickening of the inner retinal layers in acute stage of multiple evanescent white dot syndrome (MEWDS; however, the pathogenesis is still unknown. We report two cases with MEWDS whose funduscopy showed obvious retinal vasculitis. Methods: Case reports. Results: Healthy myopic 16- and 27-year-old women were the cases under study. In both cases, funduscopic examination revealed multiple, faint, small, subretinal white dots at the posterior pole to the midperiphery and macular granularity oculus dexter. Retinal vascular sheathing was also observed at midperiphery. Late-phase fluorescein angiography revealed leakages corresponding to the vascular sheathing. Enhanced depth imaging optical coherence tomography revealed the discontinuity of the ellipsoid zone corresponding to the white dots and increased macular choroidal thickness. One month later, these white dots and retinal sheathing spontaneously resolved in both cases. Three months later, impairments of the outer retinal morphology and the visual acuity were restored. Conclusion: These results suggest that retinal vasculitis possibly plays a role in the pathogenesis of thickened inner retinal layers in acute stage of MEWDS. Keywords: enhanced depth imaging optical coherence tomography, choroidal thickness, inner retinal layer, retinal vascular sheathing

  11. Retinitis pigmentosa, Coats disease and uveitis.

    Science.gov (United States)

    Solomon, A; Banin, E; Anteby, I; Benezra, D

    1999-01-01

    To study the anamnestic immune response to retinal specific antigens of two patients suffering from a rare triad of retinitis pigmentosa, Coats disease and uveitis. 17-year-old girl presented with an acute episode of panuveitis, and her 19-year-old brother suffered from chronic uveitis. On examination, both patients showed retinal vascular changes and subretinal exudations typical of Coats disease, with bone-spicule pigmentary changes as observed in retinitis pigmentosa. All routine examinations were unrevealing. However, the peripheral lymphocytes from these two siblings gave a specific anamnestic response to retinal antigens in vitro. A stimulation index of 4.6 was obtained when the sister's lymphocytes were stimulated with interphotoreceptor binding protein, IRBP--during the acute stage of the uveitis. The brother's lymphocytes showed a stimulation index of 2.7 towards S-Ag during the chronic phase of his uveitic condition. These results indicate that autoimmunity towards retinal antigens may play some role in specific types of retinitis pigmentosa. Whether these autoimmune reactions are a primary pathological mechanism or are secondary to the extensive destruction of the photoreceptor layer resulting from the retinitis pigmentosa remains debatable.

  12. Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Adnan Riaz, MD

    2018-04-01

    Full Text Available History of present illness: A 58-year-old female presented to the emergency department reporting six days of progressive, atraumatic left eye vision loss. Her symptoms started with the appearance of dark spots and “spider webs,” and then progressed to darkening of vision in her left eye. She reports mild pain since yesterday. Her review of symptoms was otherwise negative. Ocular physical examination revealed normal external appearance, intact extraocular movements, and visual acuities of 20/25 OD and light/dark sensitivity OS. Fluorescein uptake was negative and slit lamp exam was unremarkable. Significant findings: Bedside ocular ultrasound revealed a serpentine, hyperechoic membrane that appeared tethered to the optic disc posteriorly with hyperechoic material underneath. These findings are consistent with retinal detachment (RD and associated retinal hemorrhage. Discussion: The retina is a layer of organized neurons that line the posterior portion of the posterior chamber of the eye. RD occurs when this layer separates from the underlying epithelium, resulting in ischemia and progressive photoreceptor degeneration, with potentially rapid and permanent vision loss if left untreated.1 Risk factors include advanced age, male sex (60%, race (Asians and Jews, and myopia and lattice degeneration.2 Bedside ultrasound (US performed by emergency physicians provides a valuable tool that has been used by ophthalmologists for decades to evaluate intraocular disease.1,3 Findings on bedside ultrasound consistent with RD include a hyperechoic membrane floating in the posterior chamber. RD usuallyremain tethered to the optic disc posteriorly and do not cross midline, a feature distinguishing them from posterior vitreous detachments. Associated retinal hemorrhage, seen as hyperechoic material under the retinal flap, can often be seen.1,2 US can also distinguish between “mac-on” and “mac-off” detachments. If the retina is still attached to the

  13. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  14. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  15. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein Induced Retinal Angiogenesis

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won

    2017-01-01

    Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325

  16. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  17. Subconjunctival Delivery of p75NTR Antagonists Reduces the Inflammatory, Vascular, and Neurodegenerative Pathologies of Diabetic Retinopathy.

    Science.gov (United States)

    Galan, Alba; Barcelona, Pablo F; Nedev, Hinyu; Sarunic, Marinko V; Jian, Yifan; Saragovi, H Uri

    2017-06-01

    The p75NTR is a novel therapeutic target validated in a streptozotocin mouse model of diabetic retinopathy. Intravitreal (IVT) injection of small molecule p75NTR antagonist THX-B was therapeutic and resolved the inflammatory, vascular, and neurodegenerative phases of the retinal pathology. To simplify clinical translation, we sought a superior drug delivery method that circumvents risks associated with IVT injections. We compared the pharmacokinetics of a single 40 μg subconjunctival (SCJ) depot to the reported effective 5 μg IVT injections of THX-B. We quantified therapeutic efficacy, with endpoints of inflammation, edema, and neuronal death. The subconjunctival depot affords retinal exposure equal to IVT injection, without resulting in detectable drug in circulation. At week 2 of diabetic retinopathy, the SCJ depot provided therapeutic efficacy similar to IVT injections, with reduced inflammation, reduced edema, reduced neuronal death, and a long-lasting protection of the retinal structure. Subconjunctival injections are a safe and effective route for retinal delivery of p75NTR antagonists. The subconjunctival route offers an advantageous, less-invasive, more compliant, and nonsystemic method to deliver p75NTR antagonists for the treatment of retinal diseases.

  18. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress.

    Science.gov (United States)

    Arredondo Zamarripa, David; Díaz-Lezama, Nundehui; Meléndez García, Rodrigo; Chávez Balderas, Jesús; Adán, Norma; Ledesma-Colunga, Maria G; Arnold, Edith; Clapp, Carmen; Thebault, Stéphanie

    2014-01-01

    Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  19. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    Directory of Open Access Journals (Sweden)

    David eArredondo Zamarripa

    2014-10-01

    Full Text Available Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK production contributes to the increased transport through the blood-retina barrier (BRB in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC, blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19 cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  20. Acute Infantile Hemiplegia Associated with Ipsilateral Retinal ...

    African Journals Online (AJOL)

    An 18-month-old patient with acute infantile hemiplegia, aphasia and ipsilateral retinal vascular occlusion, is described. The opthalmic findings suggest that the lesion was due to emboli originating from both internal carotid arteries, probably as a result of upper respiratory tract infection and otitis media. This report ...

  1. Extracellular acidosis and very low [Na+ ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells.

    Science.gov (United States)

    Bonde, L; Boedtkjer, E

    2017-10-01

    The electroneutral Na + , HCO3- cotransporter NBCn1 and Na + /H + exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na + ]. We examined effects of low [Na + ] o and pH o on NBCn1 and NHE1 activity in VSMCs of small arteries. We measured pH i by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. NBCn1 activity - defined as Na + -dependent, amiloride-insensitive net base uptake with CO 2 /HCO3- present - was inhibited equally when pH o decreased from 7.4 (22 mm HCO3-/5% CO 2 ) by metabolic (pH o 7.1/11 mm HCO3-: 22 ± 8%; pH o 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pH o 7.1/10% CO 2 : 35 ± 11%; pH o 6.8/20% CO 2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na + -dependent net acid extrusion without CO 2 /HCO3- present - at both pH o 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pH o , lowering [Na + ] o from 140 to 70 mm reduced NBCn1 and NHE1 activity respiratory (ΔpH i /ΔpH o  = 71 ± 4%) than metabolic (ΔpH i /ΔpH o  = 30 ± 7%) acidosis. Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO 2 is raised or [HCO3-] o decreased. Lowering [Na + ] o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na + -dependent net acid extrusion at low pH o protects against cellular Na + overload at the cost of intracellular acidification. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. The pleiotropic effects of simvastatin on retinal microvascular endothelium has important implications for ischaemic retinopathies.

    Directory of Open Access Journals (Sweden)

    Reinhold J Medina

    Full Text Available BACKGROUND: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo. METHODS AND FINDINGS: Retinal microvascular endothelial cells (RMECs were treated with 0.01-10 microM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 microM simvastatin significantly increasing proliferation (p<0.05, and 0.01 microM simvastatin significantly promoting migration (p<0.05, sprouting (p<0.001, and tubulogenesis (p<0.001. High concentration of simvastatin (10 microM had the opposite effect, significantly inhibiting proliferation (p<0.01, migration (p<0.01, sprouting (p<0.001, and tubulogenesis (p<0.05. Furthermore, simvastatin concentrations higher than 1 microM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin (0.2 mg/Kg promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01. By contrast, high dose simvastatin(20 mg/Kg significantly prevented re-vascularisation (p<0.01 and concomitantly increased pathological neovascularisation (p<0.01. We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures. CONCLUSIONS: A beneficial effect of low

  3. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-γ-dependent activity

    International Nuclear Information System (INIS)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro; Yasuda, Osamu; Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2011-01-01

    Highlights: → Telmisartan, an angiotensin receptor blocker, acts as a partial PPARγ agonist. → The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NFκB activation and TNF α. → PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. → We provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration

  4. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Yasuda, Osamu [Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto (Japan); Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Ogawa, Hisao [Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Kim-Mitsuyama, Shokei, E-mail: kimmitsu@gpo.kumamoto-u.ac.jp [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan)

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  5. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  6. Histology atlas of the developing mouse hepatobiliary hemolymphatic vascular system with emphasis on embryonic days 11.5-18.5 and early postnatal development

    Science.gov (United States)

    A critical event in fetal development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has lead pathologists and scientists to utilize transgenic mice to identify developmental disorders associated with the hepatobiliary vascular system. Va...

  7. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells

    Directory of Open Access Journals (Sweden)

    Andreas Holmgaard

    2017-12-01

    Full Text Available Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp Cas9, delivered by lentiviral vectors (LVs, can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs induce in vitro indel formation at high frequencies (44%–93%. A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.

  8. Genetic loci for retinal arteriolar microcirculation.

    Directory of Open Access Journals (Sweden)

    Xueling Sim

    Full Text Available Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12 in combined meta-analysis of discovery and replication cohorts. In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

  9. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  10. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    Science.gov (United States)

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  11. A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies.

    Science.gov (United States)

    Asokan, Priyadarsini; Mitra, Rajendra N; Periasamy, Ramesh; Han, Zongchao; Borrás, Teresa

    2018-02-01

    Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally.

  12. A Naturally Fluorescent Mgp Transgenic Mouse for Angiogenesis and Glaucoma Longitudinal Studies

    Science.gov (United States)

    Asokan, Priyadarsini; Mitra, Rajendra N.; Periasamy, Ramesh; Han, Zongchao

    2018-01-01

    Purpose Our goal was to generate and characterize a new mouse model in which only angiogenesis- and glaucoma-relevant tissues would be naturally fluorescent. The Matrix Gla (MGP) gene is highly expressed in vascular smooth muscle cells (VSMC) and trabecular meshwork (TM). We sought to direct our Mgp-Cre.KI mouse recombinase to VSMC/TM cells to produce their longitudinal fluorescent profiles. Methods Homozygous Mgp-Cre.KI mice were crossed with Ai9 homozygous reporter mice harboring a loxP-flanked STOP cassette preventing transcription of a DsRed fluorescent protein (tdTomato). The F1 double-heterozygous (Mgp-tdTomato) was examined by direct fluorescence, whole mount, histology, and fundus photography. Custom-made filters had 554/23 emission and 609/54 exciter nanometer wavelengths. Proof of concept of the model's usefulness was conducted by inducing guided imaging laser burns. Evaluation of a vessel's leakage and proliferation was followed by noninvasive angiography. Results The Mgp-tdTomato mouse was viable, fertile, with normal IOP and ERG. Its phenotype exhibited red paws and snout (cartilage expression), which precluded genotyping. A fluorescent red ring was seen at the limbus and confirmed to be TM expression by histology. The entire retinal vasculature was red fluorescent (VSMC) and directly visualized by fundus photography. Laser burns on the Mgp-tdTomato allowed separation of leakiness and neovascularization evaluation parameters. Conclusions The availability of a transgenic mouse naturally fluorescent in glaucoma-relevant tissues and retinal vasculature brings the unique opportunity to study a wide spectrum of single and combined glaucomatous conditions in vivo. Moreover, the Mgp-tdTomato mouse provides a new tool to study mechanisms and therapeutics of retinal angiogenesis longitudinally. PMID:29392320

  13. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won

    2017-04-01

    Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.

  14. Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside

    Directory of Open Access Journals (Sweden)

    Søren Leer Blindbæk

    2017-01-01

    Full Text Available The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only disclose associations and are not able to separate cause from effect or to establish the predictive value of retinal vascular dysfunction with respect to long-term complications. Likewise, retinal markers have not been investigated as markers of treatment outcome in patients with proliferative diabetic retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long-term microvasculopathy but also as markers of treatment outcome in sight-threatening diabetic retinopathy in well-established population-based cohorts of patients with diabetes.

  15. Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside

    Science.gov (United States)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian; Soelberg, Kerstin; Vergmann, Anna Stage; Poulsen, Christina Døfler; Frydkjaer-Olsen, Ulrik; Broe, Rebecca; Rasmussen, Malin Lundberg; Wied, Jimmi; Lind, Majbrit; Vestergaard, Anders Højslet; Peto, Tunde

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only disclose associations and are not able to separate cause from effect or to establish the predictive value of retinal vascular dysfunction with respect to long-term complications. Likewise, retinal markers have not been investigated as markers of treatment outcome in patients with proliferative diabetic retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long-term microvasculopathy but also as markers of treatment outcome in sight-threatening diabetic retinopathy in well-established population-based cohorts of patients with diabetes. PMID:28491870

  16. Influencing factors affecting the retinal blood vessel morphology in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Kong

    2017-03-01

    Full Text Available AIM: To analyze the influencing factors affecting retinal blood vessel morphology in patients with diabetes mellitus. METHODS: Totally 312 patients with type 2 diabetes mellitus in our hospital from January 2012 to September 2016 were selected as study subjects. The patients were examined by fundus photography and related laboratory. As grouping factors in the patients'age, sex, disease duration, smoking, drinking, hypertension, hyperlipidemia or diabetic nephropathy, we compared the incidence of retinal vascular changes in different groups. The meaningful factors were introduced into the Logistic regression equation again. Independent risk factors for retinal vascular changes in patients with diabetes mellitus were screened out. RESULTS:In 312 cases of patients with type 2 diabetes mellitus,169 cases were accompanied with retinal vascular abnormalities, and 143 cases were not associated with retinal vascular abnormalities. Univariate analysis showed that age, duration of disease, hypertension, hyperlipidemia or diabetes nephropathy were significantly correlated with retinal vascular morphological changes(PP>0.05. Retinal vascular abnormalities were used as the dependent variable, and the above mentioned factors were grouped as independent variables. By Logistic stepwise regression analysis showed that the course of disease, patients with hypertension or diabetic nephropathy were the independent risk factors of abnormal retinal vascular morphology(PCONCLUSION: The independent risk factors for the occurrence of retinal vascular changes in patients with diabetes mellitus are increased course of disease, hypertension or diabetic nephropathy. Early diagnosis and intervention, to take measures and control blood pressure, reduce kidney damage can reduce the incidence of diabetic retinopathy, and macrovascular disease caused by diabetes, the incidence of adverse cardiovascular and cerebrovascular events.

  17. Lutein facilitates physiological revascularization in a mouse model of retinopathy of prematurity.

    Science.gov (United States)

    Fu, Zhongjie; Meng, Steven S; Burnim, Samuel B; Smith, Lois Eh; Lo, Amy Cy

    2017-07-01

    Retinopathy of prematurity is one of the leading causes of childhood blindness worldwide, with vessel growth cessation and vessel loss in phase I followed by neovascularization in phase II. Ischaemia contributes to its pathogenesis, and lutein protects against ischaemia-induced retinal damages. We aimed to investigate the effects of lutein on a murine model of oxygen-induced retinopathy. Mouse pups were exposed to 75% oxygen for 5 days and returned to room air for another 5 days. Vascular obliteration, neovascularization and blood vessel leakage were examined. Immunohistochemistry for glial cells and microglia were performed. Compared with vehicle controls, mouse pups receiving lutein treatment displayed smaller central vaso-obliterated area and reduced blood vessel leakage. No significant difference in neovascular area was found between lutein and vehicle controls. Lutein promoted endothelial tip cell formation and maintained the astrocytic template in the avascular area in oxygen-induced retinopathy. No significant changes in Müller cell gliosis and microglial activation in the central avascular area were found in lutein-treated pups. Our observations indicated that lutein significantly promoted normal retinal vascular regrowth in the central avascular area, possibly through promoting endothelial tip cell formation and preserving astrocytic template. Our results indicated that lutein might be considered as a supplement for the treatment of proliferative retinopathy of prematurity because of its role in facilitating the revascularization of normal vasculature. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  18. Nondiabetic retinal pathology - prevalence in diabetic retinopathy screening.

    Science.gov (United States)

    Nielsen, Nathan; Jackson, Claire; Spurling, Geoffrey; Cranstoun, Peter

    2011-07-01

    To determine the prevalence of photographic signs of nondiabetic retinal pathology in Australian general practice patients with diabetes. Three hundred and seven patients with diabetes underwent retinal photography at two general practices, one of which was an indigenous health centre. The images were assessed for signs of pathology by an ophthalmologist. Signs of nondiabetic retinal pathology were detected in 31% of subjects with adequate photographs. Features suspicious of glaucoma were detected in 7.7% of subjects. Other abnormalities detected included signs of age related macular degeneration (1.9%), epiretinal membranes (2.4%), vascular pathology (9.6%), chorioretinal lesions (2.9%), and congenital disc anomalies (2.9%). Indigenous Australian patients were more likely to have signs of retinal pathology and glaucoma. Signs of nondiabetic retinal pathology were frequently encountered. In high risk groups, general practice based diabetic retinopathy screening may reduce the incidence of preventable visual impairment, beyond the benefits of detection of diabetic retinopathy alone.

  19. Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization.

    Science.gov (United States)

    Villacampa, Pilar; Menger, Katja E; Abelleira, Laura; Ribeiro, Joana; Duran, Yanai; Smith, Alexander J; Ali, Robin R; Luhmann, Ulrich F; Bainbridge, James W B

    2017-01-01

    Retinal ischemia and pathological angiogenesis cause severe impairment of sight. Oxygen-induced retinopathy (OIR) in young mice is widely used as a model to investigate the underlying pathological mechanisms and develop therapeutic interventions. We compared directly the conventional OIR model (exposure to 75% O2 from postnatal day (P) 7 to P12) with an alternative, accelerated version (85% O2 from P8 to P11). We found that accelerated OIR induces similar pre-retinal neovascularization but greater retinal vascular regression that recovers more rapidly. The extent of retinal gliosis is similar but neuroretinal function, as measured by electroretinography, is better maintained in the accelerated model. We found no systemic or maternal morbidity in either model. Accelerated OIR offers a safe, reliable and more rapid alternative model in which pre-retinal neovascularization is similar but retinal vascular regression is greater.

  20. Reactive Retinal Astrocytic Tumor (Focal Nodular Gliosis): Report of the Clinical Spectrum of 3 Cases.

    Science.gov (United States)

    Singh, Arun D; Soto, Hansell; Bellerive, Claudine; Biscotti, Charles V

    2017-09-01

    To report 3 cases providing insight into clinical progression of reactive retinal astrocytic tumor. The clinical, imaging, and when available, the cytologic features of 3 cases of reactive retinal astrocytic tumor (focal nodular gliosis) were reviewed. A 6-year-old female, a 49-year-old man, and a 39-year-old man each developed a white retinal mass associated with laser photocoagulation, lattice degeneration, and treatment of a presumed vascular tumor, respectively. All tumors were white, circumscribed retinal masses that tended to be associated with exudation and either initially or eventually minimal vascularity. Reactive retinal astrocytic tumor can be observed in response to a degenerative, inflammatory, or ischemic retinal insult. Such tumors may progress after therapeutic intervention.

  1. Bilateral retinal vein occlusion and rubeosis irides: lessons to learn.

    Science.gov (United States)

    Md Noh, Umi Kalthum; Ahem, Amin; Mustapha, Mushawiahti

    2013-01-01

    Uncontrolled hypertension is well- known to give rise to systemic complications involving multiple central organs. Artherosclerosis leads to damage of the retinal vessels wall, contributing to venous stasis, thrombosis and finally, occlusion. Retinal vein occlusions compromise vision through development of ischaemic maculopathy, macular oedema, and rubeotic glaucoma. Laser photocoagulation remains the definitive treatment for ischaemic vein occlusion with secondary neovascularization. Timely treatment with anti- vascular endothelial growth factor prevents development of rubeotic glaucoma. We hereby report an unusual case of bilateral retinal vein occlusion complicated by rubeosis irides, which was successfully managed to improve vision and prevent rubeotic glaucoma.

  2. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor

    OpenAIRE

    Hata, Yasuaki; Clermont, Allen Charles; Yamauchi, Teruaki; Pierce, Eric Adam; Suzuma, Izumi; Kagokawa, Hiroyuki; Yoshikawa, Hiroshi; Robinson, Gregory S.; Ishibashi, Tatsuro; Hashimoto, Toshihiko; Umeda, Fumio; Bursell, Sven E.; Aiello, Lloyd Paul

    2000-01-01

    Prostacyclin-stimulating factor (PSF) acts on vascular endothelial cells to stimulate the synthesis of the vasodilatory molecule prostacyclin (PGI2). We have examined the expression, regulation, and hemodynamic bioactivity of PSF both in whole retina and in cultured cells derived from this tissue. PSF was expressed in all retinal cell types examined in vitro, but immunohistochemical analysis revealed PSF mainly associated with retinal vessels. PSF expression was constitutive in retinal pericy...

  3. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    Directory of Open Access Journals (Sweden)

    Alena Chumanevich

    2016-01-01

    Full Text Available Mast cells (MC are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2- mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF- A and matrix metalloproteinase- (MMP- 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation.

  4. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta

    Directory of Open Access Journals (Sweden)

    Josiane Fernandes da Silva

    2016-09-01

    Full Text Available Background - The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process.Methods - High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS knockdown.Results - Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD than in the sedentary control animals (SS. Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS-/- animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet

  5. Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss

    NARCIS (Netherlands)

    Wisniewska-Kruk, Joanna; van der Wijk, Anne-Eva; van Veen, Henk A.; Gorgels, Theo G. M. F.; Vogels, Ilse M. C.; Versteeg, Danielle; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.; Klaassen, Ingeborg

    2016-01-01

    Loss of blood-retinal barrier (BRB) properties induced by vascular endothelial growth factor (VEGF) and other factors is an important cause of diabetic macular edema. Previously, we found that the presence of plasmalemma vesicle-associated protein (PLVAP) in retinal capillaries associates with loss

  6. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    Science.gov (United States)

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes

    Directory of Open Access Journals (Sweden)

    Thing-Fong Tzeng

    2015-09-01

    Full Text Available The present study investigates the amelioration of diabetic retinopathy (DR by Zingiber zerumbet rhizome ethanol extracts (ZZRext in streptozotocin-induced diabetic rats (STZ-diabetic rats. ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day for three months. Blood-retinal barrier (BRB breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes.

  8. Macrovaso retiniano congênito: relato de caso Congenital retinal macrovessel: case report

    Directory of Open Access Journals (Sweden)

    Rodrigo Tavares Schueler

    2005-06-01

    Full Text Available O macrovaso retiniano congênito é rara anomalia vascular em que um vaso grande e suas tributárias cruzam a mácula. Descrevemos um caso de macrovaso retiniano em paciente com queixa de baixa acuidade visual.Congenital retinal macrovessel is a rare vascular anomaly in which a large vessel and its tributaries cross the macula. We describe a case of retinal macrovessel in a patient complaining of decrease in visual acuity.

  9. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  10. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa

    NARCIS (Netherlands)

    Alves, Celso Henrique; Pellissier, Lucie P; Vos, Rogier M; Garcia Garrido, Marina; Sothilingam, Vithiyanjali; Seide, Christina; Beck, Susanne C; Klooster, J.; Furukawa, Takahisa; Flannery, John G; Verhaagen, J.; Seeliger, Mathias W; Wijnholds, J.

    2014-01-01

    In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and

  11. Technical Brief: A comparison of two methods of euthanasia on retinal dopamine levels

    OpenAIRE

    Hwang, Christopher K.; Iuvone, P. Michael

    2013-01-01

    Purpose Mice are commonly used in biomedical research, and euthanasia is an important part of mouse husbandry. Approved, humane methods of euthanasia are designed to minimize the potential for pain or discomfort, but may also influence the measurement of experimental variables. Methods We compared the effects of two approved methods of mouse euthanasia on the levels of retinal dopamine. We examined the level of retinal dopamine, a commonly studied neuromodulator, following euthanasia by carbo...

  12. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-08-05

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs.

  13. Retinal detachment following endophthalmitis.

    Science.gov (United States)

    Nelsen, P T; Marcus, D A; Bovino, J A

    1985-08-01

    Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.

  14. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  15. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  16. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  17. Retinal vessel caliber as a potential marker of treatment outcome in patients with proliferative diabetic retinopathy

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Torp, Thomas Lee; Lundberg, Kristian

    Title of abstract: Retinal vessel caliber as a potential marker of treatment outcome in patients with proliferative diabetic retinopathy Design of study: Three months prospective, interventional clinical study. Purpose: The retinal vascular tree can be measured non-invasively and summarized...... into the central retinal artery and vein equivalent (CRAE and CRVE). The purpose of this study was to evaluate retinal calibers as biomarkers for disease activity 3 months after panretinal photocoagulation (PRP) in patients with proliferative diabetic retinopathy (PDR). Methods: Fifty one eyes from 40 newly...... with proliferative diabetic retinopathy....

  18. Wide-field optical coherence tomography based microangiography for retinal imaging

    Science.gov (United States)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  19. Retinal vessel calibre and micro- and macrovascular complications in type 1 diabetes

    DEFF Research Database (Denmark)

    Grauslund, J; Hodgson, L; Kawasaki, R

    2009-01-01

    AIMS/HYPOTHESIS: The purpose of the study was to evaluate the association between retinal vascular calibre and micro- and macrovascular complications in a population-based cohort of Danish type 1 diabetic patients. METHODS: This was a cross-sectional study of 208 long-surviving type 1 diabetic...... and a standardised protocol. Associations between retinal vascular calibre and micro- and macrovascular complications were examined after adjusting for confounding clinical characteristics. RESULTS: Retinal photographs were gradable for 188 of 208 patients (90.3%). The median age and duration of diabetes...... in CRAE), but not neuropathy (OR 1.10, 95% CI 0.70-1.71, per SD decrease in CRAE). Retinal venular calibre was not associated with any micro- or macrovascular complications. CONCLUSIONS/INTERPRETATION: In type 1 diabetic patients, retinal arteriolar narrowing is associated with nephropathy...

  20. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    Science.gov (United States)

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  1. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  2. Advanced Coats’ disease treated with intravitreal bevacizumab combined with laser vascular ablation

    Directory of Open Access Journals (Sweden)

    Villegas VM

    2014-05-01

    Full Text Available Victor M Villegas,1 Aaron S Gold,1 Audina M Berrocal,2 Timothy G Murray11Ocular Oncology and Retina, Miami, FL, USA; 2Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USAPurpose: To evaluate the impact of intravitreal bevacizumab combined with laser vascular ablation in the management of advanced Coats’ disease presenting with exudative retinal detachment.Methods: This was a retrospective review of 24 children that presented with exudative retinal detachments associated with advanced Coats’ disease. Mean patient age was 62 months (range 9–160 months. Presenting signs included retinal detachment in 24 children (100%, vascular telangiectasia in 24 children (100%, and retinal ischemia in 24 children (100%. Twenty of 24 children presented with elevated, vascular leakage in the fovea (83%. Two children presented with sub-retinal fibrosis associated with presumed long-standing retinal detachment without evidence of rhegmatogenous retinal detachment. Ten patients exhibited vascular alterations in the periphery of the second eye without clinical evidence of exudation. All 24 children were treated with a large-spot-size diode laser directly to areas of abnormal telangiectatic vasculature. All 24 children received intravitreal bevacizumab injection. Results: All 24 children had resolution of exudative retinal detachment, ablation of vascular telangiectasia, and anatomic improvement of the retina. No child exhibited progressive retinal detachment and no eye required enucleation. No cases of neovascular glaucoma were seen. Fellow eyes with peripheral vascular alterations showed no progression to exudative vasculopathy during the observation period. Intravitreal bevacizumab injection was not associated with endophthalmitis or systemically-observed complications.Conclusion: Repetitive intravitreal bevacizumab combined with laser vascular ablation may be utilized effectively

  3. Laser photocoagulation for retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2015-03-01

    Full Text Available Retinal vein occlusion (RVO is one of the leading causes of permanent vision loss. In adults, central retinal vein occlusion (CRVO occurs in 1.8% while branch retinal vein occlusion (BRVO occurs in 0.2%. Treatment strategy and disease prognosis are determined by RVO type (ischemic/non-ischemic. Despite numerous studies and many current CRVO and BRVO treatment approaches, the management of these patients is still being debated. Intravitreal injections of steroids (triamcinolone acetate, dexamethasone and vascular endothelial growth factor (VEGF inhibitors (bevacizumab, ranibizumab were shown to be fairly effective. However, it is unclear whether anti-VEGF agents are reasonable in ischemic RVOs. Laser photocoagulation remains the only effective treatment of optic nerve head and/or retinal neovascularization. Laser photocoagulation is also indicated for the treatment of macular edema. Both threshold and sub-threshold photocoagulation may be performed. Photocoagulation performed with argon (514 nm, krypton (647 nm, or diode (810 nm laser for macular edema provides similar results (no significant differences. The treatment may be complex and include medication therapy and/or surgery. Medication therapy includes anti-aggregant agents and antioxidants, i.e., emoxypine which may be used in acute RVO as well as in post-thrombotic retinopathy. 

  4. Type 3 Neovascularization Associated with Retinitis Pigmentosa.

    Science.gov (United States)

    Sayadi, Jihene; Miere, Alexandra; Souied, Eric H; Cohen, Salomon Y

    2017-01-01

    To report a case of type 3 neovascular lesion in a patient with retinitis pigmentosa (RP) complicated by macular edema. A 78-year-old man with a long follow-up for RP was referred for painless visual acuity decrease in the right eye. Best-corrected visual acuity was 20/125 in the right eye and 20/40 in the left. Fundus examination showed typical RP and macular edema in both eyes. In the right eye, spectral domain optical coherence tomography revealed a marked cystic macular edema associated with disruption of the Bruch membrane/retinal pigment epithelium complex overlying a pigmentary epithelium detachment, with a vascular structure which appeared to originate from the deep capillary plexus and to be connected with the subretinal pigment epithelium space. Optical coherence tomography angiography showed a high-flow vessel infiltrating the outer retinal layers in the deep capillary plexus segmentation, and a tuft-shaped, bright, high-flow network that seemed to be connected with the subretinal pigment epithelium space in the outer retinal layer segmentation. This presentation was consistent with an early type 3 neovascular lesion in the right eye. Type 3 neovascularization may be considered a possible complication of RP.

  5. Type 3 Neovascularization Associated with Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Jihene Sayadi

    2017-04-01

    Full Text Available Purpose: To report a case of type 3 neovascular lesion in a patient with retinitis pigmentosa (RP complicated by macular edema. Case Report: A 78-year-old man with a long follow-up for RP was referred for painless visual acuity decrease in the right eye. Best-corrected visual acuity was 20/125 in the right eye and 20/40 in the left. Fundus examination showed typical RP and macular edema in both eyes. In the right eye, spectral domain optical coherence tomography revealed a marked cystic macular edema associated with disruption of the Bruch membrane/retinal pigment epithelium complex overlying a pigmentary epithelium detachment, with a vascular structure which appeared to originate from the deep capillary plexus and to be connected with the subretinal pigment epithelium space. Optical coherence tomography angiography showed a high-flow vessel infiltrating the outer retinal layers in the deep capillary plexus segmentation, and a tuft-shaped, bright, high-flow network that seemed to be connected with the subretinal pigment epithelium space in the outer retinal layer segmentation. This presentation was consistent with an early type 3 neovascular lesion in the right eye. Conclusion: Type 3 neovascularization may be considered a possible complication of RP.

  6. Laser photocoagulation for retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    K. A. Mirzabekova

    2015-01-01

    Full Text Available Retinal vein occlusion (RVO is one of the leading causes of permanent vision loss. In adults, central retinal vein occlusion (CRVO occurs in 1.8% while branch retinal vein occlusion (BRVO occurs in 0.2%. Treatment strategy and disease prognosis are determined by RVO type (ischemic/non-ischemic. Despite numerous studies and many current CRVO and BRVO treatment approaches, the management of these patients is still being debated. Intravitreal injections of steroids (triamcinolone acetate, dexamethasone and vascular endothelial growth factor (VEGF inhibitors (bevacizumab, ranibizumab were shown to be fairly effective. However, it is unclear whether anti-VEGF agents are reasonable in ischemic RVOs. Laser photocoagulation remains the only effective treatment of optic nerve head and/or retinal neovascularization. Laser photocoagulation is also indicated for the treatment of macular edema. Both threshold and sub-threshold photocoagulation may be performed. Photocoagulation performed with argon (514 nm, krypton (647 nm, or diode (810 nm laser for macular edema provides similar results (no significant differences. The treatment may be complex and include medication therapy and/or surgery. Medication therapy includes anti-aggregant agents and antioxidants, i.e., emoxypine which may be used in acute RVO as well as in post-thrombotic retinopathy. 

  7. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    Science.gov (United States)

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Stacker Steven A

    2010-07-01

    Full Text Available Abstract Background It has been hypothesised that increased VEGF-D expression may be an independent prognostic factor for endometrial cancer progression and lymph node metastasis; however, the mechanism by which VEGF-D may promote disease progression in women with endometrial cancer has not been investigated. Our aim was to describe the distribution of lymphatic vessels in mouse uterus and to examine the effect of VEGF-D over-expression on these vessels in a model of endometrial cancer. We hypothesised that VEGF-D over-expression would stimulate growth of new lymphatic vessels into the endometrium, thereby contributing to cancer progression. Methods We initially described the distribution of lymphatic vessels (Lyve-1, podoplanin, VEGFR-3 and VEGF-D expression in the mouse uterus during the estrous cycle, early pregnancy and in response to estradiol-17beta and progesterone using immunohistochemistry. We also examined the effects of VEGF-D over-expression on uterine vasculature by inoculating uterine horns in NOD SCID mice with control or VEGF-D-expressing 293EBNA tumor cells. Results Lymphatic vessels positive for the lymphatic endothelial cell markers Lyve-1, podoplanin and VEGFR-3 profiles were largely restricted to the connective tissue between the myometrial circular and longitudinal muscle layers; very few lymphatic vessel profiles were observed in the endometrium. VEGF-D immunostaining was present in all uterine compartments (epithelium, stroma, myometrium, although expression was generally low. VEGF-D immunoexpression was slightly but significantly higher in estrus relative to diestrus; and in estradiol-17beta treated mice relative to vehicle or progesterone treated mice. The presence of VEGF-D over-expressing tumor cells did not induce endometrial lymphangiogenesis, although changes were observed in existing vessel profiles. For myometrial lymphatic and endometrial blood vessels, the percentage of profiles containing proliferating

  9. Retinal oximetry during treatment of retinal vein occlusion by ranibizumab in patients with high blood pressure and dyslipidemia.

    Science.gov (United States)

    Keilani, C; Halalchi, A; Wakpi Djeugue, D; Regis, A; Abada, S

    2016-12-01

    In the present study, we examined retinal vascular oxygen saturation in patients with retinal vein occlusion (RVO), high blood pressure (HBP) and dyslipidemia, before and during intravitreal vascular endothelial growth factor (VEGF) injection (ranibizumab). We retrospectively reviewed the medical records of six patients with visual acuity (VA) reduced by macular edema (ME) secondary to RVO with HBP and dyslipidemia, who underwent intravitreal anti-VEGF injection between October 2014 and February 2015 in the department of ophthalmology of François-Quesnay Hospital at Mantes-la-Jolie (France). The main inclusion criterion was the presence of RVO with ME and decreased VA. The primary endpoint was improvement of retinal venous oxygen saturation in patients with RVO before and 3 months after intravitreal ranibizumab injection. Secondary outcomes were improvement of retinal arterial oxygen saturation, improvement of best-corrected visual acuity (BCVA) on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale, regression of ME measured by the central macular thickness (CMT) in nm and studying the correlation between blood pressure (BP) and retinal venous oxygen saturation before and after ranibizumab. Six eyes of six patients were included. Before treatment, the mean (standard deviation [SD]) of the retinal venous saturation (%) was 38.1±14.2. Three months after the injections, the mean (SD) of the retinal venous saturation (%) increased statistically significantly 49.2±11 (P=0.03). In this study, retinal venous oxygen saturation in patients with RVO, HBP and dyslipidemia was partially normalized during intravitreal ranibizumab treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Rickettsial retinitis: Direct bacterial infection or an immune-mediated response?

    Directory of Open Access Journals (Sweden)

    Rohan Chawla

    2017-01-01

    Full Text Available Infectious retinitis postfebrile illness is known to be caused by chikungunya, dengue, West Nile virus, Bartonella, Lyme's disease, Rift Valley fever, rickettsia, Herpes viruses etc. Rickettsia is Gram-negative bacteria transmitted by arthropods vectors. Ocular involvement is common including conjunctivitis, keratitis, anterior uveitis, panuveitis, retinitis, retinal vascular changes, and optic nerve involvement. Retinitis lesions in rickettsia can occur because of an immunological response to the bacteria or because of direct invasion and proliferation of bacteria in the inner retina. We report such a case of bilateral rickettsial retinitis proven by serology which worsened on systemic steroids and responded dramatically to therapy with oral doxycycline and steroid taper. We thus believe that direct bacterial invasion plays a major role in the pathogenesis of rickettsial retinitis.

  11. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    Science.gov (United States)

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression.

  12. ZNF408 is mutated in familial exudative vitreoretinopathy and is crucial for the development of zebrafish retinal vasculature

    NARCIS (Netherlands)

    Collin, R.W.J.; Nikopoulos, K.; Dona, M.A.; Gilissen, C.F.H.A.; Hoischen, A.; Boonstra, F.N.; Poulter, J.A.; Kondo, H.; Berger, W.; Toomes, C.; Tahira, T.; Mohn, L.R.; Blokland, E.A.W.; Hetterschijt, L.; Ali, M.; Groothuismink, J.M.; Duijkers, L.E.M.; Inglehearn, C.F.; Sollfrank, L.; Strom, T.M.; Uchio, E.; Nouhuys, C.E. van; Kremer, H.; Veltman, J.A.; Wijk, E. van; Cremers, F.P.M.

    2013-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous disorder characterized by abnormal vascularization of the peripheral retina, which can result in retinal detachment and severe visual impairment. In a large Dutch FEVR family, we performed linkage analysis, exome sequencing,

  13. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model.

    Science.gov (United States)

    Liu, Kai-Xiong; Chen, Gong-Ping; Lin, Ping-Li; Huang, Jian-Chai; Lin, Xin; Qi, Jia-Chao; Lin, Qi-Chang

    2018-01-15

    Endothelial dysfunction is the main pathogenic mechanism of cardiovascular complications induced by obstructive sleep apnea/hyponea syndrome (OSAHS). Chronic intermittent hypoxia (CIH) is the primary factor of OSAHS-associated endothelial dysfunction. The hypoxia inducible factor (HIF) pathway regulates the expression of downstream target genes and mediates cell apoptosis caused by CIH-induced endothelial injury. miRNAs play extensive and important negative regulatory roles in this process at the post-transcriptional level. However, the regulatory mechanism of miRNAs in CIH tissue models remains unclear. The present study established a mouse aortic endothelial cell model of CIH in an attempt to screen out specific miRNAs by using miRNA chip analysis. It was found that 14 miRNAs were differentially expressed. Of them, 6 were significantly different and verified by quantitative real-time PCR (Q-PCR), of which four were up-regulated and two were down-regulated markedly. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, we established signaling networks by GO to predict the target genes of the 6 miRNAs. It was found that the 6 identified miRNAs were apoptosis- or autophagy-related target genes. Down-regulation of miR-193 inhibits CIH induced endothelial injury and apoptosis- or autophagy-related protein expression. In conclusion, our results showed that CIH could induce differential expression of miRNAs, and alteration in the miRNA expression pattern was associated with the expression of apoptosis- or autophagy-related genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Plastic roles of pericytes in the blood-retinal barrier.

    Science.gov (United States)

    Park, Do Young; Lee, Junyeop; Kim, Jaeryung; Kim, Kangsan; Hong, Seonpyo; Han, Sangyeul; Kubota, Yoshiaki; Augustin, Hellmut G; Ding, Lei; Kim, Jin Woo; Kim, Hail; He, Yulong; Adams, Ralf H; Koh, Gou Young

    2017-05-16

    The blood-retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRβ) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRβ signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression.

  15. PLVAP in diabetic retinopathy: A gatekeeper of angiogenesis and vascular permeability

    NARCIS (Netherlands)

    Wiśniewska-Kruk, J.

    2014-01-01

    Nowadays, approximately 4 million people worldwide experience blindness or severe vision loss caused by diabetic retinopathy. Diabetic retinopathy is a multifactorial disease that can progress from minor changes in vascular permeability, into a proliferative retinal disorder. The increasing

  16. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  17. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  18. Retinal Detachment Vision Simulator

    Science.gov (United States)

    ... Feb 20, 2018 Gene Therapy May Be a Game-Changer for People With Inherited Retinal Disease Dec 19, 2017 ... the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  19. Learning about Retinitis Pigmentosa

    Science.gov (United States)

    Skip to main content Learning about Retinitis Pigmentosa Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research ...

  20. Impaired Retinal Vasodilator Responses in Prediabetes and Type 2 Diabetes

    Science.gov (United States)

    Lott, Mary E.J.; Slocomb, Julia E.; Shivkumar, Vikram; Smith, Bruce; Quillen, David; Gabbay, Robert A.; Gardner, Thomas W.; Bettermann, Kerstin

    2013-01-01

    Purpose In diabetes, endothelial dysfunction and subsequent structural damage to blood vessels can lead to heart attacks, retinopathy and strokes. However, it is unclear whether prediabetic subjects exhibit microvascular dysfunction indicating early stages of arteriosclerosis and vascular risk. The purpose of this study was to examine whether retinal reactivity may be impaired early in the hyperglycemic continuum and may be associated with markers of inflammation. Methods Individuals with prediabetes (n = 22), type 2 diabetes (n = 25) and healthy age and body composition matched controls (n = 19) were studied. We used the Dynamic Vessel Analyzer to assess retinal vasoreactivity (percent change in vessel diameter) during a flickering light stimulation. Fasting highly sensitive c-reactive protein (hs-CRP), a marker of inflammation, was measured in blood plasma. Results Prediabetic and diabetic individuals had attenuated peak vasodilator and relative amplitude changes in retinal vein diameters to the flickering light stimulus compared to healthy controls (peak dilation: prediabetic subjects 3.3 ± 1.8 %, diabetic subjects 3.3 ± 2.1% controls 5.6 ± 2.6%, p = .001; relative amplitude: prediabetic subjects 4.3 ± 2.2%, diabetic subjects 5.0 ± 2.6% and control subjects 7.2 ± 3.2%, p = .003). Similar findings were observed in retinal arteries. Levels of hs-CRP were not associated with either retinal vessel response parameters. Conclusion Retinal reactivity was impaired in prediabetic and type 2 diabetic individuals in parallel with reduced insulin sensitivity but not associated with levels of hs-CRP. Retinal vasoreactivity measurements may be a sensitive tool to assess early vascular risk. PMID:23742315

  1. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy.

    Science.gov (United States)

    Alavi, Marcel V; Mao, Mao; Pawlikowski, Bradley T; Kvezereli, Manana; Duncan, Jacque L; Libby, Richard T; John, Simon W M; Gould, Douglas B

    2016-01-27

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1(+/Δex41)mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes.

  2. Retinitis pigmentosa sine pigmenti. Debut with macular oedema.

    Science.gov (United States)

    de la Mata Pérez, G; Ruiz-Moreno, O; Fernández-Pérez, S; Torrón Fernández-Blanco, C; Pablo-Júlvez, L

    2014-09-01

    A 25-year-old woman, with metamorphopsia in her left eye of one year onset. The examination revealed a bilateral cystoid macular oedema (CME) and vascular attenuation. We describe the diagnostic tests, as well as differential diagnosis and treatment response with carbonic anhydrase inhibitors. The retinitis pigmentosa sine pigment is a subtype of atypical retinitis pigmentosa characterised by the absence of pigment deposits. The night blindness is milder, and perimetric and electroretinographic impairment is lower. CME is an important cause of central vision loss, and responds to anhydrase carbonic inhibitors. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  3. Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available Previously, we showed that insulin growth factor (IGF-1 binding protein-3 (IGFBP-3, independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR. The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1 and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP. IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab. Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs. NO release was neither associated with an increase in intracellular calcium nor decreased by Ca(2+/calmodulin-dependent protein kinase II (CamKII blockade; however, dephosphorylation of eNOS-Thr(495 was observed. Phosphatidylinositol 3-kinase (PI3K activity and Akt-Ser(473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate

  4. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  5. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  6. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  7. Retinal shows its true colours

    DEFF Research Database (Denmark)

    Coughlan, N. J.A.; Adamson, B. D.; Gamon, L.

    2015-01-01

    Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theor...

  8. Retinal findings in membranoproliferative glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2017-09-01

    Conclusions and importance: Drusen remain the ocular stigmata for MPGN occuring at an early age. The retinal disease is progressive with gradual thickening of Bruch's membrane and occurrence of retinal pigment epithelium detachment.

  9. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  10. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  11. Diabetes induces changes in neuroretina before retinal vessels: a spectral-domain optical coherence tomography study

    OpenAIRE

    Rodrigues, Eduardo B?chele; Urias, M?ller Gon?alves; Penha, Fernando Marcondes; Badar?, Emmerson; Novais, Eduardo; Meirelles, Rodrigo; Farah, Michel Eid

    2015-01-01

    Purpose To investigate retinal changes prior to vascular signs in patients with type 2 diabetes without diabetic retinopathy or with mild non proliferative diabetic retinopathy. Methods A cross-sectional study was performed in three groups: patients without diabetes, patients with type 2 diabetes without diabetic retinopathy, and patients with diabetes with mild diabetic retinopathy. Analysis of retinal layers was performed objectively with the Cirrus Review Software 6.0 (Carl Zeiss Meditec, ...

  12. Bioelectronic retinal prosthesis

    Science.gov (United States)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  13. Racial differences in retinal vessel geometric characteristics: a multiethnic study in healthy Asians.

    Science.gov (United States)

    Li, Xiang; Wong, Wan Ling; Cheung, Carol Yim-Lui; Cheng, Ching-Yu; Ikram, Mohammad Kamran; Li, Jialiang; Chia, Kee Seng; Wong, Tien Yin

    2013-05-01

    To investigate potential racial/ethnic differences in retinal vascular geometric parameters in a multiethnic Asian population (Chinese, Malay, and Indian) free of clinical diseases. A series of retinal vascular parameters were measured from retinal photographs using a computer-assisted program following a standardized protocol. Healthy participants were defined as nonsmokers, the absence of diabetes mellitus, uncontrolled hypertension, obesity, stroke, heart disease, glaucoma, and retinopathy. THERE WERE SIGNIFICANT DIFFERENCES IN MEASUREMENTS OF RETINAL VASCULAR CALIBER, TORTUOSITY, AND FRACTAL DIMENSION AMONG THE THREE ETHNIC GROUPS. IN MULTIPLE LINEAR REGRESSION MODEL CONTROLLING FOR AGE, SEX, BODY MASS INDEX, SYSTOLIC BLOOD PRESSURE, CHOLESTEROL, AND GLUCOSE LEVELS, INDIANS HAD THE LARGEST ARTERIOLAR AND VENULAR CALIBERS (ARTERIOLES [SE]: 158.94 μm [1.00]; venules: 228.26 μm [1.53]), followed by Malays (arterioles: 138.31 μm [0.74]; venules: 204.26 μm [1.13]), and then Chinese (arterioles: 131.20 μm [0.84]; venules: 195.09 μm [1.28]). Chinese had the largest arteriolar and venular tortuosity (arterioles [× $${10}^{5}$$]: 7.20 [0.08] VENULES [ $${10}^{5}$$]: 9.09 [0.10]), and venular fractal dimension (1.244 [0.003]). There were no statistically significant differences in other retinal vascular parameters after correcting multiple comparisons by the method of modified false discovery rate. We found that among ethnic groups composed of healthy Chinese, Malay, and Indians, there were statistically significant differences in several retinal parameters. There exist racial influences in retinal vascular parameters and other yet unknown or unmeasured environmental factor or lifestyle habits and genetic variations not related to race that may also contribute to these differences.

  14. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats.

    Directory of Open Access Journals (Sweden)

    Laura Fernández-Sánchez

    Full Text Available Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.

  15. Retinal characteristics during 1 year of insulin pump therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Hommel, Eva; Munch, Inger Christine

    2016-01-01

    of CSII led to an HbA1c reduction relative to continued MDI and a small increase in retinal thickness but not to early retinopathy worsening or to changes in retinal vascular, structural or functional characteristics. Longer duration of type 1 diabetes appears to be associated with lower macular venous......PURPOSE: To investigate changes in retinal metabolism, function, structure and morphology in relation to initiation of insulin pump therapy (continuous subcutaneous insulin infusion, CSII). METHODS: Visual acuity, retinopathy level, dark adaptation kinetics, retinal and subfoveal choroidal...... thickness, macular perfusion velocities, retinal vessel diameters and blood oxygen saturations were measured at baseline and after 1, 4, 16, 32 and 52 weeks in 31 patients with type 1 diabetes who started CSII and 20 patients who continued multiple daily insulin injections (MDI). RESULTS: One year of CSII...

  16. Sector retinitis pigmentosa.

    Science.gov (United States)

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  17. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model.

    Science.gov (United States)

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C

    2012-11-07

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.

  18. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  19. VASCULAR SURGERY

    African Journals Online (AJOL)

    2016-06-02

    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  20. Vascular Disorders

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields ...

  1. The application of optical coherence tomography angiography in retinal diseases.

    Science.gov (United States)

    Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V

    Optical coherence tomography angiography (OCTA) is a new, noninvasive imaging technique that generates real-time volumetric data on chorioretinal vasculature and its flow pattern. With the advent of high-speed optical coherence tomography, established enface chorioretinal segmentation, and efficient algorithms, OCTA generates images that resemble an angiogram. The principle of OCTA involves determining the change in backscattering between consecutive B-scans and then attributing the differences to the flow of erythrocytes through retinal blood vessels. OCTA has shown promise in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusions. It quantifies vascular compromise reflecting the severity of diabetic retinopathy. OCTA detects the presence of choroidal neovascularization in exudative age-related macular degeneration and maps loss of choriocapillaris in nonexudative age-related macular degeneration. We describe principles of OCTA and findings in common and some uncommon retinal pathologies. Finally, we summarize its potential future applications. Its current limitations include a relatively small field of view, inability to show leakage, and a tendency for image artifacts. Further larger studies will define OCTAs utility in clinical settings and establish if the technology may offer its utility in decreasing morbidity through early detection and guide therapeutic interventions in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Rat retinal vasomotion assessed by laser speckle imaging

    DEFF Research Database (Denmark)

    Neganova, Anastasiia Y; Postnov, Dmitry D; Sosnovtseva, Olga

    2017-01-01

    Vasomotion is spontaneous or induced rhythmic changes in vascular tone or vessel diameter that lead to rhythmic changes in flow. While the vascular research community debates the physiological and pathophysiological consequence of vasomotion, there is a great need for experimental techniques...... that can address the role and dynamical properties of vasomotion in vivo. We apply laser speckle imaging to study spontaneous and drug induced vasomotion in retinal network of anesthetized rats. The results reveal a wide variety of dynamical patterns. Wavelet-based analysis shows that (i) spontaneous...

  3. Pharmacotherapy of retinal disease with visual cycle modulators.

    Science.gov (United States)

    Hussain, Rehan M; Gregori, Ninel Z; Ciulla, Thomas A; Lam, Byron L

    2018-04-01

    Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. Areas covered: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. Expert opinion: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.

  4. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  5. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  6. Stem cells in clinical trials for treatment of retinal degeneration.

    Science.gov (United States)

    Klassen, Henry

    2016-01-01

    After decades of basic science research involving the testing of regenerative strategies in animal models of retinal degenerative diseases, a number of clinical trials are now underway, with additional trials set to begin shortly. These efforts will evaluate the safety and preliminary efficacy of cell-based products in the eyes of patients with a number of retinal conditions, notably including age-related macular degeneration, retinitis pigmentosa and Stargardt's disease. This review considers the scientific work and early trials with fetal cells and tissues that set the stage for the current clinical investigatory work, as well the trials themselves, specifically those either now completed, underway or close to initiation. The cells of interest include retinal pigment epithelial cells derived from embryonic stem or induced pluripotent stem cells, undifferentiated neural or retinal progenitors or cells from the vascular/bone marrow compartment or umbilical cord tissue. Degenerative diseases of the retina represent a popular target for emerging cell-based therapeutics and initial data from early stage clinical trials suggest that short-term safety objectives can be met in at least some cases. The question of efficacy will require additional time and testing to be adequately resolved.

  7. Retinal vessels caliber assessment in patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    N. S. Semenova

    2014-07-01

    Full Text Available Purpose: to evaluate the diagnostic capability of automated retinal vessels (RV caliber estimation for hypertensive angiopathy.Methods: this study included 146 patients (292 eyes with arterial hypertension. All the subjects underwent fundus photography and RV caliber estimation. the latter was performed using newly developed computer-based method for automated vessel detection and central retinal arteriolar and venular equivalents determination (CRAE & CRVE. Sensitivity, specificity, and reproducibility of the method were estimated.Results: the method of RV caliber assessment showed good reproducibility. the overall specificity and sensitivity were 74% and 80.77%, respectively. Computer-based method of retinal vascular caliber assessment revealed higher predictive value comparing with ophthalmoscopic assessment (AUC = 0.903 and 0.85, respectively. Retinal arteriolar and venular caliber and AVR tend to decrease with age. Higher blood pressure is associated with narrower retinal arterioles.Conclusion: Novel method of RV caliber estimation demonstrated high information value. these findings are in good agreementwith data from major population-based studies.

  8. Retinal vessels caliber assessment in patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    N. S. Semenova

    2012-01-01

    Full Text Available Purpose: to evaluate the diagnostic capability of automated retinal vessels (RV caliber estimation for hypertensive angiopathy.Methods: this study included 146 patients (292 eyes with arterial hypertension. All the subjects underwent fundus photography and RV caliber estimation. the latter was performed using newly developed computer-based method for automated vessel detection and central retinal arteriolar and venular equivalents determination (CRAE & CRVE. Sensitivity, specificity, and reproducibility of the method were estimated.Results: the method of RV caliber assessment showed good reproducibility. the overall specificity and sensitivity were 74% and 80.77%, respectively. Computer-based method of retinal vascular caliber assessment revealed higher predictive value comparing with ophthalmoscopic assessment (AUC = 0.903 and 0.85, respectively. Retinal arteriolar and venular caliber and AVR tend to decrease with age. Higher blood pressure is associated with narrower retinal arterioles.Conclusion: Novel method of RV caliber estimation demonstrated high information value. these findings are in good agreementwith data from major population-based studies.

  9. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  10. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  11. Relationship between retinal blood flow and arterial oxygen.

    Science.gov (United States)

    Cheng, Richard W; Yusof, Firdaus; Tsui, Edmund; Jong, Monica; Duffin, James; Flanagan, John G; Fisher, Joseph A; Hudson, Chris

    2016-02-01

    Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content

  12. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  13. Retinitis pigmentosa and deafness.

    OpenAIRE

    Mills, R P; Calver, D M

    1987-01-01

    Seventeen patients with retinitis pigmentosa (RP) have been investigated audiologically. Of 9 found to have a significant hearing loss, 6 were examples of Usher's syndrome; these patients had a cochlear pattern of hearing loss. The other 3 were examples of Senior's syndrome, Kearne-Sayre syndrome and Lawrence-Moon-Biedle syndrome respectively. Two of these patients had absent stapedius reflexes. It is suggested that patients with different RP-deafness syndromes may have lesions in different p...

  14. Vascular ultrasound.

    Science.gov (United States)

    Pilcher, D B; Ricci, M A

    1998-04-01

    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  15. Inherited Retinal Degenerative Disease Registry

    Science.gov (United States)

    2017-09-13

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  16. Outcomes in bullous retinal detachment

    Directory of Open Access Journals (Sweden)

    Sarah P. Read

    2017-06-01

    Conclusions and importance: GRTs are an uncommon cause of retinal detachment. While pars plana vitrectomy with tamponade is standard in GRT management, there is variability in the use of scleral buckling and PFO in these cases. This is in contrast to retinal dialysis where scleral buckle alone can yield favorable results. Though a baseball ocular trauma is common, retinal involvement is rare compared to other sports injuries such as those occurring with tennis, soccer and golf. Sports trauma remains an important cause of retinal injury and patients should be counseled on the need for eye protection.

  17. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  18. Congenital Retinal Macrovessel and the Association of Retinal Venous Malformations With Venous Malformations of the Brain.

    Science.gov (United States)

    Pichi, Francesco; Freund, K Bailey; Ciardella, Antonio; Morara, Mariachiara; Abboud, Emad B; Ghazi, Nicola; Dackiw, Christine; Choudhry, Netan; Souza, Eduardo Cunha; Cunha, Leonardo Provetti; Arevalo, J Fernando; Liu, T Y Alvin; Wenick, Adam; He, Lingmin; Villarreal, Guadalupe; Neri, Piergiorgio; Sarraf, David

    2018-04-01

    Congenital retinal macrovessel (CRM) is a rarely reported venous malformation of the retina that is associated with venous anomalies of the brain. To study the multimodal imaging findings of a series of eyes with congenital retinal macrovessel and describe the systemic associations. In this cross-sectional multicenter study, medical records were retrospectively reviewed from 7 different retina clinics worldwide over a 10-year period (2007-2017). Patients with CRM, defined as an abnormal, large, macular vessel with a vascular distribution above and below the horizontal raphe, were identified. Data were analyzed from December 2016 to August 2017. Clinical information and multimodal retinal imaging findings were collected and studied. Pertinent systemic information, including brain magnetic resonance imaging findings, was also noted if available. Of the 49 included patients, 32 (65%) were female, and the mean (SD) age at onset was 44.0 (20.9) years. A total of 49 eyes from 49 patients were studied. Macrovessel was unilateral in all patients. Color fundus photography illustrated a large aberrant dilated and tortuous retinal vein in all patients. Early-phase frames of fluorescein angiography further confirmed the venous nature of the macrovessel in 40 of 40 eyes. Optical coherence tomography angiography, available in 17 eyes (35%), displayed microvascular capillary abnormalities around the CRM, which were more evident in the deep capillary plexus. Of the 49 patients with CRM, 39 (80%) did not illustrate any evidence of ophthalmic complications. Ten patients (20%) presented with retinal complications, typically an incidental association with CRM. Twelve patients (24%) were noted to have venous malformations of the brain with associated magnetic resonance imaging. Of these, location of the venous anomaly in the brain was ipsilateral to the CRM in 10 patients (83%) and contralateral in 2 patients (17%), mainly located in the frontal lobe in 9 patients (75%). Our study has

  19. Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy

    Science.gov (United States)

    Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.

    2012-01-01

    Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156

  20. Decreased Retinal Thickness in Type 1 Diabetic Children with Signs of Nonproliferative Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    P. Ruiz-Ocaña

    2018-01-01

    Full Text Available The retina functions as a neurovascular unit. How early vascular alterations affect neuronal layers remains controversial; early vascular failure could lead to edema increasing retinal thicknesses, but alternatively neuronal loss could lead to reduced retinal thickness. Objective. To evaluate retinal thickness in a cohort of pediatric patients with type 1 diabetes mellitus (PwT1DM and to analyze differences according to the presence or absence of nonproliferative diabetic retinopathy (NPDR, poor metabolic control, and diabetes duration. Patients and Methods. We performed retinographies and optical coherence tomography (OCT (TOPCON 3D1000® to PwT1DM followed at our center and healthy controls. Measurements of the control group served to calculate reference values. Results. 59 PwT1DM (age 12.51 ± 2.59 and 22 healthy controls (age 10.66 ± 2.51 volunteered. Only two PwT1DM, both adolescents with poor metabolic control, presented NPRD. Both showed decreased thicknesses and retinal volumes. The odds ratio of having decreased retinal thickness when signs of NPDR were present was 11.72 (95% IC 1.16–118.28; p=0.036. Conclusions. PwT1DM with NPDR have increased odds of decreased retinal thicknesses and volumes. Whether these changes are reversible by improving metabolic control or not remains to be elucidated.

  1. Repair of Total Tractional Retinal Detachment in Norrie Disease: Report of Technique and Successful Surgical Outcome.

    Science.gov (United States)

    Todorich, Bozho; Thanos, Aristomenis; Yonekawa, Yoshihiro; Capone, Antonio

    2017-03-01

    Norrie disease is a rare, but devastating cause of pediatric retinal detachment, universally portending a poor visual prognosis. This paper describes successful surgical management of an infant with total retinal detachment associated with Norrie disease mutation. The infant was a full-term white male who presented with bilateral total funnel retinal detachments (RDs). He underwent genetic testing, which demonstrated single-point mutation 133 G>A transition in exon 2 of the NDP gene. The retinal detachment was managed with translimbal iridectomy, lensectomy, capsulectomy, and vitrectomy. Careful dissection of the retrolental membranes resulted in opening of the funnel. Single-stage surgery in this child's eye achieved re-attachment of the posterior pole with progressive reabsorption of subretinal fluid and cholesterol without the need for external drainage. Fluorescein angiography, performed at 2 months postoperatively, demonstrated perfusion of major vascular arcades, but with significant abnormalities and aneurysmal changes of higher-order vessels, suggestive of retinal and vascular dysplasia. The child has maintained brisk light perception vision. Early surgical intervention with careful dissection of tractional tissues can potentially result in good anatomic outcomes in some patients with Norrie disease-associated retinal detachment. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:260-262.]. Copyright 2017, SLACK Incorporated.

  2. AUTOMATIC DETECTION AND CLASSIFICATION OF RETINAL VASCULAR LANDMARKS

    Directory of Open Access Journals (Sweden)

    Hadi Hamad

    2014-06-01

    Full Text Available The main contribution of this paper is introducing a method to distinguish between different landmarks of the retina: bifurcations and crossings. The methodology may help in differentiating between arteries and veins and is useful in identifying diseases and other special pathologies, too. The method does not need any special skills, thus it can be assimilated to an automatic way for pinpointing landmarks; moreover it gives good responses for very small vessels. A skeletonized representation, taken out from the segmented binary image (obtained through a preprocessing step, is used to identify pixels with three or more neighbors. Then, the junction points are classified into bifurcations or crossovers depending on their geometrical and topological properties such as width, direction and connectivity of the surrounding segments. The proposed approach is applied to the public-domain DRIVE and STARE datasets and compared with the state-of-the-art methods using proper validation parameters. The method was successful in identifying the majority of the landmarks; the average correctly identified bifurcations in both DRIVE and STARE datasets for the recall and precision values are: 95.4% and 87.1% respectively; also for the crossovers, the recall and precision values are: 87.6% and 90.5% respectively; thus outperforming other studies.

  3. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

    Science.gov (United States)

    Campbell, J. P.; Zhang, M.; Hwang, T. S.; Bailey, S. T.; Wilson, D. J.; Jia, Y.; Huang, D.

    2017-02-01

    Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

  4. Fundus autofluorescence in retinal artery occlusion: A more precise diagnosis.

    Science.gov (United States)

    Bacquet, J-L; Sarov-Rivière, M; Denier, C; Querques, G; Riou, B; Bonin, L; Barreau, E; Labetoulle, M; Rousseau, A

    2017-10-01

    Retinal artery occlusion (RAO) is a medical emergency associated with a high risk of cerebral vascular accident and other cardiovascular events. Among patients with non-arteritic RAO, a retinal embolus is observed in approximately 40% of cases. Fundus examination and retinography are not reliable to predict the nature of the emboli. We report three consecutive cases of central and branch RAO that were investigated with fundus autofluorescence, fluorescein angiography and color retinal photographs. All patients underwent complete neurological and cardiovascular workups, with brain imaging, cardiac Doppler ultrasound, carotid Dopplers and Holter ECG's, to determine the underlying mechanism of retinal embolism. In the three cases, aged 77.7±4 years (2 women and 1 man), fundus autofluorescence demonstrated hyperautofluorescent emboli. In two cases, it allowed visualization of emboli that were not detected with fundus examination or retinography. The cardiovascular work-up demonstrated atheromatous carotid or aortic plaques in all patients. In one case, it permitted the diagnosis of RAO. Two of the three cases were considered to be of atherosclerotic origin and one of undefined origin. Fundus autofluorescence may help to detect and characterize retinal emboli. Since lipofuscin, which is present in large quantity in atherosclerotic plaques, is the main fluorophore detected with fundus autofluorescence, this non-invasive and simple examination may give information about the underlying mechanism of retinal embolism, and thus impact the etiologic assessment of RAO. Additional studies are necessary to confirm this potential role of autofluorescence. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Optical modulation of transgene expression in retinal pigment epithelium

    Science.gov (United States)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  6. Edaravone Protect against Retinal Damage in Streptozotocin-Induced Diabetic Mice

    Science.gov (United States)

    Liu, Xiaoyi; Chen, Xi; Xie, Ping; Yuan, Songtao; Zhang, Weiwei; Lin, Xiaojun; Liu, Qinghuai

    2014-01-01

    Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p.) treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs) damage was evaluated by recording the pattern electroretinogram (ERG). RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and the levels of reactive oxygen species (ROS) were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes. PMID:24897298

  7. Edaravone protect against retinal damage in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Dongqing Yuan

    Full Text Available Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, a free radical scavenger, is used for the clinical treatment of retinal injury. In this study, we investigated the protective effects of edaravone against diabetic retinal damage in the mouse. Diabetic retinopathy in the mouse was induced by injection of streptozotocin. Edaravone was given once-daily and was intraperitoneally (i.p. treated at a dose of 3 mg/kg from streptozotocin injection to 4 weeks after onset of diabetes. Retinal ganglion cells (RGCs damage was evaluated by recording the pattern electroretinogram (ERG. RGCs damage was also detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, and the levels of reactive oxygen species (ROS were determined fluorometrically. The expressions of phosporylated-ERK1/2, BDNF, and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expression of BDNF was significantly decreased in the retinas of diabetic mice, compared to nondiabetic mice. Administration of edaravone significantly attenuated diabetes induced RGCs death, upregulation of ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF. These findings suggest that oxidative stress plays a pivotal role in diabetic retinal damage and that systemic administration of edaravone may slow the progression of retinal neuropathy induced by diabetes.

  8. Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments

    Science.gov (United States)

    Kondo, Hiroyuki

    2015-01-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary vitreoretinal disorder that can cause various types of retinal detachments. The abnormalities in eyes with FEVR are caused by poor vascularization in the peripheral retina. The genetics of FEVR is highly heterogeneous, and mutations in the genes for Wnt signaling and a transcription factor have been reported to be responsible for FEVR. These factors have been shown to be the regulators of the pathophysiological pathways of retinal vascular development. Studies conducted to identify the causative genes of FEVR have uncovered a diverse and complex relationship between FEVR and other diseases; for example, Norrie disease, a Mendelian-inherited disease; retinopathy of prematurity, a multifactorial genetic disease; and Coats disease, a nongenetic disease, associated with pediatric retinal detachments. PMID:29018668

  9. Combined central retinal artery and vein occlusion in Churg-Strauss syndrome

    DEFF Research Database (Denmark)

    Hamann, Steffen; Johansen, Sven; Hamann, Steffen Ellitsgaard

    2006-01-01

    PURPOSE: To describe a rare case of Churg-Strauss syndrome presenting with severe visual loss due to a combined central retinal vein and artery occlusion. METHODS: A 42-year old man with a medical history of asthma and blood hypereosinophilia developed a sudden loss of vision in his right eye. We...... and dilated and tortuous veins. The diagnosis was confirmed by a fluorescein angiogram showing absence of retinal filling and normal choroidal filling. Churg-Strauss syndrome was diagnosed based on the necessary presence of four of six criteria for the disease proposed by the American College of Rheumatology...... the vascular occlusion and experienced no visual improvement. CONCLUSION: Combined central retinal artery and vein occlusion can occur in Churg-Strauss syndrome. We suggest that regional vasculitis may be the pathological mechanism underlying the vascular occlusions observed in our case. The condition carries...

  10. Thrombophilic screening in retinal artery occlusion patients

    Directory of Open Access Journals (Sweden)

    Valeria Nagy

    2008-10-01

    Full Text Available Valeria Nagy1, Lili Takacs1, Zita Steiber1, György Pfliegler2, Andras Berta11Department of Ophthalmology, 2Division of Rare Diseases, University of Debrecen Medical and Health Science Center, Debrecen, HungaryBackground: Retinal artery occlusion (RAO is an ischemic vascular damage of the retina, which frequently leads to sudden, mostly irreversible loss of vision. In this study, blood thrombophilic factors as well as cardiovascular risk factors were investigated for their relevance to this pathology. Thrombophilic risk factors so far not evaluated were included in the study.Patients and methods: 28 RAO patients and 81 matched control subjects were examined. From blood samples, protein C, protein S, antithrombinopathy, and factor V (Leiden mutation (FV, factor II gene polymorphism, factor VIII C level, plasminogen activity, lipoprotein(a and fibrinogen levels, hyperhomocysteinemia and presence of anticardiolipin – antiphospholipid antibodies were investigated. Possibly relevant pathologies such as diabetes mellitus, hypertension, and ischemic heart disease were also registered. Statistical analysis by logistic regression was performed with 95% confidence intervals.Results: In the group of patients with RAO only the incidence of hypertension (OR: 3.33, 95% CI: 1.30–9.70, p = 0.014 as an average risk factor showed significant difference, but thrombophilic factors such as hyperfibrinogenemia (OR: 2.9, 95% CI: 1.29–6.57, p = 0.010 and the presence of FV (Leiden mutation (OR: 3.9, 95% CI: 1.43–10.96, p = 0.008 increased the chances of developing this disease.Conclusions: Our results support the assumption that thrombophilia may contribute to the development of RAO besides vascular damage due to the presence of cardiovascular risk factors. Further studies are needed, however, to justify the possible use of secondary prophylaxis in form of anticoagulant/antiplatelet therapy.Keywords: retinal arterial occlusion, risk factors, thrombophilia

  11. A case of congenital retinal macrovessel in an otherwise normal eye

    Directory of Open Access Journals (Sweden)

    Margaret R. Strampe

    2017-12-01

    Conclusions and importance: We describe findings of OCTA imaging in a patient with CRM. Previous reports have relied on examination using fluorescein angiography, which does not provide sufficient axial resolution to discern the different vascular plexuses. This report further characterizes how this rare condition can affect foveal morphology and retinal vasculature.

  12. Quantitative measurement of changes in retinal vessel diameter in ocular fundus images

    DEFF Research Database (Denmark)

    Pedersen, Lars; Grunkin, Michael; Ersbøll, Bjarne Kjær

    2000-01-01

    The change in diameter of retinal vessels as a function of increasing distance to the optic disc is believed to be indicative of the risk level of various vascular diseases such as generalised arteriosclerosis and Diabetes Mellitus. In particular, focal arteriolar narrowing (FAN) is considered re...

  13. Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice

    NARCIS (Netherlands)

    Kuiper, Esther J.; van Zijderveld, Rogier; Roestenberg, Peggy; Lyons, Karen M.; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2008-01-01

    Experimental prevention of basal lamina (BL) thickening of retinal capillaries ameliorates early vascular changes caused by diabetes. Connective tissue growth factor (CTGF) is upregulated early in diabetes in the human retina and is a potent inducer of expression of BL components. We hypothesize

  14. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  15. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  16. Non-syndromic retinitis pigmentosa

    NARCIS (Netherlands)

    Verbakel, S.K. (Sanne K.); R.A.C. van Huet (Ramon A. C.); C.J.F. Boon (Camiel); A.I. Hollander (Anneke); R.W.J. Collin (Rob); C.C.W. Klaver (Caroline); C. Hoyng (Carel); R. Roepman (Ronald); B.J. Klevering (Jeroen)

    2018-01-01

    textabstractRetinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic,

  17. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  18. Activin/Nodal Signaling Supports Retinal Progenitor Specification in a Narrow Time Window during Pluripotent Stem Cell Neuralization

    Directory of Open Access Journals (Sweden)

    Michele Bertacchi

    2015-10-01

    Full Text Available Retinal progenitors are initially found in the anterior neural plate region known as the eye field, whereas neighboring areas undertake telencephalic or hypothalamic development. Eye field cells become specified by switching on a network of eye field transcription factors, but the extracellular cues activating this network remain unclear. In this study, we used chemically defined media to induce in vitro differentiation of mouse embryonic stem cells (ESCs toward eye field fates. Inhibition of Wnt/β-catenin signaling was sufficient to drive ESCs to telencephalic, but not retinal, fates. Instead, retinal progenitors could be generated from competent differentiating mouse ESCs by activation of Activin/Nodal signaling within a narrow temporal window corresponding to the emergence of primitive anterior neural progenitors. Activin also promoted eye field gene expression in differentiating human ESCs. Our results reveal insights into the mechanisms of eye field specification and open new avenues toward the generation of retinal progenitors for translational medicine.

  19. Technical brief: a comparison of two methods of euthanasia on retinal dopamine levels.

    Science.gov (United States)

    Hwang, Christopher K; Iuvone, P Michael

    2013-01-01

    Mice are commonly used in biomedical research, and euthanasia is an important part of mouse husbandry. Approved, humane methods of euthanasia are designed to minimize the potential for pain or discomfort, but may also influence the measurement of experimental variables. We compared the effects of two approved methods of mouse euthanasia on the levels of retinal dopamine. We examined the level of retinal dopamine, a commonly studied neuromodulator, following euthanasia by carbon dioxide (CO₂)-induced asphyxiation or by cervical dislocation. We found that the level of retinal dopamine in mice euthanized through CO₂ overdose substantially differed from that in mice euthanized through cervical dislocation. The use of CO₂ as a method of euthanasia could result in an experimental artifact that could compromise results when studying labile biologic processes.

  20. Spectrophotometric retinal oximetry in pigs

    DEFF Research Database (Denmark)

    Traustason, Sindri; Kiilgaard, Jens Folke; Karlsson, Robert

    2013-01-01

    PURPOSE: To assess the validity of spectrophotometric retinal oximetry, by comparison to blood gas analysis and intra-vitreal measurements of partial pressure of oxygen (pO2). METHODS: Female domestic pigs were used for all experiments (n=8). Oxygen fraction in inspired air was changed using...... a mixture of room air, pure oxygen and pure nitrogen, ranging from 5% to 100% oxygen. Femoral arterial blood gas analysis and retinal oximetry was performed at each level of inspiratory oxygen fraction. Retinal oximetry was performed using a commercial instrument, the Oxymap Retinal Oximeter T1 (Oxymap ehf...... arterial oxygen saturation and the optical density ratio over retinal arteries revealed an approximately linear relationship (R(2) = 0.74, p = 3.4 x 10(-9)). In order to test the validity of applying the arterial calibration to veins, we compared non-invasive oximetry measurements to invasive pO2...

  1. Retinal changes in diabetic patients without diabetic retinopathy.

    Science.gov (United States)

    Dumitrescu, Alina Gabriela; Istrate, Sinziana Luminita; Iancu, Raluca Claudia; Guta, Oana Maria; Ciuluvica, Radu; Voinea, Liliana

    2017-01-01

    The purpose of this study was to measure retinal vessel caliber and to examine early changes in macular thickness using optical coherence tomography (OCT). We evaluated to what extend vascular caliber and macular thickness differed between patients with type 2 diabetes mellitus without diabetic retinopathy compared with healthy individuals. 26 diabetic patients without diabetic retinopathy and 26 normal participants without any retinal and optic nerve diseases underwent ophthalmic examination, fundus photography, and OCT imaging. Temporal inferior retinal vessel diameters were measured using OCT. Also, we measured macular thickness in nine ETDRS subfields using Cirrus OCT. The mean age in the diabetic group was 61.5 years and in the control group, 55.5 years. Wider retinal arterioles and venules were found in patients with diabetes compared with healthy subjects (120 µm versus 96 µm, pdiabetes mellitus, central macular thickness was significantly thinner than that of control eyes (243.5 µm versus 269.9 µm, p value diabetes without diabetic retinopathy.

  2. Comparison of low-cost handheld retinal camera and traditional table top retinal camera in the detection of retinal features indicating a risk of cardiovascular disease

    Science.gov (United States)

    Joshi, V.; Wigdahl, J.; Nemeth, S.; Zamora, G.; Ebrahim, E.; Soliz, P.

    2018-02-01

    Retinal abnormalities associated with hypertensive retinopathy are useful in assessing the risk of cardiovascular disease, heart failure, and stroke. Assessing these risks as part of primary care can lead to a decrease in the incidence of cardiovascular disease-related deaths. Primary care is a resource limited setting where low cost retinal cameras may bring needed help without compromising care. We compared a low-cost handheld retinal camera to a traditional table top retinal camera on their optical characteristics and performance to detect hypertensive retinopathy. A retrospective dataset of N=40 subjects (28 with hypertensive retinopathy, 12 controls) was used from a clinical study conducted at a primary care clinic in Texas. Non-mydriatic retinal fundus images were acquired using a Pictor Plus hand held camera (Volk Optical Inc.) and a Canon CR1-Mark II tabletop camera (Canon USA) during the same encounter. The images from each camera were graded by a licensed optometrist according to the universally accepted Keith-Wagener-Barker Hypertensive Retinopathy Classification System, three weeks apart to minimize memory bias. The sensitivity of the hand-held camera to detect any level of hypertensive retinopathy was 86% compared to the Canon. Insufficient photographer's skills produced 70% of the false negative cases. The other 30% were due to the handheld camera's insufficient spatial resolution to resolve the vascular changes such as minor A/V nicking and copper wiring, but these were associated with non-referable disease. Physician evaluation of the performance of the handheld camera indicates it is sufficient to provide high risk patients with adequate follow up and management.

  3. Hypothalamic neurosecretory and circadian vasopressinergic neuronal systems in the blind cone-rod homeobox knock out mouse (Crx(-/-) ) and the 129sv wild type mouse

    DEFF Research Database (Denmark)

    Rovsing, Louise; Rath, Martin Fredensborg; Møller, Morten

    2013-01-01

    circadian AVP-rhythm. We have in this study of the brown 129sv mouse and the visual blind cone-rod homeobox gene knock out mouse (Crx(-/-) ) with degeneration of the retinal rods and cones, but a preserved non-image forming optic system, studied the temporal Avp-expression in both the neurosecretory...

  4. Versatile functional roles of horizontal cells in the retinal circuit.

    Science.gov (United States)

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  5. The primary vascular dysregulation syndrome: implications for eye diseases

    Science.gov (United States)

    2013-01-01

    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood–brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide

  6. Update on wide- and ultra-widefield retinal imaging

    Directory of Open Access Journals (Sweden)

    Samir S Shoughy

    2015-01-01

    Full Text Available The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice.

  7. Recent developments in retinal lasers and delivery systems

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Yadav

    2014-01-01

    Full Text Available Photocoagulation is the standard of care for several ocular disorders and in particular retinal conditions. Technology has offered us newer lasing mediums, wavelengths and delivery systems. Pattern scan laser in proliferative diabetic retinopathy and diabetic macular edema allows laser treatment that is less time consuming and less painful. Now, it is possible to deliver a subthreshold micropulse laser that is above the threshold of biochemical effect but below the threshold of a visible, destructive lesion thereby preventing collateral damage. The advent of solid-state diode yellow laser allows us to treat closer to the fovea, is more effective for vascular structures and offers a more uniform effect in patients with light or irregular fundus pigmentation. Newer retinal photocoagulation options along with their advantages is discussed in this review.

  8. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  9. Economic evaluation of an e-mental health intervention for patients with retinal exudative diseases who receive intra-ocular anti-VEGF injections (E-PsEYE): protocol for a randomised controlled trial.

    NARCIS (Netherlands)

    van der Aa, HPA; van Rens, G.H.M.B.; Verbraak, F.D.; Bosscha, M; Koopmanschap, M.A.; Comijs, H.C.; Cuijpers, P.; van Nispen, R.M.A.

    2017-01-01

    Introduction Because of the great potential of vascular endothelial growth factor inhibitors (anti-VEGF) for retinal exudative diseases, an increased number of patients receives this treatment. However, during this treatment, patients are subjected to frequent invasive intravitreal injections, and

  10. Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage.

    Science.gov (United States)

    Jobling, A I; Guymer, R H; Vessey, K A; Greferath, U; Mills, S A; Brassington, K H; Luu, C D; Aung, K Z; Trogrlic, L; Plunkett, M; Fletcher, E L

    2015-02-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by drusen deposits and thickened Bruch's membrane (BM). This study details the capacity of nanosecond laser treatment to reduce drusen and thin BM while maintaining retinal structure. Fifty patients with AMD had a single nanosecond laser treatment session and after 2 yr, change in drusen area was compared with an untreated cohort of patients. The retinal effect of the laser was determined in human and mouse eyes using immunohistochemistry and compared with untreated eyes. In a mouse with thickened BM (ApoEnull), the effect of laser treatment was quantified using electron microscopy and quantitative PCR. In patients with AMD, nanosecond laser treatment reduced drusen load at 2 yr. Retinal structure was not compromised in human and mouse retina after laser treatment, with only a discrete retinal pigment epithelium (RPE) injury, and limited mononuclear cell response observed. BM was thinned in the ApoEnull mouse 3 mo after treatment (ApoEnull treated 683 ± 38 nm, ApoEnull untreated 890 ± 60 nm, C57Bl6J 606 ± 43 nm), with the expression of matrix metalloproteinase-2 and -3 increased (>260%). Nanosecond laser resolved drusen independent of retinal damage and improved BM structure, suggesting this treatment has the potential to reduce AMD progression. © FASEB.

  11. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  12. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  13. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    Science.gov (United States)

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    1), and vascular cell adhesion molecule 1 (VCAM-1) and higher levels of regulated upon activation, normal T cell expressed and presumably secreted (RANTES) but lower levels of interleukin-4 (IL-4) compared to controls. Retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells are fully permissive for ZIKV lytic replication and are primary target cells in the retinal barriers for infection. ZIKV infection of retinal endothelial cells and retinal pericytes induces significantly higher levels of RANTES that likely contributes to ocular inflammation.

  14. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    Science.gov (United States)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  15. Evaluation of the Retinal Vasculature in Hypertension and Chronic Kidney Disease in an Elderly Population of Irish Nuns.

    Science.gov (United States)

    McGowan, Amy; Silvestri, Giuliana; Moore, Evelyn; Silvestri, Vittorio; Patterson, Christopher C; Maxwell, Alexander P; McKay, Gareth J

    2015-01-01

    Chronic kidney disease (CKD) and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC) and fractal dimension (DF), with both hypertension and CKD in elderly Irish nuns. Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES) were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI), refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD), cerebrovascular accident (CVA), diabetes and medication use. In total, 1122 (91%) participants (mean age: 76.3 [range: 56-100] years) had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE) in a fully adjusted analysis (P = 0.002; effect size = -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm). No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found. Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.

  16. Evaluation of the Retinal Vasculature in Hypertension and Chronic Kidney Disease in an Elderly Population of Irish Nuns.

    Directory of Open Access Journals (Sweden)

    Amy McGowan

    Full Text Available Chronic kidney disease (CKD and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC and fractal dimension (DF, with both hypertension and CKD in elderly Irish nuns.Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI, refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD, cerebrovascular accident (CVA, diabetes and medication use.In total, 1122 (91% participants (mean age: 76.3 [range: 56-100] years had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE in a fully adjusted analysis (P = 0.002; effect size = -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm. No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found.Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.

  17. Genetics Home Reference: retinitis pigmentosa

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. ... in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol. 2008; ...

  18. Automated detection of retinal disease.

    Science.gov (United States)

    Helmchen, Lorens A; Lehmann, Harold P; Abràmoff, Michael D

    2014-11-01

    Nearly 4 in 10 Americans with diabetes currently fail to undergo recommended annual retinal exams, resulting in tens of thousands of cases of blindness that could have been prevented. Advances in automated retinal disease detection could greatly reduce the burden of labor-intensive dilated retinal examinations by ophthalmologists and optometrists and deliver diagnostic services at lower cost. As the current availability of ophthalmologists and optometrists is inadequate to screen all patients at risk every year, automated screening systems deployed in primary care settings and even in patients' homes could fill the current gap in supply. Expanding screens to all patients at risk by switching to automated detection systems would in turn yield significantly higher rates of detecting and treating diabetic retinopathy per dilated retinal examination. Fewer diabetic patients would develop complications such as blindness, while ophthalmologists could focus on more complex cases.

  19. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  20. Prophylactic treatment of retinal breaks

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Grauslund, Jakob

    2015-01-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...

  1. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    Full Text Available The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER

  2. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity.

    Science.gov (United States)

    Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn

    2014-05-15

    Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.

  3. Concentric retinitis pigmentosa: clinicopathologic correlations.

    Science.gov (United States)

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  4. Unilateral retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Pearlman, J T; Saxton, J; Hoffman, G

    1976-05-01

    A patient presented with unilateral findings of night blindness shown by impaired rod function and dark adaptation, constricted visual fields with good central acuity, a barely recordable electro-retinographic b-wave, and a unilaterally impaired electro-oculogram. There were none of the pigmentary changes usually associated with retinitis pigmentosa. The unaffected right eye was normal in all respects. Therefore the case is most probably one of unilateral retinitis pigmentosa sine pigmento.

  5. Light and inherited retinal degeneration

    OpenAIRE

    Paskowitz, D M; LaVail, M M; Duncan, J L

    2006-01-01

    Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...

  6. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  7. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    Science.gov (United States)

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  8. Retinal pigment epithelial detachments and tears, and progressive retinal degeneration in light chain deposition disease.

    Science.gov (United States)

    Spielberg, Leigh H; Heckenlively, John R; Leys, Anita M

    2013-05-01

    Light-chain deposition disease (LCDD) is a rare condition characterised by deposition of monoclonal immunoglobulin light chains (LCs) in tissues, resulting in varying degrees of organ dysfunction. This study reports the characteristic clinical ocular findings seen in advanced LCDD upon development of ocular fundus changes. This is the first report to describe this entity in vivo in a series of patients. A case series of ocular fundus changes in three patients with kidney biopsy-proven LCDD. All patients underwent best corrected visual acuity (BCVA) exam, perimetry, colour fundus photography and fluorescein angiography; two patients underwent indocyanine green angiography, optical coherence tomography, ultrasound and electroretinography; and one patient underwent fundus autofluorescence. Three patients, 53-60 years old at initial presentation, were studied. All three presented with night blindness, poor dark adaptation, metamorphopsia and visual loss. Examination revealed serous and serohaemorrhagic detachments, multiple retinal pigment epithelial (RPE) tears, diffuse RPE degeneration and progressive fibrotic changes. Neither choroidal neovascularisation nor other vascular abnormalities were present. Final best corrected visual acuity (BCVA) ranged from 20/40 to 20/300. Progressive LC deposition in the fundus seems to damage RPE pump function with flow disturbance between choroid and retina. This pathogenesis can explain the evolution to RPE detachments and subsequent rips and progressive retinal malfunction.

  9. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    Science.gov (United States)

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    Science.gov (United States)

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  11. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study.

    Science.gov (United States)

    Bianchi, Enrica; Ripandelli, Guido; Taurone, Samanta; Feher, Janos; Plateroti, Rocco; Kovacs, Illes; Magliulo, Giuseppe; Orlando, Maria Patrizia; Micera, Alessandra; Battaglione, Ezio; Artico, Marco

    2016-03-01

    Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina.Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry.Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes.These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes. © The Author(s) 2015.

  12. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  13. Personality and Total Health Through Life Project Eye Substudy: Methodology and Baseline Retinal Features.

    Science.gov (United States)

    Wijngaarden, Peter Van; Keel, Stuart; Hodgson, Lauren A B; Kumar, Dinesh K; Aliahmad, Behzad; Paim, Cistiane C; Kiely, Kim M; Cherbuin, Nicolas; Anstey, Kaarin J; Dirani, Mohamed

    2017-01-01

    To describe the methodology and present the retinal grading findings of an older sample of australians with well-defined indices of neurocognitive function in the Personality and total Health (PATH) through life project. A cross-sectional study. Three hundred twenty-six individuals from the PatH through life project were invited to participate. Participants completed a general questionnaire and 2-field, 45-degree nonmydriatic color digital retinal photography. Photographs were graded for retinal pathology according to established protocols. Two hundred fifty-four (77.9%) subjects, aged 72 to 78 years, agreed to participate in the eye substudy. gradable images of at least 1 eye were acquired in 211 of 254 subjects (83.1%). retinal photographic screening identified 1 or more signs of pathology in 130 of the 174 subjects (74.7%) with gradable images of both eyes. a total of 45 participants (17.7%) had self-reported diabetes and diabetic retinopathy was observed in 22 (48.9%) of these participants. This well-defined sample of older australians provides a unique opportunity to interrogate associations between retinal findings, including retinal vascular geometric parameters, and indices of neurocognitive function. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  14. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.

    Science.gov (United States)

    Firl, Alana; Ke, Jiang-Bin; Zhang, Lei; Fuerst, Peter G; Singer, Joshua H; Feller, Marla B

    2015-01-28

    Spontaneous retinal activity mediated by glutamatergic neurotransmission-so-called "Stage 3" retinal waves-drives anti-correlated spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF α-RGCs. In mature AIIs, membrane hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by making whole-cell recordings from individual AIIs and α-RGCs in in vitro preparations of mouse retina. We found that AIIs participated in retinal waves, and that their activity was correlated with that of ON α-RGCs and anti-correlated with that of OFF α-RGCs. Though immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the pacemaker conductance Ih, a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity generated by BCs rather than to initiate spontaneous activity. Copyright © 2015 the authors 0270-6474/15/351675-12$15.00/0.

  15. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  16. The use of bevacizumab in a multilevel retinal hemorrhage secondary to retinal macroaneurysm: a 39-month follow-up case report

    Directory of Open Access Journals (Sweden)

    Tsakpinis D

    2011-10-01

    Full Text Available Dimitrios Tsakpinis1, Mayssa B Nasr1,2, Paris Tranos3, Nikos Krassas1, Theodoros Giannopoulos2, Chrysanthos Symeonidis1, Stavros A Dimitrakos1, Anastasios GP Konstas212nd University Department of Ophthalmology, Papageorgiou Hospital; 2Glaucoma Unit, 1st University, Department of Ophthalmology, AHEPA Hospital, Thessaloniki, Greece; 3Retina Eye Center, Thessaloniki, GreecePurpose: The evaluation of long-term visual outcome after the use of bevacizumab for the management of multilevel hemorrhage due to retinal arterial macroaneurysm (MA.Case report: A 71-year-old hypertensive female presented with sudden reduction of visual acuity in her left eye (OS. Fundoscopy revealed an arterial macroaneurysm with preretinal and subretinal hemorrhage in the eye. Due to significant macular involvement, the patient received two intravitreal injections of bevacizumab within 2 months.Results: Significant visual and anatomical recovery was observed 2 months later, which was confirmed by fluorescein angiography. At the end of a follow-up period (39 months visual acuity and visual field were at normal levels.Conclusion: Retinal MA is a relatively rare condition. Anti-vascular endothelial growth factor therapy appears a safe and effective treatment option for selected symptomatic individuals that may offer faster visual rehabilitation. Herein we report, for the first time, a 39-month follow-up of a retinal MA treated with anti-vascular endothelial growth factor therapy.Keywords: arterial retinal macroaneurysm, anti-VEGF, bevacizumab, multilevel hemorrhage

  17. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  18. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  19. Retinal detachment in paediatric patients

    International Nuclear Information System (INIS)

    Zafar, S. N.; Qureshi, N.; Azad, N.; Khan, A.

    2013-01-01

    Objective: To assess the causes of retinal detachment in children and the various operative procedures requiring vitreoretinal surgical intervention for the same. Study Design: Case series. Place and Duration of Study: Department of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, from January 2006 to May 2009. Methodology: A total of 281 eyes of 258 patients, (aged 0 - 18 years) who underwent vitreo-retinal surgical intervention for retinal detachment were included. Surgical log was searched for the type of retinal detachment and its causes. Frequencies of various interventions done in these patients viz. vitrectomy, scleral buckle, use of tamponading agents, laser photocoagulation and cryotherapy were noted. Results were described as descriptive statistics. Results: Myopia was the cause in 62 (22.1%) and trauma in 51 (18.1%) of the eyes. Total retinal detachment (RD) was treated in 94 (33.5%) eyes, sub total RD in 36 (12.8%), recurrent RD in 32 (11.4%), giant retinal tear in 28 (10%), tractional RD in 15 (5.3%) and exudative RD in 2 (0.7%). Prophylactic laser or cryotherapy was applied in 74 (26.3%) of the eyes. Pars plana vitrectomy (PPV) was carried out in 159 (56.6%) eyes while scleral buckle procedure was done in 129 (45.9%) eyes. Silicon oil was used in 149 (53%), perfluorocarbon liquid in 32 (11.4%) and gas tamponade in 20 (7.1%) eyes. Conclusion: The most common cause of retinal detachment in paediatric patients was myopia, followed by trauma. Total RD was more common as compared to the other types. The most common procedure adopted was pars plana vitrectomy followed by scleral buckle procedure. (author)

  20. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.

    Science.gov (United States)

    Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago

    2018-03-02

    Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).

  1. NF1 Signal Transduction and Vascular Dysfunction

    Science.gov (United States)

    2015-05-01

    microenvironment that promotes much of the pathology associated with the disease . Moreover we hypothesize that a mechanistic consequence of the loss...obliteration of the normal red pulp architecture. In addition, we found significant peri-aveolar and peri-vascular inflammatory infiltrates in the lung...the mouse model of NF1 disease in the endothelium we proposed and have done experiments investigating the loss of endothelial NF1 in the adult

  2. Branch Retinal Artery Occlusion Caused by Toxoplasmosis in an Adolescent

    Directory of Open Access Journals (Sweden)

    Elizabeth Chiang

    2012-10-01

    Full Text Available Purpose: Branch retinal artery occlusion (BRAO, while not uncommon in elderly patient populations, is rare in children and adolescents. We report a case of a BRAO secondary to toxoplasmosis in this demographic. Case: A previously healthy 17-year-old male developed a unilateral BRAO in conjunction with inflammation and increased intraocular pressure. Family history was positive for cerebrovascular accidents in multiple family members at relatively young ages. The patient had a hypercoagulable workup as well as a cardiovascular workup which were both normal. A rheumatologic workup was unremarkable. By 3 weeks, a patch of retinitis was more easily distinguished from the BRAO and the diagnosis of ocular toxoplasmosis was made. Treatment was started with prednisone and azithromycin with subsequent improvement in vision. Toxoplasma antibody levels were elevated for IgG and negative for IgM, IgA, and IgE. The etiology of the BRAO was attributed to ocular toxoplasmosis. Conclusions: Vascular occlusions are rare in toxoplasmosis. This is the third case report of a BRAO in a patient in the pediatric population. The diagnosis of ocular toxoplasmosis should be considered in young patients with retinal artery occlusions associated with inflammation.

  3. Mitochondrial dysfunction underlying outer retinal diseases

    DEFF Research Database (Denmark)

    Lefevere, Evy; Toft-Kehler, Anne Katrine; Vohra, Rupali

    2017-01-01

    Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer...

  4. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  5. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  6. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    OpenAIRE

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P

  7. Body fat distribution, metabolic and inflammatory markers and retinal microvasculature in school-age children. The Generation R Study.

    Science.gov (United States)

    Gishti, O; Jaddoe, V W V; Hofman, A; Wong, T Y; Ikram, M K; Gaillard, R

    2015-10-01

    To examine the associations of body fatness, metabolic and inflammatory markers with retinal vessel calibers among children. We performed a population-based cohort study among 4145 school-age children. At the median age of 6.0 years (95% range 5.8, 8.0 years), we measured body mass index, total and abdominal fat mass, metabolic and inflammatory markers (blood levels of lipids, insulin and C-peptide and C-reactive protein) and retinal vascular calibers from retinal photographs. We observed that compared with normal weight children, obese children had narrower retinal arteriolar caliber (difference -0.21 s.d. score (SDS; 95% confidence interval (CI) -0.35, -0.06)), but not venular caliber. Continuous analyses showed that higher body mass index and total body fat mass, but not android/gynoid fat mass ratio and pre-peritoneal fat mass, were associated with narrower retinal arteriolar caliber (Pfat mass), but not with retinal venular caliber. Lipid and insulin levels were not associated with retinal vessel calibers. Higher C-reactive protein was associated with only wider retinal venular caliber (difference 0.10 SDS (95% CI 0.06, 0.14) per SDS increase in C-reactive protein). This latter association was not influenced by body mass index. Higher body fatness is associated with narrower retinal arteriolar caliber, whereas increased C-reactive protein levels are associated with wider retinal venular caliber. Increased fat mass and inflammation correlate with microvascular development from school-age onwards.

  8. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  9. Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting

    Directory of Open Access Journals (Sweden)

    Livia S. Carvalho

    2017-09-01

    Full Text Available Retinal gene therapy has come a long way in the last few decades and the development and improvement of new gene delivery technologies has been exponential. The recent promising results from the first clinical trials for inherited retinal degeneration due to mutations in RPE65 have provided a major breakthrough in the field and have helped cement the use of recombinant adeno-associated viruses (AAV as the major tool for retinal gene supplementation. One of the key problems of AAV however, is its limited capacity for packaging genomic information to a maximum of around 4.8 kb. Previous studies have demonstrated that homologous recombination and/or inverted terminal repeat (ITR mediated concatemerization of two overlapping AAV vectors can partially overcome the size limitation and help deliver larger transgenes. The aim of this study was to investigate and compare the use of different AAV dual-vector approaches in the mouse retina using a systematic approach comparing efficiencies in vitro and in vivo using a unique oversized reporter construct. We show that the hybrid approach relying on vector genome concatemerization by highly recombinogenic sequences and ITRs sequence overlap offers the best levels of reconstitution both in vitro and in vivo compared to trans-splicing and overlap strategies. Our data also demonstrate that dose and vector serotype do not affect reconstitution efficiency but a discrepancy between mRNA and protein expression data suggests a bottleneck affecting translation.

  10. Retinal detachment in black South Africans

    African Journals Online (AJOL)

    low incidence of retinal detachment in black patients is not known. ... a retinal break. Predisposing factors include peripheral retinal degenerations, myopia, aphakia and trauma. Delay in presentation increases the difficulty in achieving adequate surgical ... On examination, note was taken of the visual acuity in both eyes, the ...

  11. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    Science.gov (United States)

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  12. Retinal image quality during accommodation.

    Science.gov (United States)

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily