WorldWideScience

Sample records for mouse osteoblastic cells

  1. Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells.

    Science.gov (United States)

    Nagao, Satomi; Goto, Tetsuya; Kataoka, Shinji; Toyono, Takashi; Joujima, Takaaki; Egusa, Hiroshi; Yatani, Hirofumi; Kobayashi, Shigeru; Maki, Kenshi

    2014-12-01

    Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.

  2. Differentiation Capacity of Mouse Dental Pulp Stem Cells into Osteoblasts and Osteoclasts

    Directory of Open Access Journals (Sweden)

    Shabnam Kermani

    2014-03-01

    Full Text Available Objective: Our research attempted to show that mouse dental pulp stem cells (DPSCs with characters such as accessibility, propagation and higher proliferation rate can provide an improved approach for generate bone tissues. With the aim of finding and comparing the differentiation ability of mesenchymal stem cells derived from DPSCs into osteoblast and osteoclast cells; morphological, molecular and biochemical analyses were conducted. Materials and Methods: In this experimental study, osteoblast and osteoclast differentiation was induced by specific differentiation medium. In order to induce osteoblast differentiation, 50 μg mL-1 ascorbic acid and 10 mM β-glycerophosphate as growth factors were added to the complete medium consisting alpha-modified Eagle’s medium (α-MEM, 15% fetal bovine serum (FBS and penicillin/streptomycin, while in order to induce the osteoclast differentiation, 10 ng/mL receptor activator of nuclear factor kappa-B ligand (RANKL and 5 ng/mL macrophage-colony stimulating factor (M-CSF were added to complete medium. Statistical comparison between the osteoblast and osteoclast differentiated groups and control were carried out using t test. Results: Proliferation activity of cells was estimated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay. Statistical results demonstrated significant difference (p0.05. Morphological characterization of osteoblast and osteoclast was evaluated using von Kossa staining and May-Grunwald-Giemsa technique, respectively. Reverse transcription-polymerase chain reaction (RT-PCR molecular analysis demonstrated that mouse DPSCs expressed Cd146 and Cd166 markers, but did not express Cd31, indicating that these cells belong to mesenchymal stem cells. Osteoblast cells with positive osteopontin (Opn marker were found after 21 days, whereas this marker was negative for DPSCs. CatK, as an osteoclast marker, was negative in both osteoclast differentiation medium and control

  3. Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideharu Okamoto

    Full Text Available UNLABELLED: BACKGOROUND: MicroRNAs (miRNAs, which regulate biological processes by annealing to the 3'-untranslated region (3'-UTR of mRNAs to reduce protein synthesis, have been the subject of recent attention as a key regulatory factor in cell differentiation. The effects of some miRNAs during osteoblastic differentiation have been investigated in mesenchymal stem cells, however they still remains to be determined in pluripotent stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Bone morphogenic proteins (BMPs are potent activators of osteoblastic differentiation. In the present study, we profiled miRNAs during osteoblastic differentiation of mouse induced pluripotent stem (iPS cells by BMP-4, in which expression of important osteoblastic markers such as Rux2, osterix, osteopontin, osteocalcin, PTHR1 and RANKL were significantly increased. A miRNA array analysis revealed that six miRNAs including miR-10a, miR-10b, miR-19b, miR-9-3p, miR-124a and miR-181a were significantly downregulated. Interestingly, miR-124a and miR-181a directly target the transcription factors Dlx5 and Msx2, both of which were increased by about 80-and 30-fold, respectively. In addition, transfection of miR-124a and miR-181a into mouse osteo-progenitor MC3T3-E1 cells significantly reduced expression of Dlx5, Runx2, osteocalcin and ALP, and Msx2 and osteocalcin, respectively. Finally, transfection of the anti-miRNAs of these six miRNAs, which are predicted to target Dlx5 and Msx2, into mouse iPS cells resulted in a significant increase in several osteoblastic differentiation markers such as Rux2, Msx2 and osteopontin. CONCLUSIONS/SIGNIFICANCE: In the present study, we demonstrate that six miRNAs including miR-10a, miR-10b, miR-19b, miR-9-3p, miR-124a and miR-181a miRNAs, especially miR-124a and miR-181a, are important regulatory factors in osteoblastic differentiation of mouse iPS cells.

  4. Effect of contact with titanium alloys on the proliferation of mouse osteoblastic cells in culture.

    Science.gov (United States)

    Onuki, Hiroyuki; Sakagami, Hiroshi; Kobayashi, Masahiko; Hibino, Yasushi; Yokote, Yoshiko; Nakajima, Hiroshi; Shimada, Jun

    2010-01-01

    This study was aimed at studying the effect of contact with titanium alloy plates of different surface textures on the proliferative capability of mouse osteoblastic MC3T3-E1 cells. First, the proliferation characteristics of MC3T3-E1 cells were investigated. MC3T3-E1 cells showed a high capacity for proliferation and survived for a long period even under nutritionally starved conditions. During logarithmic cell growth, the consumption of Ser, Gln, Val, Ile and Leu increased time-dependently. Contact with an hydoxyapatite (HA)-coated titanium alloy plate resulted in the increase in the recovery of cells from the plate by trypsin, and an increase in the consumption of these amino acids, suggesting enhanced cell proliferation. On the contrary, contact with the sandblasted and anodized titanium alloy plates resulted in the reduction of the recovery of the cells from the plate, but a slight increase in the amino acid consumption, suggesting the tight adhesion of the cells to the plates. This study demonstrates that the present method, based on the amino acid consumption of the cells, is useful for monitoring the cell proliferative capability, without detachment of the cells from the plate. This method may be applicable to the study of the interaction between cells and metal plates.

  5. Expression of thymosin beta-4 in human periodontal ligament cells and mouse periodontal tissue and its role in osteoblastic/cementoblastic differentiation.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Deok-Won; Yun, Hyung-Mun; Cha, Hee-Jae; Bae, Cheol-Hyeon; Cho, Eui-Sic; Kim, Eun-Cheol

    2015-01-01

    A recent report showed that thymosin beta-4 (Tβ4) is expressed during the development of tooth germ, but its effect on osteoblastic/cementoblastic differentiation is a controversial topic. Furthermore, the precise expression and function of Tβ4 in periodontal tissue remains unclear. Therefore, the purpose of this study was to investigate the immunolocalization of Tβ4 in the developing periodontium of mouse, the function of Tβ4 in osteoblastic/cementoblastic differentiation, and the underlying mechanism regulating periodontal regeneration in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. Tβ4 expression was observed in differentiating hPDLCs, osteoblasts of the periodontium during development, as well as in mature tissue. Higher Tβ4 expression was observed in hPDLCs than in cementoblasts and osteoblasts in the developing periodontium. The expression of Tβ4 mRNA and protein gradually increased during PDL cell differentiation. The downregulation of Tβ4 expression by Tβ4 siRNA transfection inhibited osteoblastic differentiation by decreasing calcium nodule formation, alkaline phosphatase (ALP) activity, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. In contrast, Tβ4 activation using a Tβ4 peptide, promoted these processes by activation of Akt, p38, ERK MAPKs, and the NF-κB pathway. The expression of nuclear NFATc1 was upregulated by Tβ4 peptide in hPDLCs. Inhibition of the calcineurin/NFATc1 pathway by cyclosporin A and FK506, attenuated Tβ4-induced osteoblastic differentiation and activation of Wnt-related genes, as well as nuclear β-catenin in hPDLCs. In conclusion, this study demonstrates, for the first time, that Tβ4 is expressed in developing periodontal tissue and that its expression is associated with osteoblastic/cementoblastic differentiation. These results suggests that Tβ4 is a potential therapeutic target for periodontal regeneration or bone disease.

  6. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells

    NARCIS (Netherlands)

    Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roelof; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M

    2016-01-01

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and t

  7. Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Directory of Open Access Journals (Sweden)

    Wooley Paul H

    2009-02-01

    Full Text Available Abstract Background Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA and poly-ε-caprolactone (PCL composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP, and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2 and von Willebrand factor (vWF, and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts and nitric oxide production (of endothelial cells plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.

  8. SPECIFIC BINDING OF HUMAN BONE MORPHOGENETIC PROTEIN (2A) WITH MOUSE OSTEOBLASTIC CELLS

    Institute of Scientific and Technical Information of China (English)

    刘新平; 陈苏民; 陈南春; 高磊; 赵忠良

    1996-01-01

    Human bone morphogenetic protein 2A (hBMP2A) cDNA terminal 567 nucleotides were cloned and expressed in a phage display vector pCSM2I. Hulnata BMP2A C-terminal peptide displayed on the surface of the phage can bind specifically to the sttrface of mouse osteoblastie cell (MC3T3) membrane. ELISA assay showed a positive signal of the binding by using antibody against M13 phage gene 8 protein. After labeling with 3HTdR,the counts of the binding groups were 3 to 10 times higher than the control groups. It suggests that the'surface of MC3T3 cells exist the recepzor for hBMP2A.

  9. Exploration of the mouse osteoblast transcriptome

    NARCIS (Netherlands)

    Vaes, Bart Laurens Theo

    2007-01-01

    The frequently occurring bone disorder osteoporosis is characterized by a strong increase in bone fracture risk, caused by a dramatically disturbed balance in the activity of the cells that degrade bone (osteoclasts) and cells that synthesize new bone (osteoblasts). Therapies against osteoporosis ar

  10. A role for the retinoblastoma protein as a regulator of mouse osteoblast cell adhesion: implications for osteogenesis and osteosarcoma formation.

    Directory of Open Access Journals (Sweden)

    Bernadette Sosa-García

    Full Text Available The retinoblastoma protein (pRb is a cell cycle regulator inactivated in most human cancers. Loss of pRb function results from mutations in the gene coding for pRb or for any of its upstream regulators. Although pRb is predominantly known as a cell cycle repressor, our data point to additional pRb functions in cell adhesion. Our data show that pRb regulates the expression of a wide repertoire of cell adhesion genes and regulates the assembly of the adherens junctions required for cell adhesion. We conducted our studies in osteoblasts, which depend on both pRb and on cell-to-cell contacts for their differentiation and function. We generated knockout mice in which the RB gene was excised specifically in osteoblasts using the cre-lox P system and found that osteoblasts from pRb knockout mice did not assemble adherens junction at their membranes. pRb depletion in wild type osteoblasts using RNAi also disrupted adherens junctions. Microarrays comparing pRb-expressing and pRb-deficient osteoblasts showed that pRb controls the expression of a number of cell adhesion genes, including cadherins. Furthermore, pRb knockout mice showed bone abnormalities consistent with osteoblast adhesion defects. We also found that pRb controls the function of merlin, a well-known regulator of adherens junction assembly, by repressing Rac1 and its effector Pak1. Using qRT-PCR, immunoblots, co-immunoprecipitation assays, and immunofluorescent labeling, we observed that pRb loss resulted in Rac1 and Pak1 overexpression concomitant with merlin inactivation by Pak1, merlin detachment from the membrane, and adherens junction loss. Our data support a pRb function in cell adhesion while elucidating the mechanism for this function. Our work suggests that in some tumor types pRb inactivation results in both a loss of cell cycle control that promotes initial tumor growth as well as in a loss of cell-to-cell contacts, which contributes to later stages of metastasis.

  11. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    Science.gov (United States)

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Aberrant gene expression profiles, during in vitro osteoblast differentiation, of telomerase deficient mouse bone marrow stromal stem cells (mBMSCs)

    DEFF Research Database (Denmark)

    Saeed, H.; Iqtedar, M.

    2015-01-01

    Background: Telomerase deficiency has been associated with inadequate differentiation of mesenchymal stem cells. However, the effect of telomerase deficiency on differential regulation of osteoblast specific genes, based on functional gene grouping, during in vitro osteoblast differentiation has ...

  13. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  14. Effect of Dy3+ on osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and adipocytic trans-differentiation of mouse primary osteoblasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG dinChao; LIU DanDan; SUN ding; ZHANG DaWei; SHEN ShiGang; YANG MengSu

    2009-01-01

    A series of experimental methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bro-mide (MTT) test,alkaline phosphatase (ALP) activity measurement,mineralized function,Oil Red O stain and measurement were employed to assess the effect of Dy3+ on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipogenic trans-differ-entiation of mouse primary osteoblasts (Obs).The results showed that Dy3+ had no effect on BMSC proliferation at concentrations of 1×10-8 and 1×10-5 mol/L,but inhibited BMSC proliferation at other concentrations.Dy3+ had no effect on OB proliferation at concentrations of 1×10-10 and 1×10-9 mol/L,but inhibited OB proliferation at other concentrations.Dy3+ had no effect on the osteogenic differentia-tion of BMSCs at concentrations of 1×10-9 and 1×10-7 mol/L,and promoted osteogenic differentiation of BMSCs at other concentrations at the 7th day.The osteogenic differentiation of BMSCs was inhibited by Dy3+ at concentration of 1×10-5 mol/L at the 14th day,but promoted osteogenic differentiation of BMSCs at concentrations of 1×10-9,1×10-8,1×10-7 and 1×10-6 mol/L with the maximal effect at concen-tration of 10-6 mol/L.Dy3+ promoted mineralized function of BMSCs at any concentration.Dy3+ had no effect on adipogenic differentiation of BMSCs at concentration of 1×10-7 mol/L,but inhibited adipogenic differentiation of BMSCs at other concentrations.Dy3+ inhibited adipocytic trans-differentiation of Obs at any concentration,suggesting that Dy3+ had protective effect on bone and the protective effect on bone may be mediated by modulating differentiation of BMSCs away from the adipocyte and inhibiting adipocytic trans-differentiation of Obs which may promote differentiation and mineralization of Obs.These results may be valuable for better understanding the mechanism of the effect of Dy3+ on pathogenesis of osteoporosis.

  15. Osteoblastic cells: differentiation and trans-differentiation

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem; Saeed, Hamid

    2008-01-01

    The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast...... differentiation from MSC is a central topic in bone biology that can provide insight into mechanisms of bone maintenance and also novel pharmacological targets to increase osteoblast differentiation and consequently bone formation....

  16. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    Science.gov (United States)

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future. © 2016 International Federation for Cell Biology.

  17. A novel transgenic mouse model to study the osteoblast lineage in vivo.

    Science.gov (United States)

    Maes, Christa; Kobayashi, Tatsuya; Kronenberg, Henry M

    2007-11-01

    Over the past few decades, osteoblast differentiation has been studied extensively in a variety of culture systems and findings from these experiments have shaped our understanding of the bone-forming cell lineage. However, in vitro assays are bound by intrinsic limitations and are unable to effectively mirror many aspects related to osteoblasts in vivo, including their origin, destiny, and life span. Therefore, these fundamental questions strongly advocate the need for novel models to characterize the osteoblast lineage in vivo. Here, we developed a transgenic mouse system to study stage-specific subsets of osteoblast lineage cells. We believe that this system will prove to be a helpful tool in deciphering multiple aspects of osteoblast biology in vivo.

  18. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  19. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nifuji, Akira, E-mail: nifuji-a@tsurumi-u.ac.jp [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama (Japan); Ideno, Hisashi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Ohyama, Yoshio [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Takanabe, Rieko; Araki, Ryoko; Abe, Masumi [Transcriptome profiling group, National Institute of Radiological Sciences, Chiba (Japan); Noda, Masaki [Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo (Japan); Shibuya, Hiroshi [Department of Molecular Cell Biology, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo (Japan)

    2010-04-15

    Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLK in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.

  20. Hematopoietic derived cells do not contribute to osteogenesis as osteoblasts.

    Science.gov (United States)

    Otsuru, Satoru; Overholt, Kathleen M; Olson, Timothy S; Hofmann, Ted J; Guess, Adam J; Velazquez, Victoria M; Kaito, Takashi; Dominici, Massimo; Horwitz, Edwin M

    2017-01-01

    Despite years of extensive investigation, the cellular origin of heterotopic ossification (HO) has not been fully elucidated. We have previously shown that circulating bone marrow-derived osteoblast progenitor cells, characterized by the immunophenotype CD45-/CD44+/CXCR4+, contributed to the formation of heterotopic bone induced by bone morphogenetic protein (BMP)-2. In contrast, other reports have demonstrated the contribution of CD45+ hematopoietic derived cells to HO. Therefore, in this study, we developed a novel triple transgenic mouse strain that allows us to visualize CD45+ cells with red fluorescence and mature osteoblasts with green fluorescence. These mice were generated by crossing CD45-Cre mice with Z/RED mice that express DsRed, a variant of red fluorescent protein, after Cre-mediated recombination, and then crossing with Col2.3GFP mice that express green fluorescent protein (GFP) in mature osteoblasts. Utilizing this model, we were able to investigate if hematopoietic derived cells have the potential to give rise to mature osteoblasts. Analyses of this triple transgenic mouse model demonstrated that DsRed and GFP did not co-localize in either normal skeletogenesis, bone regeneration after fracture, or HO. This indicates that in these conditions hematopoietic derived cells do not differentiate into mature osteoblasts. Interestingly, we observed the presence of previously unidentified DsRed positive bone lining cells (red BLCs) which are derived from hematopoietic cells but lack CD45 expression. These red BLCs fail to produce GFP even under in vitro osteogenic conditions. These findings indicate that, even though both osteoblasts and hematopoietic cells are developmentally derived from mesoderm, hematopoietic derived cells do not contribute to osteogenesis in fracture healing or HO. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Differentially expressed genes and signalling pathways are involved in mouse osteoblast-like MC3T3-E1 cells exposed to 17-b estradiol

    Institute of Scientific and Technical Information of China (English)

    Zhen-Zhen Shang; Xin Li; Hui-Qiang Sun; Guo-Ning Xiao; Cun-Wei Wang; Qi Gong

    2014-01-01

    Oestrogen is essential for maintaining bone mass, and it has been demonstrated to induce osteoblast proliferation and bone formation. In this study, complementary DNA (cDNA) microarrays were used to identify and study the expression of novel genes that may be involved in MC3T3-E1 cells’ response to 17-b estradiol. MC3T3-E1 cells were inoculated in minimum essential media alpha (a-MEM) cell culture supplemented with 17-b estradiol at different concentrations and for different time periods. MC3T3-E1 cells treated with 1028 mol?L21 17-b estradiol for 5 days exhibited the highest proliferation and alkaline phosphatase (ALP) activity;thus, this group was chosen for microarray analysis. The harvested RNA was used for microarray hybridisation and subsequent real-time reverse transcription polymerase chain reaction (RT-PCR) to validate the expression levels for selected genes. The microarray results were analysed using both functional and pathway analysis. In this study, microarray analysis detected 5 403 differentially expressed genes, of which 1 996 genes were upregulated and 3 407 genes were downregulated, 1 553 different functional classifications were identified by gene ontology (GO) analysis and 53 different pathways were involved based on pathway analysis. Among the differentially expressed genes, a portion not previously reported to be associated with the osteoblast response to oestrogen was identified. These findings clearly demonstrate that the expression of genes related to osteoblast proliferation, cell differentiation, collagens and transforming growth factor beta (TGF-b)-related cytokines increases, while the expression of genes related to apoptosis and osteoclast differentiation decreases, following the exposure of MC3T3-E1 cells to a-MEM supplemented with 17-b estradiol. Microarray analysis with functional gene classification is critical for a complete understanding of complementary intracellular processes. This microarray analysis provides large

  2. Primary cortical brain cells influence osteoblast activity.

    Science.gov (United States)

    Anissian, Lucas; Kirby, Michael; Stark, André

    2009-12-18

    The presence of neuropeptides and neuroreceptors in the bone have been reported in several studies. Bone turn-over seems to be controlled by the nervous system. The actual pathway or the control mechanism is still under investigation. In this study we investigate the changes in osteoblast cells if they are in co-culture with primary cortical brain cells. After seven days in co-culture with the primary fetal brain cells the osteoblast cells exhibited hypertrophic morphological changes and showed stronger ALP activity.

  3. Osteoblastic cell behavior on nanostructured metal implants.

    NARCIS (Netherlands)

    Guehennec, L Le; Martin, F.; Lopez-Heredia, M.A.; Louarn, G.; Amouriq, Y.; Cousty, J.; Layrolle, P.

    2008-01-01

    AIMS: Surface modifications at the nanometric scale may promote protein adsorption, cell adhesion and thus favor the osseointegration of metal implants. The behavior of osteoblastic cells was studied on mirror-polished (Smooth-SS) and nanostructured (Nano-SS) stainless steel surfaces. MATERIALS & ME

  4. Mathematical model of electrotaxis in osteoblastic cells

    NARCIS (Netherlands)

    Vanegas-Acosta, J.C.; Garzón-Alvarado, D.A.; Zwamborn, A.P.M.

    2012-01-01

    Electrotaxis is the cell migration in the presence of an electric field (EF). This migration is parallel to the EF vector and overrides chemical migration cues. In this paper we introduce a mathematical model for the electrotaxis in osteoblastic cells. The model is evaluated using different EF stren

  5. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    Science.gov (United States)

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages.

  6. Combined Effects of Androgen and Growth Hormone on Osteoblast Marker Expression in Mouse C2C12 and MC3T3-E1 Cells Induced by Bone Morphogenetic Protein

    Science.gov (United States)

    Kimura, Kosuke; Terasaka, Tomohiro; Iwata, Nahoko; Katsuyama, Takayuki; Komatsubara, Motoshi; Nagao, Ryota; Inagaki, Kenichi; Otsuka, Fumio

    2017-01-01

    Osteoblasts undergo differentiation in response to various factors, including growth factors and steroids. Bone mass is diminished in androgen- and/or growth hormone (GH)-deficient patients. However the functional relationship between androgen and GH, and their combined effects on bone metabolism, remains unclear. Here we investigated the mutual effects of androgen and GH on osteoblastic marker expression using mouse myoblastic C2C12 and osteoblast-like MC3T3-E1 cells. Combined treatment with dihydrotestosterone (DHT) and GH enhanced BMP-2-induced expression of Runx2, ALP, and osteocalcin mRNA, compared with the individual treatments in C2C12 cells. Co-treatment with DHT and GH activated Smad1/5/8 phosphorylation, Id-1 transcription, and ALP activity induced by BMP-2 in C2C12 cells but not in MC3T3-E1 cells. The insulin-like growth factor (IGF-I) mRNA level was amplified by GH and BMP-2 treatment and was restored by co-treatment with DHT in C2C12 cells. The mRNA level of the IGF-I receptor was not significantly altered by GH or DHT, while it was increased by IGF-I. In addition, IGF-I treatment increased collagen-1 mRNA expression, whereas blockage of endogenous IGF-I activity using an anti-IGF-I antibody failed to suppress the effect of GH and DHT on BMP-2-induced Runx2 expression in C2C12 cells, suggesting that endogenous IGF-I was not substantially involved in the underlying GH actions. On the other hand, androgen receptor and GH receptor mRNA expression was suppressed by BMP-2 in both cell lines, implying the existence of a feedback action. Collectively the results showed that the combined effects of androgen and GH facilitated BMP-2-induced osteoblast differentiation at an early stage by upregulating BMP receptor signaling. PMID:28067796

  7. Gs signaling in osteoblasts and hematopoietic stem cells.

    Science.gov (United States)

    Kronenberg, Henry M

    2010-03-01

    The heterotrimeric G protein Gs is a major mediator of the actions of several G protein-coupled receptors that target cells of the osteoblast lineage. For this reason, we generated chimeric mice with normal host cells and cells derived from embryonic stem cells missing the gene encoding the alpha subunit of Gs. While the mutant cells contributed to cortical osteoblasts and to hematopoietic cells in the liver, the marrow space contained few if any osteoblasts or hematopoietic cells missing Gs. Subsequent studies using the Cre-lox approach to delete Gsalpha from early cells of the osteoblast lineage and from hematopoietic stem cells were performed. These studies demonstrated the crucial roles of Gsalpha in osteoblastic cells in regulating the differentiation of osteoblasts and in supporting B-cell development as well as the essential role for Gsalpha in hematopoietic stem cells in allowing the homing of these cells to the marrow.

  8. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    Science.gov (United States)

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  9. Mineralization and Osteoblast Cells Response of Nanograde Pearl Powders

    Directory of Open Access Journals (Sweden)

    Jian-Chih Chen

    2013-01-01

    Full Text Available The main objective of this study is to characterize the thermal, mineralization, and osteoblast cells response of pearl nanocrystallites. The results obtained from X-ray diffraction, FTIR spectra demonstrate that the pearl nano-crystallites can induce the formation of an HA layer on their surface in SBF, even after only short soaking periods. The in vitro cell response to nano-grade pearl powders is assessed by evaluating the cytotoxicity against a mouse embryonic fibroblast cell line and by characterizing the attachment ability and alkaline phosphatase activity of mouse bone cells (MC3T3-E1, abbreviated to E1 and bone marrow stromal precursor (D1 cells. The cytotoxicities of pearls were tested by the filtration and culture of NIH-3T3 mouse embryonic fibroblast cells. The viability of the cultured cells in media containing pearl crystallites for 24 and 72 h is greater than 90%. The bone cells seen in these micrographs are elongated and align predominately along the pearl specimen. The cells observed in these images also appeared well attached and cover the surface almost completely after 1 h. The pearl nanocrystallites had a positive effect on the osteogenic ability of ALP activity, and this promoted the osteogenic differentiation of MSCs significantly at explanations.

  10. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells.

    Science.gov (United States)

    Lansley, Sally M; Searles, Richelle G; Hoi, Aina; Thomas, Carla; Moneta, Helena; Herrick, Sarah E; Thompson, Philip J; Newman, Mark; Sterrett, Gregory F; Prêle, Cecilia M; Mutsaers, Steven E

    2011-10-01

    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0-26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies.

  11. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro

    Science.gov (United States)

    Yamaguchi, Masayoshi; Levy, Robert M.

    2016-01-01

    Osteoporosis is induced by the reduction in bone mass through decreased osteoblastic osteogenesis and increased osteoclastic bone resorption, and it is associated with obesity and diabetes. Osteoblasts and adipocytes are derived from bone marrow mesenchymal stem cells. The prevention of osteoporosis is an important public health concern in aging populations. β-caryophyllene, a component of various essential oils, is a selective agonist of the cannabinoid receptor type 2 and exerts cannabimimetic anti-inflammatory effects in animals. The present study aimed to identify the effect of β-caryophyllene on adipogenesis, osteoblastic mineralization and osteoclastogenesis in mouse bone marrow cell cultures in vitro. Bone marrow cells obtained from mouse femoral tissues were cultured in the presence of β-caryophyllene (0.1–100 µM) in vitro. The results revealed that β-caryophyllene stimulated osteoblastic mineralization, and suppressed adipogenesis and osteoclastogenesis. Thus, β-caryophyllene may be used as a therapeutic agent for the prevention and treatment of osteoporosis. PMID:28105093

  12. 2-Dimensional MEMS dielectrophoresis device for osteoblast cell stimulation.

    Science.gov (United States)

    Zou, H; Mellon, S; Syms, R R A; Tanner, K E

    2006-12-01

    A fixed microelectrode device for cell stimulation has been designed and fabricated using micro-electro-mechanical systems (MEMS) technology. Dielectrophoretic forces obtained from non-uniform electric fields were used for manipulating and positioning osteoblasts. The experiments show that the osteoblasts experience positive dielectrophoresis (p-DEP) when suspended in iso-osmotic culture medium and exposed to AC fields at 5 MHz frequency. Negative dielectrophoresis (n-DEP) is obtained at 0.1 MHz. The viability of osteoblasts under dielectrophoresis has been investigated. The viability values for cells exposed to DEP are nearly three times higher than the control values, indicating that dielectrophoresis may have an anabolic effect on osteoblasts.

  13. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Kamon, Masayoshi; Zhao, Ran; Sakamoto, Kazuichi

    2009-12-16

    Recently, various physiological effects of the tea polyphenol catechin for alleviating diseases such as cancer, arteriosclerosis, hyperlipidaemia and osteoporosis have been reported. However, the physiological effect of catechin on bone metabolism remains unclear. We examined the physiological effect of EGCG [(-)-epigallocatechin-3-gallate], which is the main component of green tea catechin, on osteoblast development using the precursor cell line of osteoblasts, MC3T3-E1, and co-culture of the osteoblasts from mouse newborn calvaria and mouse bone marrow cells. Although EGCG did not affect the viability and proliferation of MC3T3-E1 cells, EGCG inhibited the osteoblast differentiation. Furthermore, EGCG did not affect the mineralization of differentiated MC3T3-E1 cells, and reduced osteoclast formation in co-culture. These results suggest that EGCG can effectively suppress bone resorption, and can be used as an effective medicine in the treatment of the symptoms of osteoporosis.

  14. Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells.

    Science.gov (United States)

    Li, Huihua; Luo, Binghong; Wen, Wei; Zhou, Changren; Tian, Lingling; Ramakrishna, Seeram

    2017-01-01

    Osteogenesis and angiogenesis play the prominent role in the bone regeneration. In this study, deferoxamine (DFO), an induced agent for osteogenesis and angiogenesis, was modified onto the surface of poly(D,L-lactide) (PDLLA) membrane via a facile and convenient approach based on the self-polymerization of dopamine (DOPA). The surface composition, morphology, hydrophilicity and surface energy of the original and modified PDLLA membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and contact angle measurement. The surface roughness and hydrophilicity of the PDLLA membrane were obviously increased by introducing either the single polydopamine (PDOPA) or the dual layers of PDOPA and DFO. In vitro cells culture experiments indicated that both the PDLLA/PDOPA and PDLLA/PDOPA-DFO composite membranes were more beneficial to the attachment, proliferation and spreading of MC3T3-E1 cells and HUVECs compared to the original PDLLA membrane. The PDLLA/PDOPA-DFO membrane was supportive for the proliferation of both MC3T3-E1 cells and HUVECs, and especially for HUVECs. The results suggested that the as-prepared PDLLA/PDOPA-DFO composite can be expected to be used as a promising bone regenerative material with promoted angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mathematical model of electrotaxis in osteoblastic cells.

    Science.gov (United States)

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Zwamborn, A P M

    2012-12-01

    Electrotaxis is the cell migration in the presence of an electric field (EF). This migration is parallel to the EF vector and overrides chemical migration cues. In this paper we introduce a mathematical model for the electrotaxis in osteoblastic cells. The model is evaluated using different EF strengths and different configurations of both electrical and chemical stimuli. Accordingly, we found that the cell migration speed is described as the combination of an electrical and a chemical term. Cell migration is faster when both stimuli orient cell migration towards the same direction. In contrast, a reduced speed is obtained when the EF vector is opposed to the direction of the chemical stimulus. Numerical relations were obtained to quantify the cell migration speed at each configuration. Additional calculations for the cell colonization of a substrate also show mediation of the EF strength. Therefore, the term electro-osteoconduction is introduced to account the electrically induced cell colonization. Since numerical results compare favorably with experimental evidence, the model is suitable to be extended to other types of cells, and to numerically explore the influence of EF during wound healing. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells.

    Science.gov (United States)

    Nii-Kono, T; Iwasaki, Y; Uchida, M; Fujieda, A; Hosokawa, A; Motojima, M; Yamato, H; Kurokawa, K; Fukagawa, M

    2007-04-01

    Skeletal resistance to parathyroid hormone (PTH) is well known to the phenomenon in chronic renal failure patient, but the detailed mechanism has not been elucidated. In the process of analyzing an animal model of renal failure with low bone turnover, we demonstrated decreased expression of PTH receptor (PTHR) accompanying renal dysfunction in this model. In the present study, we focused on the accumulation of uremic toxins (UTx) in blood, and examined whether indoxyl sulfate (IS), a UTx, is associated with PTH resistance. We established primary osteoblast cultures from mouse calvariae and cultured the cells in the presence of IS. The intracellular cyclic adenosine 3',5' monophosphate (cAMP) production, PTHR expression, and free radical production in the primary osteoblast culture were studied. We found that the addition of IS suppressed PTH-stimulated intracellular cAMP production and decreased PTHR expression in this culture system. Free radical production in osteoblasts increased depending on the concentration of IS added. Furthermore, expression of organic anion transporter-3 (OAT-3) that is known to mediate cellular uptake of IS was identified in the primary osteoblast culture. These results suggest that IS taken up by osteoblasts via OAT-3 present in these cells augments oxidative stress to impair osteoblast function and downregulate PTHR expression. These finding strongly suggest that IS accumulated in blood due to renal dysfunction is at least one of the factors that induce skeletal resistance to PTH.

  17. Effect of vinpocetine on the osteoblastic differentiation of mouse vascular smooth muscle cells%长春西汀对小鼠血管平滑肌细胞成骨样分化的影响

    Institute of Scientific and Technical Information of China (English)

    马允允; 梁秋华; 张正军; 孟强; 李懂; 孙琳

    2016-01-01

    Objective To investigate the effect of vinpocetine on the osteoblastic differentiation of mouse vascular smooth muscle cells (VSMCs).Methods 10mM of beta-glycerophosphate (β-GP) was used to in-duce osteoblastic differentiation of mouse VSMCs.10μM of vinpocetine was treated on the β-GP-stimulated VSMCs.The protein expression of Run related transcription factor 2 ( Runx2 ) , bone morphology protein-2 (BMP-2) and nuclear factor kappaB (NF-κB) p65 subunit were determined by Western Blot.Alkaline phos-phatase ( ALP) assay kit was used to determine the ALP activity.The formation of mineralized nodules was determined by Alizarin Red S staining.Results 1) β-GP significantly increased ALP activity and the expres-sion of Runx2 and BMP-2 which promoted the formation of mineralized nodules.2) Vinpocetine significantly decreased ALP activity and the expression of Runx2 and BMP-2,which attenuated the formation of mineral-ized nodule.3) Vinpocetine significantly inhibited the translocation of NF-κB p65 into the nucleus.Conclusion Vinpocetine may exert its inhibitory effect on osteoblastic differentiation of VSMCs via NF-κB signaling pathway.%目的:初步探讨长春西汀对小鼠血管平滑肌细胞(vascular smooth muscle cells,VSMCs)成骨样分化的影响。方法使用10mMβ-甘油磷酸钠( beta-glycerophosphate ,β-GP)诱导小鼠原代VSMCs向成骨样分化,以10μM长春西汀干预β-GP诱导的小鼠VSMCs,应用Western blotting分析法检测Runt相关转录因子2( Run re-lated transcription factor 2,Runx2),骨形成蛋白-2(bone morphology protein-2,BMP-2)以及核转录因子-Kappa B ( nuclear factor kappaB ,NF-κB) p65的表达,碱性磷酸酶( alkaline phosphatase ,ALP)试剂盒检测ALP活性,茜素红染色观察矿化结节形成的情况。结果1)β-GP可显著增强ALP的活性,增加Runx2和BMP-2的表达,并促进矿化结节的形成;2)长春西汀可显著减弱ALP活性,抑制Runx2

  18. Planar cell polarity aligns osteoblast division in response to substrate strain.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Savery, Dawn; Taipaleenmaki, Hanna; Delisser, Peter; Stein, Gary S; Copp, Andrew J; van Wijnen, Andre J; Lanyon, Lance E; Price, Joanna S

    2015-03-01

    Exposure of bone to dynamic strain increases the rate of division of osteoblasts and also influences the directional organization of the cellular and molecular structure of the bone tissue that they produce. Here, we report that brief exposure to dynamic substrate strain (sufficient to rapidly stimulate cell division) influences the orientation of osteoblastic cell division. The initial proliferative response to strain involves canonical Wnt signaling and can be blocked by sclerostin. However, the strain-related orientation of cell division is independently influenced through the noncanonical Wnt/planar cell polarity (PCP) pathway. Blockade of Rho-associated coiled kinase (ROCK), a component of the PCP pathway, prevents strain-related orientation of division in osteoblast-like Saos-2 cells. Heterozygous loop-tail mutation of the core PCP component van Gogh-like 2 (Vangl2) in mouse osteoblasts impairs the orientation of division in response to strain. Examination of bones from Vangl2 loop-tail heterozygous mice by µCT and scanning electron microscopy reveals altered bone architecture and disorganized bone-forming surfaces. Hence, in addition to the well-accepted role of PCP involvement in response to developmental cues during skeletal morphogenesis, our data reveal that this pathway also acts postnatally, in parallel with canonical Wnt signaling, to transduce biomechanical cues into skeletal adaptive responses. The simultaneous and independent actions of these two pathways appear to influence both the rate and orientation of osteoblast division, thus fine-tuning bone architecture to meet the structural demands of functional loading.

  19. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10.

    Science.gov (United States)

    Fujioka, Kazuki; Kishida, Tsunao; Ejima, Akika; Yamamoto, Kenta; Fujii, Wataru; Murakami, Ken; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Oda, Ryo; Yamamoto, Toshiro; Fujiwara, Hiroyoshi; Kawahito, Yutaka; Mazda, Osam

    2015-01-16

    Bone destruction at inflamed joints is an important complication associated with rheumatoid arthritis (RA). Interleukin-10 (IL-10) may suppress not only inflammation but also induction of osteoclasts that play key roles in the bone destruction. If IL-10-producing osteoblast-like cells are induced from patient somatic cells and transplanted back into the destructive bone lesion, such therapy may promote bone remodeling by the cooperative effects of IL-10 and osteoblasts. We transduced mouse fibroblasts with genes for IL-10 and Runx2 that is a crucial transcription factor for osteoblast differentiation. The IL-10-producing induced osteoblast-like cells (IL-10-iOBs) strongly expressed osteoblast-specific genes and massively produced bone matrix that were mineralized by calcium phosphate in vitro and in vivo. Culture supernatant of IL-10-iOBs significantly suppressed induction of osteoclast from RANKL-stimulated Raw264.7 cells as well as LPS-induced production of inflammatory cytokine by macrophages. The IL-10-iOBs may be applicable to novel cell-based therapy against bone destruction associated with RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. BRITER: a BMP responsive osteoblast reporter cell line.

    Directory of Open Access Journals (Sweden)

    Prem Swaroop Yadav

    Full Text Available BACKGROUND: BMP signaling pathway is critical for vertebrate development and tissue homeostasis. High-throughput molecular genetic screening may reveal novel players regulating BMP signaling response while chemical genetic screening of BMP signaling modifiers may have clinical significance. It is therefore important to generate a cell-based tool to execute such screens. METHODOLOGY/PRINCIPAL FINDINGS: We have established a BMP responsive reporter cell line by stably integrating a BMP responsive dual luciferase reporter construct in the immortalized calvarial osteoblast cells isolated from tamoxifen inducible Bmp2; Bmp4 double conditional knockout mouse strain. This cell line, named BRITER (BMP Responsive Immortalized Reporter cell line, responds robustly, promptly and specifically to exogenously added BMP2 protein. The sensitivity to added BMP may be further increased by depleting the endogenous BMP2 and BMP4 proteins. CONCLUSION: As the dynamic range of the assay (for BMP responsiveness is very high for BRITER and as it responds specifically and promptly to exogenously added BMP2 protein, BRITER may be used effectively for chemical or molecular genetic screening for BMP signaling modifiers. Identification of novel molecular players capable of influencing BMP signaling pathway may have clinical significance.

  1. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption.

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Ren

    Full Text Available The cysteine protease cathepsin K (CatK, abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs to test their effects on osteoblasts and osteoclasts.Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices.Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10-100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed

  2. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  3. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  4. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  5. Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh.

    Science.gov (United States)

    Kishimoto, Naotaka; Momota, Yoshihiro; Hashimoto, Yoshiya; Ando, Kayoko; Omasa, Takeshi; Kotani, Junichiro

    2013-01-01

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells rapidly differentiate into osteoblasts under three-dimensional culture conditions. However, it has not been demonstrated that DFAT cells can differentiate into osteoblasts in a rigid scaffold consisting of titanium fiber mesh (TFM). We examined the proliferation and osteogenic differentiation ability of DFAT cells using TFM as a scaffold. DFAT cells derived from rabbit subcutaneous fat were seeded into TFM and cultured in osteogenic medium containing dexamethasone, L-ascorbic acid 2-phosphate and β-glycerophosphate for 14 days. In scanning electron microscopy (SEM) analysis, well-spread cells covered the titanium fibers on day 3, and appeared to increase in number from day 3 to 7. Numerous globular accretions were found and almost completely covered the fibers on day 14. Cell proliferation, as measured by DNA content in the TFM, was significantly higher on day 7 compared with that of day 1. Osteocalcin and calcium content in the TFM were significantly higher on day 14 compared to those of days 1, 3, and 7, indicating DFAT cells differentiated into osteoblasts. We theorize that globular accretions observed in SEM analysis may be calcified matrix resulting from osteocalcin secreted by osteoblasts binding calcium contained in fetal bovine serum. In this study, we demonstrated that DFAT cells differentiate into osteoblasts and deposit mineralized matrices in TFM. Therefore, the combination of DFAT cells and TFM may be an attractive option for bone tissue engineering.

  6. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    Science.gov (United States)

    Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong

    2009-04-01

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.

  7. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Jamal, Shazia [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Levi, Edi [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Rishi, Arun K. [Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Datta, Nabanita S., E-mail: ndatta@med.wayne.edu [Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States); Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  8. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Brot, C

    2000-01-01

    Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling among...

  9. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  10. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux.

    Science.gov (United States)

    Capati, Mark Luigi Fabian; Nakazono, Ayako; Igawa, Kazunari; Ookubo, Kensuke; Yamamoto, Yuya; Yanagiguchi, Kajirou; Kubo, Shisei; Yamada, Shizuka; Hayashi, Yoshihiko

    2016-12-01

    A low concentration of boron (B) accelerates the proliferation and differentiation of mammalian osteoblasts. The aim of this study was to investigate the effects of 0.1 mM of B on the membrane function of osteoblastic cells in vitro. Genes involved in cell activity were investigated using gene expression microarray analyses. The Ca(2+) influx and efflux were evaluated to demonstrate the activation of L-type Ca(2+) channel for the Ca(2+) influx, and that of Na(+)/K(+)-ATPase for the Ca(2+) efflux. A real-time PCR analysis revealed that the messenger RNA (mRNA) expression of four mineralization-related genes was clearly increased after 3 days of culture with a B-supplemented culture medium. Using microarray analyses, five genes involved in cell proliferation and differentiation were upregulated compared to the control group. Regarding the Ca(2+) influx, in the nifedipine-pretreated group, the relative fluorescence intensity for 1 min after adding B solution did not increase compared with that for 1 min before addition. In the control group, the relative fluorescence intensity was significantly increased compared with the experimental group (P < 0.05). Regarding the Ca(2+) efflux, in the experimental group cultured in 0.1 mM of B-supplemented medium, the relative fluorescence intensity for 10 min after ouabain treatment revealed a significantly lower slope value compared with the control group (P < 0.01). This is the first study to demonstrate the acceleration of Ca(2+) flux by B supplementation in osteoblastic cells. Cell membrane stability is related to the mechanism by which a very low concentration of B promotes the proliferation and differentiation of mammalian osteoblastic cells in vitro.

  11. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts

    Directory of Open Access Journals (Sweden)

    You Li

    2012-01-01

    Full Text Available Abstract Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467 involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs. Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering.

  12. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases.

    Directory of Open Access Journals (Sweden)

    Shamik Das

    Full Text Available The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon.

  13. Stepwise Differentiation of Pluripotent Stem Cells into Osteoblasts Using Four Small Molecules under Serum-free and Feeder-free Conditions

    Directory of Open Access Journals (Sweden)

    Kosuke Kanke

    2014-06-01

    Full Text Available Pluripotent stem cells are a promising tool for mechanistic studies of tissue development, drug screening, and cell-based therapies. Here, we report an effective and mass-producing strategy for the stepwise differentiation of mouse embryonic stem cells (mESCs and mouse and human induced pluripotent stem cells (miPSCs and hiPSCs, respectively into osteoblasts using four small molecules (CHIR99021 [CHIR], cyclopamine [Cyc], smoothened agonist [SAG], and a helioxanthin-derivative 4-(4-methoxyphenylpyrido[4′,3′:4,5]thieno[2,3-b]pyridine-2-carboxamide [TH] under serum-free and feeder-free conditions. The strategy, which consists of mesoderm induction, osteoblast induction, and osteoblast maturation phases, significantly induced expressions of osteoblast-related genes and proteins in mESCs, miPSCs, and hiPSCs. In addition, when mESCs defective in runt-related transcription factor 2 (Runx2, a master regulator of osteogenesis, were cultured by the strategy, they molecularly recapitulated osteoblast phenotypes of Runx2 null mice. The present strategy will be a platform for biological and pathological studies of osteoblast development, screening of bone-augmentation drugs, and skeletal regeneration.

  14. MEK5 suppresses osteoblastic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Shoichi [Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003 (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higuchi, Chikahisa, E-mail: c-higuchi@umin.ac.jp [Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  15. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Chung, Chong-Pyoung [Department of Periodontology, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Craniomaxillofacial Reconstructive Sciences Major, College of Dentistry, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Center, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Doxazocin directly up-regulated bone metabolism at a low dose. Black-Right-Pointing-Pointer Doxazocin induced osteoblastic stem cell differentiation without affecting cell proliferation. Black-Right-Pointing-Pointer This osteogenic stem cell differentiation is mediated by ERK-signal dependent pathway. -- Abstract: Recent researches have indicated a role for antihypertensive drugs including alpha- or beta-blockers in the prevention of bone loss. Some epidemiological studies reported the protective effects of those agents on fracture risk. However, there is limited information on the association with those agents especially at the mechanism of action. In the present study, we investigated the effects of doxazosin, an alpha-blocker that is clinically used for the treatment of benign prostatic hyperplasia (BPH) along with antihypertensive medication, on the osteogenic stem cell differentiation. We found that doxazosin increased osteogenic differentiation of human mesenchymal stem cells, detected by Alizarin red S staining and calcein. Doxazosin not only induced expression of alkaline phosphatase, type I collagen, osteopontin, and osteocalcin, it also resulted in increased phosphorylation of extracellular signal-regulated kinase (ERK1/2), a MAP kinase involved in osteoblastic differentiation. Treatment with U0126, a MAP kinase inhibitor, significantly blocked doxazosin-induced osteoblastic differentiation. Unrelated to activation of osteogenic differentiation by doxazosin, we found that there were no significant changes in adipogenic differentiation or in the expression of adipose-specific genes, including peroxisome proliferator-activated receptor {gamma}, aP2, or LPL. In this report, we suggest that doxazosin has the ability to increase osteogenic cell differentiation via ERK1/2 activation in osteogenic differentiation of adult stem cells, which supports the protective effects of antihypertensive drug on fracture risk and

  16. Expression of integrin alpha 10 is transcriptionally activated by pRb in mouse osteoblasts and is downregulated in multiple solid tumors.

    Science.gov (United States)

    Engel, B E; Welsh, E; Emmons, M F; Santiago-Cardona, P G; Cress, W D

    2013-11-28

    pRb is known as a classic cell cycle regulator whose inactivation is an important initiator of tumorigenesis. However, more recently, it has also been linked to tumor progression. This study defines a role for pRb as a suppressor of the progression to metastasis by upregulating integrin α10. Transcription of this integrin subunit is herein found to be pRb dependent in mouse osteoblasts. Classic pRb partners in cell cycle control, E2F1 and E2F3, do not repress transcription of integrin α10 and phosphorylation of pRb is not necessary for activation of the integrin α10 promoter. Promoter deletion revealed a pRb-responsive region between -108 bp to -55 bp upstream of the start of the site of transcription. pRb activation of transcription also leads to increased levels of integrin α10 protein and a greater concentration of the integrin α10 protein at the cell membrane of mouse osteoblasts. These higher levels of integrin α10 correspond to increased binding to collagen substrate. Consistent with our findings in mouse osteoblasts, we found that integrin α10 is significantly underexpressed in multiple solid tumors that have frequent inactivation of the pRb pathway. Bioinformatically, we identified data consistent with an 'integrin switch' that occurs in multiple solid tumors consisting of underexpression of integrins α7, α8, and α10 with concurrent overexpression of integrin β4. pRb promotes cell adhesion by inducing expression of integrins necessary for cell adhesion to a substrate. We propose that pRb loss in solid tumors exacerbates aggressiveness by debilitating cellular adhesion, which in turn facilitates tumor cell detachment and metastasis.

  17. Feedback Control of the Arachidonate Cascade in Osteoblastic Cells by 15-deoxy-Δ12,14-Prostaglandin J2

    Science.gov (United States)

    Ishino, Hidetaka; Kawahito, Yutaka; Tsubouchi, Yasunori; Kohno, Masataka; Wada, Makoto; Yamamoto, Aihiro; Hamaguchi, Masahide; Kadoya, Masatoshi; Tokunaga, Daisaku; Hojo, Tatsuya; Matsuyama, Masahide; Yoshimura, Rikio; Yoshikawa, Toshikazu

    2008-01-01

    15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and an anti-diabetic thiazolidinedione, troglitazone (TRO) are peroxisome proliferator-activated receptor (PPAR)-γ ligands, which regulate immuno-inflammatory reactions as well as adipocyte differentiation. We previously reported that 15d-PGJ2 can suppress interleukin (IL)-1β-induced prostaglandin E2 (PGE2) synthesis in synoviocytes of rheumatoid arthritis (RA). IL-1 also stimulates PGE2 synthesis in osteoblasts by regulation of cyclooxygenase (COX)-2 and regulates osteoclastic bone resorption in various diseases such as RA and osteoporosis. In this study, we investigated the feedback mechanism of the arachidonate cascade in mouse osteoblastic cells, MC3T3-E1 cells, which differentiate into mature osteoblasts. Treatment with 15d-PGJ2 led to a significant increase in IL-1α-induced COX-2 expression and PGE2 production in a dose dependent manner. The effect of 15d-PGJ2 was stronger than that of TRO. However, it did not affect the expression of COX-1. In addition, cell viability of MC3T3-E1 cells was not changed in the condition we established. This means that 15d-PGJ2 exerts a positive feedback regulation of the arachidonate cascade of PGE2 in osteoblastic cells. These results may provide important information about the pathogenesis and treatment of bone resorption in a variety of diseases such as RA and osteoporosis. PMID:18231633

  18. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L;

    2004-01-01

    , and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...... in vitro of both primary osteoblasts and MC3T3 cells by approximately 75%. To further investigate at which level of osteoblast differentiation MMP inhibition was attenuating osteoblast function, we found that neither preosteoblast nor mature osteoblast activity was affected. In contrast, cell survival...... of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from...

  19. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  20. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wu, Zhong [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China); Wang, Jianguang, E-mail: jianguangwang@163.com [Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Jianguo, E-mail: gehujianguo68@163.com [Department of Orthopedics, Changzhou Wujin People’s Hospital-South Division, Affiliated Hospital of Jiangsu University, Changzhou (China)

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  1. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  2. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Science.gov (United States)

    Qian, Guofeng; Fan, Wei; Ahlemeyer, Barbara; Karnati, Srikanth; Baumgart-Vogt, Eveline

    2015-01-01

    Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression

  3. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  4. Optical diagnostics of osteoblast cells and osteogenic drug screening

    Science.gov (United States)

    Kolanti, Elayaraja; Veerla, Sarath C.; Khajuria, Deepak K.; Roy Mahapatra, D.

    2016-02-01

    Microfluidic device based diagnostics involving optical fibre path, in situ imaging and spectroscopy are gaining importance due to recent advances in diagnostics instrumentation and methods, besides other factors such as low amount of reagent required for analysis, short investigation times, and potential possibilities to replace animal model based study in near future. It is possible to grow and monitor tissues in vitro in microfluidic lab-on-chip. It may become a transformative way of studying how cells interact with drugs, pathogens and biomaterials in physiologically relevant microenvironments. To a large extent, progress in developing clinically viable solutions has been constrained because of (i) contradiction between in vitro and in vivo results and (ii) animal model based and clinical studies which is very expensive. Our study here aims to evaluate the usefulness of microfluidic device based 3D tissue growth and monitoring approach to better emulate physiologically and clinically relevant microenvironments in comparison to conventional in vitro 2D culture. Moreover, the microfluidic methodology permits precise high-throughput investigations through real-time imaging while using very small amounts of reagents and cells. In the present study, we report on the details of an osteoblast cell based 3D microfluidic platform which we employ for osteogenic drug screening. The drug formulation is functionalized with fluorescence and other biomarkers for imaging and spectroscopy, respectively. Optical fibre coupled paths are used to obtain insight regarding the role of stress/flow pressure fluctuation and nanoparticle-drug concentration on the osteoblast growth and osteogenic properties of bone.

  5. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  6. Enzymatic Cell Isolation and Explant Cultures of Rat Calvarial Osteoblast Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Osteoblast cells were isolated from the calvarial bones of newborn Wistar rats and cultured in vitro via both collagenase digestion method and explant technique, and a comparative study was carried out on the two culture methods. The biologic characteristics of tbs osteoblast cells were studied via cell number counting,morphology observation, alkaline phosphatase staining of the cells and alizarine- red staining of the calcified nodules. The results show that osteoblast cells can be cultured in vitro via collagenase digestion method and explant technique, and the obtained cells are of good biologic characteristics. In comparison with the explant techniqne,the operative procedure of the enzymatic digestion method is more complicated. The digestion time must be carefully controlled. However, with this method, one can obtain a lager number of cells in a short time. The operative procedure of the explant technique is simpler, but it usually takes longer time to obtain cells of desirable number.

  7. Intermittent versus continuous stretching effects on osteoblast-like cells in vitro.

    NARCIS (Netherlands)

    Winter, L.C.; Walboomers, X.F.; Bumgardner, J.D.; Jansen, J.A.

    2003-01-01

    The objective of this study was to quantify and compare stretch-mediated responses of primary rat osteoblast-like cells to uniform cyclic strain applied intermittently or continuously. Primary rat osteoblast-like cells were seeded and cultured in silicone rubber dishes for 2 days. They were then sub

  8. Toxicity of uranium and lead on osteoblastic bone cells

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S.; Thiebault, C.; Carriere, M.; Gouget, B. [CEA Saclay, CNRS, UMR9956, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France); Malaval, L. [INSERM, 42023 Saint Etienne (France)

    2007-07-01

    Bone is one of the main retention organs affected by uranium (U) and lead (Pb). Intoxications have been documented to inhibit bone formation and impair bone modeling and remodeling. However, only few studies dealt with cellular and molecular mechanisms of their toxicity. The purpose of this study was to investigate the acute cytotoxicity of U and Pb and their phenotypic effects on ROS17/2.8 osteoblastic cells. The most likely forms of the toxics in contact with cells after blood contamination were selected for cell exposure. Results show that whatever their speciation, bone cells are always more sensitive to Pb than to U. Moreover, Pb is toxic when it is left free in the exposure medium or when it is complexed with bicarbonate, cysteine or citrate, but not with albumin or phosphate. U is more cytotoxic when it is complexed with transferrin than with bicarbonate. A direct correlation between toxicity and cellular accumulation could be observed. Beside, exposure of U or Pb to bone cells induces a speciation-dependant variation of RNA expression of two markers of bone formation and mineralization: osteocalcin (OCN) and bone sialoprotein (BSP). OCN and BSP-expression could be activated in sub-toxic condition, respectively, by Pb-albumin (1.6-fold) and U-bicarbonate (2.3-fold). In the meantime, U-transferrin and Pb-citrate lead to an inhibition of the two markers. This study shows a complex mechanism of toxicity of two heavy metals with a significant phenotypic impact on osteoblastic cells highly dependant on metal speciation which controls cell accumulation. (authors)

  9. Effects of degradable MG-ND-ZN-ZR alloy on osteoblastic cell function.

    Science.gov (United States)

    Wang, Y; Ouyang, Y; Pang, X; Mao, L; Yuan, G; Jiang, Y; He, Y

    2012-01-01

    This study aimed to investigate the effects of a novel patented Mg-3Nd-0.2Zn-0.4Zr (weight %, JDBM) alloy on osteoblastic cell function, as these cells play an important role in bone repair and remodeling. The associated effects of the JDBM alloy on osteoblastic cell function involving cell adhesion, cell proliferation, and mineralization were investigated using scanning electron microscopy (SEM), MTT assay and ambramycin staining, respectively. At the same time, the in vitro degradation behavior of the JDBM alloy in cell culture medium was evaluated by the weight-loss method and SEM. Pure magnesium was used as control. The results showed that osteoblastic cells cultured on JDBM alloy samples manifested better cell adhesion, improved cell proliferation and increased mineralization ability, compared with cells seeded on pure magnesium samples. Our data indicate that the JDBM alloy has excellent bioactivity, improving the cell function of osteoblastic cells seeded on it.

  10. Effects of Apatite Cement Containing Atelocollagen on Attachment to and Proliferation and Differentiation of MC3T3-E1 Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Masaaki Takechi

    2016-04-01

    Full Text Available To improve the osteoconductivity of apatite cement (AC for reconstruction of bone defects after oral maxillofacial surgery, we previously fabricated AC containing atelocollagen (AC(ate. In the present study, we examined the initial attachment, proliferation and differentiation of mouse osteoblastic cells (MC3T3-E1 cells on the surface of conventional AC (c-AC, AC(ate and a plastic cell dish. The number of osteoblastic cells showing initial attachment to AC(ate was greater than those attached to c-AC and similar to the number attached to the plastic cell wells. We also found that osteoblastic cells were well spread and increased their number on AC(ate in comparison with c-AC and the wells without specimens, while the amount of procollagen type I carboxy-terminal peptide (PIPC produced in osteoblastic cells after three days on AC(ate was greater as compared to the others. There was no significant difference in regard to alkaline phosphatase (ALP activity and osteocalcin production by osteoblastic cells among the three surface types after three and six days. However, after 12 days, ALP activity and the produced osteocalcin were greater with AC(ate. In conclusion, AC(ate may be a useful material with high osteoconductivity for reconstruction of bone defects after oral maxillofacial surgery.

  11. Effects of gadolinium on proliferation, differentiation and calcification of primary mouse osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinchao; LI Yaping; ZHANG Qun; HAO Xiaohong; WANG Shuxiang

    2012-01-01

    To evaluate the effects of Gd on proliferation,differentiation and mineralization function of primary osteoblasts (OBs) in vitro,we tested cell viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay,cell differentiation by alkaline phosphatase (ALP) activity assay,synthesis of type I collagen,and oil red O and alizarin red S (ARS) stain assays.The results indicated that effects of Gd on the proliferation,osteogenic differentiation,mineralization function and adipocytic transdifferentiation of primary OBs depended on concentration and incubation time,but were not dose-dependent.It was suggested that the effect of Gd on bone metabolism was complicated,and concentration and culture time were key factors for switching the biological effects of Gd from damage to protection.

  12. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells.

    NARCIS (Netherlands)

    Jong, D.S. de; Steegenga, W.T.; Hendriks, J.M.; Zoelen, E.J.J. van; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  13. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells

    NARCIS (Netherlands)

    Jong, de D.S.; Steegenga, W.T.; Hendriks, J.M.A.; Zoelen, van E.J.J.; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  14. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Alkhalil

    2015-02-01

    Full Text Available Aim This study was focused on the isolation and characterization of mesenchymal stem cells (MSCs from human dental pulp (DPSC. Methods The study was performed in the Department for Oral and Cranio-Maxillo- Facial Surgey Hamad Medical Corporation, Doha, Qatar and Weill Cornell Medical Colleague Doha, Qatar, in period 2010-2011. Dental pulp was extracted from premolars and third molars of 19 healthy patients. The pulp was digested in a solution of 3 mg/mL collagenase type I and 4 mg/mL dispase for 1 hour at 37C. After filtration, cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM Low Glucoses with 20% Fetal Bovine Serum (FBS, 2mM L-glutamine and antibiotics (100 U/mL penicillin, 100 ug/mL streptomycin at 37 °C under 5% CO2. Cultures were treated with osteoinductive medium for differentiation MSC in to the osteoblast cell line. Staining with Alizarin red were used for the detection of the osteoblast production and calcification new formed tissue. Results On the total of three out of 19 patients it was possible to isolate DPMSCs after 2 to 3 weeks: in one patient it was not possible to expand MSCs because of infection, and in other two patients positive Alizarin red staining reaction showed osteogenic differentiation capability and strong mineralization in vitro. Conclusion The main advantage of using DPSC is absence of morbidity. MSCs could be isolated noninvasively from teeth, routinely extracted in the clinic and discarded as medical waste. Standardization of clinical and laboratory protocols for DPMSCs isolation and team work coordination could lead to significantly improved result.

  15. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  16. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    Science.gov (United States)

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  17. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  18. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models.

    Science.gov (United States)

    Wang, Ning; Docherty, Freyja E; Brown, Hannah K; Reeves, Kimberley J; Fowles, Anne C M; Ottewell, Penelope D; Dear, T Neil; Holen, Ingunn; Croucher, Peter I; Eaton, Colby L

    2014-12-01

    It has been suggested that metastasis-initiating cells gain a foothold in bone by homing to a metastastatic microenvironment (or "niche"). Whereas the precise nature of this niche remains to be established, it is likely to contain bone cell populations including osteoblasts and osteoclasts. In the mouse tibia, the distribution of osteoblasts on endocortical bone surfaces is non-uniform, and we hypothesize that studying co-localization of individual tumor cells with resident cell populations will reveal the identity of critical cellular components of the niche. In this study, we have mapped the distribution of three human prostate cancer cell lines (PC3-NW1, LN-CaP, and C4 2B4) colonizing the tibiae of athymic mice following intracardiac injection and evaluated their interaction with potential metastatic niches. Prostate cancer cells labeled with the fluorescent cell membrane dye (Vybrant DiD) were found by two-photon microscopy to be engrafted in the tibiae in close proximity (∼40 µm) to bone surfaces and 70% more cancer cells were detected in the lateral compared to the medial endocortical bone regions. This was associated with a 5-fold higher number of osteoblasts and 7-fold higher bone formation rate on the lateral endocortical bone surface compared to the medial side. By disrupting cellular interactions mediated by the chemokine (C-X-C motif) receptor 4 (CXCR4)/chemokine ligand 12 (CXCL12) axis with the CXCR4 inhibitor AMD3100, the preferential homing pattern of prostate cancer cells to osteoblast-rich bone surfaces was disrupted. In this study, we map the location of prostate cancer cells that home to endocortical regions in bone and our data demonstrate that homing of prostate cancer cells is associated with the presence and activity of osteoblast lineage cells, and suggest that therapies targeting osteoblast niches should be considered to prevent development of incurable prostate cancer bone metastases.

  19. Methylene blue mediated photobiomodulation on human osteoblast cells.

    Science.gov (United States)

    Ateş, Gamze Bölükbaşı; Ak, Ayşe; Garipcan, Bora; Gülsoy, Murat

    2017-08-04

    Photobiomodulation (PBM) and photodynamic therapy (PDT) are two major methods, which use light in medicine and dentistry. PBM uses low-level laser light to induce cell proliferation and activity. In contrast, PDT use laser light combined with a photosensitizer (PS) to cause cell death. Due to similar, not fully understood mechanisms and biphasic response of light, unexpected and complex outcomes may be observed. In the present study, the effect of 635 nm laser light, with power density 50 mW/cm(2), at three different energy densities (0.5, 1, and 2 J/cm(2) which last 10, 20, and 40 s, respectively) mediated by methylene blue (MB) on the human osteoblast cell line (ATCC-CRL-11372, Rockville, MD, USA) was investigated. Cell viability (MTT assay and acridine orange/propidium iodide staining) and proliferation (Alamar Blue assay) were assessed at 24, 48, and 72 h post irradiation. Alkaline phosphatase (ALP) activity, mineralization (Alizarin Red staining) and gene expressions (RT-PCR analysis) were analyzed at 7th and 14th days after treatment. Five groups were formed as the control group (no MB, no irradiation), MB (only 0.05 μM MB), MB + 0.5 J/cm(2), MB + 1 J/cm(2), and MB + 2 J/cm(2). Cell viability was decreased at 72 h (ANOVA; p < 0.05) for MB + 0.5 J/cm(2), MB + 1 J/cm(2), and MB + 2 J/cm(2) groups. Although proliferation does not seem to be effected by MB-mediated laser application, osteo-anabolic activity is altered. ALP activity was significantly increased at day 7 (ANOVA; p < 0.05) for MB-combined laser groups; on the other hand, mineralization was significantly decreased (ANOVA; p < 0.05) in all treatment groups. Alkaline phosphatase and collagen-I expressions were upregulated in MB + 2 J/cm(2) group at 7th and 14th days, respectively. These results may contribute to the low-dose PDT researches and understanding PBM effects on osteoblast behavior but further studies are needed since inappropriate conditions may lead to

  20. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha;

    2016-01-01

    Background The differentiation of human bone marrow derived skeletal stem cells (known as human bone marrow stromal or mesenchymal stem cells, hMSCs) into osteoblasts involves the activation of a small number of well-described transcription factors. To identify additional osteoblastic transcription...... containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...

  1. The interaction between Acanthamoeba polyphaga and human osteoblastic cells in vitro.

    Science.gov (United States)

    Rocha-Azevedo, Bruno da; Menezes, Gustavo Conde; Silva-Filho, Fernando Costa e

    2006-01-01

    Acanthamoeba spp. contains a group of free-living amoebae widespread in nature. These microorganisms may cause several diseases in humans including osteomyelitis. Here we characterize the cellular interaction between clinical and freshwater isolates of A. polyphaga with human osteoblasts. Amoeba cytoadherence was evaluated quantitatively and qualitatively. We observed that the clinical isolate readily adheres to human osteoblastic cells (HOB) in a saturable and time-dependent fashion. The cytoadhesion appears to be in part dependent on mannose-associated surface glycoconjugates, since prior incubation of the amoebae with alpha-mannose reduced cytoadhesion approximately 75%. Scanning electron microscopy revealed various amoebae exhibiting acanthapodia contacting the surface of osteoblasts. Some osteoblasts developed morphologies resembling apoptotic cells. The clinical isolate was highly toxic to HOB cells during 24 h of cell-protozoan interaction. Cytotoxicity was also dependent on the amoeba-cell ratio. During the cytopathogenic process we observed amoebae in the apparent process of ingestion of target cells and also amoebae extending projections or digipodia into osteoblast targets. The results indicate that A. polyphaga trophozoites attach and destroy human osteoblasts.

  2. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    Science.gov (United States)

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc.

  3. In vitro evaluation of osteoblastic cell adhesion on machined osseointegrated implants

    Directory of Open Access Journals (Sweden)

    Sandra Fabiano Alves

    2009-06-01

    Full Text Available At present the major consideration in planning an implant design is to seek biocompatible surfaces that promote a favorable response from both cells and host tissues. Different treatments of implant surfaces may modulate the adhesion, proliferation and phenotypic expression of osteoblastic cells. For this reason, the aim of the present study was to evaluate the biocompatibility of an implant surface, observing adhesion, cell morphology and proliferation of osteoblast-like cells cultivated on a commercially available titanium dental implant (Titamax Liso®, Neodent, Curitiba, PR, Brazil. The implant samples were immersed into an osteoblast-like cell (Osteo-1 suspension for a period of 24, 48 and 72 hours. After seeding the cells, the samples were prepared for analyses through scanning electron microscopy. Based on the surface analysis, the osteoblastic cells adhered to the machined surface after 24 hours in culture. In 48 hours, the cells spread over the implant surface, and after 72 hours a proliferation of cells with large and flat bodies was observed over the machined implant surface. These results demonstrate that the machined titanium surface studied is biocompatible since it allowed adhesion and proliferation of the osteoblast-like cells, in addition to preserving cell integrity and the morphologic characteristics of cells during the studied period.

  4. Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis

    Science.gov (United States)

    Kimura, Yumi; Matsugaki, Aira; Sekita, Aiko; Nakano, Takayoshi

    2017-01-01

    Intact bone tissue exhibits a characteristic anisotropic microstructure derived from collagen fiber alignment and the related c-axis orientation of apatite crystals, which govern the mechanical properties of bone tissue. In contrast, tumor-invaded bone exhibits a disorganized, less-aligned microstructure that results in severely disrupted mechanical function. Despite its importance both in basic principle and in therapeutic applications, the classical understanding of bone metastasis is limited to alterations in bone mass regulated by metastatic cancer cells. In this study, we demonstrate a novel mechanism underlying the disruption of bone tissue anisotropy in metastasized bone. We observed that direct attack by cancer cells on osteoblasts induces the less-organized osteoblast arrangement. Importantly, the crystallographic anisotropy of bone tissue is quantitatively determined by the level of osteoblast arrangement. Osteoblast arrangement was significantly disrupted by physical contact with cancer cells such as osteolytic melanoma B16F10, breast cancer MDA-MB-231, and osteoblastic prostate cancer MDA-PCa-2b cells. The present findings demonstrate that the abnormal arrangement of osteoblasts induced by physical contact with cancer cells facilitates the disorganized microstructure of metastasized bone. PMID:28303941

  5. The topographical properties of silica nanoparticle film preserve the osteoblast-like cell characteristics in vitro

    Science.gov (United States)

    Shim, Wooyoung; Lee, Seung Yun; Kim, Hyo-Sop; Kim, Jae-Ho

    2016-07-01

    The Transplantation of osteoblasts, along with an artificial implant, is experimentally considered as a therapeutics for degenerative bone diseases. However, osteoblasts have several limitations for application of transplantation in therapeutics, including a low-efficiency for bone mineralization and easy loss of characteristics in in vitro culture condition. In this study, we fabricated silica nano-particle (SNP) films using particles of different sizes to culture osteoblast-like cells for analysis the effect of topography on cellular behavior and characteristics. The physical parameters of films, such as intervals, height and roughness, were proportionally increased depending on the SNP diameter. When osteoblast-like cells were cultured on the various SNP films, the cell attachment rate on SNP-300 and SNP-700 was significantly decreased when it compared to tissue culture polystyrene (TCPS) group. In addition, the genes responsible for cell adhesion showed differential expression profiles in SNP films. The expression and activity of alkaline phosphatase were elevated in SNP-300 and SNP-700, and the extra-cellular matrix and osteoblast marker showed increased gene expression in these SNP films when compared to TCPS group. In the present study, we demonstrate that the topographical property of a nano-scale structure preserves the characteristics of osteoblast-like cells, and regulates the cellular behavior.

  6. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  7. 25-Hydroxy- and 1α,25-Dihydroxycholecalciferol Have Greater Potencies than 25-Hydroxy- and 1α,25-Dihydroxyergocalciferol in Modulating Cultured Human and Mouse Osteoblast Activities

    Science.gov (United States)

    Hulley, Philippa A.; Sabokbar, Afsie; Javaid, M. Kassim; Morovat, Alireza

    2016-01-01

    Despite differences in the phamacokinetics of 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2) in man, the effects of these and their 1α-hydroxylated forms (1,25(OH)2D3 and 1,25(OH)2D2) on cellular activity of vitamin D-responsive cells have hardly been compared. We studied differences in the effects of these metabolites on cell number, gene transcription, protein expression and mineralisation of cultured human bone marrow-derived stromal cells (hBMSC) and rapidly mineralising mouse 2T3 osteoblasts. 50–1000 nM 25(OH) and 0.05–10 nM 1,25(OH)2 metabolites were used. At high concentrations, 25(OH)D2/D3 and 1,25(OH)2D2/D3 suppressed cell number in both human and mouse cells. The suppression was greater with cholecalciferol (D3) metabolites than with those of ergocalciferol (D2). In both cell types, 25(OH)D2 and 25(OH)D3 increased the expression of osteopontin, osteocalcin, collagen-1, receptor activator of nuclear factor kappa-B ligand, vitamin D receptor, CYP24A1 and CYP27B1 genes. Whereas there was little or no difference between the effects of 25(OH)D2 and 25(OH)D3 in hBMSCs, differences were observed in the magnitude of the effects of these metabolites on the expression of most studied genes in 2T3 cells. Alkaline phosphatase (ALP) activity was increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 in hBMSC and 2T3 cells, and the increase was greater with the D3 metabolites at high concentrations. In hBMSCs, mineralisation was also increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 at high concentrations, with D3 metabolites exerting a greater influence. In 2T3 cells, the effects of these compounds on mineralisation were stimulatory at low concentrations and inhibitory when high concentrations were used. The suppression at high concentrations was greater with the D3 metabolites. These findings suggest that there are differences in the effects of 25-hydroxy and 1α,25(OH)2 metabolites of D3 and D2 on human preosteoblasts and mouse osteoblasts, with

  8. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    Science.gov (United States)

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  9. Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells.

    Science.gov (United States)

    Brodeur, Mathieu R; Brissette, Louise; Falstrault, Louise; Ouellet, Pascale; Moreau, Robert

    2008-02-15

    Cardiovascular diseases have recently been noted as potential risk factors for osteoporosis development. Although it is poorly understood how these two pathologies are related, it is a known fact that oxidized low-density lipoproteins (OxLDL) constitute potential determinants for both of them. The current study investigated the metabolism of OxLDL by osteoblasts and its effect on osteoblastic viability. The results obtained show that OxLDL are internalized but not degraded by osteoblasts while they can selectively transfer their CE to these cells. It is also demonstrated that OxLDL induce proliferation at low concentrations but cell death at high concentrations. This reduction of osteoblast viability was associated with lysosomal membrane damage caused by OxLDL as demonstrated by acridine orange relocalization. Accordingly, chloroquine, an inhibitor of lysosomal activity, accentuated cell death induced by OxLDL. Finally, we demonstrate that osteoblasts have the capacity to oxidize LDL and thereby potentially increase the local concentration of OxLDL. Overall, the current study confirms the potential role of OxLDL in the development of osteoporosis given its influence on osteoblastic viability.

  10. Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells.

    Science.gov (United States)

    Troyer, Ryan M; Ruby, Carl E; Goodall, Cheri P; Yang, Liping; Maier, Claudia S; Albarqi, Hassan A; Brady, Jacqueline V; Bathke, Kallan; Taratula, Oleh; Mourich, Dan; Bracha, Shay

    2017-09-15

    Canine osteosarcoma (OSA) is the most common cancer of the appendicular skeleton and is associated with high metastatic rate to the lungs and poor prognosis. Recent studies have shown the impact of malignant-derived exosomes on immune cells and the facilitation of immune evasion. In the current study, we have characterized the proteomic profile of exosomes derived from healthy osteoblasts and osteosarcoma cell lines. We investigated the direct impact of these exosomes on healthy T cells. Proteomic cargo of the malignant exosomes was markedly different from osteoblastic exosomes and contained immunosuppressive proteins including TGF-β, α fetoprotein and heat shock proteins. OSA exosomes directly attenuated the rate of T cell proliferation, increased a regulatory (FoxP3+) CD4+ phenotype and diminished the expression of the activation marker CD25+ on CD8+ cells. Exosomes of osteoblasts also demonstrated a direct impact on T cells, but to a lesser degree. Osteosarcoma-derived exosomes compared to normal osteoblasts contain an immunomodulatory cargo, which reduced the rate of T cell proliferation and promoted T regulatory phenotype. Osteoblast-derived exosomes can also reduce T cell activity, but to lesser degree compared to OSA exosomes and without promoting a T regulatory phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells

    OpenAIRE

    Sally M Lansley; Searles, Richelle G.; Hoi, Aina; Thomas, Carla; Moneta, Helena; Herrick, Sarah E; Thompson, Philip J; Mark, Newman; Sterrett, Gregory F; Prêle, Cecilia M; Mutsaers, Steven E.

    2011-01-01

    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm i...

  12. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Guofeng Qian

    Full Text Available Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat, whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and

  13. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Xiang-hui LI; Jin-chao ZHANG; Sen-fang SUI; Meng-su YANG

    2005-01-01

    Aim: To examine the effect of daidzin, genistin, and glycitin on the osteogenic and adipogenic differentiation of bone marrow stromal cells (MSC) and the adipogenic transdifferentiation of osteoblasts. Methods: MTT test, alkaline phosphatase (ALP) activity measurement, Oil Red O stain and measurement were employed.Results: Daidzin, genistin, and glycitin 1× 10-8, 5× 10-7, 1× 10-6, 5× 10-6, and 1× 10-5mol/L all promoted the proliferation of primary mouse bone MSC and osteoblasts.Daidzin 5× 10-7 mol/L and genistin 1 × 10-6 mol/L promoted the osteogenesis of MSC. Genistin 1×10-8, 5×10-7, 1×10-6, 5×10-6, and 1×10-5 mol/L and glycitin 1×10-8,1× 10-6, and 1× 10-5 mol/L inhibited the adipogenesis of MSC. Daidzin, genistin,and glycitin 1×10-8,5×10-7, 1× 10-6, 5× 10-6, and 1× 10-5 mol/L all inhibited the adipocytic transdifferentiation of osteoblasts. Conclusions: Daidzin, genistin, and glycitin may modulate differentiation of MSC to cause a lineage shift toward the osteoblast and away from the adipocytes, and could inhibit adipocytic transdifferentiation of osteoblasts. They could also be helpful in preventing the development of osteonecrosis.

  14. OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells.

    Directory of Open Access Journals (Sweden)

    Takanori Eguchi

    Full Text Available MicroRNAs (miRNAs are small RNA molecules of 21-25 nucleotides that regulate cell behavior through inhibition of translation from mRNA to protein, promotion of mRNA degradation and control of gene transcription. In this study, we investigated the miRNA expression signatures of cell cultures undergoing osteoblastic and osteocytic differentiation from mesenchymal stem cells (MSC using mouse MSC line KUSA-A1 and human MSCs. Ninety types of miRNA were quantified during osteoblastic/osteocytic differentiation in KUSA-A1 cells utilizing miRNA PCR arrays. Coincidently with mRNA induction of the osteoblastic and osteocytic markers, the expression levels of several dozen miRNAs including miR-30 family, let-7 family, miR-21, miR-16, miR-155, miR-322 and Snord85 were changed during the differentiation process. These miRNAs were predicted to recognize osteogenic differentiation-, stemness-, epinegetics-, and cell cycle-related mRNAs, and were thus designated OstemiR. Among those OstemiR, the miR-30 family was classified into miR-30b/c and miR-30a/d/e groups on the basis of expression patterns during osteogenesis as well as mature miRNA structures. In silico prediction and subsequent qRT-PCR in stable miR-30d transfectants clarified that context-dependent targeting of miR-30d on known regulators of bone formation including osteopontin/spp1, lifr, ccn2/ctgf, ccn1/cyr61, runx2, sox9 as well as novel key factors including lin28a, hnrnpa3, hspa5/grp78, eed and pcgf5. In addition, knockdown of human OstemiR miR-541 increased Osteopontin/SPP1 expression and calcification in hMSC osteoblastic differentiation, indicating that miR-541 is a negative regulator of osteoblastic differentiation. These observations indicate stage-specific roles of OstemiR especially miR-541 and the miR-30 family on novel targets in osteogenesis.

  15. Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Ni QIU; Che ZHANG; Hong-yan WEI; Ya-lin LI; Hong-hao ZHOU; Zhou-sheng XIAO

    2008-01-01

    Aim: To investigate the effect of nitroglycerin (NTG) on cell proliferation and osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSC) and its mechanisms. Methods: Primary HBMSC were cultured in osteogenic differentiation medium consisting of phenol red-free or-minimum es-sential media plus 10% fetal bovine serum (dextran-coated charcoal stripped)supplemented with 10 nmol/L dexamethasone, 50 mg/L ascorbic acid, and l0 mmol/Lβ-glycerophosphate for inducing osteoblastic differentiation. The cells were treated with NTG (0.1-10 μmol/L) alone or concurrent incubation with different nitric oxide synthase (NOS) inhibitors. Nitric oxide (NO) production was measured by using a commercial NO kit. Cell proliferation was measured by 5-bromodeoxyuridine (BrdU) incorporation. The osteoblastic differentiation of HBMSC culture was evaluated by measuring cellular alkaline phosphatase (ALP) activity and calcium deposition, as well as osteoblastic markers by real-time RT-PCR. Results: The treatment of HBMSC with NTG (0.1-10 μmol/L) led to a dose-dependent increase of NO production in the conditional medium. The release of NO by NTG resulted in increased cell proliferation and osteoblastic differentiation of HBMSC, as evi-denced by the increment of the BrdU incorporation, the induction of ALP activity in the early stage, and the calcium deposition in the latter stage. The increment of NO production was also correlated with the upregulation of osteoblastic markers in HBMSC cultures. However, the stimulatory effect of NTG (10 μmol/L) could not be abolished by either NG-nitro-L-arginine methyl ester, an antagonist of endothe-lial NOS, or 1400W, a selective blocker of inducible NOS activity. Conclusion: NTG stimulates cell proliferation and osteoblastic differentiation of HBMSC through a direct release of NO, which is independent on intracellular NOS activity.

  16. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  17. Expression and function of Dlx genes in the osteoblast lineage.

    Science.gov (United States)

    Li, Haitao; Marijanovic, Inga; Kronenberg, Mark S; Erceg, Ivana; Stover, Mary Louise; Velonis, Dimitrios; Mina, Mina; Heinrich, Jelica Gluhak; Harris, Stephen E; Upholt, William B; Kalajzic, Ivo; Lichtler, Alexander C

    2008-04-15

    Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5(-/-)/Dlx6(-/-) mice have more severe craniofacial and limb defects than Dlx5(-/-), some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5(-/-) mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.

  18. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  19. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice.

    Science.gov (United States)

    McBride-Gagyi, Sarah Howe; McKenzie, Jennifer A; Buettmann, Evan G; Gardner, Michael J; Silva, Matthew J

    2015-12-01

    Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10-24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2.

  20. Resveratrol inhibits the hydrogen dioxide-induced apoptosis via Sirt 1 activation in osteoblast cells.

    Science.gov (United States)

    He, Na; Zhu, Xuewei; He, Wei; Zhao, Shiwei; Zhao, Weiyan; Zhu, Chunlei

    2015-01-01

    Sirt 1 plays a critical role in stress responses. We determined the deregulation of Sirt 1 activity, p53 acetylation, Bcl-2 expression, and mitochondria-dependent apoptosis in mouse osteoblast MC3T3-E1 cells which were exposed to H2O2. And then we investigated the protective role of Sirt 1 activator, Resveratrol (RSV), against the H2O2-induced apoptosis. Results demonstrated that Sirt 1 and Bcl-2 were inhibited, whereas p53 acetylation, Bax, and caspase 9 were promoted by H2O2, as was aggravated by the Sirt 1 inhibitor, EX-527. Instead, RSV inhibited the H2O2-induced both p53 acetylation and the caspase 9 activation, whereas ameliorated the H2O2-induced Bcl-2 inhibition and apoptosis. In conclusion, Sirt 1 was downregulated during the H2O2-induced apoptosis in MC3T3-E1 cells. And the chemical activation of Sirt 1 inhibited the H2O2-induced apoptosis via the downregulation of p53 acetylation. Our results suggest that Sirt 1 upregulation appears to be an important strategy to inhibit the oxidative stress-induced apoptosis.

  1. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  2. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  3. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Directory of Open Access Journals (Sweden)

    Teruhito Yamashita

    Full Text Available Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1, a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA, a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the

  4. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, K S; Choi, E M; Rhee, S Y; Kim, Y S

    2014-02-01

    Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.

  5. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation.

    Science.gov (United States)

    Leidi, Marzia; Dellera, Federica; Mariotti, Massimo; Banfi, Giuseppe; Crapanzano, Calogero; Albisetti, Walter; Maier, Jeanette A M

    2012-10-01

    An adequate intake of magnesium (Mg) is important for bone cell activity and contributes to the prevention of osteoporosis. Because (a) Mg is mitogenic for osteoblasts and (b) reduction of osteoblast proliferation is detected in osteoporosis, we investigated the influence of different concentrations of extracellular Mg on osteoblast-like SaOS-2 cell behavior. We found that low Mg inhibited SaOS-2 cell proliferation by increasing the release of nitric oxide through the up-regulation of inducible nitric oxide synthase (iNOS). Indeed, both pharmacological inhibition with the iNOS inhibitor l-N(6)-(iminoethyl)-lysine-HCl and genetic silencing of iNOS by small interfering RNA restored the normal proliferation rate of the cells. Because a moderate induction of nitric oxide is sufficient to potentiate bone resorption and a relative deficiency in osteoblast proliferation can result in their inadequate activity, we conclude that maintaining Mg homeostasis is relevant to ensure osteoblast function and, therefore, to prevent osteoporosis.

  6. Vitamin D Effects on Osteoblastic Differentiation of Mesenchymal Stem Cells from Dental Tissues

    Science.gov (United States)

    Di Benedetto, Adriana; Cavalcanti-Adam, Elisabetta A.; Porro, Chiara; Trotta, Teresa; Grano, Maria

    2016-01-01

    1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules. PMID:27956902

  7. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts.

    Science.gov (United States)

    Kim, Sang Wan; Pajevic, Paola Divieti; Selig, Martin; Barry, Kevin J; Yang, Jae-Yeon; Shin, Chan Soo; Baek, Wook-Young; Kim, Jung-Eun; Kronenberg, Henry M

    2012-10-01

    Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system. Dmp1-CreERt2 mice were crossed with ROSA26R reporter mice to render targeted mature osteoblasts and their descendents, lining cells and osteocytes, detectable by 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) staining. Dmp1-CreERt2(+):ROSA26R mice were injected with 0.25 mg 4-OH-tamoxifen (4-OHTam) on postnatal days 3, 5, 7, 14, and 21. The animals were euthanized on postnatal day 23, 33, or 43 (2, 12, or 22 days after the last 4-OHTam injection). On day 43, mice were challenged with a subcutaneous injection of human PTH (1-34, 80 µg/kg) or vehicle once daily for 3 days. By 22 days after the last 4-OHTam injection, most X-gal (+) cells on the periosteal surfaces of the calvaria and the tibia were flat. Moreover, bone formation rate and collagen I(α1) mRNA expression were decreased at day 43 compared to day 23. After 3 days of PTH injections, the thickness of X-gal (+) cells increased, as did their expression of osteocalcin and collagen I(α1) mRNA. Electron microscopy revealed X-gal-associated chromogen particles in thin cells prior to PTH administration and in cuboidal cells following PTH administration. These data support the hypothesis that intermittent PTH treatment can increase osteoblast number by converting lining cells to mature osteoblasts in vivo.

  8. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells.

    Science.gov (United States)

    López-Herradón, Ana; Portal-Núñez, Sergio; García-Martín, Adela; Lozano, Daniel; Pérez-Martínez, Francisco C; Ceña, Valentín; Esbrit, Pedro

    2013-08-01

    Recent in vivo findings suggest that the bone sparing effect of parathyroid hormone-related protein (PTHrP) in diabetic mice might occur at least in part through targeting a suppressed Wnt/β-catenin pathway in osteoblasts. We here aimed to examine the inhibitory action of a high glucose environment on specific components of the canonical Wnt pathway, and the putative compensatory effects of PTHrP, in osteoblastic cell cultures. Mouse osteoblastic MC3T3-E1 cells and primary cultures of fetal mouse calvaria were exposed to normal (5.5 mM) or high (25 mM) D-glucose (HG), with or without PTHrP (1-36) or PTHrP (107-139) for different times. In some experiments, MC3T3-E1 cells were incubated with the Wnt pathway activators Wnt3a and LiCl, or were transfected with plasmids encoding either a mutated β-catenin that cannot be targeted for degradation or a human PTHrP (-36/+139) cDNA, or the corresponding empty plasmid, in the presence or absence of HG. The gene expression of Wnt3a and low density receptor-like proteins (LRP)-5 and 6, as well as β-catenin protein stabilization and β-catenin-dependent transcription activity were evaluated. Oxidative stress status under HG condition was also assessed. The present data demonstrate that HG can target different components of the canonical Wnt pathway, while β-catenin degradation appears to be a key event leading to inhibition of Wnt/β-catenin signaling in mouse osteoblastic cells. Both PTHrP peptides tested were able to counteract this deleterious action of HG. These in vitro findings also provide new clues to understand the underlying mechanisms whereby PTHrP can increase bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  9. Osteopontin: a rapid and sensitive response to dioxin exposure in the osteoblastic cell line UMR-106.

    Science.gov (United States)

    Wejheden, Carolina; Brunnberg, Sara; Hanberg, Annika; Lind, P Monica

    2006-03-03

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an endocrine disrupting environmental pollutant that, among other effects, affects bone tissue. TCDD modulates the transcription of various genes, e.g., CYP1A1, and the present study is a part of a project aiming at developing an in vitro model system for identifying biomarkers specific for dioxin-induced effects in osteoblasts. Osteopontin (OPN) is an adhesion protein, suggested to be important in bone remodeling and our results indicate that TCDD down-regulates the transcription of OPN in the osteoblastic cell line, UMR-106. The present study shows that UMR-106 expresses the AhR and that the expression of CYP1A1 is induced after exposure to TCDD, while down-regulation of OPN is an even more rapid response and a sensitive biomarker to TCDD exposure in this osteoblastic cell line. In conclusion, this osteoblastic cell line may be used as an in vitro model-system for studying dioxin-induced effects on osteoblasts.

  10. Human hemarthrosis-derived progenitor cells can differentiate into osteoblast-like cells in vitro.

    Science.gov (United States)

    Niikura, Takahiro; Miwa, Masahiko; Sakai, Yoshitada; Lee, Sang Yang; Kuroda, Ryosuke; Fujishiro, Takaaki; Kubo, Seiji; Doita, Minoru; Kurosaka, Masahiro

    2005-11-04

    We hypothesized that intraarticular osteochondral fracture-induced hemarthrosis could be a useful cell source for bone regeneration, as it is thought to contain osteoprogenitor cells derived from bone marrow. Therefore, we investigated whether human hemarthrosis-derived cells have the potential to differentiate into osteoblast-like cells in vitro. We aspirated hemarthrosis from patients suffering from osteochondral fractures of knee joints, and cultured hemarthrosis-derived cells in a medium supplemented with dexamethasone, beta-glycerophosphate, and ascorbic acid, or without them as control. The morphology of the treated cells appeared to be cuboidal shape, differing from spindle-like shape observed in the control. Matrix mineralization was observed only in the treated culture. Alkaline phosphatase activity and gene expression of alkaline phosphatase, parathyroid hormone receptor, osteopontin, and osteocalcin were up-regulated compared with the control. These studies demonstrate that human hemarthrosis-derived cells can differentiate into osteoblast-like cells, i.e., they contain osteoprogenitor cells and are a useful cell source for bone regeneration.

  11. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    Science.gov (United States)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  12. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    Institute of Scientific and Technical Information of China (English)

    Xing ZHONG; Ling-ling XIU; Guo-hong WEI; Yuan-yuan LIU; Lei SU; Xiao-pei CAO; Yan-bing LI; Hai-peng XIAO

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects.Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins.Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezaflbrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARa inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or N-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 pmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast prolifera-tion.Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation.

  13. P2X7Rs are involved in cell death, growth and cellular signaling in primary human osteoblasts

    DEFF Research Database (Denmark)

    Agrawal, Ankita; Henriksen, Zanne; Syberg, Susanne;

    2017-01-01

    The ionotropic ATP-gated P2X7 receptor (P2X7R) is involved in the regulation of many physiological functions including bone metabolism. Several studies on osteoblasts from rodents and human osteoblast-like cell lines have addressed the expression and function of P2X7R on these bone-forming cells...

  14. Carriers in mesenchymal stem cell osteoblast mineralization-State-of-the-art

    DEFF Research Database (Denmark)

    Dahl, Morten; Jørgensen, Niklas Rye; Hørberg, Mette

    2014-01-01

    PURPOSE: Tissue engineering is a new way to regenerate bone tissue, where osteogenic capable cells combine with an appropriate scaffolding material. Our aim was in a Medline Search to evaluate osteoblast mineralization in vitro and in vivo including gene expressing combining mesenchymal stem cells......, on mineralization and gene expression. ß-tricalcium phosphate (ß-TCP) revealed elevated alkaline phosphatase activity, and calcium-deficient hydroxyapatite a greater gene expression of osteocalcin when seeded with induced MSCs. CONCLUSION: No data are published on titanium used as a carrier in MSC osteoblast...

  15. Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway.

    Science.gov (United States)

    Liao, Xiao-bo; Zhou, Xin-min; Li, Jian-ming; Yang, Jin-fu; Tan, Zhi-ping; Hu, Zhuo-wei; Liu, Wei; Lu, Ying; Yuan, Ling-qing

    2008-05-01

    Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free beta-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the beta-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor alpha1 (Cbfalpha1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfalpha1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.

  16. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xu; Liu Xiaoli; Sun Jialun [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); He Shuojie [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); Department of Physics, Pusan National University, Pusan (Korea, Republic of); Lee, Imshik [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China)], E-mail: ilee@nankai.edu.cn2; Pak, Hyuk Kyu [Department of Physics, Pusan National University, Pusan (Korea, Republic of)

    2008-09-15

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E{sup *}. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E{sup *}-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  17. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells

    Science.gov (United States)

    Li, Zhipeng; Huang, Baoxin; Mai, Sui; Wu, Xiayi; Zhang, Hanqing; Qiao, Wei; Luo, Xin; Chen, Zhuofan

    2015-06-01

    Biological hydroxyapatite, derived from animal bones, is the most widely used bone substitute in orthopedic and dental treatments. Fluorine is the trace element involved in bone remodeling and has been confirmed to promote osteogenesis when administered at the appropriate dose. To take advantage of this knowledge, fluorinated porcine hydroxyapatite (FPHA) incorporating increasing levels of fluoride was derived from cancellous porcine bone through straightforward chemical and thermal treatments. Physiochemical characteristics, including crystalline phases, functional groups and dissolution behavior, were investigated on this novel FPHA. Human osteoblast-like MG63 cells were cultured on the FPHA to examine cell attachment, cytoskeleton, proliferation and osteoblastic differentiation for in vitro cellular evaluation. Results suggest that fluoride ions released from the FPHA play a significant role in stimulating osteoblastic activity in vitro, and appropriate level of fluoridation (1.5 to 3.1 atomic percents of fluorine) for the FPHA could be selected with high potential for use as a bone substitute.

  18. Electrochemical corrosion behavior and MG-63 osteoblast-like cell response of surface-treated titanium

    Science.gov (United States)

    Kim, Hak-Kwan; Jang, Ju-Woong

    2004-10-01

    Commercially pure titanium is used as a clinical implant material for many orthopedic and dental implant devices owing to its excellent corrosion resistance and good biocompatibility. However, there remains concern over the release of metal ions from prostheses and unresolved questions about its behavior in a biological environment. Our research investigated the influence of surface oxide thickness and phase on the corrosion resistance in 0.9% NaCl solution by potentiostat and XRD. Also, the MG-63 osteoblast like cell morphology and proliferation were studied to evaluate the biocompatibility in terms of surface treatment. It is demonstrated that a substantial decrease in the current density may be attained due to surface oxide thickening and phase transformation by thermal oxidation. The osteoblast adhesion morphology and proliferation data indicated that the osteoblast cell response is not conspicuously influenced by the thermal oxidation and nitric acid passivation treatments but by surface roughness and porosity of 3rd networking.

  19. Effect of yttrium ion on the proliferation,differentiation and mineralization function of primary mouse osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    张金超; 刘翠莲; 李亚平; 孙静; 王鹏; 邸科前; 陈航; 赵燕燕

    2010-01-01

    A series of experimental methods including MTT test,alkaline phosphatase(ALP) activity measurement,oil red O stain and measurement and mineralized function were employed to assess the effects of Y3+ on the proliferation,differentiation,adipogenic transdifferentiation and mineralization function of primary mouse osteoblasts(OBs) in vitro.The results indicated that Y3+(1×10-9,1×10-8,1×10-7,1×10-6,1×10-5,and 1×10-4 mol/L) promoted the proliferation of OBs on day 1,2 and 3.Y3+ had no effect on the differentiati...

  20. Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses

    Directory of Open Access Journals (Sweden)

    Hattar S.

    2002-12-01

    Full Text Available Bioactive glasses have been shown to stimulate osteogenesis both in vivo and in vitro. However, the molecular mechanisms underlying this process are still poorly understood. In this study, we have investigated the behaviour of osteoblast-like cells (MG63, cultured in the presence of bioglass particles. Three types of granules were used: 45S5registered bioactive glass, 45S5registered granules preincubated in tris buffer and 60S non-reactive glass, used as control. Phase contrast microscopy permitted step-by-step visualization of cell cultures in contact with the particles. Ultrastructural observations of undecalcified sections revealed direct contacts of the cells and an electron-dense layer located at the periphery of the material. Protein synthesis was evaluated biochemically and showed a gradual increase throughout the culture time in the three types of cultures. Alkaline phosphatase was detected in situ, in clusters of packed cells either in contact with the material or in the background cell layer. Semi-quantitative RT-PCR analysis of the main osteoblastic markers showed that gene expression was maintained in all three cultures. The fact that osteocalcin was not detected, supports the fact that the MG63 cell line is composed of less differentiated osteogenic cells rather than mature osteoblasts. We also demonstrated for the first time in this cell line, the expression of Msx-2, Dlx-3 and Dlx-7 homeogenes, known to regulate in vivo foetal skeletogenesis as well as adult skeletal regeneration. However, no significant differences could be recognised in the expression pattern of bone markers between the three types of cultures. Yet these preliminary results indicate that bioactive glasses provided a suitable environment for the growth and proliferation of osteoblasts in vitro, since no drastic changes in phenotype expression of pre-osteoblasts was noted.

  1. Human mesenchymal stem cell osteoblast differentiation, ECM deposition, and biomineralization on PAH/PAA polyelectrolyte multilayers.

    Science.gov (United States)

    Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S

    2015-05-01

    Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. © 2014 Wiley Periodicals, Inc.

  2. Collagen with simvastatin promotes cell metabolism in osteoblast-like SaOS-2 cells

    Directory of Open Access Journals (Sweden)

    Thanga Kumaran Suthanthiran

    2012-01-01

    Full Text Available Background: Simvastatin (SMV is one of the cholesterol-lowering pharmacological drugs. Recent studies demonstrate that it has a bone stimulatory effect. The present study was designed to investigate the effect of SMV along with collagen membrane on osteoblast-like SaOS-2 cells and also to standardize the dosage of SMV to be incorporated into the collagen membrane to achieve regeneration. Materials and Methods: SMV at doses of 0.5, 1, 1.5, and 2 mg was incorporated into the collagen membrane and cell metabolism was assessed by (3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide (MTT assay for 24 h. Results: SMV enhanced cell metabolism dose dependently at 24-h time and the maximum effect was obtained at a concentration of 1.5 mg of SMV. Conclusion: These results indicate that collagen with 1.5 mg SMV exhibits positive effect on cell metabolism of human osteoblast-like SaOS-2 cells.

  3. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  4. Effects of 6-Hydroxyflavone on Osteoblast Differentiation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Chien-Hung Lai

    2014-01-01

    Full Text Available Osteoblast differentiation plays an essential role in bone integrity. Isoflavones and some flavonoids are reported to have osteogenic activity and potentially possess the ability to treat osteoporosis. However, limited information concerning the osteogenic characteristics of hydroxyflavones is available. This study investigates the effects of various hydroxyflavones on osteoblast differentiation in MC3T3-E1 cells. The results showed that 6-hydroxyflavone (6-OH-F and 7-hydroxyflavone (7-OH-F stimulated ALP activity. However, baicalein and luteolin inhibited ALP activity and flavone showed no effect. Up to 50 μM of each compound was used for cytotoxic effects study; flavone, 6-OH-F, and 7-OH-F had no cytotoxicity on MC3T3-E1 cells. Moreover, 6-OH-F activated AKT and serine/threonine kinases (also known as protein kinase B or PKB, extracellular signal-regulated kinases (ERK 1/2, and the c-Jun N-terminal kinase (JNK signaling pathways. On the other hand, 7-OH-F promoted osteoblast differentiation mainly by activating ERK 1/ 2 signaling pathways. Finally, after 5 weeks of 6-OH-F induction, MC3T3-E1 cells showed a significant increase in the calcein staining intensity relative to merely visible mineralization observed in cells cultured in the osteogenic medium only. These results suggested that 6-OH-F could activate AKT, ERK 1/2, and JNK signaling pathways to effectively promote osteoblastic differentiation.

  5. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche

    Directory of Open Access Journals (Sweden)

    LM McNamara

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs within their native environment of the stem cell niche in bone receive biochemical stimuli from surrounding cells. These stimuli likely influence how MSCs differentiate to become bone precursors. The ability of MSCs to undergo osteogenic differentiation is well established in vitro;however, the role of the natural cues from bone’s regulatory cells, osteocytes and osteoblasts in regulating the osteogenic differentiation of MSCs in vivo are unclear. In this study we delineate the role of biochemical signalling from osteocytes and osteoblasts, using conditioned media and co-culture experiments, to understand how they direct osteogenic differentiation of MSCs. Furthermore, the synergistic relationship between osteocytes and osteoblasts is examined by transwell co-culturing of MSCs with both simultaneously. Osteogenic differentiation of MSCs was quantified by monitoring alkaline phosphatase (ALP activity, calcium deposition and cell number. Intracellular ALP was found to peak earlier and there was greater calcium deposition when MSCs were co-cultured with osteocytes rather than osteoblasts, suggesting that osteocytes are more influential than osteoblasts in stimulating osteogenesis in MSCs. Osteoblasts initially stimulated an increase in the number of MSCs, but ultimately regulated MSC differentiation down the same pathway. Our novel co-culture system confirmed a synergistic relationship between osteocytes and osteoblasts in producing biochemical signals to stimulate the osteogenic differentiation of MSCs. This study provides important insights into the mechanisms at work within the native stem cell niche to stimulate osteogenic differentiation and outlines a possible role for the use of co-culture or conditioned media methodologies for tissue engineering applications.

  6. Morphogenetic study on the maturation of osteoblastic cell as induced by inorganic polyphosphate.

    Directory of Open Access Journals (Sweden)

    Kaori Tsutsumi

    Full Text Available Since inorganic polyphosphates [poly(P] have an activity to induce bone differenciation in vitro and in vivo, we examined an effect of poly(P on organelle by light microscopy and electron microscopy in Murine MC3T3-E1 osteoblastic cells. The MC3T3-E1 cells were ultrastructurally observed to possess morphological characteristics of osteoblasts. Cells cultured with poly(P were strongly stained with an anti-collagen type I antibody but not in those cultured without poly(P. Ultrastructural analysis of cells cultured with poly(P revealed a well-developed Golgi apparatus, swollen and elongated rough endoplasmic reticulum, large mitochondria and many coated pits. Since MC3T3-E1 cells can be transformed from a resting phase to an active blastic cell phase after supplementation with poly(P, it implies that poly(P can be an effective material for bone regeneration.

  7. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate

    Science.gov (United States)

    Panseri, Silvia; Dapporto, Massimiliano; Tampieri, Anna; Sprio, Simone

    2017-01-01

    Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration. PMID:28196118

  8. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo (Toyama Medical and Pharmaceutical Univ. (Japan))

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  9. Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2.

    Science.gov (United States)

    Salazar, Valerie S; Ohte, Satoshi; Capelo, Luciane P; Gamer, Laura; Rosen, Vicki

    2016-12-01

    Enhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, suggesting that pre-Osx1(+) osteoprogenitors are an essential source and a target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) as a transcription factor in the osteoblast gene regulatory network induced during bone development and bone repair, which acts upstream of Osx1 in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives crucial regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.

  10. Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors

    Science.gov (United States)

    Roberts, Casey L.; Chen, Silvia S.; Murchison, Angela C.; Ogle, Rebecca A.; Francis, Michael P.; Ogle, Roy C.

    2017-01-01

    While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2–6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγ but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells. PMID:28250775

  11. Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development.

    Science.gov (United States)

    Bowers, Marisa; Zhang, Bin; Ho, Yinwei; Agarwal, Puneet; Chen, Ching-Cheng; Bhatia, Ravi

    2015-04-23

    Hematopoietic stem cells (HSCs) reside in regulatory niches in the bone marrow (BM). Although HSC niches have been extensively characterized, the role of endosteal osteoblasts (OBs) in HSC regulation requires further clarification, and the role of OBs in regulating leukemic stem cells (LSCs) is not well studied. We used an OB visualization and ablation mouse model to study the role of OBs in regulating normal HSCs and chronic myelogenous leukemia (CML) LSCs. OB ablation resulted in increase in cells with a LSK Flt3(-)CD150(+)CD48(-) long-term HSC (LTHSC) phenotype but reduction of a more highly selected LSK Flt3(-)CD34(-)CD49b(-)CD229(-) LTHSC subpopulation. LTHSCs from OB-ablated mice demonstrated loss of quiescence and reduced long-term engraftment and self-renewal capacity. Ablation of OB in a transgenic CML mouse model resulted in accelerated leukemia development with reduced survival compared with control mice. The notch ligand Jagged-1 was overexpressed on CML OBs. Normal and CML LTHSCs cultured with Jagged-1 demonstrated reduced cell cycling, consistent with a possible role for loss of Jagged-1 signals in altered HSC and LSC function after OB ablation. These studies support an important role for OBs in regulating quiescence and self-renewal of LTHSCs and a previously unrecognized role in modulating leukemia development in CML. © 2015 by The American Society of Hematology.

  12. Povidone-iodine Solutions Inhibit Cell Migration and Survival of Osteoblasts, Fibroblasts, and Myoblasts.

    Science.gov (United States)

    Liu, James X; Werner, Jordan A; Buza, John A; Kirsch, Thorsten; Zuckerman, Joseph D; Virk, Mandeep S

    2017-04-12

    In vitro laboratory study. The purpose of this study was to identify the effect of dilute povidone-iodine (PVI) solutions on human osteoblast, fibroblast and myoblast cells in vitro. Dilute PVI wound lavage has been used successfully in spine and joint arthroplasty procedures to prevent post-operative surgical site infection, but their biologic effect on host cells is largely unknown. Human primary osteoblasts, fibroblasts, and myoblasts were expanded in cell culture and subjected to various concentrations of PVI (0%, 0.001%, 0.01%, 0.1%, 0.35%, 1%) for 3 minutes. To assess the effect of PVI on cell migration, a scratch assay was performed, in which a "scratch" was made by a standard pipette tip in a cell monolayer following PVI exposure, and time to closure of the scratch was evaluated. Cell survival and proliferation was measured 48 hours post-PVI exposure using a cell viability and cytotoxicity assay. Closure of the scratch defect in all cell monolayers was achieved in PVI concentrations PVI concentrations of ≥ 0.1%. PVI concentrations PVI ≥ 0.1% had cell survival rates of less than 6% (p PVI (0.35%) exerts a pronounced cytotoxic effect on osteoblasts, fibroblast, and myoblasts in vitro. Further investigation is required to systematically study the effect of PVI on tissue healing in vivo and also determine a safe and clinically potent concentration for PVI lavage. N/A.

  13. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence.

    Directory of Open Access Journals (Sweden)

    Xiang Hong Li

    Full Text Available Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM failure. Adult hematopoietic stem and progenitor cells (HSPC reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1 was highly expressed in human osteoblast cell line (hFOB cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR and p21 expression and protected these cells from radiation-induced premature senescence (PS. The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.

  14. SCANNING ELECTRON MICROSCOPIC STUDY OF FETAL CHICKEN CALVARIAL OSTEOBLAST-LIKE CELLS CULTURED IN VITRO

    Institute of Scientific and Technical Information of China (English)

    柴本甫; 汤雪明; 徐荣辉; 朱雅萍

    1993-01-01

    Three types of osteoblast-like cells with different cnfigurations could be ob-tained through culturing fetal chicken calvaria in vitro. They were spindle-shaped cells,globular cells, and polygonal or squamous cells. With passage of culture time, there werechanges in configuration so that the spindle-shaped cells and the globular cells turnedgradually into squamous cells, in quantity which increased greatly to produce confluenceand multi-layer formation of cells, and in function as evidenced by emergence ofintracytoplasmic granules, reflecting collagen synthesis.

  15. Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro.

    Science.gov (United States)

    Fujita, Hirofumi; Yamamoto, Masanao; Ogino, Tetsuya; Kobuchi, Hirotsugu; Ohmoto, Naoko; Aoyama, Eriko; Oka, Takashi; Nakanishi, Tohru; Inoue, Keiji; Sasaki, Junzo

    2014-01-01

    A close relationship between cell death and pathological calcification has recently been reported, such as vascular calcification in atherosclerosis. However, the roles of cell death in calcification by osteoblast lineage have not been elucidated in detail. In this study, we investigated whether cell death is involved in the calcification on osteoblastic differentiation of human bone marrow mesenchymal stem cells (hMSC) under osteogenic culture in vitro. Apoptosis and necrosis occurred in an osteogenic culture of hMSC, and cell death preceded calcification. The generation of intracellular reactive oxygen species, chromatin condensation and fragmentation, and caspase-3 activation increased in this culture. A pan-caspase inhibitor (Z-VAD-FMK) and anti-oxidants (Tiron and n-acetylcysteine) inhibited osteogenic culture-induced cell death and calcification. Furthermore, calcification was significantly promoted by the addition of necrotic dead cells or its membrane fraction. Spontaneously dead cells by osteogenic culture and exogenously added necrotic cells were surrounded by calcium deposits. Induction of localized cell death by photodynamic treatment in the osteogenic culture resulted in co-localized calcification. These findings show that necrotic and apoptotic cell deaths were induced in an osteogenic culture of hMSC and indicated that both necrotic and apoptotic cells of osteoblast lineage served as nuclei for calcification on osteoblastic differentiation of hMSC in vitro.

  16. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Alessi Marie-Christine

    2008-02-01

    Full Text Available Abstract Background It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS at an early step of commitment to adipocytes and osteoblasts. Results A proteomic approach, using mono-dimensional electrophoresis and tandem mass spectrometry, allowed us to identify a total of 73 proteins at day 0 and day 3 of adipocyte and osteoblast differentiation. Analysis of identified proteins showed that 52 % corresponded to classical secreted proteins characterized by a signal peptide, that 37 % previously described in the extracellular compartment were devoid of signal peptide and that 11 % neither exhibited a signal peptide nor had been previously described extracellularly. These proteins were classified into 8 clusters according to their function. Quantitative analysis has been performed for 8 candidates: PAI-1, PEDF, BIGH3, PTX3, SPARC, ENO1, GRP78 and MMP2. Among them, PAI-1 was detected at day 0 and day 3 of osteoblast differentiation but never in adipocyte secretome. Furthermore we showed that PAI-1 mRNA was down-regulated in the bone of ovariectomized mice. Conclusion Given its regulation during the early events of hMADS cell differentiation and its status in ovariectomized mice, PAI-1 could play a role in the adipocyte/osteoblast balance and thus in bone diseases such as osteoporosis.

  17. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation

    Science.gov (United States)

    Chiellini, Chiara; Cochet, Olivia; Negroni, Luc; Samson, Michel; Poggi, Marjorie; Ailhaud, Gérard; Alessi, Marie-Christine; Dani, Christian; Amri, Ez-Zoubir

    2008-01-01

    Background It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS) at an early step of commitment to adipocytes and osteoblasts. Results A proteomic approach, using mono-dimensional electrophoresis and tandem mass spectrometry, allowed us to identify a total of 73 proteins at day 0 and day 3 of adipocyte and osteoblast differentiation. Analysis of identified proteins showed that 52 % corresponded to classical secreted proteins characterized by a signal peptide, that 37 % previously described in the extracellular compartment were devoid of signal peptide and that 11 % neither exhibited a signal peptide nor had been previously described extracellularly. These proteins were classified into 8 clusters according to their function. Quantitative analysis has been performed for 8 candidates: PAI-1, PEDF, BIGH3, PTX3, SPARC, ENO1, GRP78 and MMP2. Among them, PAI-1 was detected at day 0 and day 3 of osteoblast differentiation but never in adipocyte secretome. Furthermore we showed that PAI-1 mRNA was down-regulated in the bone of ovariectomized mice. Conclusion Given its regulation during the early events of hMADS cell differentiation and its status in ovariectomized mice, PAI-1 could play a role in the adipocyte/osteoblast balance and thus in bone diseases such as osteoporosis. PMID:18302751

  18. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli

    Science.gov (United States)

    Hyzy, Sharon L.; Doroudi, Maryam; Williams, Joseph K.; Gall, Ken; Boyan, Barbara D.; Schwartz, Zvi

    2017-01-01

    Stem cell fate has been linked to the mechanical properties of their underlying substrate, affecting mechanoreceptors and ultimately leading to downstream biological response. Studies have used polymers to mimic the stiffness of extracellular matrix as well as of individual tissues and shown mesenchymal stem cells (MSCs) could be directed along specific lineages. In this study, we examined the role of stiffness in MSC differentiation to two closely related cell phenotypes: osteoblast and chondrocyte. We prepared four methyl acrylate/methyl methacrylate (MA/MMA) polymer surfaces with elastic moduli ranging from 0.1 MPa to 310 MPa by altering monomer concentration. MSCs were cultured in media without exogenous growth factors and their biological responses were compared to committed chondrocytes and osteoblasts. Both chondrogenic and osteogenic markers were elevated when MSCs were grown on substrates with stiffness <10 MPa. Like chondrocytes, MSCs on lower stiffness substrates showed elevated expression of ACAN, SOX9, and COL2 and proteoglycan content; COMP was elevated in MSCs but reduced in chondrocytes. Substrate stiffness altered levels of RUNX2 mRNA, alkaline phosphatase specific activity, osteocalcin, and osteoprotegerin in osteoblasts, decreasing levels on the least stiff substrate. Expression of integrin subunits α1, α2, α5, αv, β1, and β3 changed in a stiffness- and cell type-dependent manner. Silencing of integrin subunit beta 1 (ITGB1) in MSCs abolished both osteoblastic and chondrogenic differentiation in response to substrate stiffness. Our results suggest that substrate stiffness is an important mediator of osteoblastic and chondrogenic differentiation, and integrin β1 plays a pivotal role in this process. PMID:28095466

  19. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    Science.gov (United States)

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  20. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  1. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Qiaoli Gu

    2012-01-01

    Full Text Available Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2 and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2 and CCAAT/enhancer-binding protein (C/EBP α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.

  2. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    Science.gov (United States)

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells.

  3. Effect of Actin Filament on Deformation-Induced Ca2+ Response in Osteoblast-Like Cells

    Science.gov (United States)

    Adachi, Taiji; Murai, Takayuki; Hoshiai, Sodai; Tomita, Yoshihiro

    Under the influence of mechanical environment, bone structure is formed and maintained by adaptive remodeling that involves osteoclastic resorption and osteoblastic formation. In the mechanotransduction system in osteoblasts, it is believed that intracellular calcium plays a fundamental role and cytoskeletal actin filament is a crucial component for the signal transduction process. To clarify the role of actin filament in deformation-induced Ca2+ signaling, osteoblast-like cells (MC3T3-E1) with different actin filament densities controlled by cytochalasin D were subjected to tensile strain in vitro. The change in intracellular Ca2+ concentration labeled by fluo-3 was observed using a confocal laser-scanning microscope. As a result, the disruption of the actin filament was found to significantly suppress the deformation-induced Ca2+ response that was regulated according to the degree of actin filament organization. This result indicates that the actin filament is indispensable for the quantitative regulation of Ca2+ signaling in response to a mechanical stimulus in osteoblasts.

  4. Effect of La3+ on osteoblastic differentiation of rat bone marrow stromal cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present work, the effect of La3+ on osteoblastic differentiation of primary rat bone marrow stromal cells (MSCs) as well as the related mechanisms are studied. Differentiation is monitored by detection of alkaline phosphatase (ALP) activity, osteocalcin secretion, the mRNA levels of Type I collagen and osteocalcin, and matrix mineralization. The results show that La3+ inhibits osteoblastic differentiation of MSCs in the early and middle stages of culture, as demonstrated by the decrease of ALP activity, osteocalcin secretion, and down-regulation of the mRNA level of osteocalcin. However, La3+ does not affect the matrix mineralization in advanced MSCs, because it up-regulates the mRNA levels of Type I collagen, and promotes ALP activity and osteocalcin secretion in MSCs in the late stage of culture. In addition, Western blot analysis exhibits that La3+ induces the phosphorylation and activation of mitogen-activated protein kinase (MAPK). Furthermore, MAPK kinase inhibitor PD98059 completely blocks the inhibitory effect of La3+ on ALP activity of MSCs in the middle stage of culture. These results suggest that La3+ affects MSCs osteoblastic differentiation depending on differentiation stages. La3+ inhibits osteoblastic differentiation of MSCs in the early and middle stages by a MAPK-dependent mechanism, but does not affect the matrix mineralization in advanced MSCs.

  5. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro.

    Science.gov (United States)

    Wiesmann, H; Hartig, M; Stratmann, U; Meyer, U; Joos, U

    2001-02-05

    The aim of the present study was to assess the structure of newly formed mineral crystals after electrical stimulation of osteoblast-like cells in vitro. Pulsed electrical stimulation was coupled capacitively or semi-capacitively to primary osteoblast-like cells derived from bovine metacarpals. Computer calculations revealed that the chosen input signal (saw-tooth, 100 V, 63 ms width, 16 Hz repetition rate) generated a short pulsed voltage drop of 100 microV (capacitive coupled mode) and of 350 microV (semi-capacitive coupled mode) across the cell-matrix layer. Stimulated cultures showed an enhanced mineral formation compared to the non stimulated controls. In cultures exposed to capacitively coupled electric fields and in control cultures nodules and mineralized globules were found. Nodules with a diameter of less than 200 nm covered the cell surface, whereas mineral globules with a diameter of up to 700 nm formed characteristic mineral deposits in the vicinity of the cells similar to biomineral formations occurring in mineralizing tissues. In contrast, large rod-shaped crystals were found in cultures stimulated by semi-capacitive coupled electric fields, indicating a non-physiological precipitation process. In conclusion, osteoblasts in culture are sensitive to electrical stimulation resulting in an enhancement of the biomineralization process.

  6. Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts

    Directory of Open Access Journals (Sweden)

    Xi Ling Liu

    2016-01-01

    Full Text Available Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs and human osteoblasts (hOBs were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p<0.001, p<0.01, resp.; the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs.

  7. Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Nirmala, R. [Bio-nano System Engineering, College of Engineering, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of); Park, Hye-Min [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Navamathavan, R. [School of Advanced Materials Engineering, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); Kang, Hyung-Sub [Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561 756 (Korea, Republic of); El-Newehy, Mohamed H. [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Center for Healthcare Technology and Development, Chonbuk National University, Jeonju, 561 756 (Korea, Republic of)

    2011-03-12

    In this study, we focused on the preparation and characterization of lecithin blended polyamide-6 nanofibers via an electrospinning process for human osteoblastic (HOB) cell culture applications. The morphological, structural characterizations and thermal properties of polyamide-6/lecithin nanofibers were determined by using scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetry (TGA). SEM images revealed that the nanofibers were well-oriented with good incorporation of lecithin. FT-IR results indicated the presence of amino groups of lecithin in the blended nanofibers. TGA analysis revealed that the onset degradation temperature decreased with increasing lecithin content in the blended nanofibers. The morphological features of cells attached on polyamide-6/lecithin nanofibers were confirmed by SEM. The adhesion, viability and proliferation properties of osteoblast cells on the polyamide-6/lecithin blended nanofibers were analyzed by in vitro cell compatibility test. This study demonstrated the non-cytotoxic behavior of electrospun polyamide-6/lecithin nanofibers for the osteoblast cell culture.

  8. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G. [Depto. Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510 (Mexico); Enríquez-Jiménez, Juana [Depto. Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City 14000 (Mexico); Alcántara-Quintana, Luz E. [Subd. de Investigación, Centro Nacional de la Transfusión Sanguínea, Secretaria de Salud, Mexico City 07370 (Mexico); Fuentes-Mera, Lizeth [Depto. Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, México City 4800 (Mexico); Piña-Barba, María C. [Depto. Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); Zepeda-Rodríguez, Armando [Depto. Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  9. The effect of plasma-nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation.

    Science.gov (United States)

    Ferraz, Emanuela P; Sa, Juliana C; de Oliveira, Paulo T; Alves, Clodomiro; Beloti, Marcio M; Rosa, Adalberto L

    2014-04-01

    In this study, we evaluated the effect of new plasma-nitrided Ti surfaces on the progression of osteoblast cultures, including cell adhesion, proliferation and differentiation. Ti surfaces were treated using two plasma-nitriding protocols, hollow cathode for 3 h (HC 3 h) and 1 h (HC 1 h) and planar for 1 h. Untreated Ti surfaces were used as control. Cells derived from human alveolar and rat calvarial bones were cultured on Ti surfaces for periods of up to 14 days and the following parameters were evaluated: cell morphology, adhesion, spreading and proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and gene expression of key osteoblast markers. Plasma-nitriding treatments resulted in Ti surfaces with distinct physicochemical characteristics. The cell adhesion and ALP activity were higher on plasma-nitrided Ti surfaces compared with untreated one, whereas cell proliferation and extracellular matrix mineralization were not affected by the treatments. In addition, the plasma-nitrided Ti surfaces increased the ALP, reduced the osteocalcin and did not affect the Runx2 gene expression. We have shown that HC 3 h and planar Ti surfaces slightly favored the osteoblast differentiation process, and then these surfaces should be considered for further investigation using preclinical models. Copyright © 2013 Wiley Periodicals, Inc.

  10. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  11. Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways.

    Science.gov (United States)

    Zheng, Yu; Chow, Shu-Oi; Boernert, Katja; Basel, Dennis; Mikuscheva, Anastasia; Kim, Sarah; Fong-Yee, Colette; Trivedi, Trupti; Buttgereit, Frank; Sutherland, Robert L; Dunstan, Colin R; Zhou, Hong; Seibel, Markus J

    2014-09-01

    The bone microenvironment and its modification by cancer and host cell interactions is a key driver of skeletal metastatic growth. Interleukin-6 (IL-6) stimulates receptor activator of NF-κB ligand (RANKL) expression in bone cells, and serum IL-6 levels are associated with poor clinical outcomes in cancer patients. We investigated the effects of RANKL on cancer cells and the role of tumor-derived IL-6 within the bone microenvironment. Using human breast cancer cell lines to induce tumors in the bone of immune-deficient mice, we first determined whether RANKL released by cells of the osteoblast lineage directly promotes IL-6 expression by cancer cells in vitro and in vivo. We then disrupted of IL-6 signaling in vivo either via knockdown of IL-6 in tumor cells or through treatment with specific anti-human or anti-mouse IL-6 receptor antibodies to investigate the tumor effect. Finally, we tested the effect of RANK knockdown in cancer cells on cancer growth. We demonstrate that osteoblast lineage-derived RANKL upregulates secretion of IL-6 by breast cancers in vivo and in vitro. IL-6, in turn, induces expression of RANK by cancer cells, which sensitizes the tumor to RANKL and significantly enhances cancer IL-6 release. Disruption in vivo of this auto-amplifying crosstalk by knockdown of IL-6 or RANK in cancer cells, or via treatment with anti-IL-6 receptor antibodies, significantly reduces tumor growth in bone but not in soft tissues. RANKL and IL-6 mediate direct paracrine-autocrine signaling between cells of the osteoblast lineage and cancer cells, significantly enhancing the growth of metastatic breast cancers within bone.

  12. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  13. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells.

    Science.gov (United States)

    Ewald, Andrea; Helmschrott, Kerstin; Knebl, Georg; Mehrban, Nazia; Grover, Liam M; Gbureck, Uwe

    2011-02-01

    Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone. The aim of this study was to test different calcium and magnesium cement composites in vitro for their use as bone substitution material. Phase composition of calcium deficient hydroxyapatite (Ca(9) (PO(4) )(5) HPO(4) OH), brushite (CaHPO(4) ·2H(2) O), and struvite (MgNH(4) PO(4) ·6H(2) O) specimens has been determined by means of X-ray diffraction, and compressive strength was measured. Cell growth and activity of osteoblastic cells (MG 63) on the different surfaces was determined, and the expression of bone marker proteins was analyzed by western blotting. Cell activity normalized to cell number revealed higher activity of the osteoblasts on brushite and struvite when compared to hydroxyapatite and also the expression of osteoblastic marker proteins was highest on brushite scaffolds. While brushite sets under acidic conditions, formation of struvite occurs under physiological pH, similar to hydroxyapatite cements, providing the possibility of additional modifications with proteins or other active components.

  14. Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast.

    Science.gov (United States)

    Cai, Wen-Wen; Zhang, Ming-Hua; Yu, Yong-Sheng; Cai, Jin-Hua

    2013-01-01

    Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H(2)) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H(2). Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H(2). Treatment with H(2) inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H(2) inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H(2) inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H(2) alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.

  15. Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone.

    Science.gov (United States)

    Dettin, Monica; Zamuner, Annj; Roso, Martina; Gloria, Antonio; Iucci, Giovanna; Messina, Grazia M L; D'Amora, Ugo; Marletta, Giovanni; Modesti, Michele; Castagliuolo, Ignazio; Brun, Paola

    2015-01-01

    The design of hybrid poly-ε-caprolactone (PCL)-self-assembling peptides (SAPs) matrices represents a simple method for the surface functionalization of synthetic scaffolds, which is essential for cell compatibility. This study investigates the influence of increasing concentrations (2.5%, 5%, 10% and 15% w/w SAP compared to PCL) of three different SAPs on the physico-chemical/mechanical and biological properties of PCL fibers. We demonstrated that physico-chemical surface characteristics were slightly improved at increasing SAP concentrations: the fiber diameter increased; surface wettability increased with the first SAP addition (2.5%) and slightly less for the following ones; SAP-surface density increased but no change in the conformation was registered. These results could allow engineering matrices with structural characteristics and desired wettability according to the needs and the cell system used. The biological and mechanical characteristics of these scaffolds showed a particular trend at increasing SAP concentrations suggesting a prevailing correlation between cell behavior and mechanical features of the matrices. As compared with bare PCL, SAP enrichment increased the number of metabolic active h-osteoblast cells, fostered the expression of specific osteoblast-related mRNA transcripts, and guided calcium deposition, revealing the potential application of PCL-SAP scaffolds for the maintenance of osteoblast phenotype.

  16. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells

    Science.gov (United States)

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-01-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  17. The effect of graphene substrate on osteoblast cell adhesion and proliferation.

    Science.gov (United States)

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H; Jayasuriya, Ambalangodage C

    2014-09-01

    Understanding the effect of graphene substrate on graphene-cell interaction is important for considering graphene as a potential candidate for biomedical applications. In this article, biocompatibility of few layers of graphene film transferred to different substrates was evaluated using osteoblasts. The substrates were oxidized silicon wafer (SiO2/Si stack), soda lime glass, and stainless steel. Chemical vapor deposition method was employed to synthesize graphene on copper substrate using methane and hydrogen as precursors. The quality and the thickness of graphene films on different substrates were estimated by Raman spectra, whereas the thickness of graphene film was confirmed by reflectance and transmittance spectroscopy. The study was also focused on cell attachment and morphology at two time points. The results show that graphene does not have any toxic effect on osteoblasts. The cell adhesion improves with graphene coated substrate than the substrate alone. It seems that graphene substrate properties play a dominant role in cell adhesion. The result of this study suggests that a layer of graphene on bone implants will be beneficial for osteoblast attachment and proliferation.

  18. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    Science.gov (United States)

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect.

  19. Freezing osteoblast cells attached to hydroxyapatite discs and glass coverslips: Mechanisms of damage

    Institute of Scientific and Technical Information of China (English)

    McGRATH; John

    2007-01-01

    Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were sub- ject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of iso- lated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryo- preservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.

  20. Freezing osteoblast cells attached to hydroxyapatite discs and glass coverslips: Mechanisms of damage

    Institute of Scientific and Technical Information of China (English)

    LIU BaoLin; McGRATH John

    2007-01-01

    Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA)discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were subject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of isolated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryopreservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.

  1. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    OpenAIRE

    Xiaochen Liu; Jie Wei; Shicheng Wei

    2011-01-01

    The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA) at the low concentration range (5–25  g/mL) for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29%) increased with the increase of n-HA concentration (5, 15, and 25  g/mL) and be...

  2. The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells.

    Science.gov (United States)

    Ewald, Andrea; Käppel, Christine; Vorndran, Elke; Moseke, Claus; Gelinsky, Michael; Gbureck, Uwe

    2012-09-01

    Bone substitute materials such as calcium phosphate cements (CPC) are frequently used as growth factor carriers for the stimulation of osteoblast-formation around an implant. However, biological modification based on delicate protein factors like extracellular matrix proteins or growth factors is subject to a number of shortcomings like the need for storage below room temperature and cost of production. The aim of this study was to investigate ionic modification as an alternative bioinorganic route for implant modification. Although it is known that Cu(II) plays a role in angiogenesis and bone formation, not all involved processes are well understood yet. In this study the in vitro effect of Cu(II) on growth and activity of osteoblastic cells seeded on brushite (CaHPO(4) · 2 H(2) O) scaffolds as well as on glass discs was investigated. The results show that Cu(II) enhances cell activity and proliferation of osteoblastic cells on CPC and furthermore affects the expression of several bone specific proteins such as bone sialo protein or osteocalcin. Therefore, the modification of CPC with Cu(II) may offer a promising alternative to protein based modification to stimulate cellular activity for an improved bone healing.

  3. The marine-derived, multi-mineral formula, Aquamin, enhances mineralisation of osteoblast cells in vitro.

    Science.gov (United States)

    O'Gorman, Denise M; Tierney, Claire M; Brennan, Orlaith; O'Brien, Fergal J

    2012-03-01

    Osteoporosis is a global health problem characterized by low bone mass and an increase in bone fragility. It is now well accepted that dietary factors play a central role in bone development and health. Diet that lacks adequate minerals is considered to be a risk factor for osteoporosis. The food supplement, Aquamin, is a natural, multi-mineral derived from the red algae Lithothamnion corallioides, rich in calcium, magnesium and 72 other trace minerals. The aim of this study was to evaluate the effect of Aquamin on osteoblastic behaviour and mineralisation in a pre-osteoblastic cell line. Cell number and metabolic activity were assessed using Hoescht DNA and AlamarBlue assays respectively. Osteogenic differentiation was measured using an alkaline phosphatase assay while mineralisation was determined using von Kossa and alizarin red staining. It is reported here that Aquamin promotes increased mineralisation in osteoblast cell culture. These data suggest that the nutritional supplement Aquamin plays an important role in promoting bone formation and may be useful in treating bone diseases such as osteoporosis.

  4. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells.

    Directory of Open Access Journals (Sweden)

    Nurdan Ozkucur

    Full Text Available BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm and weak (< or = 5 V/cm dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological

  5. Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease

    Science.gov (United States)

    D'Souza, Sonia; del Prete, Davide; Jin, Shunqian; Sun, Quanhong; Huston, Alissa J.; Kostov, Flavia Esteve; Sammut, Benedicte; Hong, Chang-Sook; Anderson, Judith L.; Patrene, Kenneth D.; Yu, Shibing; Velu, Chinavenmeni S.; Xiao, Guozhi; Grimes, H. Leighton; Roodman, G. David

    2011-01-01

    Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti–TNF-α and anti–IL-7 antibodies. Importantly, BMSCs isolated from Gfi1−/− mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease. PMID:22042697

  6. A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development

    Science.gov (United States)

    Li, Shao; Xu, Wanfu; Xing, Zhe; Qian, Jiabi; Chen, Liping; Gu, Ruonan; Guo, Wenjing; Lai, Xiaoju; Zhao, Wanlu; Li, Songyu; Wang, Yaodong; Wang, Q. Jane; Deng, Fan

    2017-01-01

    The protein kinase D family of serine/threonine kinases, particularly PKD1, has been implicated in the regulation of a complex array of fundamental biological processes. However, its function and mechanism underlying PKD1-mediated the bone development and osteoblast differentiation are not fully understood. Here we demonstrate that loss of PKD1 function led to impaired bone development and osteoblast differentiation through STAT3 and p38 MAPK signaling using in vitro and in vivo bone-specific conditional PKD1-knockout (PKD1-KO) mice models. These mice developed markedly craniofacial dysplasia, scapula dysplasia, long bone length shortage and body weight decrease compared with wild-type littermates. Moreover, deletion of PKD1 in vivo reduced trabecular development and activity of osteoblast development, confirmed by Micro-CT and histological staining as well as expression of osteoblastic marker (OPN, Runx2 and OSX). Mechanistically, loss of PKD1 mediated the downregulation of osteoblast markers and impaired osteoblast differentiation through STAT3 and p38 MAPK signaling pathways. Taken together, these results demonstrated that PKD1 contributes to the osteoblast differentiation and bone development via elevation of osteoblast markers through activation of STAT3 and p38 MAPK signaling pathways. PMID:28084409

  7. Canine Prostate Cancer Cell Line (Probasco) Produces Osteoblastic Metastases In Vivo

    Science.gov (United States)

    Simmons, Jessica K.; Dirksen, Wessel P.; Hildreth, Blake E.; Dorr, Carlee; Williams, Christina; Thomas, Rachael; Breen, Matthew; Toribio, Ramiro E.; Rosol, Thomas J.

    2014-01-01

    BACKGROUND In 2012, over 240,000 men were diagnosed with prostate cancer and over 28,000 died from the disease. Animal models of prostate cancer are vital to understanding its pathogenesis and developing therapeutics. Canine models in particular are useful due to their similarities to late-stage, castration-resistant human disease with osteoblastic bone metastases. This study established and characterized a novel canine prostate cancer cell line that will contribute to the understanding of prostate cancer pathogenesis. METHODS A novel cell line (Probasco) was derived from a mixed breed dog that had spontaneous prostate cancer. Cell proliferation and motility were analyzed in vitro. Tumor growth in vivo was studied by subcutaneous, intratibial, and intracardiac injection of Probasco cells into nude mice. Tumors were evaluated by bioluminescent imaging, Faxitron radiography, µCT, and histology. RT-PCR and genome-wide DNA copy number profiling were used to characterize the cell line. RESULTS The Probasco cells grew in vitro (over 75 passages) and were tumorigenic in nude mice. Probasco cells expressed high levels of BMP2, CDH1, MYOF, FOLH1, RUNX2, and SMAD5 modest CXCL12, SLUG, and BMP, and no PTHrP mRNA. Following intracardiac injection, Probasco cells metastasized primarily to the appendicular skeleton, and both intratibial and intracardiac injections produced osteoblastic tumors in bone. Comparative genomic hybridization demonstrated numerous DNA copy number aberrations throughout the genome, including large losses and gains in multiple chromosomes. CONCLUSIONS The Probasco prostate cancer cell line will be a valuable model to investigate the mechanisms of prostate cancer pathogenesis and osteoblastic bone metastases. PMID:25043424

  8. Using quantitative proteomics methods for studying the secreteome of human mesenchymal stem cells during osteoblast differentiation

    DEFF Research Database (Denmark)

    Kristensen, Lars Peter

    selectin-like osteoblast-derived protein pga. dens umiddelbare osteoblast specificitet. Komplement faktor H var valgt til yderligere validering i forhold til slutfasen af osteoblast differentieringen pga. dens høje ekspression og indirekte forbindelse til osteoblast differentiering. Vores studie...

  9. Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis

    Science.gov (United States)

    ABUNA, Rodrigo Paolo Flores; STRINGHETTA-GARCIA, Camila Tami; FIORI, Leonardo Pimentel; DORNELLES, Rita Cassia Menegati; ROSA, Adalberto Luiz; BELOTI, Marcio Mateus

    2016-01-01

    ABSTRACT Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon. Objective We investigated the osteoblast and adipocyte differentiation of mesenchymal stem cells (MSCs) from young and aged rats cultured on Ti. Material and Methods Bone marrow MSCs derived from 1-month and 21-month rats were cultured on Ti discs under osteogenic conditions for periods of up to 21 days and osteoblast and adipocyte markers were evaluated. Results Cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of RUNX2, osterix, ALP, bone sialoprotein, osteopontin, and osteocalcin were reduced in cultures of 21-month rats compared with 1-month rats grown on Ti. Gene expression of PPAR-γ , adipocyte protein 2, and resistin and lipid accumulation were increased in cultures of 21-month rats compared with 1-month rats grown on the same conditions. Conclusions These results indicate that the lower osteogenic potential of MSCs derived from aged rats compared with young rats goes along with the higher adipogenic potential in cultures grown on Ti surface. This unbalance between osteoblast and adipocyte differentiation should be considered in dental implant therapy to the elderly population. PMID:27556209

  10. PP2A catalytic subunit silence by microRNA-429 activates AMPK and protects osteoblastic cells from dexamethasone.

    Science.gov (United States)

    Guo, Shiguang; Chen, Caiyun; Ji, Feng; Mao, Li; Xie, Yue

    2017-06-03

    Activation of AMP-activated protein kinase (AMPK) could efficiently protect osteoblasts from dexamethasone (Dex). Here, we aim to induce AMPK activation through miRNA-mediated downregulating its phosphatase, protein phosphatase 2A (PP2A). We discovered that microRNA-429 ("miR-429") targets the catalytic subunit of PP2A (PP2A-c). Significantly, expression of miR-429 downregulated PP2A-c and activated AMPK (p-AMPKα1 Thr172) in human osteoblastic cells (OB-6 and hFOB1.19 lines). Remarkably, miR-429 expression alleviated Dex-induced osteoblastic cell death and apoptosis. On the other hand, miR-429-induced AMPK activation and osteoblast cytoprotection were almost abolished when AMPKα1 was either silenced (by targeted shRNA) or mutated (T172A inactivation). Further studies showed that miR-429 expression in osteoblastic cells increased NADPH (nicotinamide adenine dinucleotide phosphate) content to significantly inhibit Dex-induced oxidative stress. Such effect by miR-429 was again abolished with AMPKα1 silence or mutation. Together, we propose that PP2A-c silence by miR-429 activates AMPK and protects osteoblastic cells from Dex. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells.

    Science.gov (United States)

    Elter, Patrick; Sickel, Franka; Ewald, Andrea

    2009-06-01

    Nanoscaled lamellar surface structures have been prepared on medical stainless steel AISI 316LVM surfaces by chemical etching of the decomposed phases. The effect of this structure on osteoblastic cells has been investigated. Long filopodia were developed by the cells perpendicular to the lamellar structure while almost no or only short filopodia were formed parallel to the lamellae. These results are explained in terms of a topographical influence of the nanostructure. During the growth process of the filopodia a nearly flat surface was recognized parallel to the lamellae while a topographical change was sensed perpendicular to the structure, which was preferred by the cells.

  12. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate

    OpenAIRE

    Hashemibeni, Batool; Esfandiari, Ebrahim; Sadeghi, Farzaneh; Heidary, Fariba; Roshankhah, Shiva; Mardani, Mohammad; Goharian, Vahid

    2014-01-01

    Objective(s): Adipose derived stem cells (ADSCs) can be engineered to express bone specific markers. The aim of this study is to evaluate repairing tibia in animal model with differentiated osteoblasts from autologous ADSCs in alginate scaffold. Materials and Methods: In this study, 6 canine's ADSCs were encapsulated in alginate and differentiated into osteoblasts. Alkaline phosphatase assay (ALP) and RT-PCR method were applied to confirm the osteogenic induction. Then, encapsulated different...

  13. An animal model study for bone repair with encapsulated differentiated osteoblasts from adipose-derived stem cells in alginate

    OpenAIRE

    Shiva Roshankhah; Mohammad Mardani; Vahid Goharian

    2014-01-01

    Objective(s): Adipose derived stem cells (ADSCs) can be engineered to express bone specific markers. The aim of this study is to evaluate repairing tibia in animal model with differentiated osteoblasts from autologous ADSCs in alginate scaffold. Materials and Methods: In this study, 6 canine’s ADSCs were encapsulated in alginate and differentiated into osteoblasts. Alkaline phosphatase assay (ALP) and RT-PCR method were applied to confirm the osteogenic induction. Then, encapsulated differ...

  14. Cell Communication in a Coculture System Consisting of Outgrowth Endothelial Cells and Primary Osteoblasts

    Directory of Open Access Journals (Sweden)

    David Paul Eric Herzog

    2014-01-01

    Full Text Available Bone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis. Coculture systems of OECs and pOBs positively influence the angiogenic potential of endothelial cells by inducing the formation of angiogenic structures in long-term cultures. Although many studies have focused on cell communication, there are still numerous aspects which remain poorly understood. Therefore, the aim of this study is to investigate certain growth factors and cell communication molecules that are important during bone repair processes. Selected growth factors like VEGF, angiopoietins, BMPs, and IGFs were investigated during angiogenesis and osteogenesis and their expression in the cultures was observed and compared after one and four weeks of cultivation. In addition, to gain a better understanding on the origin of different growth factors, both direct and indirect coculture strategies were employed. Another important focus of this study was to investigate the role of “gap junctions,” small protein pores which connect adjacent cells. With these bridges cells are able to exchange signal molecules, growth factors, and other important mediators. It could be shown that connexins, the gap junction proteins, were located around cell nuclei, where they await their transport to the cell membrane. In

  15. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Ye J

    2011-09-01

    Full Text Available Jun Ye1, Qianqian Yao1, Anchun Mo2, Jing Nie2, Wenwen Liu1, Cui Ye1, Xianji Chen11State Key Laboratory of Oral Diseases, 2Department of Oral Implant, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: Infection around membranes is often found in guided bone regeneration (GBR. The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66 nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP. The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM. Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P < 0.05, MTT values, ALP activity, and Ca2+ concentration did not differ significantly among the three kinds of membranes (P > 0.05. From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/PA66 membranes and TCP, thus may be applied safely in

  16. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells

    Directory of Open Access Journals (Sweden)

    Rosa Adalberto L

    2011-07-01

    Full Text Available Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD, TGF-β1, and the combination of both factors (EMD+TGF-β1 on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP, osteopontin (OPN and alkaline phosphatase (ALP immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.

  17. Overexpression of SIRT1 prevents hypoxia‑induced apoptosis in osteoblast cells.

    Science.gov (United States)

    Zhou, Lu; Wang, Sung Il; Moon, Young Jae; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Jang, Kyu Yun; Kim, Jung Ryul

    2017-09-01

    Hypoxic‑ischemic injury of the bone results in osteonecrosis. Nicotinamide adenosine dinucleotide (NAD)‑dependent deacetylase sirtuin‑1 (SIRT1), a type of NAD‑dependent deacetylase, is involved in multiple biological functions, particularly in anti‑apoptosis. However, the effects of SIRT1 in osteoblasts remain unclear and whether SIRT1 protects osteoblasts in hypoxic conditions remains to be elucidated. In the present study, the role of SIRT1 in the osteoblast cells under hypoxia and the underlying mechanism of the anti‑apoptotic activity of SIRT1 were investigated. MC3T3‑E1 osteoblast cells were used for the present study and oxygen‑absorbing packs were used to induce cell hypoxia and apoptosis. MC3T3‑E1 cells were overexpressed SIRT1 by transfection with a SIRT1 adenovirus. The small interfering RNA of SIRT1 to was used to transfect cells to decrease the protein level. An MTT assay was used to estimate cell viability. Apoptosis was examined with the APOPercentage apoptosis assay kit and the activity of caspases was measured by a caspase 3 and 7 activity kit. Co‑immunoprecipitation was used to investigate protein binding ability. The mRNA and protein expression levels were quantified with reverse transcription‑quantitative polymerase chain reaction and immunoblotting. It was demonstrated that the expression of SIRT1 mRNA and protein were elevated, and peaked at 12 h under hypoxic conditions. The data demonstrated that SIRT1 overexpression in cells significantly increased cell viability and markedly decreased the percentage of apoptosis compared with the control and knockdown groups. Furthermore, overexpression of SIRT1 significantly activated anti‑apoptotic effects by deacetylating lysine residue binding to protein kinase B and decreasing the activity of caspases 3, 9 and subsequent pathways. The results from the present study suggested that SIRT1 may serve a protective function in hypoxia‑induced apoptosis in MC3T3‑E1 cells, and

  18. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Olga García-Martínez

    Full Text Available In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63 proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis in adulthood and the elderly.

  19. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  20. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  1. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    Science.gov (United States)

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  2. Zirconia coated titanium for implants and their interactions with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaluđerović, Milena R., E-mail: milena.kaluderovic@medizin.uni-leipzig.de [Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig (Germany); Schreckenbach, Joachim P. [ZL Microdent Co, Breckerfeld (Germany); Department of Chemistry, Technical University of Chemnitz (Germany); Graf, Hans-Ludwig [Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig (Germany)

    2014-11-01

    The anodic plasma-electrochemical oxidation in aqueous electrolytes of Zr(SO{sub 4}){sub 2} was used to prepare new zirconia/titania-based surfaces M1 (Ti, Zr and O: 7–10, 22–27 and 65–69 at.%) and M2 (Ti, Zr and O: 11–13, 20–23 and 64–69 at.%). The chemical composition and the microstructure of these coatings were characterized by surface and solid state techniques such as scanning electron microscopy, electron probe microanalysis, Raman spectroscopy and X-ray diffraction. These mixed oxides of ZrO{sub 2}/TiO{sub 2} surfaces consist up to 84% (m/m) of ZrO{sub 2} and 16% (m/m) of TiO{sub 2}. Monoclinic zirconia was detected as the dominant microcrystalline phase. In vitro studies were conducted on primary human osteoblast cells. MTT and DAPI assays were used for assessment on cell proliferation. Immunohistochemical analyses of morphology, cell cluster formation and expression of bone sialoprotein (BSP) and osteocalcin (OC) were performed. Novel surfaces M1 and M2 induced proliferation and expression of OC and BSP similarly to Ticer, used in clinical practice. Furthermore, the presence of zirconia on titanium surface has a higher beneficial effect on the osteoblast morphological changes and cell cluster formation. - Highlights: • Surfaces M1 and M2 (up to 84% (m/m) ZrO{sub 2} and 16% (m/m) TiO{sub 2}) were prepared. • Novel materials promote proliferation of human osteoblasts similarly to Ticer. • Morphological changes and cell cluster formation are induced faster on M1 and M2. • Higher expression of OC and BSP is caused by M1 and M2. • M1 and M2 may influence the rate of bone formation.

  3. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells.

    Science.gov (United States)

    Gittens, Rolando A; Olivares-Navarrete, Rene; Cheng, Alice; Anderson, David M; McLachlan, Taylor; Stephan, Ingrid; Geis-Gerstorfer, Jürgen; Sandhage, Kenneth H; Fedorov, Andrei G; Rupp, Frank; Boyan, Barbara D; Tannenbaum, Rina; Schwartz, Zvi

    2013-04-01

    Surface micro- and nanostructural modifications of dental and orthopedic implants have shown promising in vitro, in vivo and clinical results. Surface wettability has also been suggested to play an important role in osteoblast differentiation and osseointegration. However, the available techniques to measure surface wettability are not reliable on clinically relevant, rough surfaces. Furthermore, how the differentiation state of osteoblast lineage cells impacts their response to micro/nanostructured surfaces, and the role of wettability on this response, remain unclear. In the current study, surface wettability analyses (optical sessile drop analysis, environmental scanning electron microscopic analysis and the Wilhelmy technique) indicated hydrophobic static responses for deposited water droplets on microrough and micro/nanostructured specimens, while hydrophilic responses were observed with dynamic analyses of micro/nanostructured specimens. The maturation and local factor production of human immature osteoblast-like MG63 cells was synergistically influenced by nanostructures superimposed onto microrough titanium (Ti) surfaces. In contrast, human mesenchymal stem cells cultured on micro/nanostructured surfaces in the absence of exogenous soluble factors exhibited less robust osteoblastic differentiation and local factor production compared to cultures on unmodified microroughened Ti. Our results support previous observations using Ti6Al4V surfaces showing that recognition of surface nanostructures and subsequent cell response is dependent on the differentiation state of osteoblast lineage cells. The results also indicate that this effect may be partly modulated by surface wettability. These findings support the conclusion that the successful osseointegration of an implant depends on contributions from osteoblast lineage cells at different stages of osteoblast commitment.

  4. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Matsumoto, Rena; Uemura, Toshimasa; Xu, Zhefeng; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2015-08-01

    We studied the effect of fibril formation of fish scale collagen on the osteoblastic differentiation of human mesenchymal stem cells (hMSCs). We found that hMSCs adhered easily to tilapia scale collagen, which remarkably accelerated the early stage of osteoblastic differentiation in hMSCs during in vitro cell culture. Osteoblastic markers such as ALP activity, osteopontin, and bone morphogenetic protein 2 were markedly upregulated when the hMSCs were cultured on a tilapia collagen surface, especially in the early osteoblastic differentiation stage. We hypothesized that this phenomenon occurs due to specific fibril formation of tilapia collagen. Thus, we examined the time course of collagen fibril formation using high-speed atomic force microscopy. Moreover, to elucidate the effect of the orientation of fibril formation on the differentiation of hMSCs, we measured ALP activity of hMSCs cultured on two types of tilapia scale collagen membranes with different degrees of fibril formation. The ALP activity in hMSCs cultured on a fibrous collagen membrane was significantly higher than on a non-fibrous collagen membrane even before adding osteoblastic differentiation medium. These results showed that the degree of the fibril formation of tilapia collagen was essential for the osteoblastic differentiation of hMSCs.

  5. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S; Edwards, James R; Mundy, Gregory R; Lichtler, Alex; Kream, Barbara E; Rowe, David W; Kalajzic, Ivo; David, Val; Quarles, Darryl L; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S; Martin, James F; Mishina, Yuji; Harris, Stephen E

    2013-09-15

    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.

  6. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  7. Biomimetic Versus Sintered Calcium Phosphates: The In Vitro Behavior of Osteoblasts and Mesenchymal Stem Cells.

    Science.gov (United States)

    Sadowska, Joanna-Maria; Guillem-Marti, Jordi; Montufar, Edgar Benjamin; Espanol, Montserrat; Ginebra, Maria-Pau

    2017-02-21

    The fabrication of calcium phosphates using biomimetic routes, namely, precipitation processes at body temperature, results in distinct features compared to conventional sintered calcium phosphate ceramics, such as a high specific surface area (SSA) and micro- or nanometric crystal size. The aim of this article is to analyze the effects of these parameters on cell response, focusing on two bone cell types: rat mesenchymal stem cells (rMSCs) and human osteoblastic cells (SaOS-2). Biomimetic calcium-deficient hydroxyapatite (CDHA) was obtained by a low temperature setting reaction, and α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate were subsequently obtained by sintering CDHA either at 1400°C or 1100°C. Sintered stoichiometric hydroxyapatite (HA) was also prepared using ceramic routes. The materials were characterized in terms of SSA, skeletal density, porosity, and pore size distribution. SaOS-2 cells and rMSCs were seeded either directly on the surfaces of the materials or on glass coverslips subsequently placed on top of the materials to expose the cells to the CaP-induced ionic changes in the culture medium, while avoiding any topography-related effects. CDHA produced higher ionic fluctuations in both cell culture media than sintered ceramics, with a strong decrease of calcium and a release of phosphate. Indirect contact cell cultures revealed that both cell types were sensitive to these ionic modifications, resulting in a decrease in proliferation rate, more marked for CDHA, this effect being more pronounced for rMSCs. In direct contact cultures, good cell adhesion was found on all materials, but, while cells were able to proliferate on the sintered calcium phosphates, cell number was significantly reduced with time on biomimetic CDHA, which was associated to a higher percentage of apoptotic cells. Direct contact of the cells with biomimetic CDHA resulted also in a higher alkaline phosphatase activity for both cell types compared to sintered Ca

  8. Myocyte Enhancer Factor 2C, an Osteoblast Transcription Factor Identified by Dimethyl Sulfoxide (DMSO)-enhanced Mineralization*

    Science.gov (United States)

    Stephens, Alexandre S.; Stephens, Sebastien R.; Hobbs, Carl; Hutmacher, Deitmar W.; Bacic-Welsh, Desa; Woodruff, Maria Ann; Morrison, Nigel A.

    2011-01-01

    Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization. Furthermore, similar DMSO-mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1, we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among the numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical, and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased alkaline phosphatase activity, and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. A flow on knockdown of bone-specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c, suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts. PMID:21652706

  9. Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization.

    Science.gov (United States)

    Stephens, Alexandre S; Stephens, Sebastien R; Hobbs, Carl; Hutmacher, Deitmar W; Bacic-Welsh, Desa; Woodruff, Maria Ann; Morrison, Nigel A

    2011-08-26

    Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization. Furthermore, similar DMSO-mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1, we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among the numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical, and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased alkaline phosphatase activity, and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. A flow on knockdown of bone-specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c, suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.

  10. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  11. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells.

    Science.gov (United States)

    Ince, Akif; Schütze, Norbert; Hendrich, Christian; Jakob, Franz; Eulert, Jochen; Löhr, Jochen F

    2007-03-10

    Infection of total joint replacements is painful, disabling and difficult to treat because of the increasing bacterial resistance against antibiotics. In view of this, antiseptics show limited bacterial tolerance and have a broad-spectrum antimicrobial activity. However, the application of antiseptics to bone is insufficiently studied in literature. Therefore, we investigated the biocompatibility of the antiseptic polyhexanide with bone related cells and asked whether supplementation to bone cement is appropriate in the management of total arthroplasty infections. We performed an in vitro study with immortalised human foetal osteoblast cells (hFOB 1.19) and human endothelial cells (EAhy 926). The cultured cells were exposed to media containing various concentrations of gentamicin (12.5-800 microg/ml) and polyhexanide (0.0006-0.01%) for six hours. We measured the phase-contrast microscopy images, the cell viability, cell number and the alkaline phosphatase activity as a parameter for osteogenic function. The exposure of hFOB and endothelial cells to polyhexanide showed a severe reduction of viability and cell number. Gentamicin did not have negative effects on hFOB and endothelial cell number and viability. The alkaline phosphatase activity of hFOB showed a significant decrease after exposure to polyhexanide and gentamicin. The viability and the cell number of endothelial cells seem more negatively affected by polyhexanide than the parameters of the hFOB-cells. The exposure of human osteoblasts and endothelial cells to polyhexanide at concentrations with questionable antibacterial activity resulted in severe cell damage whereas exposure to high dosed gentamicin did not. These results raise questions as to the feasibility of using antiseptics in bone cement for the treatment of total arthroplasty infections. Further in vivo studies are necessary to show the in vivo relevance of these in vitro findings.

  12. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures

    DEFF Research Database (Denmark)

    Justesen, J; Dokkedahl, Karin Stenderup; Eriksen, E F

    2002-01-01

    Osteoblasts and adipocytes share a common precursor cell in the bone marrow stroma, termed marrow stromal cell (MSC). As the volume of bone adipose tissue increases in vivo with age, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis (OP) is the ......Osteoblasts and adipocytes share a common precursor cell in the bone marrow stroma, termed marrow stromal cell (MSC). As the volume of bone adipose tissue increases in vivo with age, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis (OP...

  13. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  14. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings.

    Science.gov (United States)

    Wang, Jiawei; de Boer, Jan; de Groot, Klaas

    2009-09-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. It was found that MC3T3-E1 cells cultured on the biomimetically deposited carbonate apatite coating demonstrated the greatest proliferation rate and the highest differentiation potential. Cells on the biomimetically deposited octacalcium phosphate coating had lower proliferation rate before day 7, but higher after that, than those on the electrolytically deposited carbonate apatite coating. There was no difference on the expression of early differentiation markers, that is, alkaline phosphatase activity and collagen content, between biomimetically deposited octacalcium phosphate and electrolytically deposited carbonate apatite coatings. However, higher expression of late differentiation markers, that is, osteocalcin and bone sialoprotein mRNA, was found on the biomimetically deposited octacalcium phosphate coating on day 14. These results suggest that the difference in in vitro osteoblast cell performance of calcium phosphate coatings might relate to their physicochemical properties. Biomimetic carbonate apatite coating is the most favorable surface for the proliferation and differentiation of MC3T3-E1 cells.

  15. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  16. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation.

    Science.gov (United States)

    Caselli, Anna; Olson, Timothy S; Otsuru, Satoru; Chen, Xiaohua; Hofmann, Ted J; Nah, Hyun-Duck; Grisendi, Giulia; Paolucci, Paolo; Dominici, Massimo; Horwitz, Edwin M

    2013-10-01

    The efficiency of hematopoietic stem cell (HSC) engraftment after bone marrow (BM) transplantation depends largely on the capacity of the marrow microenvironment to accept the transplanted cells. While radioablation of BM damages osteoblastic stem cell niches, little is known about their restoration and mechanisms governing their receptivity to engraft transplanted HSCs. We previously reported rapid restoration and profound expansion of the marrow endosteal microenvironment in response to marrow radioablation. Here, we show that this reorganization represents proliferation of mature endosteal osteoblasts which seem to arise from a small subset of high-proliferative, relatively radio-resistant endosteal cells. Multiple layers of osteoblasts form along the endosteal surface within 48 hours after total body irradiation, concomitant with a peak in marrow cytokine expression. This niche reorganization fosters homing of the transplanted hematopoietic cells to the host marrow space and engraftment of long-term-HSC. Inhibition of insulin-like growth factor (IGF)-1-receptor tyrosine kinase signaling abrogates endosteal osteoblast proliferation and donor HSC engraftment, suggesting that the cytokine IGF-1 is a crucial mediator of endosteal niche reorganization and consequently donor HSC engraftment. Further understanding of this novel mechanism of IGF-1-dependent osteoblastic niche expansion and HSC engraftment may yield clinical applications for improving engraftment efficiency after clinical HSC transplantation.

  17. Potential of l-thyroxine to differentiate osteoblast-like cells via Angiopoietin1.

    Science.gov (United States)

    Park, See-Hyoung; Lee, Jongsung; Kang, Mi-Ae; Moon, Young Jae; Wang, Sung Il; Kim, Kyoung Min; Park, Byung-Hyun; Jang, Kyu Yun; Kim, Jung Ryul

    2016-09-23

    Angiogenesis is closely associated with osteoblast differentiation. Previously, we demonstrated that bone formation can be accelerated by treatment with COMP-Angiopoietin1, a known angiogenic factor. Angiopoietin1 (Ang1) is a specific growth factor that generates stable and mature vasculature through the Tie2 receptor. In this study, we aimed to identify a novel drug that can activate endogenous Ang1 expression as a pharmacological treatment for bone formation. Therefore, Ang1 expression was examined in U2OS osteoblast-like cells treated with 770 drugs from a library of Food and Drug Administration (FDA)-approved drugs by using ELISA for Ang1. l-thyroxine was selected as a novel drug candidate. l-Thyroxine is a synthetic form of the hormone thyroxine, which is used to treat patients with hypothyroidism. Enzyme-linked immunosorbent assays (ELISAs) were performed to test whether Ang1 is induced in a dose-dependent manner in human osteoblast-like cell lines, U2OS and MG63. The effects of l-thyroxine on osteoblast differentiation and mineralization were evaluated by alkaline phosphatase (ALP) activity and Alizarin red s staining. To determine the molecular mechanism, the expression of proteins related to bone formation and differentiation, such as type I collagen (COL1A1), osteocalcin (OC), bone sialoprotein (BSP), distal-less homeobox 5 (Dlx5), Runt-related transcription factor 2 (Runx2), osterix (OSX), and ALP, was tested by Western blotting analysis. Consequently, l-thyroxine induced Ang1 expression in a dose-dependent manner in both U2OS and M63 cells, which was confirmed by ELISA and Western blotting. Also, l-thyroxine activated ALP activity in U2OS and MG63 cells as well as ALP expression. Furthermore, l-thyroxine enhanced the expression of COL1A1, Runx2, OC, BSP, Dlx5, and OSX mRNA and proteins. Taken together, we demonstrated that l-thyroxine increased Ang1 expression and induces bone formation, differentiation, and mineralization in U2OS and MG63 cell lines

  18. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Sarah H McBride

    Full Text Available The importance of bone morphogenetic protein 2 (BMP2 in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre. Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35% but decreased post-yield displacement (greater than 50% at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.

  19. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells.

    Science.gov (United States)

    McBride, Sarah H; McKenzie, Jennifer A; Bedrick, Bronwyn S; Kuhlmann, Paige; Pasteris, Jill D; Rosen, Vicki; Silva, Matthew J

    2014-01-01

    The importance of bone morphogenetic protein 2 (BMP2) in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre) and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre). Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately) would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35%) but decreased post-yield displacement (greater than 50%) at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.

  20. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

    Directory of Open Access Journals (Sweden)

    Panseri Silvia

    2012-07-01

    Full Text Available Abstract Background Superparamagnetic nanoparticles (MNPs have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results MNPs were obtained by doping hydroxyapatite (HA with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. Conclusions The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or

  1. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    Science.gov (United States)

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects. © FASEB.

  2. The effect of a cholesterol liquid crystalline structure on osteoblast cell behavior.

    Science.gov (United States)

    Xu, Jian-Ping; Ji, Jian; Shen, Jia-Cong

    2009-04-01

    To investigate the effect of a liquid crystalline structure on cell behavior, polymethylsiloxane-graft-(10-cholesteryloxydecanol) was specially designed to get a thermotropic liquid crystalline polymer. Results of Fourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy and gel permeation chromatography (GPC) indicated that cholesterol was successfully covalently grafted onto polymethylhydrosiloxane via decamethylene 'flexible spacer'. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) investigations revealed that the copolymer with 44.9% mesogenic unit showed obvious thermotropic liquid crystalline transition at about 124.9 degrees C. Polymer films were prepared by spin coating on clean glass plates from 5 mg ml(-1) toluene solutions of the copolymers. The POM investigation indicated that while the unannealed films (SC15, SC45) showed no liquid crystalline structure, the films which were annealed in vacuo at 140 degrees C for 9 h and then quenched to room temperature (SC15C, SC45C) formed discrete island-like liquid crystalline and continuous liquid crystalline structures, respectively. Osteoblast cells (MC3T3) were chosen to test the cell behavior of annealed and unannealed films. In comparison to unannealed films, the annealed films with a cholesterol liquid crystalline structure could promote osteoblast cell attachment and growth significantly.

  3. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  4. High glucose concentrations alter the biomineralization process in human osteoblastic cells.

    Science.gov (United States)

    García-Hernández, A; Arzate, H; Gil-Chavarría, I; Rojo, R; Moreno-Fierros, L

    2012-01-01

    Diabetes mellitus (DM) may alter bone remodeling, as osteopenia and osteoporosis are among the complications. Moreover, DM increases the risk and severity of chronic inflammatory periodontal disease, in which bone resorption occurs. Broad evidence suggests that chronic inflammation can contribute to the development of DM and its complications. Hyperglycemia is a hallmark of DM that may contribute to sustained inflammation by increasing proinflammatory cytokines, which are known to cause insulin resistance, via toll-like receptor (TLR)-4-mediated mechanisms. However, the mechanisms by which bone-related complications develop in DM are still unknown. Studies done on the effect of high glucose concentrations on osteoblast functions are contradictory because some suggest increases (although others suggest reductions) in the biomineralization process. Therefore, we evaluated the effect of high glucose levels on biomineralization and inflammation markers in a human osteoblastic cell line. Cells were treated with either physiological 5.5 mM or increasing concentrations of glucose up to 24 mM, and we determined the following: i) the quantity and quality of calcium-deposit crystals in culture and ii) the expression of the following: a) proteins associated with the process of biomineralization, b) the receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG), c) cytokines IL1, IL6, IL8, IL10, MCP-1 and TNF alpha, and d) TLR-2, -3, -4 and -9. Our results show that high glucose concentrations (12 mM and particularly 24 mM) alter the biomineralization process in osteoblastic cells and provoke the following: i) a rise in mineralization, ii) an increase in the mRNA expression of RANKL and a decrease of OPG, iii) an increase in the mRNA expression of osteocalcin, bone sialoprotein and the transcription factor Runx2, iv) a diminished quality of the mineral, and v) an increase in the expression of IL1beta, IL6, IL8, MCP-1 and IL10 mRNAs. In addition we

  5. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  6. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.Z.; Yang, X.; Bi, Z.G. [Department of Orthopedic Surgery, First Affiliated Hospital, Harbin Medicine University, Harbin (China)

    2015-04-28

    We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  7. Toxicity Study of Nanosilver (Nanocid® on Osteoblast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Somayyeh Moaddab

    2011-01-01

    Full Text Available Nanotechnology presents countless opportunities to develop new and improved consumer products for the benefit of society. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health. The purpose of this study was to assess the biological assay of nanosilver (Nanocid® on osteoblast (G292 cell line. The effect of nanosilver on these cells was evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. The results demonstrate a concentration-dependent toxicity for the cell tested, and IC50 was determined 3.42 µg/mL, suggest that the product is more toxic to cancerous cell comparing to other heavy metal ions.

  8. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx......43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium....

  9. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    Science.gov (United States)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  10. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali; Hamam; Alfayez;

    2016-01-01

    The epigenetic mechanisms promoting lineage-specific commitment of human skeletal (mesenchymal or stromal) stem cells (hMSCs) into adipocytes or osteoblasts are still not fully understood. Herein, we performed an epigenetic library functional screen and identified several novel compounds, including...... abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... or stromal) stem cells (hMSCs). These data provide new insight into the understanding of the relationship between the epigenetic effect of histone deacetylase inhibitors, transcription factors, and differentiation pathways controlling adipocyte and osteoblast differentiation of hMSCs. Manipulating...

  11. Osteoblast-conditioned media influence the expression of E-selectin on bone-derived vascular endothelial cells.

    Science.gov (United States)

    Makuch, Lauren A; Sosnoski, Donna M; Gay, Carol V

    2006-08-01

    Breast cancer cells frequently metastasize to the ends of long bones, ribs and vertebrae, structures which contain a rich microvasculature that is closely juxtaposed to metabolically active trabecular bone surfaces. This study focuses on the effects of osteoblast secretions on the surface presentation of adhesive proteins on skeletal vascular endothelial cells. Vascular endothelial cells were isolated from trabecular bone regions of the long bones of 7-week-old Swiss Webster mice and also from the central marrow cavity where trabecular bone is absent. Both types of endothelial cells were placed in culture for 7 days, then exposed 24 h to conditioned media from MC3T3-E1 osteoblasts. Conditioned medium (CM) from two different stages of osteoblast development were tested: (1) from immature MC3T3-E1 cells cultured for 5-7 days and (2) from mature MC3T3-E1 cells cultured for 28-30 days. The immature osteoblasts were in a stage of rapid proliferation; the mature osteoblasts formed a matrix that mineralized. Following exposure to the conditioned media, the vascular cells were exposed to anti-P-selectin, anti-E-selectin, anti-ICAM-1, and anti-VCAM-1 to detect the corresponding adhesive proteins on their surfaces. Breast cancer cells are known to bind to these adhesive proteins. Of the four proteins evaluated, E-selectin was consistently found on more cell surfaces (approximately 30%) of bone-derived vascular endothelial cells (BVECs) when exposed to the immature CM whereas vascular endothelial cells from marrow (MVECs) did not show this response to either immature CM or mature CM. These studies suggest that the BVEC blood vessels near immature bone cells express more surface adhesive protein that could enhance entrapment and extravasation of breast cancer cells. Once cancer cells have undergone extravasation into marrow adjacent to bone, they could be readily attracted to nearby bone surfaces.

  12. Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization.

    Science.gov (United States)

    Marquès, Stéphanie; Buchet, René; Popowycz, Florence; Lemaire, Marc; Mebarek, Saïda

    2016-03-01

    Tissue-nonspecific alkaline phosphatase (TNAP) by hydrolyzing pyrophosphate, an inhibitor of apatite formation, promotes extracellular matrix calcification during bone formation and growth, as well as during ectopic calcification under pathological conditions. TNAP is a target for the treatment of soft tissue pathological ossification. We synthesized a series of benzofuran derivatives. Among these, SMA14, displayed TNAP activity better than levamisole. SMA14 was found to be not toxic at doses of up to 40μM in osteoblast-like Saos-2 cells and primary osteoblasts. As probed by Alizarin Red staining, this compound inhibited mineral formation in murine primary osteoblast and in osteoblast-like Saos-2 cells.

  13. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    Science.gov (United States)

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  14. Parathyroid Hormone-Related Protein Protects Osteoblastic Cells From Oxidative Stress by Activation of MKP1 Phosphatase.

    Science.gov (United States)

    Ardura, Juan A; Portal-Núñez, Sergio; Castelbón-Calvo, Irantzu; Martínez de Toda, Irene; De la Fuente, Mónica; Esbrit, Pedro

    2017-04-01

    Oxidative damage is an important contributor to the morphological and functional changes in osteoporotic bone. Aging increases the levels of reactive oxygen species (ROS) that cause oxidative stress and induce osteoblast apoptosis. ROS modify several signaling responses, including mitogen-activated protein kinase (MAPK) activation, related to cell survival. Both parathyroid hormone (PTH) and its bone counterpart, PTH-related protein (PTHrP), can regulate MAPK activation by modulating MAPK phosphatase-1 (MKP1). Thus, we hypothesized that PTHrP might protect osteoblasts from ROS-induced apoptosis by targeting MKP1. In osteoblastic MC3T3-E1 and MG-63 cells, H2 O2 triggered p38, JNK, ERK and p66(Shc) phosphorylation, and cell apoptosis. Meanwhile, PTHrP (1-37) rapidly but transiently increased ERK and Akt phosphorylation without affecting p38, JNK, or p66(Shc) activation. H2 O2 -induced p38 and ERK phosphorylation and apoptosis were both decreased by pre-treatment with specific kinase inhibitors or PTHrP (1-37) in both osteoblastic cell types. These dephosphorylating and prosurvival actions of PTHrP (1-37) were prevented by a phosphatase inhibitor cocktail, the phosphatase MKP1 inhibitor sanguinarine or a MKP1 siRNA. PTHrP (1-37) promptly enhanced MKP1 protein and gene expression and MKP1-dependent catalase activity in osteoblastic cells. Furthermore, exposure to PTHrP (1-37) adsorbed in an implanted hydroxyapatite-based ceramic into a tibial defect in aging rats increased MKP1 and catalase gene expression in the healing bone area. Our findings demonstrate that PTHrP counteracts the pro-apoptotic actions of ROS by a mechanism dependent on MKP1-induced dephosphorylation of MAPKs in osteoblasts. J. Cell. Physiol. 232: 785-796, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.

    Science.gov (United States)

    Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin

    2007-01-01

    Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.

  16. Expression of precerebellins in cultured rat calvaria osteoblast-like cells.

    Science.gov (United States)

    Rucinski, Marcin; Zok, Agnieszka; Guidolin, Diego; De Caro, Raffaele; Malendowicz, Ludwik K

    2008-10-01

    Cerebellin (CER), originally isolated from rat cerebellum, is a hexadecapeptide derived from the larger precursor called precerebellin 1 (Cbln1). At present 4 propeptides designated as Cbln1, Cbln2, Cbln3 and Cbln4 are recognized. They belong to precerebellin subfamily of the C1q family proteins. Precerebellins act as transneuronal regulators of synapse development and synaptic plasticity in various brain regions. Initially CER was thought to be a cerebellum specific peptide, however subsequent studies revealed its presence in other brain regions as well as in extraneuronal tissues. We investigated whether precerebellins are expressed and involved in regulation of cultured rat calvarial osteoblast-like (ROB) cells. Classic RT-PCR revealed the presence of Cbln1 and Cbln3 mRNA in fragments of rat calvaria, in freshly isolated ROB cells and in ROB cells cultured for 7, 14 and 21 days. Cbln2 and Cbln4 mRNA, on the other hand, could not be demonstrated in ROB cells but was found to be present in the brain. In freshly isolated ROB cells expression of Cbln1 gene was very low and gradually increased in relation to the duration of culture. Expression of Cbln3, on the other hand, was very low in fragments of rat calvaria, and increased notably after digestion with collagenase-I. The highest expression of this precerebellin was observed at day 14 of culture while at days 7 and 21 levels of expressions were notably lower. Neither Cbln2 nor Cbln4 was found to be expressed in the ROB cells. Neither CER nor des-Ser1-CER (10(-10)-10(-6)M) affect osteocalcin production and proliferation rate of studied cells. The above findings suggest that CER, which theoretically would be derived from Cbln1, modulate neither differentiated (osteocalcin secretion) nor basic (proliferation) functions of cultured rat osteoblast-like cells. The obtained data raise an intriguing hypothesis that precerebellins may be involved in regulating of spatial organization of osteoblastic niches in the bone.

  17. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces.

    Science.gov (United States)

    Rausch-fan, Xiaohui; Qu, Zhe; Wieland, Marco; Matejka, Michael; Schedle, Andreas

    2008-01-01

    The aim of this study was to investigate the influence of different implant surface topographies and chemistries on the expression of differentiation/proliferation markers on MG63 cells and primary human alveolar osteoblasts. Hydrophobic acid-etched (A) and hydrophobic coarse-grit-blasted, acid-etched (SLA) surfaces and hydrophilic acid-etched (modA) and hydrophilic coarse-grit-blasted (modSLA) surfaces were produced. Thereby, modA and modSLA surfaces were rinsed under nitrogen protection and stored in a sealed glass tube containing isotonic NaCl solution at pH 4-6. Tissue culture plates without specimens served as controls. The behavior of MG63 cells and primary human alveolar osteoblasts (AOB) grown on all surfaces was compared through determination of alkaline phosphatase (ALP) activity, cell proliferation ((3)H-thymidin incorporation, MTT colorimetric assay) and expression of osteocalcin (OC), osteoprotegerin (OPG), transforming growth factor-beta1 (TGF-beta(1)) and vascular endothelial growth factor (VEGF), detected with commercial available test kits. Proliferation of MG63 and primary cells was highest on controls, followed by A surfaces, modA and SLA surfaces being almost on the same level and lowest on modSLA surfaces. modSLA surfaces exhibited highest ALP and OC production, followed by SLA, modA and A surfaces. Proliferation and OC production were comparable for MG63 cells and AOB. OPG, TGF-beta(1) and VEGF produced on primary cells showed a slightly different rank order on different surfaces compared to MG63 cells. modSLA still showed the highest production of OPG, TGF-beta(1) and VEGF, but was followed by modA, SLA and A. Statistical significance was checked by ANOVA (pmodA surfaces showed enhanced expression of OPG, TGF-beta(1) and VEGF on MG63 cells compared to primary human alveolar osteoblasts. Overall, the lowest proliferation rates and the highest expressions of differentiation markers and growth factor productions were observed on modSLA.

  18. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Tsukasa, E-mail: akasaka@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Yokoyama, Atsuro; Matsuoka, Makoto [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan); Hashimoto, Takeshi [Meijo Nano Carbon Co., Ltd., Otsubashi Bldg. 4F, 3-4-10, Marunouchi, Naka-ku, Nagoya, 460-0002 (Japan); Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586 (Japan)

    2010-04-06

    One strategy used for the regeneration of bone is the development of cell culture substrates and scaffolds that can control osteoblast proliferation and differentiation. In recent investigations, carbon nanotubes (CNTs) have been utilized as scaffolds for osteoblastic cell cultures; however, there are only a few reports describing the proliferation of osteoblastic cells on thin CNT films; in particular, the effects of serum concentration on cell proliferation have not been studied. In the present study, we prepared culture dishes with homogeneous thin or thick films of non-modified CNTs and examined the effect of serum concentrations on human osteoblastic cells (Saos-2) proliferation in these culture dishes. We demonstrated that the ratio of cell proliferation was strongly affected by the concentration of serum. Interestingly, single-walled carbon nanotube (SWNT) thin films were found to be the most effective substrate for the proliferation of Saos-2 cells in low concentrations of serum. Thus, thin SWNT films may be used as an effective biomaterial for the culture of Saos-2 cells in low serum concentrations.

  19. Surface modification of parylene-N films for the culture of osteoblast-like cells (MG-63)

    Science.gov (United States)

    Liaqat, Usman; Ko, Hyuk; Suh, Hwal; Lee, Misu; Pyun, Jae-Chul

    2016-08-01

    The influence of microenvironments on the culture of osteoblast-like cells (MG-63) has been investigated using parylene films with different surfaces, such as parylene-N film, UV-modified parylene-N film, functional parylene film with amine groups (parylene-A), and UV-modified parylene-A film. In this work, parylene-N film was found to induce dramatic changes in cell adhesion and cell viability before and after UV-treatment with respect to the culture of osteoblast-like cells (MG-63). The influences of such a chemical environment on cell culture were investigated in relation to the cell proliferation (viability and proliferation rate) and the cell physiology (cell cycle, protein synthesis, and differentiation) of cells grown on parylene-N film, UV-modified parylene-N film, parylene-A film, and UV-modified parylene-A film in comparison with cells grown on a polystyrene surface.

  20. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model.

    Directory of Open Access Journals (Sweden)

    Ana Paula D N de Barros

    Full Text Available BACKGROUND: Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs are dependent upon a complex three-dimensional (3D bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow-derived mesenchymal stromal cells (BMSC and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34(+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34(+ cells was decreased. CONCLUSIONS/SIGNIFICANCE: Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation.

  1. Effects of Er3+ on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jinchao; SUN Jing; ZHANG Dawei; LI Yaping; HAO Xiaohong; QIN Xinying

    2011-01-01

    A series of experimental methods including 3-(4,5-dimethy1-2-thiazolyl)-2,5-dipheny1-2H tetrazolium bromide (MTT) test, alkaline phosphatase (ALP) activity measurement, oil red O stain and measurement, mineralized function and quantitive real time RT-PCR (qRT-PCR) were employed to assess the effects of Er3+ on the proliferation, differentiation and mineralization function of primary osteoblasts (OBs) in vitro at cell and molecular levels. The results indicated that Er3+ inhibited the proliferation of OBs at a concentration of 1×10-7 mol/L, but had no effect at other concentrations. Er3+ inhibited the differentiation of OBs at concentrations of 1 × 10-8, 1 × 10-7, and 1 × 10-6 mol/L, but had no effect at a higher concentration of 1 × 10-5 mol/L. Er3+ had no effect on the transdifferentiafion of OBs at tested concentrations. Er3+ inhibited the mineralization function of OBs at concentrations of 1 × 10-7, 1 × 10-6, and 1 × 10-5 mol/L, but had no effect at a lower concentration of 1 × 10-8 mol/L. The expression of the mRNA for runt-related transcription factor 2 (RUNX-2) and peroxisome proliferators activated receptor γ (PPAR-γ) was down-regulated in the presence of 1 × 10-6 mol/L Er3+. These findings suggested that Er3+ might have negative effect on bone metabolism.

  2. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes

    Science.gov (United States)

    Shalhoub, V.; Conlon, D.; Tassinari, M.; Quinn, C.; Partridge, N.; Stein, G. S.; Lian, J. B.

    1992-01-01

    To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10(-7) M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGF beta was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assays to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the

  3. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.

    Directory of Open Access Journals (Sweden)

    Wenting Zhang

    Full Text Available We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC using an osteoblast (OSB-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1 optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2 replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.

  5. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Aina, Valentina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Bergandi, Loredana, E-mail: loredana.bergandi@unito.it [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy); Lusvardi, Gigliola; Malavasi, Gianluca [Department of Chemical and Geological Sciences, Università di Modena and Reggio Emilia, Via Campi 183, 41125 Modena (Italy); Imrie, Flora E.; Gibson, Iain R. [School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD (United Kingdom); Cerrato, Giuseppina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Ghigo, Dario [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy)

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca{sub (10−x)}Sr{sub x}(PO{sub 4}){sub 6}(OH){sub 2}, where x = 2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl{sub 2,} in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in

  6. Surface modification of parylene-N films for the culture of osteoblast-like cells (MG-63)

    Energy Technology Data Exchange (ETDEWEB)

    Liaqat, Usman [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Suh, Hwal [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Department of Medical Engineering, College of Medicine, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Lee, Misu [Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2016-08-15

    Highlights: • Osteoblast-like cells (MG-63) was cultured on differently modified surfaces of parylene films. • Proliferation of MG-63 was observed to be far increased on UV-treated parylene-N film. • The influences of UV-treatment were found out on cell viability, proliferation rate and cell cycle. • The influence was estimated to be negligible on the protein synthesis, cell differentiation. • The UV-treated parylene-N was demonstrated to be effectively used for the culture of MG-63. - Abstract: The influence of microenvironments on the culture of osteoblast-like cells (MG-63) has been investigated using parylene films with different surfaces, such as parylene-N film, UV-modified parylene-N film, functional parylene film with amine groups (parylene-A), and UV-modified parylene-A film. In this work, parylene-N film was found to induce dramatic changes in cell adhesion and cell viability before and after UV-treatment with respect to the culture of osteoblast-like cells (MG-63). The influences of such a chemical environment on cell culture were investigated in relation to the cell proliferation (viability and proliferation rate) and the cell physiology (cell cycle, protein synthesis, and differentiation) of cells grown on parylene-N film, UV-modified parylene-N film, parylene-A film, and UV-modified parylene-A film in comparison with cells grown on a polystyrene surface.

  7. Effect of pollen from Typha angustata on hydrogen peroxide induced toxicity in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Lee, Young Soon; Choi, Eun Mi

    2012-02-01

    Typha angustata is a traditional Chinese medicine, commonly used for a variety of clinical disorders, including atherosclerosis and wound healing. In the present study, the protective effects of T. angustata pollen extract (TE) on the response of osteoblast to oxidative stress were evaluated. Osteoblastic MC3T3-E1 cells were incubated with H(2)O(2) and/or TE, and markers of osteoblast function and oxidative damage were examined. TE treatment significantly (P < 0.05) reversed the cytotoxic effect of H(2)O(2) and this effect was blocked by ICI182780, suggesting that TE's effect might be partly involved in estrogen action. TE significantly (P < 0.05) increased collagen content, alkaline phosphatase activity, calcium deposition of osteoblasts in the presence of H(2)O(2) and these effects were blocked by rottlerin and PD98059, suggesting that the induction of differentiation by TE is associated with increased activation of protein kinase C and ERK. Moreover, H(2)O(2)-induced reduction of osteocalcin was significantly recovered in the presence of TE. Pretreatment with TE also decreased the increase in receptor activator of nuclear factor-kB ligand, malondialdehyde, and protein carbonyl induced by H(2)O(2). These results suggest that the pollen of T. angustata may be useful for the protection of H(2)O(2)-induced oxidative damage and dysfunction in osteoblasts. © 2011 John Wiley & Sons A/S.

  8. Aurantio-obtusin stimulates chemotactic migration and differentiation of MC3T3-E1 osteoblast cells.

    Science.gov (United States)

    Vishnuprasad, Chethala N; Tsuchiya, Tomoko; Kanegasaki, Shiro; Kim, Joon Ho; Han, Sung Soo

    2014-05-01

    Osteoporosis is one of the major metabolic bone diseases and is among the most challenging noncommunicable diseases to treat. Although there is an increasing interest in identifying bioactive molecules for the prevention and management of osteoporosis, such studies principally focus only on differentiation and mineralization of osteoblasts or inhibition of osteoclast activity. Stimulation of osteoblast migration must be a promising osteoanabolic strategy for improved metabolic bone disease therapy. In this study, we show that an anthraquinone derivative, aurantio-obtusin, stimulated chemotactic migration of MC3T3-E1 osteoblast cells in a concentration-dependent manner. The use of a real-time chemotaxis analyzing system, TAXIScan, facilitated the evaluation of both velocity and directionality of osteoblast migration in response to the compound. Besides migration, the compound stimulated osteoblast differentiation and mineralization. Taken together, the data presented in this paper demonstrate that aurantio-obtusin is a promising osteoanabolic compound of natural origin with potential therapeutic applications in the prevention of osteoporosis and other metabolic bone diseases.

  9. BST2 Mediates Osteoblast Differentiation via the BMP2 Signaling Pathway in Human Alveolar-Derived Bone Marrow Stromal Cells.

    Science.gov (United States)

    Yoo, Su-Hyang; Kim, Jae Goo; Kim, Beom-Su; Lee, Jun; Pi, Sung-Hee; Lim, Hyun-Dae; Shin, Hong-In; Cho, Eui-Sic; You, Hyung-Keun

    2016-01-01

    The molecular mechanisms controlling the differentiation of bone marrow stromal stem cells into osteoblasts remain largely unknown. In this study, we investigated whether bone marrow stromal antigen 2 (BST2) influences differentiation toward the osteoblasts lineage. BST2 mRNA expression in human alveolar-derived bone marrow stromal cells (hAD-BMSCs) increased during differentiation into osteoblasts. hAD-BMSCs differentiation into osteoblasts and the mRNA expression of the bone-specific markers alkaline phosphatase, collagen type α 1, bone sialoprotein, osteocalcin, and osterix were reduced by BST2 knockdown using siRNA. Furthermore, BST2 knockdown in hAD-BMSCs resulted in decreased RUNX2 mRNA and protein expression. We hypothesized that BST2 is involved in differentiation of into osteoblasts via the BMP2 signaling pathway. Accordingly, we evaluated the mRNA expression levels of BMP2, BMP receptors (BMPR1 and 2), and the downstream signaling molecules SMAD1, SMAD4, and p-SMAD1/5/8 in BST2 knockdown cells. BMP2 expression following the induction of differentiation was significantly lower in BST2 knockdown cells than in cells treated with a non-targeting control siRNA. Similar results were found for the knockdown of the BMP2 receptor- BMPR1A. We also identified significantly lower expression of SMAD1, SMAD4, and p-SMAD1/5/8 in the BST2 knockdown cells than control cells. Our data provide the first evidence that BST2 is involved in the osteogenic differentiation of bone marrow stromal cells via the regulation of the BMP2 signaling pathway.

  10. Dihydrotestosterone stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells and induces cranial suture fusion.

    Science.gov (United States)

    Lin, Ines C; Slemp, Alison E; Hwang, Catherine; Sena-Esteves, Miguel; Nah, Hyun-Duck; Kirschner, Richard E

    2007-10-01

    The higher prevalence of metopic and sagittal suture synostosis in male infants suggests a role for androgens in early craniofacial development. These experiments characterize the influence of androgen stimulation on growth and differentiation of fetal dural and calvarial bone cells and on cranial suture fusion. Primary murine fetal (E18) dural cells and calvarial osteoblasts were isolated and cultured. Cells were treated for 48 hours with 5alpha-dihydrotestosterone (0 to 1000 nM). Cell proliferation was examined by nonradioactive proliferation assay; mRNA expression of alkaline phosphatase, transforming growth factor (TGF)-beta1, and the bone matrix proteins osteopontin, osteocalcin, and type 1 collagen was determined by reverse-transcriptase polymerase chain reaction. In separate experiments, intact fetal calvariae were grown in tissue culture with 10 nM 5alpha-dihydrotestosterone for 7 and 14 days and then examined histologically. Androgen stimulation at 5 nM increased proliferation of fetal dural cells by 46.0 percent and of fetal calvarial osteoblasts by 20.5 percent. Dural expression of osteopontin, osteocalcin, and type 1 collagen was enhanced by 5alpha-dihydrotestosterone, as was that of TGF-beta1 and alkaline phosphatase. Androgen stimulation increased calvarial osteoblast expression of alkaline phosphatase and TGF-beta1 but induced little change in expression of osteocalcin, osteopontin, and type 1 collagen. In tissue culture, 5alpha-dihydrotestosterone stimulated osteoid formation and fusion of sagittal sutures. Androgen stimulation of dural cells and osteoblasts isolated from fetal calvaria promotes cell proliferation and osteoblastic differentiation and can induce cranial suture fusion. These results suggest that sex steroid hormone signaling may stimulate sutural osteogenesis by means of osteodifferentiation of dural cells, thus explaining the male prevalence of nonsyndromic craniosynostosis.

  11. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  12. Effect of Calcitriol on Differentiation of Periodontal Ligament Stem Cells to Osteoblasts

    Directory of Open Access Journals (Sweden)

    Soheilifar

    2016-02-01

    Full Text Available Background Periodontium may be able to respond to injuries by regeneration via the function of stem cells. Objectives This study sought to assess the differentiation of human periodontal ligament stem cells (PDLSCs into osteoblasts in standard osteogenic medium and in a medium supplemented with 1,25-dihydroxyvitamin D3 (calcitriol. Materials and Methods In this experimental study, PDLSCs were isolated under sterile conditions by scraping the periodontal ligament tissues attached to the middle third of the root surface of extracted teeth, which were obtained from patients who were candidates for orthodontics therapy in the dental faculty at Hamadan University. The collected cells were cultured on four culture plates for 24 hours. Group 1 contained a basic medium (α-MEM, containing 10% fetal bovine serum (FBS, 5 mM β-glycerophosphate, and 50 μg/mL l-ascorbic acid, supplemented with 10 - 8 M dexamethasone. Group 2 contained a basic medium supplemented with vitamin D3. Group 3 contained a basic medium supplemented with vitamin D3 and dexamethasone, Group4 contained negative control cultures. Alizarin red staining (ARS, alkaline phosphatase (ALP activity, and calcium content (CC tests were performed to evaluate osteogenic differentiation of third passage cells in the developing adherent layer. Results Quantitative analysis of ARS demonstrated that mineralized nodule formation was highest in the group supplemented with calcitriol and dexamethasone (P < 0.001. Results of the ALP test on day 28 demonstrated the highest ALP activity in the group supplemented with calcitriol (P < 0.001. The amount of CC was lowest in the control group at all-time points, and was highest in the group supplemented with both calcitriol and dexamethasone on day 28 (P < 0.001. Conclusions The combination of calcitriol with dexamethasone, ascorbic acid, and beta-glycerophosphate (that is, the osteogenic medium may be beneficial for differentiation of PDLSCs into osteoblasts.

  13. Combinatorial growth of oxide nanoscaffolds and its influence in osteoblast cell adhesion.

    Science.gov (United States)

    Acevedo-Morantes, Claudia Y; Irizarry-Ortiz, Roberto A; Caceres-Valencia, Pablo G; Singh, Surinder P; Ramirez-Vick, Jaime E

    2012-05-15

    We report a novel method for high-throughput investigations on cell-material interactions based on metal oxide nanoscaffolds. These scaffolds possess a continuous gradient of various titanium alloys allowing the compositional and morphological variation that could substantially improve the formation of an osseointegrative interface with bone. The model nanoscaffold has been fabricated on commercially pure titanium (cp-Ti) substrate with a compositional gradients of tin (Sn), chromium (Cr), and niobium (Nb) deposited using a combinatorial approach followed by annealing to create native oxide surface. As an invitro test system, the human fetal osteoblastic cell line (hFOB 1.19) has been used. Cell-adhesion of hFOB 1.19 cells and the suitability of these alloys have been evaluated for cell-morphology, cell-number, and protein adsorption. Although, cell-morphology was not affected by surface composition, cell-proliferation rates varied significantly with surface metal oxide composition; with the Sn- and Nb-rich regions showing the highest proliferation rate and the Cr-rich regions presenting the lowest. The results suggest that Sn and Nb rich regions on surface seems to promote hFOB 1.19 cell proliferation and may therefore be considered as implant material candidates that deserve further analysis.

  14. Magnetically induced electrostimulation of human osteoblasts results in enhanced cell viability and osteogenic differentiation.

    Science.gov (United States)

    Hiemer, Bettina; Ziebart, Josefin; Jonitz-Heincke, Anika; Grunert, Philip Christian; Su, Yukun; Hansmann, Doris; Bader, Rainer

    2016-07-01

    The application of electromagnetic fields to support the bone-healing processes is a therapeutic approach for patients with musculoskeletal disorders. The ASNIS-III s-series screw is a bone stimulation system providing electromagnetic stimulation; however, its influence on human osteoblasts (hOBs) has not been extensively investigated. Therefore, in the present study, the impact of this system on the viability and differentiation of hOBs was examined. We used the ASNIS-III s screw system in terms of a specific experimental test set-up. The ASNIS-III s screw system was used for the application of electromagnetic fields (EMF, 3 mT, 20 Hz) and electromagnetic fields combined with an additional alternating electric field (EMF + EF) (3 mT, 20 Hz, 700 mV). The stimulation of primary hOBs was conducted 3 times per day for 45 min over a period of 72 h. Unstimulated cells served as the controls. Subsequently, the viability, the gene expression of differentiation markers and pro-collagen type 1 synthesis of the stimulated osteoblasts and corresponding controls were investigated. The application of both EMF and EMF + EF using the ASNIS-III s screw system revealed a positive influence on bone cell viability and moderately increased the synthesis of pro-collagen type 1 compared to the unstimulated controls. Stimulation with EMF resulted in a slightly enhanced gene expression of type 1 collagen and osteocalcin; however, stimulation with EMF + EF resulted in a significant increase in alkaline phosphatase (1.4-fold) and osteocalcin (1.6-fold) levels, and a notable increase in the levels of runt-related transcription factor 2 (RUNX-2; 1.54-fold). Our findings demonstrate that stimulation with electromagnetic fields and an additional alternating electric field has a positive influence on hOBs as regards cell viability and the expression of osteoblastic differentiation markers.

  15. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2008-05-01

    Full Text Available Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2 and c-Jun N-terminal kinase (JNK were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.

  16. Stretch-mediated responses of osteoblast-like cells cultured on titanium-coated substrates in vitro

    NARCIS (Netherlands)

    Walboomers, X.F.; Habraken, W.J.E.M.; Feddes, B.; Winter, L.C.; Bumgardner, J.D.; Jansen, J.A.

    2004-01-01

    Cyclic stretching experiments on osteoblast-like cells have proven to be a useful tool in understanding the underlying mechanisms of load transduction at the bone-implant surface. However, most experimental setups use silicone rubber substrates, which are atypical for orthopedic and dental implant m

  17. Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression.

    Directory of Open Access Journals (Sweden)

    Wai Fook Leong

    Full Text Available Osteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation participates in signaling pathways that control osterix expression and osteoblast differentiation. Mouse calvarial osteoblasts express most of the 24 palmitoyl transferases, with some being up-regulated during differentiation. Inhibition of protein palmitoylation, with a substrate-analog inhibitor, diminished osteoblast differentiation and mineralization, but not proliferation or survival. The decrease in differentiation capacity is associated with a reduction in osterix, but not Runx2 or Atf4. Inhibition of palmitoyl transferases had little effect in p53(-/- osteoblasts that show accelerated differentiation due to overexpression of osterix, suggesting that osterix, at least partially, mediated the effect of inhibition of palmitoyl transferases on osteoblast differentiation. BMPs are the major driving force of osteoblast differentiation in the differentiation assays. We found that inhibition of palmitoyl transferases also compromised BMP2-induced osteoblast differentiation through down-regulating osterix induction. However, palmitoyl transferases inhibitor did not inhibit Smad1/5/8 activation. Instead, it compromised the activation of p38 MAPK, which are known positive regulators of osterix expression and differentiation. These results indicate that protein palmitoylation plays an important role in BMP-induced MAPK activation, osterix expression, and osteoblast differentiation.

  18. Evaluation of bioactivity of octacalcium phosphate using osteoblastic cell aggregates on a spheroid culture device

    Directory of Open Access Journals (Sweden)

    Takahisa Anada

    2016-03-01

    Full Text Available Much attention has been paid to three-dimensional cell culture systems in the field of regenerative medicine, since three-dimensional cellular aggregates, or spheroids, are thought to better mimic the in vivo microenvironments compared to conventional monolayer cultured cells. Synthetic calcium phosphate (CaP materials are widely used as bone substitute materials in orthopedic and dental surgeries. Here we have developed a technique for constructing a hybrid spheroid consisting of mesenchymal stem cells (MSCs and synthetic CaP materials using a spheroid culture device. We found that the device is able to generate uniform-sized CaP/cell hybrid spheroids rapidly and easily. The results showed that the extent of osteoblastic differentiation from MSCs was different when cells were grown on octacalcium phosphate (OCP, hydroxyapatite (HA, or β-tricalcium phosphate (β-TCP. OCP showed the greatest ability to increase the alkaline phosphatase activity of the spheroid cells. The results suggest that the spheroids with incorporated OCP may be an effective implantable hybrid consisting of scaffold material and cells for bone regeneration. It is also possible that this CaP–cell spheroid system may be used as an in vitro method for assessing the osteogenic induction ability of CaP materials.

  19. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  20. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    Science.gov (United States)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  1. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    Science.gov (United States)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  2. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    Science.gov (United States)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  3. Biphasic Response to Luteolin in MG-63 Osteoblast-Like Cells under High Glucose‑Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Naser Abbasi

    2016-03-01

    Full Text Available Background: Clinical evidence indicates the diabetes-induced impairment of osteogenesis caused by a decrease in osteoblast activity. Flavonoids can increase the differentiation and mineralization of osteoblasts in a high-glucose state. However, some flavonoids such as luteolin may have the potential to induce cytotoxicity in osteoblast-like cells. This study was performed to investigate whether a cytoprotective concentration range of luteolin could be separated from a cytotoxic concentration range in human MG-63 osteoblast-like cells in high-glucose condition. Methods: Cells were cultured in a normal- or high-glucose medium. Cell viability was determined with the MTT assay. The formation of intracellular reactive oxygen species (ROS was measured using probe 2’,7’ -dichlorofluorescein diacetate, and osteogenic differentiation was evaluated with an alkaline phosphatase bioassay. Results: ROS generation, reduction in alkaline phosphatase activity, and cell death induced by high glucose were inhibited by lower concentrations of luteolin (EC50, 1.29±0.23 µM. Oxidative stress mediated by high glucose was also overcome by N-acetyl-L-cysteine. At high concentrations, luteolin caused osteoblast cell death in normal- and high-glucose states (IC50, 34±2.33 and 27±2.42 µM, respectively, as represented by increased ROS and decreased alkaline phosphatase activity. Conclusion: Our results indicated that the cytoprotective action of luteolin in glucotoxic condition was manifested in much lower concentrations, by a factor of approximately 26 and 20, than was its cytotoxic activity, which occurred under normal or glucotoxic condition, respectively.

  4. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine.

    Science.gov (United States)

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong; Khademhosseini, Ali; Hwang, Yu-Shik

    2012-06-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

  5. In vitro osteoblast-like and endothelial cells' response to calcium silicate/calcium phosphate cement

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qinghui; Qian Jiangchao [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhou Huanjun; Yuan Yuan; Mao Yuhao; Liu Changsheng, E-mail: jiangchaoqian@ecust.edu.c, E-mail: csliu@sh163.ne [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2010-06-01

    This study aims to investigate the interaction between calcium silicate/calcium phosphate cement (CS/CPC) and osteogenesis, in particular the in vitro osteoblast-like and endothelial cells' response to CS/CPC. The effect of CS/CPC on cell attachment, proliferation and differentiation of murine osteoblast-like cell MC3T3-E1, as well as the influence on the cell attachment and proliferation of human umbilical vein endothelial cell (HUVEC), was studied in detail. Our results indicated that CS/CPC exhibited excellent biocompatibility to the osteoblast-like cells. Moreover, the morphology and cytoskeleton organization of MC3T3-E1 cultured on the CS/CPC disks suggested that CS/CPC induced better cell adhesion and cell spreading. Simultaneously, cell proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 were significantly improved after 3 and 7 days of culture on CS/CPC disks in comparison with CPC disks. Additionally, on CS/CPC disks, HUVEC attached well on day 1 and cell proliferation was also greatly enhanced by day 7. Collectively, these results suggest that the introduction of calcium silicate may improve the cell response involved in the osteogenesis and thus may be beneficial to further modify CPC as a better bone repairing material.

  6. Osteogenic differentiation of mouse mesenchymal progenitor cell, Kusa-A1 is promoted by mammalian transcriptional repressor Rbpj

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengchao [Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, 710032 Xi' an (China); Kawashima, Nobuyuki, E-mail: kawashima.n.endo@tmd.ac.jp [Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Sakamoto, Kei; Katsube, Ken-ichi [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Umezawa, Akihiro [Department of Reproductive Biology and Pathology, National Institute for Child Health and Development, 2-10-4 Ohkura, Setagaya-ku, Tokyo 157-8535 (Japan); Suda, Hideaki [Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); GCOE Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan)

    2010-09-10

    Research highlights: {yields} High Rbpj mRNA expression was observed in mesenchymal cells surrounding the bone of mouse embryos. {yields} Overexpression of Rbpj depressed Notch-Hes1/Hey1 signaling. {yields} Rbpj upregulated promoter activities of Runx2 and Ose2. {yields} Rbpj promoted osteoblastic differentiation/maturation in Kusa-A1 cells. -- Abstract: Pluripotent mesenchymal stem cells possess the ability to differentiate into many cell types, but the precise mechanisms of differentiation are still unclear. Here, we provide evidence that Rbpj (recombination signal-binding protein for immunoglobulin kappa j region) protein, the primary nuclear mediator of Notch, is involved in osteogenesis. Overexpression of Rbpj promoted osteogenic differentiation of mouse Kusa-A1 cells in vitro and in vivo. Transient transfection of an Rbpj expression vector into Kusa-A1 cells upregulated promoter activities of Runx2 and Ose2. Enhanced osteogenic potentials including high alkaline phosphatase activity, rapid calcium deposition, and increased calcified nodule formation, were observed in established stable Rbpj-overexpressing Kusa-A1 (Kusa-A1/Rbpj) cell line. In vivo mineralization by Kusa-A1/Rbpj was promoted compared to that by Kusa-A1 host cells. Histological findings revealed that expression of Rbpj was primarily observed in osteoblasts. These results suggest that Rbpj may play essential roles in osteoblast differentiation.

  7. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells.

    Directory of Open Access Journals (Sweden)

    Eva Heining

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an

  8. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carriere, M. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Thiebault, C. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Berger, P. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Khodja, H. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gouget, B. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: barbara.gouget@cea.fr

    2007-07-15

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se{sup IV} and Cu as the most toxic and Ni, Se{sup VI}, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  9. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, Steven M. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Fath, Karl R. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); The Graduate Center, The City University of New York, 365 Fifth Avenue, NY 10016 (United States); Phekoo, Aruna P. [The City University of New York, Queens College, Department of Biology, 65-30 Kissena Blvd, Flushing, NY 11367 (United States); Knoll, Grant A. [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States); Banerjee, Ipsita A., E-mail: banerjee@fordham.edu [Fordham University Department of Chemistry, 441 East Fordham Road, Bronx, NY 10458 (United States)

    2015-06-01

    In this work we have developed a new family of biocomposite scaffolds for bone tissue regeneration by utilizing self-assembled fluorenylmethyloxycarbonyl protected Valyl-cetylamide (FVC) nanoassemblies as templates. To tailor the assemblies for enhanced osteoblast attachment and proliferation, we incorporated (a) Type I collagen, (b) a hydroxyapatite binding peptide sequence (EDPHNEVDGDK) derived from dentin sialophosphoprotein and (c) the osteoinductive bone morphogenetic protein-4 (BMP-4) to the templates by layer-by-layer assembly. The assemblies were then incubated with hydroxyapatite nanocrystals blended with varying mass percentages of TiO{sub 2} nanoparticles and coated with alginate to form three dimensional scaffolds for potential applications in bone tissue regeneration. The morphology was examined by TEM and SEM and the binding interactions were probed by FITR spectroscopy. The scaffolds were found to be non-cytotoxic, adhered to mouse preosteoblast MC3T3-E1 cells and promoted osteogenic differentiation as indicated by the results obtained by alkaline phosphatase assay. Furthermore, they were found to be biodegradable and possessed inherent antibacterial capability. Thus, we have developed a new family of tissue-engineered biocomposite scaffolds with potential applications in bone regeneration. - Highlights: • Fmoc-val-cetylamide assemblies were used as templates. • Collagen, a short dentin sialophosphoprotein derived sequence and BMP-4 were incorporated. • Hydroxyapatite–TiO{sub 2} nanocomposite blends and alginate were incorporated. • The 3D scaffold biocomposites adhered to preosteoblasts and promoted osteoblast differentiation. • The biocomposites also displayed antimicrobial activity.

  10. Truncated Human LMP-1 Triggers Differentiation of C2C12 Cells to an Osteoblastic Phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    LIM mineralization protein-1 (LMP-1) is a novel intracellular osteoinductive protein that has been shown to induce bone formation both in vitro and in vivo. LMP-1 contains an N-terminal PDZ domain and three C-terminal LIM domains. In this study, we investigated whether a truncated form of human LMP-1 (hLMP-1 [t]), lacking the three C-terminal LIM domains, triggers the differentiation of pluripotent myoblastic C2C12 cells to the osteoblast lineage. C2C12 cells were transiently transduced with Ad5-hLMP-1(t)-green fluorescent protein or viral vector control. The expression of hLMP-1 (t) RNA and the truncated protein were examined. The results showed that hLMP-1(t) blocked myotube formation in C2C12 cultures and significantly enhanced the alkaline phosphatase (ALP) activity. In addition, the expressions of ALP,osteocalcin, and bone morphogenetic protein (BMP)-2 and BMP-7 genes were also increased. The induction of these key osteogenic markers suggests that hLMP-1(t) can trigger the pluripotent myoblastic C2C12 cells to differentiate into osteoblastic lineage, thus extending our previous observation that LMP-1 and LMP-1 (t)enhances the osteoblastic phenotype in cultures of cells already committed to the osteoblastic lineage.Therefore, C2C12 cells are an appropriate model system for the examination of LMP-1 induction of the osteoblastic phenotype and the study of mechanisms of LMP- 1 action.

  11. Ion-sputtering deposition of Ca-P-O films for microscopic imaging of osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R. [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)]. E-mail: ananda.sagari@phys.jyu.fi; Lautaret, Claire [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 CAEN Cedex 04 (France); Gorelick, Sergey [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Rahkila, Paavo [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyvaeskylae (Finland); Putkonen, Matti [Beneq Oy, Ensimmaeinen savu, FI-01510 Vantaa (Finland); Arstila, Kai [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Cheng, Sulin [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyvaeskylae (Finland); Whitlow, Harry J. [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)

    2007-08-15

    An ion-beam sputtering technique was used to produce Ca-P-O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF-ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposited on Si were amorphous even after annealing at 800 deg, C. The biocompatibility of the films was investigated using osteoblast-like cells. The film deposited under optimal conditions exhibited dendritic growth, indicative of more realistic chemical signalling than for other substratum e.g. polystyrene or plain glass.

  12. Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from Curcuma comosa, in Breast Cancer Cells, Pre-osteoblast Cells, and Rat Uterine Tissues.

    Science.gov (United States)

    Thongon, Natthakan; Boonmuen, Nittaya; Suksen, Kanoknetr; Wichit, Patsorn; Chairoungdua, Arthit; Tuchinda, Patoomratana; Suksamrarn, Apichart; Winuthayanon, Wipawee; Piyachaturawat, Pawinee

    2017-05-03

    Diarylheptanoids from Curcuma comosa, of the Zingiberaceae family, exhibit diverse estrogenic activities. In this study we investigated the estrogenic activity of a major hydroxyl diarylheptanoid, 7-(3,4 -dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (compound 092) isolated from C. comosa. The compound elicited different transcriptional activities of estrogen agonist at low concentrations (0.1-1 μM) and antagonist at high concentrations (10-50 μM) using luciferase reporter gene assay in HEK-293T cells. In human breast cancer (MCF-7) cells, compound 092 showed an anti-estrogenic activity by down-regulating ERα-signaling and suppressing estrogen-responsive genes, whereas it attenuated the uterotrophic effect of estrogen in immature ovariectomized rats. Of note, compound 092 promoted mouse pre-osteoblastic (MC3T3-E1) cell differentiation and the related bone markers, indicating its positive osteogenic effect. Our findings highlight a new, nonsteroidal, estrogen agonist/antagonist of catechol diarylheptanoid from C. comosa, which is scientific evidence supporting its potential as a dietary supplement to prevent bone loss with low risk of breast and uterine cancers in postmenopausal women.

  13. Estrogenic activity of osthole and imperatorin in MCF-7 cells and their osteoblastic effects in Saos-2 cells.

    Science.gov (United States)

    Jia, Min; Li, Yuan; Xin, Hai-Liang; Hou, Ting-Ting; Zhang, Nai-Dai; Xu, Hong-Tao; Zhang, Qiao-Yan; Qin, Lu-Ping

    2016-06-01

    There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy (HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase (ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor (PR) and PS2 mRNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.

  14. Estrogenic activity of osthole and imperatorin in MCF-7 cells and their osteoblastic effects in Saos-2 cells

    Institute of Scientific and Technical Information of China (English)

    JIA Min; LI Yuan; XIN Hai-Liang; HOU Ting-Ting; ZHANG Nai-Dai; XU Hong-Tao; ZHANG Qiao-Yan

    2016-01-01

    There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy (HRT).The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins,osthole and imperatorin,using the MCF-7 cell proliferation assay and their alkaline phosphatase (ALP) activities in osteoblasts Saos-2 cells.The two compounds were found to strongly stimulate the proliferation of MCF-7 cells.The estrogen receptor-regulated ERα,progesterone receptor (PR) and PS2 mRNA levels were increased by treatment with osthole and imperatorin.All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182,780.Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase,which was similar to that observed with estradiol.It was also observed that they significantly increased ALP activity,which was reversed by ICI182,780.These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway.In conclusion,osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.

  15. Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells

    Directory of Open Access Journals (Sweden)

    Yen-Wei Chen

    2016-01-01

    Full Text Available Monosodium titanates (MST are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II. In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II complexes for 24–72 h. A CellTiter-Blue® assay was employed to assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.

  16. Biological Effects of Osteoblast-Like Cells on Nanohydroxyapatite Particles at a Low Concentration Range

    Directory of Open Access Journals (Sweden)

    Xiaochen Liu

    2011-01-01

    Full Text Available The biological effects of osteoblast-like MG-63 cells on nanohydroxyapatite (n-HA at the low concentration range (5–25 g/mL for 5 days was investigated. The results showed the viability and actin cytoskeleton of the cells descended with the increase of the concentration of n-HA, and the actin cytoskeleton of cells was depolymerised and became more disordered. Apoptotic rate of cells (1.85%, 1.99%, and 2.29% increased with the increase of n-HA concentration (5, 15, and 25 g/mL and become significantly higher than the control. Total intracellular protein content decreased with n-HA concentration increase, showing significant difference between 25 g/mL and the control, and no significant change of ALP activity was observed at the 5th day. The results revealed that the cell growth was inhibited by n-HA in a concentration-dependent manner, and the obvious biological effects of MG-63 cells on n-HA existed at the low concentration range from 5 to 25 g/mL.

  17. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells.

    Science.gov (United States)

    Novotna, Katarina; Zajdlova, Martina; Suchy, Tomas; Hadraba, Daniel; Lopot, Frantisek; Zaloudkova, Margit; Douglas, Timothy E L; Munzarova, Marcela; Juklickova, Martina; Stranska, Denisa; Kubies, Dana; Schaubroeck, David; Wille, Sebastian; Balcaen, Lieve; Jarosova, Marketa; Kozak, Halyna; Kromka, Alexander; Svindrych, Zdenek; Lisa, Vera; Balik, Karel; Bacakova, Lucie

    2014-11-01

    Various types of nanofibers are increasingly used in tissue engineering, mainly for their ability to mimic the architecture of tissue at the nanoscale. We evaluated the adhesion, growth, viability, and differentiation of human osteoblast-like MG 63 cells on polylactide (PLA) nanofibers prepared by needle-less electrospinning and loaded with 5 or 15 wt % of hydroxyapatite (HA) nanoparticles. On day 7 after seeding, the cell number was the highest on samples with 15 wt % of HA. This result was confirmed by the XTT test, especially after dynamic cultivation, when the number of metabolically active cells on these samples was even higher than on control polystyrene. Staining with a live/dead kit showed that the viability of cells on all nanofibrous scaffolds was very high and comparable to that on control polystyrene dishes. An enzyme-linked immunosorbent assay revealed that the concentration of osteocalcin was also higher in cells on samples with 15 wt % of HA. There was no immune activation of cells (measured by production of TNF-alpha), associated with the incorporation of HA. Moreover, the addition of HA suppressed the creep behavior of the scaffolds in their dry state. Thus, nanofibrous PLA scaffolds have potential for bone tissue engineering, particularly those with 15 wt % of HA. © 2013 Wiley Periodicals, Inc.

  18. Lithium-end-capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization.

    Science.gov (United States)

    Gomillion, Cheryl T; Lakhman, Rubinder Kaur; Kasi, Rajeswari M; Weiss, R A; Kuhn, Liisa T; Goldberg, A Jon

    2015-02-01

    End-capping by covalently binding functional groups to the ends of polymer chains offers potential advantages for tissue engineering scaffolds, but the ability of such polymers to influence cell behavior has not been studied. As a demonstration, polylactide (PLA) was end-capped with lithium carboxylate ionic groups (hPLA13kLi) and evaluated. Thin films of the hPLA13kLi and PLA homopolymer were prepared with and without surface texturing. Murine osteoblast progenitor cells from collagen 1α1 transgenic reporter mice were used to assess cell attachment, proliferation, differentiation, and mineralization. Measurement of green fluorescent protein expressed by these cells and xylenol orange staining for mineral allowed quantitative analysis. The hPLA13kLi was biologically active, increasing initial cell attachment and enhancing differentiation, while reducing proliferation and strongly suppressing mineralization, relative to PLA. These effects of bound lithium ions (Li(+) ) had not been previously reported, and were generally consistent with the literature on soluble additions of lithium. The surface texturing generated here did not influence cell behavior. These results demonstrate that end-capping could be a useful approach in scaffold design, where a wide range of biologically active groups could be employed, while likely retaining the desirable characteristics associated with the unaltered homopolymer backbone. © 2014 Wiley Periodicals, Inc.

  19. Recombinant protein of tissue inhibitor of metaIloproteinase-3 induces apoptosis of mouse MC3T3-E1 osteoblasts

    Institute of Scientific and Technical Information of China (English)

    袁凌青

    2006-01-01

    Objective To investigate the action of recombinantprotein of tissue inhibitor of metalloproteinase-3 (TIMP-3) on apoptosis of MC3T3-E1 osteoblasts. Methods Cell survival rate and apoptosis were measured by MTT and ELISA respectively. The expressions of Fas, FasL, Bel-2, Bax, caspase-3 , caspase-8, cytochrome c and phosphorylations of JNK, p38 and extracellular signalregulated kinase (ERK) 1/2 were analysed by Western blotting. Results TIMP-3 reduced survival rate of MC3T3-E1 cells and promoted apoptosis of MC3T3-E1

  20. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang; Mccrate, Joseph M; Li Hao [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Lee, James C-M, E-mail: liha@missouri.edu [Department of Biological Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2011-03-11

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular

  1. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    Science.gov (United States)

    Chen, Liang; Mccrate, Joseph M.; C-M Lee, James; Li, Hao

    2011-03-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of

  2. Osteogenic properties of hydrophilic and hydrophobic titanium surfaces evaluated with osteoblast-like cells (MG63) in coculture with human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Zhang, Yu; Andrukhov, Oleh; Berner, Simon; Matejka, Michael; Wieland, Marco; Rausch-Fan, Xiaohui; Schedle, Andreas

    2010-11-01

    Osteogenesis on titanium (Ti) surfaces is a complex process involving cell-substrate and cell-cell interaction of osteoblasts and endothelial cells. The aim of this study was to investigate the osteogenic properties of Ti surfaces on osteoblasts in the presence of endothelial cells (ECs). Osteoblast-like cells (MG63 cells) and human umbilical vein endothelial cells (HUVECs) were grown in cocultures on four kinds of Ti surfaces: acid-etched (A), coarse-grit-blasted and acid-etched (SLA), hydrophilic A (modA) and hydrophilic SLA (modSLA) surfaces. MG63 cells in single cultures served as controls. Cell ratios and cell types in cocultures were determined and isolated using flow cytometry. Cell numbers were obtained by direct cell counting. In MG63 cells, alkaline phosphatase (ALP) activity was determined and protein levels of osteocalcin (OC) and osteoprotegerin (OPG) were detected with enzyme-linked immunosorbant assay (ELISA). The mRNA levels of ALP, OC and OPG of sorted MG63 cells were determined with real time polymerase chain reaction (PCR). MG63 cells proliferated in the presence of HUVECs, which showed higher cell numbers on Ti surfaces (A, SLA, modSLA) after 72h, and lower cell numbers on Ti surfaces (modA, SLA, modSLA) after 120h in comparison to single cultures. Protein and mRNA levels of ALP and OPG were higher in cocultures than in single cultures, while OC exhibited a lower expression. These three parameters were higher expressed on modA, SLA and modSLA surfaces compared to A surfaces. Cocultures of osteoblasts and endothelial cells represent the most recently developed research model for investigating osteogenesis and angiogenesis which play both a major role in bone healing. This paper investigates for the first time the osteogenic properties of titanium surfaces used for dental implants with a coculture system with osteoblast-like cells and endothelial cells: (1) In cocultures with ECs (HUVECs) osteoblast-like cells (MG63 cells) show enhanced expression

  3. Platelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2

    Directory of Open Access Journals (Sweden)

    M Alini

    2010-12-01

    Full Text Available Platelet-rich preparations have recently gained popularity in maxillofacial and dental surgery, but their beneficial effect is still under debate. Furthermore, very little is known about the effect of platelet preparations at the cellular level, and the underlying mechanisms. In this study, we tested the effect of platelet-released supernatant (PRS on human mesenchymal stem cell (MSC differentiation towards an osteoblastic phenotype in vitro. Cultures of MSC were supplemented with PRS and typical osteoblastic markers were assessed at up to 28 days post-confluence. PRS showed an osteoinductive effect on MSC, as shown by an increased expression of typical osteoblastic marker genes such as collagen Ialpha1, bone sialoprotein II, BMP-2 and MMP-13, as well as by increased 45Ca2+ incorporation. Our results suggest that the effect of PRS on human MSC could be at least partially mediated by BMP-2.Activated autologous PRS could therefore provide an alternative to agents like recombinant bone growth factors by increasing osteoblastic differentiation of bone precursor cells at bone repair sites, although further studies are needed to fully support our observations.

  4. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-01-01

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation. PMID:28009825

  5. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling.

    Science.gov (United States)

    Yu, Wei; Zhu, Chao; Xu, Wenning; Jiang, Leisheng; Jiang, Shengdan

    2016-12-21

    High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10(-7) M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu(31), Pro(34)]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  6. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  7. Impaired osteoblast differentiation in Annexin A2- and -A5-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C.; Wong, Alice; Weber, Thomas J.; Karin, Norman J.; Yellowley, Clare E.

    2014-09-15

    Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts inflammation,fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We generated annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and asked whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to vector controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and staining activity were also suppressed in AnxA2- or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to controls. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. Using a murine fracture model, we demonstrate that AnxA2 and AnxA5 are rapidly expressed within the fracture callus. These data demonstrate that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation and differentiation in addition to their well-studied function in matrix vesicles.

  8. A comparison between genetic portraits of normal osteoblasts and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Palmieri Annalisa

    2009-01-01

    Full Text Available Background: Osteosarcoma (OS is the most frequent malignant bone tumor occurring in young patients in the first two decades of life. Metastases are the cause of 90% of cancer deaths for patients with OS. OS of the jaw is rare and aggressive malignancy constitutes approximately 5-13% of all cases of skeletal OS. Chemotherapy plus surgery are the first choice for treatment. Aims : Because OS cell lines (OCLs should share a common pathway with primary OS and new drugs are screened in in vitro systems, new insight about the genetic profiling of OCLs is of paramount importance to a better understanding of the molecular mechanism of this rare tumor and detecting a potential target for specific therapy. Materials and Methods : The SAOS2 and TE85 cell lines were analysed using DNA microarrays containing 19,000 genes. Several genes in which expression was significantly differentially expressed in OCLs vs. normal osteoblast (NO were detected. Results : The differentially expressed genes cover a broad range of functional activities: (a cell cycle regulation, (b cell differentiation, (c apoptosis, and (d immunity. Conclusion: The reported data can be relevant to a better understanding of the biology of OS and as a model for comparing the effect of drugs used in OS treatment.

  9. Biocompatibility of three bioabsorbable membranes assessed in FGH fibroblasts and human osteoblast like cells culture.

    Science.gov (United States)

    Soares, Michelle Pereira Costa Mundim; Soares, Paulo Vinícius; Pereira, Analice Giovani; Moura, Camilla Christian Gomes; Soares, Priscila Barbosa Ferreira; Naves, Lucas Zago; de Magalhães, Denildo

    2014-08-06

    Specific physical and chemical features of the membranes may influence the healing of periodontal tissues after guided tissue regeneration (GTR). The aim of the present investigation was to analyze the biological effects of three bioabsorbable membranes. The hypothesis is that all tested membranes present similar biological effects. Human osteoblast like-cells (SaOs-2) and gingival fibroblasts FGH (BCRJ -RJ) were cultured in DMEM medium. The viability of the cells cultured on the membranes was assesses using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Quantitative determination of activated human Transforming Growth Factor beta 1 (TGF-β1) on the supernatants of the cell culture was observed. Samples were examined using scanning electron microscope (SEM). SaOs2, in 24 hours, PLA group showed higher values when compared to other groups (P statistical significance values when compared two times. In 4 h and 24 h, for the fibroblasts group, significantly difference was found to PLA membrane, when compared with the other groups (p statistically significant difference (p analysis of culture supernatants of fibroblasts, in 24 hours, only PLA group presented significant difference (p = 0,008). The biomaterials analyzed did not show cytotoxicity, since no membrane presented lower results than the control group. PLA membrane presented the best performance due to its higher cell viability and absorbance levels of proliferation. Both collagen membranes showed similar results either when compared to each other or to the control group.

  10. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Hee; Bhattarai, Govinda [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Aryal, Santosh [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Nan-Hee [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Tae-Gun [Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Jhee, Eun-Chung [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hak-Yong [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of)

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH{sub 4}). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  11. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Science.gov (United States)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  12. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche

    Directory of Open Access Journals (Sweden)

    Katie Foster

    2015-11-01

    Full Text Available Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.

  13. Osteoblastic response as a healing reaction to chemotherapy mimicking progressive disease in patients with small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stattaus, Joerg [University Hospital of the University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, Essen (Germany); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Hahn, Steffen; Forsting, Michael; Ladd, Susanne C. [University Hospital of the University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Center, Essen (Germany); Gauler, Thomas; Eberhardt, Wilfried [University Hospital of the University of Duisburg-Essen, Department of Internal Medicine (Cancer Research), West German Cancer Center, Essen (Germany); Mueller, Stefan P. [University Hospital of the University of Duisburg-Essen, Department of Nuclear Medicine, West German Cancer Center, Essen (Germany)

    2009-01-15

    The osteoblastic response (OR) phenomenon as a healing reaction during effective chemotherapy - defined by the appearance of new osteoblastic bone lesions while disease response in other tumor sites was well documented - has previously been described for breast and prostate cancer. The purpose of this study was to investigate this phenomenon that could erroneously be interpreted as progressive disease in patients with small cell lung cancer (SCLC) and to establish guidelines for interpretation of follow-up computed tomography (CT) examinations in this situation. Twenty-four patients with newly diagnosed SCLC and bone metastases were retrospectively included in this study. The characteristics of bone lesions in CT examinations were correlated with bone scintigraphy and magnetic resonance imaging, if available. In target lesions the CT density quantified in Hounsfield units (HU) was evaluated at baseline and during follow-up. New osteoblastic lesions occurred during follow-up in 17 of 24 patients. OR was proven in 4 patients and considered most likely in 11 patients; mean density increase in target lesions was 153 HU. The study indicates that osteoblastic response as a healing reaction seems to occur in the majority of patients with SCLC and bone metastases and should not be misinterpreted as progressive disease. (orig.)

  14. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation of h......-life of osteoblastic PDGFR-alpha mRNA, but did not decrease its promoter activity. In summary, our data show that PDGFR-alpha is downregulated in hOBs by co-cultivation with human primary endothelial cells through a p38 MAPK-dependent post-transcriptional mechanism.......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation...... of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  15. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  16. Pre-Osteoblasts Stimulate Migration of Breast Cancer Cells via the HGF/MET Pathway.

    Directory of Open Access Journals (Sweden)

    Sonia Vallet

    Full Text Available The occurrence of skeletal metastases in cancer, e.g. breast cancer (BC, deteriorates patient life expectancy and quality-of-life. Current treatment options against tumor-associated bone disease are limited to anti-resorptive therapies and aimed towards palliation. There remains a lack of therapeutic approaches, which reverse or even prevent the development of bone metastases. Recent studies demonstrate that not only osteoclasts (OCs, but also osteoblasts (OBs play a central role in the pathogenesis of skeletal metastases, partly by producing hepatocyte growth factor (HGF, which promotes tumor cell migration and seeding into the bone. OBs consist of a heterogeneous cell pool with respect to their maturation stage and function. Recent studies highlight the critical role of pre-OBs in hematopoiesis. Whether the development of bone metastases can be attributed to a particular OB maturation stage is currently unknown.Pre-OBs were generated from healthy donor (HD-derived bone marrow stromal cells (BMSC as well as the BMSC line KM105 and defined as ALPlow OPNlow RUNX2high OSX high CD166high. Conditioned media (CM of pre-OBs, but not of undifferentiated cells or mature OBs, enhanced migration of metastatic BC cells. Importantly, HGF mRNA was significantly up-regulated in pre-OBs versus mature OBs, and CM of pre-OBs activated the MET signaling pathway. Highlighting a key role for HGF, CM from HGF-negative pre-OBs derived from the BMSC line HS27A did not support migration of BC cells. Genetically (siMET or pharmacologically (INCB28060 targeting MET inhibited both HGF- and pre-OB CM- mediated BC cell migration.Our data demonstrate for the first time a role for pre-OBs in mediating HGF/MET- dependent migration of BC cells and strongly support the clinical evaluation of INCB28060 and other MET inhibitors to limit and/or prevent BC-associated bone metastases.

  17. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

    Science.gov (United States)

    Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong

    2009-01-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  18. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.

    Science.gov (United States)

    Mata, D; Oliveira, F J; Ferro, M; Gomes, P S; Fernandes, M H; Lopes, M A; Silval, R F

    2014-05-01

    Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, a bone graft of carbon nanotube (CNT)/glass/hydroxyapatite (HA) with controlled CNT agglomeration state was designed with multifunctionalities able to stimulate the bone cell phenotype. The preparation route, the mechanical and electrical behavior and the in vitro profiles of degradation and osteocompatibility were described. A non-destructive dynamic route was found to have a higher influence than the Diels-Alder functionalization one on controlling the CNT agglomerate state in the ceramic-matrix composite. Biologically safe CNT agglomerates, with diameter sizes below 3 microm homogenously distributed, were obtained in non-functionalized and functionalized composites. Yet, the lowest CNT damage and the highest mechanical and electrical properties were found for the non-functionalized materials. Even though that these composites present higher degradation rate at pH:3 than the ceramic matrix, the CNT agglomerates are released with safe diameter sizes. Also, non-functionalized composites allowed cellular adhesion and modulated the orientation of the cell growth, with a proliferation/differentiation relationship favoring osteoblastic functional activity. Findings offer further contributions for bone tissue engineering by showing that multifunctional bone grafts with high electroconductivity, and integrating CNT agglomerates with maximized interfacing area, allow the in situ control of bone cell functions.

  19. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  20. Wnt16 Signaling Is Required for IL-1β-Induced Matrix Metalloproteinase-13-Regulated Proliferation of Human Stem Cell-Derived Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Nobuaki Ozeki

    2016-02-01

    Full Text Available We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC-derived osteoblast-like (α7+hSMSC-OB cells, and found that interleukin (IL-1β induces matrix metalloproteinase (MMP-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1β was mediated by Wingless/int1 (Wnt signaling and increased the proliferation of osteoblast-like cells. IL-1β increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1β-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1β→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16.

  1. Mouse cell culture: methods and protocols

    OpenAIRE

    Elvira M. Guerra Shinohara

    2010-01-01

    The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases), starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward ...

  2. Enhanced Bone Repair by Guided Osteoblast Recruitment Using Topographically Defined Implant.

    Science.gov (United States)

    Yoon, Jeong-Kee; Kim, Hong Nam; Bhang, Suk Ho; Shin, Jung-Youn; Han, Jin; La, Wan-Geun; Jeong, Gun-Jae; Kang, Seokyung; Lee, Ju-Ro; Oh, Jaesur; Kim, Min Sung; Jeon, Noo Li; Kim, Byung-Soo

    2016-04-01

    The rapid recruitment of osteoblasts in bone defects is an essential prerequisite for efficient bone repair. Conventionally, osteoblast recruitment to bone defects and subsequent bone repair has been achieved using growth factors. Here, we present a methodology that can guide the recruitment of osteoblasts to bone defects with topographically defined implants (TIs) for efficient in vivo bone repair. We compared circular TIs that had microgrooves in parallel or radial arrangements with nonpatterned implants for osteoblast migration and in vivo bone formation. In vitro, the microgrooves in the TIs enhanced both the migration and proliferation of osteoblasts. Especially, the microgrooves with radial arrangement demonstrated a much higher efficiency of osteoblast recruitment to the implants than did the other types of implants, which may be due to the efficient guidance of cell migration toward the cell-free area of the implants. The expression of the intracellular signaling molecules responsible for the cell migration was also upregulated in osteoblasts on the microgrooved TIs. In vivo, the TI with radially defined topography demonstrated much greater bone repair in mouse calvarial defect models than in the other types of implants. Taken together, these results indicate that implants with physical guidance can enhance tissue repair by rapid cell recruitment.

  3. The influence of titania-zirconia-zirconium titanate nanotube characteristics on osteoblast cell adhesion.

    Science.gov (United States)

    Minagar, Sepideh; Li, Yuncang; Berndt, Christopher C; Wen, Cuie

    2015-01-01

    Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.

  4. Carbon Nanotubes-Hydroxyapatite Nanocomposites for an Improved Osteoblast Cell Response

    Directory of Open Access Journals (Sweden)

    Sabrina Constanda

    2016-01-01

    Full Text Available An alternative and simple coprecipitation method was developed to obtain carbon nanotube-hydroxyapatite (CNTs:HAp based nanocomposites. The incorporation of CNTs (in a concentration of 5% and 10% of total weight of the nanocomposite and their impact on both structural and biological properties were studied by using a set of standard complementary biological, microscopic, and spectroscopic techniques. The characteristic peaks of carbon structure in CNTs were not observed in the CNTs-HAp composites by X-ray diffraction analysis. Moreover, FTIR and Raman spectroscopies confirmed the presence of HAp as the main phase of the synthesized CNTs:HAp nanocomposites. The addition of CNTs considerably affected the nanocomposite morphology by increasing the average crystallite size from 18.7 nm (for raw HAp to 28.6 nm (for CNTs:HAp-10, confirming their proper incorporation. The biocompatibility evaluation of CNTs:HAp-5 and CNTs:HAp-10 nanocomposites included the assessment of several parameters, such as cell viability, antioxidant response, and lipid peroxidation, on human G-292 osteoblast cell line. Our findings revealed good biocompatibility properties for CNTs:HAp nanocomposites prepared by the coprecipitation method supporting their potential uses in orthopedics and prosthetics.

  5. Separate Developmental Programs for HLA-A and -B Cell Surface Expression during Differentiation from Embryonic Stem Cells to Lymphocytes, Adipocytes and Osteoblasts

    DEFF Research Database (Denmark)

    Sabir, Hardee J; Nehlin, Jan O; Qanie, Diyako

    2013-01-01

    hematopoietic stem cells (hHSC), human mesenchymal stem cells (hMSC) and their fully-differentiated progenies such as lymphocytes, adipocytes and osteoblasts. hESC showed extremely low levels of HLA-A and no -B. In contrast, multipotent hMSC and hHSC generally expressed higher levels of HLA-A and clearly HLA...

  6. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells.

    Science.gov (United States)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen; Stark, G Björn

    2010-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR-alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells but not in immortalized osteoblastic cell lines. Functional inhibition of gap junctional communication between HUVECs and hOBs by 18alpha-glycyrrhetinic acid had no effect on HUVEC-mediated PDGFR-alpha downregulation, whereas inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the HUVEC-mediated reduction in osteoblastic PDGFR-alpha expression. To delineate the molecular mechanism underlying the PDGFR-alpha downregulation, we examined the effect of HUVEC co-cultivation on osteoblastic PDGFR-alpha promoter activity as well as mRNA stability. Co-cultivation of HUVECs with hOBs significantly shortened the half-life of osteoblastic PDGFR-alpha mRNA, but did not decrease its promoter activity. In summary, our data show that PDGFR-alpha is downregulated in hOBs by co-cultivation with human primary endothelial cells through a p38 MAPK-dependent post-transcriptional mechanism.

  7. Isolation of Mouse salivary gland stem cells

    NARCIS (Netherlands)

    Pringle, Sarah; Nanduri, Lalitha; van der Zwaag, Marianne; van Os, Ronald; Coppes, Rob

    2011-01-01

    Mature salivary glands of both human and mouse origin comprise a minimum of five cell types, each of which facilitates the production and excretion of saliva into the oral cavity. Serous and mucous acinar cells are the protein and mucous producing factories of the gland respectively, and represent

  8. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Windhager Reinhard

    2007-03-01

    Full Text Available Abstract Background Human mesenchymal stem cells (MSC with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. Results The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-β2 and BMPs. Conclusion With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  9. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature.

    Science.gov (United States)

    Chatakun, P; Núñez-Toldrà, R; Díaz López, E J; Gil-Recio, C; Martínez-Sarrà, E; Hernández-Alfaro, F; Ferrés-Padró, E; Giner-Tarrida, L; Atari, M

    2014-01-01

    Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.

  10. RT-PCR standardization and bone mineralization after low-level laser therapy on adult osteoblast cells

    Science.gov (United States)

    do Bomfim, Fernando R. C.; Sella, Valéria R. G.; Zanaga, Jéssica Q.; Pereira, Nayara S.; Nouailhetas, Viviane L. A.; Plapler, Hélio

    2014-03-01

    Purpose: Osteoblasts are capable to produce different compounds directly connected to bone mineralization process. This study aims to standardize the reverse transcriptase polymerase chain reaction (RT-PCR) for adult osteoblasts to observe the effect of low level laser therapy on bone mineralization. Methods: Five-millimeter long fragments obtained from the mead femoral region of male Wistar rats were assigned into group A (n=10, laser) and group B (n=10, no laser), submitted to mechanic and enzymatic digestion. After 7 days, cultures of group A were irradiated daily on a single spot with a GaInAs laser, λ=808nm, 200mW/cm2, 2J/cm2, bean diameter of 0,02mm, 5 seconds for 6 days. Group B was manipulated but received no laser irradiation. After 13 days the cells were trypsinized for 15 minute and stabilized with RNA later® for RNA extraction with Trizol®. cDNA synthesis used 10μg of RNA and M-MLV® enzyme. PCR was accomplished using the β-actin gene as a control. Another aliquot was fixed for Hematoxylin-Eosin and Von Kossa staining to visualize bone mineralization areas. Results: Under UV light we observed clearly the amplification of β-actin gene around 400bp. HE and Von Kossa staining showed osteoblast clusters, a higher number of bone cells and well defined mineralization areas in group A. Conclusion: The cell culture, RNA extraction and RT-PCR method for adult osteoblasts was effective, allowing to use these methods for bone mineralization studies. Laser improved bone mineralization and further studies are needed involving osteogenesis, calcium release mechanisms and calcium related channels.

  11. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Feyen, J.H.; van der Wilt, G.; Moonen, P.; Di Bon, A.; Nijweide, P.J.

    1984-12-01

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (/sup 14/C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (/sup 3/H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3.

  12. Preparation, in vitro mineralization and osteoblast cell response of electrospun 13-93 bioactive glass nanofibers.

    Science.gov (United States)

    Deliormanlı, Aylin M

    2015-08-01

    In this study, silicate based 13-93 bioactive glass fibers were prepared through sol-gel processing and electrospinning technique. A precursor solution containing poly (vinyl alcohol) and bioactive glass sol was used to produce fibers. The mixture was electrospun at a voltage of 20 kV by maintaining tip to a collector distance of 10 cm. The amorphous glass fibers with an average diameter of 464±95 nm were successfully obtained after calcination at 625 °C. Hydroxyapatite formation on calcined 13-93 fibers was investigated in simulated body fluid (SBF) using two different fiber concentrations (0.5 and 1 mg/ml) at 37 °C. When immersed in SBF, conversion to a calcium phosphate material showed a strong dependence on the fiber concentration. At 1mg/ml, the surface of the fibers converted to the hydroxyapatite-like material in SBF only after 30 days. At lower solid concentrations (0.5 mg/ml), an amorphous calcium phosphate layer formation was observed followed by the conversion to hydroxyapatite phase after 7 days of immersion. The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay was conducted to evaluate the osteoblast cell response to the bioactive glass fibers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  14. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M;

    2012-01-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been....../tricalcium phosphate, in immune deficient mice. In conclusion, MEF contain a population of stem cells that behave in ex vivo and in vivo assays, similar but not identical, to BMSC. Due to their enhanced cell growth, they may represent a good alternative for BMSC in studying molecular mechanisms of stem cell commitment...... reported. Utilizing standard in vitro and in vivo assays we performed a side-by-side comparison of MEF and BMSC to determine their ability to differentiate into mesoderm-type cells. BMSC were isolated from 8-10 weeks old mouse bone marrow by plastic adherence. MEF were established by trypsin/EDTA digestion...

  15. SPILANTHES ACMELLA AND PHYSICAL EXERCISE INCREASED TESTOSTERONE LEVELS AND OSTEOBLAST CELLS IN GLUCOCORTICOID-INDUCED OSTEOPOROSIS MALE MICE

    Directory of Open Access Journals (Sweden)

    Hening Laswati

    2015-08-01

    Full Text Available Background: Glucocorticoid-induced osteoporosis is leading cause of secondary osteoporosis by decreasing formation activity and increasing resorption activity. Spilanthes acmella, is one of Indonesia medicinal plants that contain of polyphenol and flavonoids. Previously in vitro study showed that buthanol and water fraction from this plant have increased alkaline phosphatase that known as marker of bone formation. The objective of this study to analyze the effect of Spilanthes acmella  and physical exercise in increasing testosterone and  osteoblast cells of femoral’s trabecular glucocorticoid-induced osteoporosis male mice. Method: This study using a posttest control group design, 36 male healthy mice (5 months old  were randomizely devided into 6 groups, there are : 1.Healthy control group (without induction dexamethaxone, 2.Osteoporosis groups (induction with dexamethaxone without treatment, 3.Positive control receive suspension alendronat, 4.70% Ethanol extract of Spilanthes acmella group, 5.Combination group of 70% extract ethanol of Spilanthes acmella and exercise, and 6.Exercise group  (walking using mice treadmill 10m/minute, 5-12 minutes 3 times a week. All of the intervention were given for 4 weeks. The serum levels of testosterone were determined using  immunoserology (ELISA and osteoblast cells were determined histomorphometry by light microscopy.  All statistical test were carried out using SPSS 23 and statistical significance was  set at p<0.05 for all analysis. The testosterone levels  between group were compared using Mann-Whitney test and osteoblast cells between group were compared with multiple comparison. Results: It showed that the alendronate group, combination group and the exercise group increasing testosterone level (p<0.05 from that osteoporotic group. There were also increasing osteoblast cells (p<0.05 in the alendronate group and combination group. There was no correlation between testosterone level and

  16. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype.

    Science.gov (United States)

    Yuan, Baozhi; Feng, Jian Q; Bowman, Stephen; Liu, Ying; Blank, Robert D; Lindberg, Iris; Drezner, Marc K

    2013-01-01

    Inactivating mutations of the "phosphate regulating gene with homologies to endopeptidases on the X chromosome" (PHEX/Phex) underlie disease in patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a murine homologue of the human disorder. Although increased serum fibroblast growth factor 23 (FGF-23) underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF-23 degradation and/or enhance production remains unknown. Here we show that treatment of wild-type mice with the proprotein convertase (PC) inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (Dec), increases serum FGF-23 and produces the HYP phenotype. Because PC2 is uniquely colocalized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX-dependent FGF-23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF-23, whereas Signe1 (7B2) RNA interference (RNAi) transfection, which limited 7B2 protein production, decreased FGF-23 degradation and increased Fgf-23 mRNA and protein. The mechanism by which decreased 7B2•PC2 activity influences Fgf-23 mRNA was linked to reduced conversion of the precursor to bone morphogenetic protein 1 (proBMP1) to active BMP1, which resulted in limited cleavage of dentin matrix acidic phosphoprotein 1 (DMP1), and consequent increased Fgf-23 mRNA. The significance of decreased 7B2•PC2 activity in XLH was confirmed by studies of hyp-mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF-23 cleavage and increased FGF-23 synthesis, secondary to decreased BMP1-mediated degradation of DMP1. Subsequent Hexa-D-Arginine treatment of hyp-mice enhanced bone 7B2•PC2 activity, normalized FGF-23 degradation and production, and rescued the HYP phenotype. These data suggest that decreased PHEX-dependent 7B2•PC2 activity is central to the

  17. Pulsed electric field mediated in vitro cellular response of fibroblast and osteoblast-like cells on conducting austenitic stainless steel substrate.

    Science.gov (United States)

    Dubey, Ashutosh Kumar; Agrawal, Parnika; Misra, R Devesh Kumar; Basu, Bikramjit

    2013-07-01

    This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (~270 % to that of untreated sample) and SaOS2 (~280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.

  18. Role of the N-terminal peptide of amelogenin on osteoblastic differentiation of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    R Olivares-Navarrete

    2014-07-01

    Full Text Available Porcine enamel matrix derivative (pEMD, a complex mixture of proteins and peptides including full-length amelogenin protein, splice variants, and proteolytic peptides, is used clinically with a carrier to regenerate supportive tissue around teeth. During application, pEMD self-assembles as nanospheres and precipitates as a three-dimensional matrix to facilitate cell migration and differentiation. Amelogenin, the primary constituent of pEMD, stimulates osteoblast differentiation, but it is unclear what specific roles other components of pEMD play in determining biological response. This study examined the potential of one constituent of pEMD, the N-terminal amelogenin peptide (NTAP, to promote osteoblastic differentiation of human mesenchymal stem cells (MSCs and to elucidate possible signaling pathways involved. Effects of porcine NTAP on MSC cultures were compared to those of recombinant human amelogenin. While amelogenin induced MSC osteoblastic differentiation, a more robust osteoblastic response was seen after NTAP treatment. A phospho-kinase proteasome array measuring phosphorylation of 35 proteins indicated that protein kinase C (PKC, extracellular signal-regulated kinase 1/2 (ERK1/2, and β-catenin were highly phosphorylated by NTAP. This was confirmed by measuring PKC activity and levels of phospho-ERK1/2 and β-catenin. Both amelogenin and NTAP increased PKC, but NTAP induced higher phosho-ERK1/2 and phospho-β-catenin than amelogenin. ERK1/2 inhibition blocked both amelogenin- and NTAP-induced increases in RUNX2, ALP, OCN, COL1, and BMP2. The results demonstrate that NTAP induces osteogenic differentiation of MSCs via PKC and ERK1/2 activation and β-catenin degradation. NTAP may be an active bone regeneration component of amelogenin, and may play this role in pEMD-stimulated periodontal regeneration.

  19. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Lu-yang YU; Jin-wei HE; Ya-nan HOU; Tian-jin LIU; Jia-cai WU; Song-hua WU; Li-he GUO

    2006-01-01

    Aim: To construct an A20 expression vector under the control of mouse osteocalcin promoter (OC-A20), and investigate osteoblastic MC3T3-E1 cell line, which stably overexpresses A20 protein prevented tumor necrosis factor (TNF)-alpha-induced apoptosis. Methods: OC-A20 vector was constructed by fusing a fragment of the mouse osteocalcin gene-2 promoter with human A20 complementary DNA. Then the mouse MC3T3-E1 cell line, stably transfected by A20, was established. The expression of A20 mRNA and A20 protein in the cells were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To determine the specificity of A20 expression in osteoblast, the mouse osteoblastic MC3T3-E1 cell line and mouse embryo fibro-blast NIH3T3 cell line were transiently transfected with OC-A20. The anti-apoptotic role of A20 in MC3T3-E1 cells was determined by Flow cytometric analysis (FACS), terminal dUTP nick endo-labeling (TUNEL) and DNA gel electrophoresis analysis (DNA Ladder), respectively. Results: Weak A20 expression was found in MC3T3-El cells with the primers of mouse A20. A20 mRNA and A20 protein expression were identified in MC3T3-E1 cells transfected with OC-A20 using RT-PCR and Western blot analysis. Only A20 mRNA expression was found in MC3T3-E1 cell after MC3T3-E1 cells and NIH3T3 cells were transient transfected with OC-A20. A decrease obviously occurred in the rate of apoptosis in the OC-A20 group compared with the empty vector (pcDNA3) group by FACS (P<0.001). A significant increase in TUNEL positive staining was found in the pcDNA group compared with OC-A20 group (P<0.001). Simultaneously, similar effects were demonstrated in DNA gel electrophoresis analysis. Conclusion: We constructed an osteoblast-specific expression vector that expressed A20 protein in MC3T3-E1 cells and confirmed that A20 protects osteoblast against TNF-alpha-induced apoptosis.

  20. Functional roles of the nuclear localization signal of parathyroid hormone-related protein (PTHrP) in osteoblastic cells.

    Science.gov (United States)

    García-Martín, A; Ardura, J A; Maycas, M; Lozano, D; López-Herradón, A; Portal-Núñez, S; García-Ocaña, A; Esbrit, P

    2014-06-01

    PTHrP is an important regulator of bone remodelling, apparently by acting through several sequence domains. We here aimed to further delineate the functional roles of the nuclear localization signal (NLS) comprising the 88-107 amino acid sequence of PTHrP in osteoblasts. PTHrP mutants from a human PTHrP (-36/+139) cDNA (wild type) cloned into pcDNA3.1 plasmid with deletion (Δ) of the signal peptide (SP), NLS, T(107), or T107A replacing T(107) by A(107) were generated and stably transfected into osteoblastic MC3T3-E1 cells. In these cells, intracellular trafficking, cell proliferation and viability, as well as cell differentiation were evaluated. In these transfected cells, PTHrP was detected in the cytoplasm and also in the nucleus, except in the NLS mutant. Meanwhile, the PTH type 1 receptor (PTH1R) accumulates in the cytoplasm except for the ΔSP mutant in which the receptor remains at the cell membrane. PTHrP-wild type cells showed enhanced growth and viability, as well as an increased matrix mineralization, alkaline phosphatase activity, and osteocalcin gene expression; and these features were inhibited or abolished in ΔNLS or ΔT(107) mutants. Of note, these effects of PTHrP overexpression on cell growth and function were similarly decreased in the ΔSP mutant after PTH1R small interfering RNA transfection or by a PTH1R antagonist. The present in vitro findings suggest a mixed model for PTHrP actions on osteoblastic growth and function whereby this protein needs to be secreted and internalized via the PTH1R (autocrine/paracrine pathway) before NLS-dependent shuttling to the nucleus (intracrine pathway).

  1. Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hilde Kvestad

    2014-01-01

    Full Text Available The combined use of the histone deacetylase inhibitor valproic acid (VPA, the retinoic acid receptor-α agonist all-trans retinoic acid (ATRA, and the deoxyribonucleic acid polymerase-α inhibitor cytarabine (Ara-C is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML. Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.

  2. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  3. Memory B cells in mouse models.

    Science.gov (United States)

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases.

  4. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential

    Directory of Open Access Journals (Sweden)

    Guo Yong

    2012-10-01

    Full Text Available Abstract Background The extracellular matrix (ECM provides a supportive microenvironment for cells, which is suitable as a tissue engineering scaffold. Mechanical stimulus plays a significant role in the fate of osteoblast, suggesting that it regulates ECM formation. Therefore, we investigated the influence of mechanical stimulus on ECM formation and bioactivity. Methods Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with mechanical tensile strain. After removing the cells, the ECMs coated on dishes were prepared. The ECM protein and calcium were assayed and MC3T3-E1 cells were re-seeded on the ECM-coated dishes to assess osteoinductive potential of the ECM. Results The cyclic tensile strain increased collagen, bone morphogenetic protein 2 (BMP-2, BMP-4, and calcium levels in the ECM. Compared with the ECM produced by unstrained osteoblasts, those of mechanically stimulated osteoblasts promoted alkaline phosphatase activity, elevated BMP-2 and osteopontin levels and mRNA levels of runt-related transcriptional factor 2 (Runx2 and osteocalcin (OCN, and increased secreted calcium of the re-seeded MC3T3-E1 cells. Conclusion Mechanical strain promoted ECM production of osteoblasts in vitro, increased BMP-2/4 levels, and improved osteoinductive potential of the ECM. This study provided a novel method to enhance bioactivity of bone ECM in vitro via mechanical strain to osteoblasts.

  5. Nicotine Treatment Induces Expression of Matrix Metalloproteinases in Human Osteoblastic Saos-2 Cells

    Institute of Scientific and Technical Information of China (English)

    Tomoko KATONO; Takayuki KAWATO; Natsuko TANABE; Naoto SUZUKI; Kazuhiro YAMANAKA; Hitoshi OKA; Masafumi MOTOHASHI; Masao MAENO

    2006-01-01

    Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1(PAI- 1), α7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3,and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the α7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process.

  6. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model

    Institute of Scientific and Technical Information of China (English)

    Thomas M. Bodenstine; Benjamin H. Beck; Xuemei Cao; Leah M. Cook; Aimen Ismai; J. Kent Powers; Andrea M. Mastro; Danny R. Welch

    2011-01-01

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cancer cells induce apoptosis in osteoblasts, which further exacerbates bone loss. However, in early stages, breast cancer cells induce osteoblasts to secrete inflammatory cytokines purported to drive tumor progression. To more thoroughly evaluate the role of osteoblasts in early stages of breast cancer metastasis to the bones, we used green fluorescent protein-labeled human breast cancer cell lines MDA-MB-231 and MDA-MB-435, which both induce osteolysis after intra-femoral injection in athymic mice, and the murine pre-osteoblastic cell line MC3T3-E1 to modulate osteoblast populations at the sites of breast cancer metastasis. Breast cancer cells were injected directly into the femur with or without equal numbers of MC3T3-E1 cells. Tumors grew significantly larger when co-injected with breast cancer cells and MC3T3-E1 cells than injected with breast cancer cells alone. Osteolysis was induced in both groups, indicating that MC3T3-E1 cells did not block the ability of breast cancer cells to cause bone destruction. MC3T3-E1 cells promoted tumor growth out of the bone into the extraosseous stroma. These data suggest that breast cancer cells and osteoblasts communicate during early stages of bone metastasis and promote tumor growth.

  7. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  8. Isolation and analysis of mouse microglial cells.

    Science.gov (United States)

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  9. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces.

    Science.gov (United States)

    Chollet, Celine; Chanseau, Christel; Remy, Murielle; Guignandon, Alain; Bareille, Reine; Labrugère, Christine; Bordenave, Laurence; Durrieu, Marie-C

    2009-02-01

    Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions, coupling agent grafting and the immobilization of the RGDC peptides. High resolution mu-imager was used to evaluate RGD densities (varying between 0.6 and 2.4 pmol/mm(2)) and has exhibited the stability of the surface grafted peptides when treated in harsh conditions. The efficiency of this route for biomimetic modification of a PET surface was demonstrated by measuring the adhesion of MC3T3 and HSVEC cells and by focal adhesion observation. Results obtained prove that a minimal RGDC density of 1 pmol/mm(2) is required to improve MC3T3 and HSVEC cells responses. Indeed, cells seeded onto a RGDC-modified PET with a density higher than 1 pmol/mm(2) were able to establish focal adhesion as visualized by fluorescence microscope compared to cells immobilized onto unmodified PET and RGDC-modified PET with densities lower than 1 pmol/mm(2). Moreover, the number of focal contacts was enhanced by the increase of RGDC peptide densities grafted onto the material surface. With this study we proved that the density of peptides immobilized on the surface is a very important parameter influencing osteoblast or endothelial cell adhesion and focal contact formation.

  10. Identification and proteomic analysis of osteoblast-derived exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng, E-mail: cranio@vip.163.com

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  11. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds

    Directory of Open Access Journals (Sweden)

    C Zong

    2010-09-01

    Full Text Available Human mesenchymal stem cells (hMSCs can be used for xenogenic transplantation due to their low immunogenicity, high proliferation rate, and multi-differentiation potentials. Therefore, hMSCs are an ideal seeding source for tissue engineering. The present study evaluates the reconstruction effects of hMSCs and osteoblast-like cells differentiated from hMSCs in poly-lactic-co-glycolic acid (PLGA scaffolds on the calvarial defect of rats. Two bilateral full-thickness defects (5mm in diameter were created in the calvarium of nonimmunosuppressed Sprague-Dawley rats. The defects were filled by PLGA scaffolds with hMSCs (hMSC Construct or with osteoblast-like cells differentiated from hMSCs (Osteoblast Construct. The defects without any graft (Blank Defect or filled with PLGA scaffold without any cells (Blank Scaffold were used as controls. Evaluation was performed using macroscopic view, histology and immunohistochemical analysis respectively at 10 and 20 weeks after transplantation. In addition, fluorescent carbocyanine CM-Dil was used to track the implanted cells in vivo during transplantation. The results showed that while both hMSC Construct and Osteoblast Construct led to an effective reconstruction of critical-size calvarial defects, the bone reconstruction potential of hMSC Construct was superior to that of Osteoblast Construct in non-autogenous applications. Our findings verify the feasibility of the use of xenogenic MSCs for tissue engineering and demonstrate that undifferentiated hMSCs are more suitable for bone reconstruction in xenotransplantation models.

  12. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    Yamauchi Mika

    2007-11-01

    Full Text Available Abstract Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1 mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR, in the cells. AdipoR1 small interfering RNA (siRNA transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.

  13. Germ cell transplantation in infertility mouse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This work investigated the spermatogenesis in an infertility BALB/c-nu mouse model by reinfusing germline stem cells into seminiferous tubules.Donor germ cells were isolated from male FVB/NJ-GFP transgenic mice.Seminiferous tubule microiniection was applied to achieve intratubular germ cell transfer.The germ cells were injected into exposed testes of the infertility mice.We used green fluorescence and DNA analysis of donor cells from GFP transgenic mice as genetic marker.The natural mating and Southern blot methods were applied to analyze the effect of sperm cell transplantation and the sperm function after seminiferous tubule microinjecUon.The spermatogenesis was morphologically observed from the seminiferous tubules in 41/60(68.33%)of the injected recipient mice using allogeneic donor cells.In the colonized testes,matured spermatozoa were seen in the lumen of the seminiferous tubules.In this research,BALB/c-nu infertility mouse model,the recipient animal,was used to avoid immunological rejection of donor cells,and germ cell transplantation was applied to overcome infertility caused by busulfan treatment.These results demonstrate that this technique of germ cell transplantation is of great use.Germ cell transplantation could be potentially valuable to oncological patients.

  14. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H;

    2006-01-01

    Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine...... assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP......, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells....

  15. SSH-BM-I, a tryptamine derivative, stimulates mineralization in terminal osteoblast differentiation but inhibits osteogenesis of pre-committed progenitor cells.

    Science.gov (United States)

    Mikami, Yoshikazu; Somei, Masanori; Tsuda, Hiromasa

    2011-01-01

    SSH-BM-I was synthesized from tryptamine by using a newly developed synthetic method, and it has structural similarity to bromomelatonin. Recently, it had been reported that SSH-BM-I increases osteoblasts in scales of gold fish. However, the effect of SSH-BM-I on osteoblast differentiation in mammalian cells has not yet been examined. Therefore, this study examined the effect of SSH-BM-I on osteoblast differentiation in mesenchymal progenitor-like cells and mature osteoblast-like cells. SSH-BM-I enhanced terminal osteoblast differentiation, as indicated by mineralization, which was accompanied by upregulation of the osteogenic marker genes bone sialoprotein (BSP) and osteocalcin (OC). However, in mesenchymal progenitor ROB-C26 cultures, no mineralized nodules were observed regardless of SSH-BM-I treatment, although BMP-2 was able to induce nodule formation in these cells. Furthermore, BMP-2-induced nodule formation was suppressed by SSH-BM-I treatment in ROB-C26 cultures. We further investigated the impact of the timing and duration of SSH-BM-I treatment on osteoblast differentiation. The effect of SSH-BM-I treatment on osteoblast differentiation of ROB-C26 in the presence of BMP-2 switches from negative to positive sometime between day 6 and 9, because SSH-BM-I treatment enhanced the formation of mineralized nodules when it was started on day 9, but suppressed nodule formation when it was started at day 6 or earlier. These results suggest that the stimulatory effects of SSH-BM-I on the formation of mineralized nodules depend on the degree of cell differentiation.

  16. DMSO is a strong inducer of DNA hydroxymethylation in pre-osteoblastic MC3T3-E1 cells

    Science.gov (United States)

    Thaler, Roman; Spitzer, Silvia; Karlic, Heidrun; Klaushofer, Klaus; Varga, Franz

    2012-01-01

    Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  PMID:22507896

  17. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    Science.gov (United States)

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering.

  18. Using quantitative proteomics methods for studying the secreteome of human mesenchymal stem cells during osteoblast differentiation

    DEFF Research Database (Denmark)

    Kristensen, Lars Peter

      Betydningen af skelettet som et endokrint organ er et voksende felt indenfor knogle biologi. Der er imidlertid begræset information tilgængelig vedrørende de faktorer der seceneres af osteoblaster under deres differentiering og tidligere rapporterede kandidater er primært baseret på indirekte m...

  19. Influence of a nanoporous zirconia implant surface of on cell viability of human osteoblasts

    NARCIS (Netherlands)

    Aboushelib, M.N.; Osman, E.; Jansen, I.; Everts, V.; Feilzer, A.J.

    2013-01-01

    Purpose: The dense nonretentive surface of zirconia implants was modified into a nanoporous surface using selective infiltration etching surface treatment. The aim of this study was to investigate the influence of such a nanoporous modified zirconia surface on the attachment of human osteoblasts.

  20. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  1. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    Science.gov (United States)

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  2. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  3. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei, E-mail: fangwu0808@yahoo.co, E-mail: fwu@scu.edu.c [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2010-12-15

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 {mu}m and an average porosity of 48.26 {+-} 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  4. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells.

    Science.gov (United States)

    Nakamura, Toshiaki; Shinohara, Yukiya; Momozaki, Sawako; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2013-10-18

    Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2+FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9+FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.

  5. Expression of osteoclastogenic factor transcripts in osteoblast-like UMR-106 cells after exposure to FGF-23 or FGF-23 combined with parathyroid hormone.

    Science.gov (United States)

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2016-03-01

    As a bone-derived hormone, fibroblast growth factor-23 (FGF-23) negatively regulates phosphate and calcium metabolism, while retaining growth-promoting action for mesenchymal cell differentiation. Elevated FGF-23 levels, together with hyperparathyroidism, are often observed in chronic kidney disease, which is associated with impaired bone mineralization and enhanced bone resorption. Although overexpression of osteoblast-derived osteoclastogenic cytokines might contribute to this metabolic bone disease, whether FGF-23 alone and FGF-23 plus parathyroid hormone (PTH) directly modulated the expression of osteoblast-derived osteoclastogenic genes remained elusive. Herein, we demonstrated the direct effects of FGF-23 on proliferation and mRNA expression of osteoblast-specific differentiation and osteoclastogenic markers in rat osteoblast-like UMR-106 cells in the presence or absence of PTH. FGF-23 was found to suppress UMR-106 cell proliferation, while increasing FGF-23 expression, the latter of which suggested the presence of positive feedback regulation of FGF-23 expression in osteoblasts. FGF-23 also upregulated the mRNA expression of osteoblast differentiation markers (e.g., Runx2, osterix, AJ18, Dlx5, alkaline phosphatase, and osteopontin), osteoclastogenic factors (e.g., MCSF, MCP-1, IL-6, and TNF-α), and bone resorption regulators (RANKL and osteoprotegerin). However, combined PTH and FGF-23 exposure did not alter the levels of FGF-23-induced transcripts, suggesting that both hormones had no additive effect. In conclusion, FGF-23 directly suppressed osteoblast proliferation, while inducing osteoclastogenic gene expression in UMR-106 cells, and the FGF-23-induced transcripts were not altered by long-standing PTH exposure.

  6. Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio

    NARCIS (Netherlands)

    Ma, J.; Beucken, J.J. van den; Yang, F.; Both, S.K.; Cui, F.Z.; Pan, J.; Jansen, J.A.

    2011-01-01

    Vascularization strategies in cell-based bone tissue engineering depend on optimal culture conditions. The present study aimed to determine optimal cell culture medium and cell ratio for cocultures of human marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) in view of

  7. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Blaber

    Full Text Available Bone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space. To test this possibility, we exposed 16-week-old female C57BL/6J mice (n = 8 to microgravity for 15-days on the STS-131 space shuttle mission. Analysis of the pelvis by µCT shows decreases in bone volume fraction (BV/TV of 6.29%, and bone thickness of 11.91%. TRAP-positive osteoclast-covered trabecular bone surfaces also increased in microgravity by 170% (p = 0.004, indicating osteoclastic bone degeneration. High-resolution X-ray nanoCT studies revealed signs of lacunar osteolysis, including increases in cross-sectional area (+17%, p = 0.022, perimeter (+14%, p = 0.008, and canalicular diameter (+6%, p = 0.037. Expression of matrix metalloproteinases (MMP 1, 3, and 10 in bone, as measured by RT-qPCR, was also up-regulated in microgravity (+12.94, +2.98 and +16.85 fold respectively, p<0.01, with MMP10 localized to osteocytes, and consistent with induction of osteocytic osteolysis. Furthermore, expression of CDKN1a/p21 in bone increased 3.31 fold (p<0.01, and was localized to osteoblasts, possibly inhibiting the cell cycle during tissue regeneration as well as conferring apoptosis resistance to these cells. Finally the apoptosis inducer Trp53 was down-regulated by -1.54 fold (p<0.01, possibly associated with the quiescent survival-promoting function of CDKN1a/p21. In conclusion, our findings identify the pelvic and femoral region of the mouse skeleton as an active site of

  8. Effects of Nano-biphasic Calcium Phosphate Composite on Bioactivity and Osteoblast Cell Behavior in Tissue Engineering Applications.

    Science.gov (United States)

    Ebrahimian-Hosseinabadi, Mehdi; Etemadifar, Mohammadreza; Ashrafizadeh, Fakhredin

    2016-01-01

    In this paper, preparation, bioactivity, and osteoblast cell behavior of cortical bone derived nano-biphasic calcium phosphate (nano-BCP) are presented. The calcined bovine bone samples with the addition of di-ammonium hydrogen phosphate were heated at 700°C for 100 min, and thus nano-BCP with the composition of 63/37 hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP) was produced. Scanning electron microscopy (SEM) images, energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analysis of immersed samples in simulated body fluid (SBF) solution showed that a uniform layer was formed on the surface after 7 days with the chemical composition of HA. The results indicated that the nano-BCP sample developed excellent bioactivity after 28 days. The nano-BCP samples showed better cell proliferation compared to pure HA samples. After 7 days in cell culture, the prepared nano-BCP (HA/β-TCP) exhibited the maximum proliferation of the MG-63 osteoblast cells.

  9. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Karadzic, Ivana; Vucic, Vesna; Jokanovic, Vukoman; Debeljak-Martacic, Jasmina; Markovic, Dejan; Petrovic, Snjezana; Glibetic, Marija

    2015-01-01

    The aim of this study was to examine the differential capacity of isolated dental pulp stem cells (SHED) cultured onto four different scaffold materials. The differential potential of isolated SHED was examined on the following scaffolds: porous hydroxyapatite (pHAP) alone or combined with three polymers [polylactic-co-glycolic acid (PLGA), alginate, and ethylene vinylacetate / ethylene vinylversatate (EVA/EVV)]. SHED were isolated by "outgrowth" method and characterized by the flow cytometry. Viability of cells grown with scaffolds was assessed by MTT and LDH assays. No significant cytotoxic effect of any of the tested materials was shown. Staining with alizarin red and estimated alkaline phosphatase activity to identify differentiation, demonstrated osteoblastic phenotype of SHED and newly deposited and mineralized extra cellular matrix (ECM) in presence of all tested scaffolds. The developed ECM seen at scanning electronic micrographs additionally confirmed the osteogenic differentiation and biocompatibility between cells and materials. In summary, all studied biomaterials are suitable carriers for proliferation and osteoblastic differentiation of dental pulp mesenchymal stem cells in vitro.

  10. Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid.

    Science.gov (United States)

    Oki, Yoshinao; Watanabe, Saiko; Endo, Tuyoshi; Kano, Koichiro

    2008-01-01

    We investigated whether de-differentiated fat (DFAT) cells, a mature adipocyte-derived preadipocyte cell line, can be induced to trans-differentiate into osteoblasts in vitro and in vivo. All-trans retinoic acid (RA) induced expression of osteoblast-specific mRNAs encoding Cbfa1/Runx2, osterix, alkaline phosphatase, osteopontin, parathyroid hormone receptor, and osteocalcin in the DFAT cells, but did not induce the expression of adipocyte-specific mRNAs encoding PPARgamma2, C/EBPalpha, and GLUT4. Moreover, alkaline phosphatase activity was expressed in DFAT cells and the cells underwent mineralization of the bone matrix in vitro. Furthermore, when DFAT cells were transplanted subcutaneously into C57BL/6N mice in diffusion chambers, these cells formed ectopic osteoid tissue without any host cell-invasion of the chambers. These results indicate that DFAT cells derived from mature adipocytes can be converted into fully differentiated osteoblasts in vitro and in vivo using RA. DFAT cells provide a unique model for studying the lineage commitment of the adipocytes and osteoblasts derived from mesenchymal stem cells. Identification of the pathways that regulate these processes could lead to the development of new therapeutic strategies for control of unwarranted growth of bone and adipose tissue.

  11. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali, D.; Hamam, R.; Alfayez, M.;

    2016-01-01

    abexinostat, which promoted adipocytic and osteoblastic differentiation of hMSCs. Using gene expression microarrays, chromatin immunoprecipitation for H3K9Ac combined with high-throughput DNA sequencing (ChIP-seq), and bioinformatics, we identified several key genes involved in regulating stem cell...... proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition...

  12. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  13. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  14. Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer.

    Science.gov (United States)

    Feeley, Brian T; Gamradt, Seth C; Hsu, Wellington K; Liu, Nancy; Krenek, Lucie; Robbins, Paul; Huard, Johnny; Lieberman, Jay R

    2005-12-01

    The purpose of this study was to evaluate the role of BMPs on the formation of metastatic prostate cancer lesions to bone. Our results show that BMPs influence the development and progression of osteoblastic lesions and suggest that therapies that inhibit BMP activity may reduce the formation and progression of osteoblastic lesions. Prostate adenocarcinoma is the leading cause of cancer in North American men. The formation of skeletal metastases affects approximately 70% of patients with advanced disease, and a majority of these patients have osteoblastic lesions. Although BMPs have been found to be expressed in multiple oncogenic cell lines, their role in the formation of metastatic osteoblastic lesions remains uncharacterized. We hypothesized that BMPs influence the development of metastatic osteoblastic lesions associated with prostate cancer. Western blot analysis and RT-PCR was used to determine BMP receptor expression on osteoblastic prostate cancer cell lines LAPC-4 and LAPC-9. Migration, invasion, and cellular proliferation assays were used to quantify the effects of BMP-2, -4, and -7 on LAPC-4 cells in vitro. LAPC-9 cells alone or transfected with a retrovirus overexpressing noggin were injected into the tibias of SCID mice, and the animals were followed for 8 weeks. Tumor size was determined by radiographs and direct measurement. Histology was performed at the time of death. We determined that BMP receptor mRNA and protein was expressed on osteoblastic prostate cancer cell lines LAPC-4 and LAPC-9. In vitro studies showed that BMP-2 and -7 stimulated cellular migration and invasion of prostate cancer cells in a dose-dependent fashion, although BMP-4 had no effect. Noggin inhibited cellular migration and invasion of BMP-2- and -7-stimulated LAPC-4 cells. LAPC-9 cells implanted into immunodeficient mouse tibias formed an osteoblastic lesion with sclerotic bone at 8 weeks. Formation of osteoblastic lesions was inhibited by overexpression of noggin by prostate

  15. Cell response of nanographene platelets to human osteoblast-like MG63 cells.

    Science.gov (United States)

    Zhang, X; Li, M; Wang, Y B; Cheng, Y; Zheng, Y F; Xi, T F; Wei, S C

    2014-03-01

    The biologic/cytotoxic effects of dispersed nanographene platelets (NGPs) on human osteosarcoma cells (MG63 cell line) were first studied by examining cell viability, cycle, apoptosis, change in morphology, lactate dehydrogenase (LDH) release, alkaline phosphatase (ALP) activity, and inflammation. The results shown that the cell cytotoxicity of the dispersed NGPs exhibited dose-dependent characters, which had no obvious cytotoxic effects to MG63 cells at the concentration less than 10 μg mL(-1), whereas could postpone cell cycle, promote cell apoptosis, damage cell microstructure, induce serious tumor necrosis factor-α expression and greatly reduce ALP activity of MG63 cells at higher concentration of NGPs (>10 µg mL(-1)). Besides, NGPs had little influence on the LDH leakage. The cytotoxic mechanism of NGPs to MG63 cells was speculated to be intracellular activity with no physical damage of plasma membrane.

  16. Role of Integrin Subunits in Mesenchymal Stem Cell Differentiation and Osteoblast Maturation on Graphitic Carbon-coated Microstructured Surfaces

    Science.gov (United States)

    Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999

  17. Different response of osteoblastic cells to Mg(2+), Zn(2+) and Sr(2+) doped calcium silicate coatings.

    Science.gov (United States)

    Hu, Dandan; Li, Kai; Xie, Youtao; Pan, Houhua; Zhao, Jun; Huang, Liping; Zheng, Xuebin

    2016-03-01

    Mg(2+), Zn(2+) and Sr(2+) substitution for Ca(2+) in plasma sprayed calcium silicate (Ca-Si) coatings have been reported to impede their degradation in physiological environment and, more importantly, to improve their biological performance. The reason for the improved biological performance is still elusive and, especially, the contribution of the dopant ions is lack of obvious and direct evidence. In this study, we aim to identify the effect of Mg(2+), Zn(2+) and Sr(2+) incorporation on the osteogenic ability of Ca-Si based coatings (Ca2MgSi2O7, Ca2ZnSi2O7 and Sr-CaSiO3) by minimizing the influence of Ca and Si ions release and surface physical properties. Similar surface morphology, crystallinity and roughness were achieved for all samples by optimizing the spray parameters. As expected, Ca and Si ions release from all the coatings showed the comparable concentration with immersing time. The response of MC3T3-E1 cells onto Mg(2+), Zn(2+) and Sr(2+) doped Ca-Si coatings were studied in terms of osteoblastic adhesion, proliferation, differentiation and mineralization. The results showed that the level of cell adhesion and proliferation increased the most on the surface of Mg-modified coating. Gene expressions of early markers of osteoblast differentiation (COL-I and ALP mRNA) were obviously improved on Zn-modified coating. Gene expressions of later markers for osteoblast differentiation (OPN and OC mRNA) and mineralized nodules formation were obviously accelerated on the surface of Sr-modified coating. Since Mg(2+), Zn(2+) and Sr(2+) play a regulatory role in different stages of osteogenesis, it may be possible to utilize this in the development of new coating materials for orthopedic application.

  18. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    OpenAIRE

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased...

  19. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells.

    Science.gov (United States)

    Suarasan, Sorina; Focsan, Monica; Soritau, Olga; Maniu, Dana; Astilean, Simion

    2015-08-01

    It is useful to find new methods to synthesize and, more importantly, to control the size and shape of gold nanoparticles (AuNPs) without using relatively toxic-reducing agents and surfactants. In this work, we present a one-pot, green synthesis of AuNPs taking the advantage of gelatin biopolymer to operate as unique reducing, growth controlling and stabilizing agent in aqueous solution of tetrachloroauric acid (HAuCl4) at temperatures above its melting point (∼35°C). The shape and size of AuNPs were found to be strongly influenced by the gelatin concentration (0.5-5%), while the growth rate of AuNPs is controlled by temperature of synthesis (40-80°C) and viscosity of the biopolymer. A specific class of gelatin-coated AuNPs was selected to investigate its stability in simulated physiological conditions and cellular media and subsequently to evaluate the in vitro biocompatibility and capacity to sustain proliferation and differentiation of Osteoblast cells. Dark-field microscopy and Rayleigh scattering spectra prove a more efficient internalization of gelatin-coated AuNPs as compared with citrate-coated AuNPs, while methylthiazoltetrazolium bromide (MTT) assay demonstrates enhanced cell proliferation. Interestingly, in the presence of gelatin-coated AuNPs, we find out a first sign of Osteoblast cells differentiation with bone nodules formation, as confirmed by alkaline phosphatase (ALP) activity assay.

  20. Effects of microgravity on osteoblast growth

    Science.gov (United States)

    Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V.

    1998-01-01

    Studies from space flights over the past two decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. Recently analyzed data from the 1973-1974 Skylabs disclose that there is a rise in the systemic hormone, cortisol, which may play a role in bone loss in flight. In two flights where bone growth was measured (Skylabs 3 and 4), the crew members had a significant loss of calcium accompanied by a rise in 24 hour urinary cortisol during the entire flight period. In ground-based work on osteoblasts, we have demonstrated that equivalent amounts of glucocorticoids can inhibit osteoblast cell growth. In addition, this laboratory has recently studied gene growth and activation of mouse osteoblasts (MC3T3-E1) during spaceflight. Osteoblast cells were grown on glass coverslips, loaded in the Biorack plunger boxes 18 hours before launch and activated 19 hours after launch in the Biorack incubator under microgravity conditions. The osteoblasts were launched in a serum deprived state, activated and collected in microgravity. Samples were collected at 29 hours after sera activation (0-g, n=4; 1-g, n=4). The osteoblasts were examined for changes in gene expression and cell morphology. Approximately one day after growth activation, remarkable differences were observed in gene expression in 0-g and 1-g flight samples. The 0-g activated cells had increased c-fos mRNA when compared to flight 1-g controls. The message of immediate early growth gene, cox-2 was decreased in the microgravity activated cells when compared to ground or 1-g flight controls. Cox-1 was not

  1. Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices.

    Science.gov (United States)

    Martini, Lucia; Giavaresi, Gianluca; Fini, Milena; Borsari, Veronica; Torricelli, Paola; Giardino, Roberto

    2006-11-01

    Extracorporeal shockwave therapy (ESWT) has been increasingly applied to treat orthopedic and musculoskeletal pathologies. ESWT involves mechanical perturbations that, as with other physical therapies, can result in mechanical stimuli to a large number of cells, including bone cells. The aim of this study was to evaluate the effects of shock waves on osteoblast-like cells (MG63) when using two different generators of shock waves (electrohydraulic and electromagnetic devices), in terms of cell damage, cell viability, osteogenic phenotype expression, and cytokine production. MG63 cells were suspended in 1.5 mL screw-cap cryotubes (1 x 10 cells/mL), containing phosphate buffer solution (PBS), which were maintained at 37 degrees C during all the experimental times. Two levels of energy flux density (EFD) were evaluated for each device: 0.15 to 0.18 mJ/mm2 and 0.40 mJ/mm2. Cells were then cultivated for 72 hours starting from a concentration of 1 x 10 cells/mL, and biological activity and viability were evaluated 24 and 72 hours after treatment. The results obtained demonstrate that the factors most affecting osteoblast activity involve both the device and the level of EFD selected, and they must be considered all together. The use of the electromagnetic device and a level of EFD lower than 0.40 mJ/mm2 would appear to induce fewer immediate cytodestructive effects and better stimulate subsequent proliferation and the synthetic activity of MG63.

  2. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Rodrigues, E M; Gomes-Cornélio, A L; Soares-Costa, A; Salles, L P; Velayutham, M; Rossa-Junior, C; Guerreiro-Tanomaru, J M; Tanomaru-Filho, M

    2017-01-21

    To evaluate the effect of MTA and Biodentine on viability, osteogenic differentiation and BMP-2 expression in osteogenic cells. Saos-2 cells were used as a model of osteoblastic cells. Overexpression of BMP-2 was induced by transfection of a CMV-driven plasmid construct including the human BMP-2 coding sequence, and stably transfected cells were selected. Cell viability was assessed by the mitochondrial dehydrogenase enzymatic (MTT) assay. The bioactivity of the materials was evaluated by the alkaline phosphatase (ALP) assay and detection of calcium deposits with alizarin red staining (ARS). The gene expression of BMP-2 and ALP was quantified with real-time PCR. Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α = 0.05). Viability tests revealed that MTA and Biodentine were not cytotoxic at the higher dilution (1 : 8) to BMP-2-transfected cells. MTA and Biodentine exhibited the highest ALP activity when compared to the Saos-BMP-2-unexposed control group (P Biodentine and MTA had a significant stimulatory effect on the formation of mineralized nodules (P Biodentine in non-osteogenic medium in relation to Saos-BMP-2-unexposed control cells (P Biodentine showed biocompatibility and bioactivity in Saos-BMP-2 overexpressing cells. Biodentine had a significantly greater effect on mineralization than MTA. Both MTA and Biodentine enhanced BMP-2 mRNA expression in the transfected system. Both MTA and Biodentine are suitable materials to improve osteoblastic cell mineralization. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Therapeutic Doses of Nonsteroidal Anti-Inflammatory Drugs Inhibit Osteosarcoma MG-63 Osteoblast-Like Cells Maturation, Viability, and Biomineralization Potential

    Directory of Open Access Journals (Sweden)

    E. De Luna-Bertos

    2013-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to reduce pain and inflammation. However, their effect on bone metabolisms is not well known, and results in the literature are contradictory. The present study focusses on the effect of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid, at therapeutic doses, on different biochemical and phenotypic pathways in human osteoblast-like cells. Osteoblasts (MG-63 cell line were incubated in culture medium with 1–10 μM of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid. Flow cytometry was used to study antigenic profile and phagocytic activity. The osteoblastic differentiation was evaluated by mineralization and synthesis of collagen fibers by microscopy and alkaline phosphatase activity (ALP by spectrophotometric assay. Short-term treatment with therapeutic doses of NSAIDs modulated differentiation, antigenic profile, and phagocyte activity of osteoblast-like cells. The treatment reduced ALP synthesis and matrix mineralization. However, nonsignificant differences were observed on collagen syntheses after treatments. The percentage of CD54 expression was increased with all treatments. CD80, CD86, and HLA-DR showed a decreased expression, which depended on NSAID and the dose applied. The treatments also decreased phagocyte activity in this cellular population. The results of this paper provide evidences that NSAIDs inhibit the osteoblast differentiation process thus reducing their ability to produce new bone mineralized extracellular matrix.

  4. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: wponun@yahoo.com [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education. 328 Si Ayuthaya Rd., Bangkok 10400 (Thailand); Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2013-04-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m{sup 2}g{sup −1}. The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also

  5. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells

    Directory of Open Access Journals (Sweden)

    Niska K

    2015-02-01

    Full Text Available Karolina Niska,1 Katarzyna Pyszka,1 Cecylia Tukaj,2 Michal Wozniak,1 Marek Witold Radomski,3–5 Iwona Inkielewicz-Stepniak1 1Department of Medical Chemistry, 2Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland; 3School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, The University of Dublin Trinity College, Dublin, Ireland; 4Kardio-Med Silesia, 5Silesian Medical University, Zabrze, Poland Abstract: Titanium dioxide (TiO2 nanoparticles (NPs are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5–15 nm for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP activity, cellular uptake of NPs, cell morphology, superoxide anion (O2•- generation, superoxide dismutase (SOD activity and protein level, sirtuin 3 (SIR3 protein level, correlation between manganese (Mn SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1 cellular uptake of NPs; (2 increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3 ultrastructure changes; (4 decreased SOD and ALP activity; (5 decreased protein levels of SOD1, SOD2, and SIR3; (6 decreased total antioxidant capacity; (7 increased O2•- generation; and (8 enhanced lipid peroxidation (malondialdehyde level. The linear relationship between the protein level of MnSOD and SIR3 and between O2•- content and SIR3 protein level was observed. Importantly, the cytotoxic

  6. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces

    OpenAIRE

    Rivera-Chacon, D. M.; Alvarado-Velez, M.; Acevedo-Morantes, C.Y.; Singh, S. P.; Gultepe, E.; Nagesha, D; Sridhar, S; Ramirez-Vick, J.E.

    2013-01-01

    Improvements in osteoconduction of implant biomaterials require focusing on the bone-implant interface, which is a complex multifactorial system. Surface topography of implants plays a crucial role at this interface. Nanostructured surfaces have been shown to promote serum protein adsorption and osteoblast adhesion when compared to microstructured surfaces for bone-implant materials. We studied the influence of the serum proteins fibronectin and vitronectin on the attachment and proliferation...

  7. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G. [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada); Werstuck, Geoff H., E-mail: Geoff.Werstuck@taari.ca [Department of Medicine, McMaster University, Hamilton, ON (Canada); Thrombosis and Atherosclerosis Research Institute, Hamilton, ON (Canada)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix gla protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.

  8. Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity.

    Science.gov (United States)

    Kim, Suji; Shin, Mee-Young; Son, Kun-Ho; Sohn, Ho-Yong; Lim, Jae-Hwan; Lee, Jong-Hwa; Kwun, In-Sook

    2014-09-01

    Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within 0~10 μg/mL during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

  9. Tumor necrosis factor-alpha influences cbfa1/runx2 gene expression in mouse osteoblasts%肿瘤坏死因子α干预小鼠成骨细胞cbfa1/runx2基因的表达

    Institute of Scientific and Technical Information of China (English)

    朱建华; 张沁; 刘继光

    2011-01-01

    BACKGROUND: Tumor necrosis factor-alpha (TNF-a) can decrease alkaline phosphatase (ALP) activity in periodontal ligamentfibroblasts and inhibit the functional transformation between periodontal ligament fibroblasts and osteoblasts.OBJECTIVE: To investigate the effects of TNF-a on the growth of mouse osteoblasts and cbfa1/runx2 gene expression.METHODS: Well growing mouse osteoblast line MC3T3/E1 were interfered with 20, 40, 60, 80 μg/L TNF-a. The normally culturedcells served as controls. cbfa1/runx2 mRNA expression in osteoblast line MC3T3/E1 was detected by RT-PCR. ALP activity wasdetermined by PNPP method and cell viability was measured by MTT assay.RESULTS AND CONCLUSION: cbfa1/runx2 mRNA expression was observed in the normally cultured osteoblast line MC3T3/E1.With increasing concentration of TNF-a concentration, cbfa1/runx2 mRNA expression, MC3T3/E1 cell viability and ALP activitywere gradually decreased. Results suggested that TNF-a can inhibit osteoblast line MC3T3/E1 growth and cbfa1/runx2 may beinvolved in osteoblast differentiation.%背景:肿瘤坏死因子α可降低牙周膜纤维细胞碱性磷酸酶的活性,抑制牙周膜纤维细胞向成骨细胞的功能转化.目的:观察肿瘤坏死因子α对小鼠成骨细胞生长及cbfa1/runx2基因表达的影响.方法:取生长良好的小鼠成骨细胞系MC3T3/E1细胞,分别以20,40,60,80 μg/L的肿瘤坏死因子α进行干预,以正常培养的细胞作为对照.采用RT-PCR法检测MC3T3/E1细胞cbfa1/runx2 mRNA的表达;PNPP法测定碱性磷酸酶活性;MTT法检测细胞活力.结果与结论:正常培养的MC3T3/E1细胞cbfa1/runx2 mRNA呈阳性表达,随着肿瘤坏死因子α浓度的增高,其表达水平逐渐下降.同时MC3T3/E1细胞活力和碱性磷酸酶活性也随肿瘤坏死因子α浓度的增高而下降.提示肿瘤坏死因子α可抑制MC3T3/E1细胞生长,而cbfa1/runx2可能参与了成骨细胞的分化过程.

  10. Cherubism Gene Sh3bp2 is Important for Optimal Bone Formation, Osteoblast Differentiation and Function

    Science.gov (United States)

    Mukherjee, Padma M.; Wang, Chiachien J.; Chen, I-Ping; Jafarov, Toghrul; Olsen, Bjorn R.; Ueki, Yasuyoshi; Reichenberger, Ernst J.

    2012-01-01

    Introduction Cherubism is a human genetic disorder that causes bilateral symmetrical enlargement of the maxilla and mandible in children. It is caused by mutations in SH3BP2. The exact pathogenesis of the disorder is an area of active research. Sh3bp2 knock-in mice were developed by introducing a Pro416Arg mutation (Pro418Arg in humans) in the mouse genome. The osteoclast phenotype of this mouse model was recently described. Methods We examined the bone phenotype of the cherubism mouse model, the role of Sh3bp2 during bone formation, osteoblast differentiation and osteoblast function. Results We observed delays in early postnatal development of homozygous Sh3bp2KI/KI mice. Sh3bp2KI/KI mice exhibit increased growth plate thickness and significantly decreased trabecular bone thickness and reduced bone mineral density. Histomorphometric and μ-CT analyses reveal bone loss in cranial and appendicular skeleton. Sh3bp2KI/KI mice also exhibit a significant decrease in osteoid formation that indicates a defect in osteoblast function. Calvarial osteoblast cell cultures exhibit a decrease in alkaline phosphatase expression and mineralization suggesting reduced differentiation potential. Gene expression of osteoblast differentiation markers like collagen type-I, alkaline phosphatase and osteocalcin are decreased in osteoblast cultures from Sh3bp2KI/KI mice. Conclusions These data suggest that Sh3bp2 function regulates bone homeostasis not only through osteoclast-specific effects but also through effects on osteoblast differentiation and function. PMID:20691350

  11. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole N; Moiseeva, Elena P

    2003-01-01

    to be proteins with molecular weights between 20 and 30 kDa, but the identity of the osteoblastic mitogenic factor or factors produced by prostate cancer cells is still unknown. Therefore, the aim of this study was to characterize the protein profile of conditioned medium (CM) from PC3 cells in the molecular......, by affecting the matrix mineralization....

  12. Comparison of osteoblast and cardiomyocyte differentiation in the embryonic stem cell test for predicting embryotoxicity in vivo.

    Science.gov (United States)

    de Jong, Esther; van Beek, Lianne; Piersma, Aldert H

    2014-09-01

    One of the most studied alternative embryotoxicity assays is the embryonic stem cell test, in which the effect of compounds on cardiomyocyte differentiation is evaluated (subsequently termed the ESTc). This single differentiation endpoint may limit the predictive value of the assay. We recently published a novel embryonic stem cell based osteoblast differentiation assay (subsequently termed the ESTo), in which we studied the effect of six embryotoxic compounds. Differentiation is monitored via the differential expression of three genes related to osteogenesis (Runx2, SPARC and collagen type I). In the current study, we evaluated the effect of 14 additional compounds in the ESTo, to assess its added value as compared to the ESTc. To this end, we compared the effects of the compounds in the ESTo to their effects in the ESTc and to their published in vivo developmental toxicity profiles. The results show that there is a high overall correlation between compound potencies as regards inhibition of osteoblast and cardiomyocyte differentiation. Moreover, the results in both the ESTo and ESTc showed a significant correlation to in vivo developmental toxicity potency ranking of compounds tested. Interestingly, the embryotoxic effect of TCDD could only be detected using the ESTo, which can be explained based on its mechanism of action and its known inhibitory effect on osteogenesis. The results of TCDD suggest that incorporating the ESTo into a testing battery together with the ESTc could improve the overall predictive value of the battery.

  13. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [Department of Emergency, Shannxi Province People' s Hospital, Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710052 (China); He, Xijing [Department of Orthopaedics, Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Wei, Wenzhi [Department of Emergency, Shannxi Province People' s Hospital, Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710052 (China); Zhou, Xiaobo, E-mail: xiaobozhouxa@163.com [Department of Immunology and Pathogenic Biology, Medical School, Xi' an Jiaotong University, Xi' an 710061 (China)

    2015-05-01

    Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a direct interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.

  14. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  15. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix.

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    Full Text Available Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK and focal adhesion kinase (FAK and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63

  16. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  17. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling.

    Science.gov (United States)

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  18. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Holmstrøm, Kim; Qiu, Weimin

    2014-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA......-34a (miR-34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT-PCR revealed that miR-34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression...... A were among miR-34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR-34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR-34a-deficient hMSC. miRNA-34a exhibited unique dual regulatory...

  19. Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells

    Science.gov (United States)

    Incerti Parenti, Serena; Checchi, Luigi; Fini, Milena; Tschon, Matilde

    2014-10-01

    Because osteoblasts play a key role in bone remodeling and the influence of low-level laser therapy on this process is not clear, Saos-2 human osteoblast-like cells were irradiated by a gallium-aluminum-arsenide diode laser (915 nm) for 10, 48, 96, 193, and 482 s using doses 1, 5, 10, 20, and 50 J/cm2, respectively. A control group was not irradiated. Morphology, viability, and cytotoxicity analyses were carried out after 1 hr, 1 day, and 3 days. Deoxyribose nucleic acid (DNA) content and release of vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG) were evaluated. Viability was modulated by laser irradiation in a dose-dependent manner, with 10 J/cm2 inducing a biostimulatory response and 20 to 50 J/cm2 determining a bioinhibitory and cytotoxic effect. Accordingly, DNA content was generally increased for the 10 J/cm2 dose and decreased for the 50 J/cm2 dose. A rapid and transitory trend toward increased RANKL/OPG ratio and a tendency toward a delayed increase in VEGF release for doses of 1 to 10 J/cm2 was found. Further investigations using the biostimulatory dose of 10 J/cm2 emerged from this study are needed to establish the ideal treatment regimens in the laboratory as well as in clinical practice.

  20. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI.

    Science.gov (United States)

    Oliveira, D P; Palmieri, A; Carinci, F; Bolfarini, C

    2015-06-01

    Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti-6Al-4V-ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15days.

  1. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs.

    Directory of Open Access Journals (Sweden)

    Youn Hee Joung

    Full Text Available Methylsulfonylmethane (MSM is a naturally occurring sulfur compound with well-known anti-oxidant properties and anti-inflammatory activities. But, its effects on bone are unknown. Growth hormone (GH is regulator of bone growth and bone metabolism. GH activates several signaling pathways such as the Janus kinase (Jak/signal transducers and activators of transcription (STAT pathway, thereby regulating expression of genes including insulin-like growth factor (IGF-1. GH exerts effects both directly and via IGF-1, which signals by activating the IGF-1 receptor (IGF-1R. In this study, we investigated the effects of MSM on the GH signaling via the Jak/STAT pathway in osteoblasts and the differentiation of primary bone marrow mesenchymal stem cells (MSCs. MSM was not toxic to osteoblastic cells and MSCs. MSM increased the expression of GH-related proteins including IGF-1R, p-IGF-1R, STAT5b, p-STAT5b, and Jak2 in osteoblastic cells and MSCs. MSM increased IGF-1R and GHR mRNA expression in osteoblastic cells. The expression of MSM-induced IGF-1R and GHR was inhibited by AG490, a Jak2 kinase inhibitor. MSM induced binding of STAT5 to the IGF-1R and increased IGF-1 and IGF-1R promoter activities. Analysis of cell extracts by immunoprecipitation and Western blot showed that MSM enhanced GH-induced activation of Jak2/STAT5b. We found that MSM and GH, separately or in combination, activated GH signaling via the Jak2/STAT5b pathway in UMR-106 cells. Using siRNA analysis, we found that STAT5b plays an essential role in GH signaling activation in C3H10T1/2 cells. Osteogenic marker genes (ALP, ON, OCN, BSP, OSX, and Runx2 were activated by MSM, and siRNA-mediated STAT5b knockdown inhibited MSM-induced expression of osteogenic markers. Furthermore, MSM increased ALP activity and the mineralization of MSCs. Taken together, these results indicated that MSM can promote osteogenic differentiation of MSCs through activation of STAT5b.

  2. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    Directory of Open Access Journals (Sweden)

    Rau LR

    2016-07-01

    Full Text Available Lih-Rou Rau,1 Wan-Yu Huang,1 Jiunn-Woei Liaw,2–5 Shiao-Wen Tsai1,3,6 1Graduate Institute of Biochemical and Biomedical Engineering, 2Department of Mechanical Engineering, 3Center for Biomedical Engineering, Chang Gung University, 4Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 5Center for Advanced Molecular Imaging and Translation, 6Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China Abstract: The specific properties of gold nanoparticles (AuNPs make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength. We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control or were

  3. Functionally graded beta-TCP/PCL nanocomposite scaffolds: in vitro evaluation with human fetal osteoblast cells for bone tissue engineering.

    Science.gov (United States)

    Ozkan, Seher; Kalyon, Dilhan M; Yu, Xiaojun

    2010-03-01

    The engineering of biomimetic tissue relies on the ability to develop biodegradable scaffolds with functionally graded physical and chemical properties. In this study, a twin-screw-extrusion/spiral winding (TSESW) process was developed to enable the radial grading of porous scaffolds (discrete and continuous gradations) that were composed of polycaprolactone (PCL), beta-tricalciumphosphate (beta-TCP) nanoparticles, and salt porogens. Scaffolds with interconnected porosity, exhibiting myriad radial porosity, pore-size distributions, and beta-TCP nanoparticle concentration could be obtained. The results of the characterization of their compressive properties and in vitro cell proliferation studies using human fetal osteoblast cells suggest the promising nature of such scaffolds. The significant degree of freedom offered by the TSESW process should be an additional enabler in the quest toward the mimicry of the complex elegance of the native tissues.

  4. Comparison of the effects of elevated inorganic phosphate on primary human vascular smooth muscle cells and the pre-osteoblastic cell line MC3T3-E1

    DEFF Research Database (Denmark)

    Pedersen, Lasse Ebdrup

    Inorganic phosphate (Pi) plays a central role in biological mineralization. Mineralization physiologically takes place in bone and teeth; however, pathologically it can also take place in soft tissue such as the vasculature. Vascular mineralization, often also referred to as vascular calcification...... into the role of Pi on vascular mineralization has revealed that vascular smooth muscle cells (VSMCs) mineralize in vitro when cultured in hyperphosphatemic media in a manner that is dependent on the type III sodium-dependent Pi transporter, PiT1, and that Pi causes regulation of gene expression, e...... investigated the similarities of VSMC and osteoblast mineralization. My studies show that VSMC and pre-osteoblasts react similarly to elevated concentrations of Pi. They react by upregulating inhibitors of mineralization and by increasing Pi import and intracellular Pi concentration. We have also investigated...

  5. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    Directory of Open Access Journals (Sweden)

    Antonia Terriza

    2014-03-01

    Full Text Available New biomaterials for Guided Bone Regeneration (GBR, both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB® HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide (PLGA membrane foil functionalized by a very thin film (around 15 nm of TiO2 (i.e., TiO2/PLGA membranes, designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors.

  6. Extremely underwound chromosomal DNA in nucleoids of mouse sarcoma cells.

    Science.gov (United States)

    Hartwig, M; Matthes, E; Arnold, W

    1981-07-01

    The superhelical properties of chromosomal DNA from cells of a mouse sarcoma were investigated in neutral sucrose gradients containing ethidium bromide. Removal of negative supercoiling from the DNA of the sarcoma cells required a substantially higher dye concentration than was necessary in the case of DNA from cultured mouse fibroblasts. The calculated value of the mean superhelical density in malignant cells (sigma = -0.14) appears abnormally high compared with the value (sigma = -0.09) obtained for DNA of mouse fibroblasts. Chromosomal DNA from mouse sarcoma cells is therefore concluded to be highly deficient in helical turns.

  7. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19

    Directory of Open Access Journals (Sweden)

    Xiao-Wen Pan

    2015-06-01

    Full Text Available Casein and soy protein were digested by papain to three degrees of hydrolysis (DH 7.3%–13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells. Six casein and soy protein hydrolysates at five levels (0.01–0.2 mg/mL mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%–114% and 104%–123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment, or from 19.5% to 17.7% and 12.4% (NaF treatment, respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment, or from 14.5% to 11.0% (NaF treatment, but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  8. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  9. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α.

    Science.gov (United States)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-07-15

    POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  10. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2016-02-01

    Full Text Available Morshed Khandaker,1,4 Shahram Riahinezhad,1 Fariha Sultana,1 Melville B Vaughan,2,4 Joshua Knight,2 Tracy L Morris3,4 1Department of Engineering & Physics, 2Department of Biology, 3Department of Mathematics and Statistics, 4Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA Abstract: Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples

  11. Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds.

    Science.gov (United States)

    Goncharenko, A V; Malyuchenko, N V; Moisenovich, A M; Kotlyarova, M S; Arkhipova, A Yu; Kon'kov, A S; Agapov, I I; Molochkov, A V; Moisenovich, M M; Kirpichnikov, M P

    2016-09-01

    3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds leads to an increase in the expression of alkaline phosphatase, an early marker of bone formation. Increased expression is associated with the actin cytoskeleton reorganization under the influence of 3D cultivation and osteogenic calcium phosphate component of the microcarrier.

  12. Genetic Networks in Mouse Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Felix L Struebing

    2016-09-01

    Full Text Available Retinal ganglion cells (RGCs are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

  13. Hydroxyapitite-multiwalled carbon nanotubes nanocomposite for adhesion and electrochemical study of human osteoblast-like cells (MG-63)

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xueen; Zhou Yaping; Tan Liang [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Xie Qingji [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)], E-mail: xieqj@hunnu.edu.cn; Tang Hao; Ma Ming; Yao Shouzhuo [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2009-05-01

    A new biocompatible interface made up of hydroxyapitite-multiwalled carbon nanotubes (HA-MWCNTs) nanocomposite was developed for adhesion and electrochemical detection of human osteoblast-like cells (MG-63). The HA-MWCNTs nanocomposite was synthesized by self-assembling nano-hydroxyapitite onto multiwalled carbon nanotubes in solution, which was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The adhesion of the MG-63 on the nanocomposite film was studied by quartz crystal microbalance and cyclic voltammetry. The nanocomposites interface showed improved immobilization capacity for cells and good biocompatibility for preserving the activity of immobilized living cells. The living cells immobilized on an HA-MWCNTs modified glassy carbon electrode exhibited an irreversible anodic peak response being positively associated with the density and viability of cells, which was used to describe the cells growth and evaluate the effectiveness of antitumor drug 5-fluorouracil (5-FU) on the cells. The obtained 5-FU cytotoxicity results agreed well with those from conventional MTT assays. The highly biocompatible HA-MWCNTs nanocomposite is also expected to be an appropriate matrix for the electrochemical investigation of adhesion, proliferation, and apoptosis of many other relevant mammalian cells00.

  14. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    DEFF Research Database (Denmark)

    Elsafadi, E; Manikandan, M; Dawud, RA;

    2016-01-01

    bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro...... transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes...... in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN...

  15. The effect of gold nanoparticles on the proliferation and differentiation of murine osteoblast: a study of MC3T3-E1 cells in vitro.

    Science.gov (United States)

    Yao, Yuanyuan; Shi, Xiujuan; Chen, Fengshan

    2014-07-01

    The current study involves in identification and molecular levels characterization of optimal size and concentration of gold nanoparticles (AuNPs). Stable, gold nanoparticles were synthesized and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The concentration and size dependent effects of the gold nanoparticles on proliferation of pre-osteoblast cells MC3T3-E1 was evaluated employing MTT cell proliferation assay. The results revealed that 30 nm diameter gold nanoparticles at a concentration of 10(-11) ppm were the most effective in promoting cell proliferation. Assay for alkaline phosphatase (ALP) activity and ALP staining were also used to confirm the effect of gold nanoparticles on osteoblast proliferation and differentiation. Moreover, reverse transcriptase polymerase chain reaction (RT-PCR) was used to measure the expression of the osteogenic genes Runx2, ALP, OCN and OPN as response gold nanoparticles. The data demonstrated that 30 nm gold nanoparticles at a concentration of 10(-11) ppm was the best combination of size and concentration to promote the proliferation and differentiation of osteoblasts, as indicated by an increase in the ALP activity and expression of the osteogenic genes Runx2, ALP, OCN and OPN. Collectively the results of this study suggest that gold nanoparticles can promote the proliferation and differentiation of osteoblasts and could be used effectively in treatments promoting bone regeneration.

  16. Possible recruitment of osteoblastic precursor cells from hypertrophic chondrocytes during initial osteogenesis in cartilaginous limbs of young rats.

    Science.gov (United States)

    Franzen, A; Oldberg, A; Solursh, M

    1989-08-01

    The appearance of the bone phenotype during rat embryogenesis was studied by in situ hybridization using a cDNA clone to osteopontin. Radiolabeled sense and antisense RNA probes were prepared from the osteopontin cDNA by in vitro transcription. The probes were used to hybridize paraffin sections of the cartilaginous diaphysis from embryonic rats at day 17 of gestation. The hybridization pattern was analyzed by autoradiography. Hybridization with the antisense probe gave patterns of silver grain labeling, indicating the presence of osteopontin mRNA among the hypertrophic chondrocytes. No silver grains could be detected in the corresponding region following hybridization of consecutive sections with the sense probe, showing the specificity of the technique being used. Whether these results indicate that the osteopontin gene is transiently expressed by hypertrophic chondrocytes or that osteopontin is an early marker for osteoblastic precursor cells will have to be explored further.

  17. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    Science.gov (United States)

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.

  18. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells.

    Science.gov (United States)

    Kim, Beom Su; Kang, Hyo-Jin; Park, Ji-Yun; Lee, Jun

    2015-01-09

    Fucoidan has attracted attention as a potential drug because of its biological activities, which include osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of fucoidan in human alveolar bone marrow-derived mesenchymal stem cells (hABM-MSCs) remain largely unknown. We investigated the action of fucoidan on osteoblast differentiation in hABM-MSCs and its impact on signaling pathways. Its effect on proliferation was determined using the crystal violet staining assay. Osteoblast differentiation was evaluated based on alkaline phosphatase (ALP) activity and the mRNA expression of multiple osteoblast markers. Calcium accumulation was determined by Alizarin red S staining. We found that fucoidan induced hABM-MSC proliferation. It also significantly increased ALP activity, calcium accumulation and the expression of osteoblast-specific genes, such as ALP, runt-related transcription factor 2, type I collagen-α 1 and osteocalcin. Moreover, fucoidan induced the expression of bone morphogenetic protein 2 (BMP2) and stimulated the activation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase by increasing phosphorylation. However, the effect of fucoidan on osteogenic differentiation was inhibited by specific inhibitors of ERK (PD98059) and JNK (SP600125) but not p38 (SB203580). Fucoidan enhanced BMP2 expression and Smad 1/5/8, ERK and JNK phosphorylation. Moreover, the effect of fucoidan on osteoblast differentiation was diminished by BMP2 knockdown. These results indicate that fucoidan induces osteoblast differentiation through BMP2-Smad 1/5/8 signaling by activating ERK and JNK, elucidating the molecular basis of the osteogenic effects of fucoidan in hABM-MSCs.

  19. Chloride–hydrogen antiporters ClC-3 and ClC-5 drive osteoblast mineralization and regulate fine-structure bone patterning in vitro

    Science.gov (United States)

    Larrouture, Quitterie C; Nelson, Deborah J; Robinson, Lisa J; Liu, Li; Tourkova, Irina; Schlesinger, Paul H; Blair, Harry C

    2015-01-01

    Osteoblasts form an epithelium-like layer with tight junctions separating bone matrix from extracellular fluid. During mineral deposition, calcium and phosphate precipitation in hydroxyapatite liberates 0.8 mole of H+ per mole Ca+2. Thus, acid export is needed for mineral formation. We examined ion transport supporting osteoblast vectorial mineral deposition. Previously we established that Na/H exchangers 1 and 6 are highly expressed at secretory osteoblast basolateral surfaces and neutralize massive acid loads. The Na/H exchanger regulatory factor-1 (NHERF1), a pdz-organizing protein, occurs at mineralizing osteoblast basolateral surfaces. We hypothesized that high-capacity proton transport from matrix into osteoblast cytosol must exist to support acid transcytosis for mineral deposition. Gene screening in mineralizing osteoblasts showed dramatic expression of chloride–proton antiporters ClC-3 and ClC-5. Antibody localization showed that ClC-3 and ClC-5 occur at the apical secretory surface facing the bone matrix and in membranes of buried osteocytes. Surprisingly, the Clcn3−/− mouse has only mildly disordered mineralization. However, Clcn3−/− osteoblasts have large compensatory increases in ClC-5 expression. Clcn3−/− osteoblasts mineralize in vitro in a striking and novel trabecular pattern; wild-type osteoblasts form bone nodules. In mesenchymal stem cells from Clcn3−/− mice, lentiviral ClC-5 shRNA created Clcn3−/−, ClC-5 knockdown cells, validated by western blot and PCR. Osteoblasts from these cells produced no mineral under conditions where wild-type or Clcn3−/− cells mineralize well. We conclude that regulated acid export, mediated by chloride–proton exchange, is essential to drive normal bone mineralization, and that CLC transporters also regulate fine patterning of bone. PMID:26603451

  20. Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures.

    Science.gov (United States)

    Saito, Akihiro; Yoshimura, Kentaro; Miyamoto, Yoichi; Kaneko, Kotaro; Chikazu, Daichi; Yamamoto, Matsuo; Kamijo, Ryutaro

    2016-04-29

    It is known that diabetes aggravates alveolar bone loss associated with periodontitis. While insulin depletion increases the blood concentration of ketone bodies, i.e., acetoacetate and β-hydroxybutyrate, their roles in bone metabolism have not been much studied until today. We investigated the effects of acetoacetate and β-hydroxybutyrate on mineralization of extracellular matrix in cultures of mouse osteoblastic MC3T3-E1 cells and primary mouse osteoblasts in the presence and absence of bone morphogenetic protein-2. Acetoacetate potentiated alkaline phosphatase activity in MC3T3-E1 cells in a concentration-dependent manner, ranging from physiological to pathological concentrations (0.05-5 mmol/L). In contrast, β-hydroxybutyrate lowered it in the same experimental settings. Mineralization in cultures of these cells was also up-regulated by acetoacetate and down-regulated by β-hydroxybutyrate. Similar results were obtained in cultures of mouse primary osteoblasts. Neither alkaline phosphatase mRNA nor its protein expression in MC3T3-E1 cells was affected by acetoacetate or β-hydroxybutyrate, indicating that these ketone bodies control the enzyme activity of alkaline phosphatase in osteoblasts and hence their mineralization bi-directionally. Finally, either gene silencing of monocarboxylate transporter-1, a major transmembrate transporter for ketone bodies, nullified the effects of ketone bodies on alkaline phosphatase activity in MC3T3-E1 cells. Collectively, we found that ketone bodies bidirectionally modulates osteoblast functions, which suggests that ketone bodies are important endogenous factors that regulate bone metabolism in both physiological and pathological situations.

  1. Mechanical loading induced expression of bone morphogenetic protein-2,alkaline phosphatase activity,and collagen synthesis in osteoblastic MC3T3-E1 cells

    Institute of Scientific and Technical Information of China (English)

    LU Hong-fei; MAI Zhi-hui; XU Ye; WANG Wei; AI Hong

    2012-01-01

    Background Bone morphogenetic protein(BMP)-2,alkaline phosphatase(ALP),and collagen typeⅠ?are known to play a critical role in the process of bone remodeling.However,the relationship between mechanical strain and the expression of BMP-2,ALP,and COL-Ⅰ?in osteoblasts was still unknown.The purpose of this study was to investigate the effects of different magnitudes of mechanical strain on osteoblast morphology and on the expression of BMP-2,ALP,and COL-Ⅰ.Methods Osteoblast-like cells were flexed at four deformation rates(0,6%,12%,and 18% elongation).The expression of BMP-2 mRNA,ALP,and COL-Ⅰ?in osteoblast-like cells were determined by real-time quantitative reverse transcription polymerase chain reaction,respectively.The results were subjected to analysis of variance(ANOVA)using SPSS 13.0 statistical software.Results The cells changed to fusiform and grew in the direction of the applied strain after the mechanical strain was loaded.Expression level of the BMP-2,ALP,and COL-Ⅰ?increased magnitude-dependently with mechanical loading in the experimental groups,and the 12% elongation group had the highest expression(P<0.05).Conclusion Mechanical strain can induce morphological change and a magnitude-dependent increase in the expression of BMP-2,ALP,and COL-Ⅰ?mRNA in osteoblast-like cells,which might influence bone remodeling in orthodontic treatment.

  2. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice.

    Science.gov (United States)

    Liu, Hongbin; Zhang, Rongrong; Ko, Seon-Yle; Oyajobi, Babatunde O; Papasian, Christopher J; Deng, Hong-Wen; Zhang, Shujun; Zhao, Ming

    2011-09-01

    Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \\

  3. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    Science.gov (United States)

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  4. A comparative proteomics study on matrix vesicles of osteoblast-like Saos-2 and U2-OS cells.

    Science.gov (United States)

    Jiang, Liang; Cui, Yazhou; Luan, Jing; Zhou, Xiaoyan; Zhou, Xiaoying; Han, Jinxiang

    2013-05-01

    Matrix vesicles (MVs) play an important role in the initial stage of the process of bone mineralization, and are involved in multiple rare skeletal diseases with pathological mineralization or calcification. The aim of the study was to compare the proteomic profiling of osteoblast-like cells with and without mineralization ability (Saos-2 and U2-OS), and to identify novel mineralization-associated MV proteins. MVs were extracted using ExoQuick solution from mineralization-induced Saos-2 and U2-OS cells, and then were validated by transmission electron microscopy. A label-free quantitative proteomic method was used to compare the protein profiling of MVs from Saos-2 and U2-OS cells. Western-blots were used to confirm the expression of MVs proteins identified in proteomic studies. In our proteomic studies, we identified that 89 mineralization-related proteins were significantly up-regulated in Saos-2 MVs compared with U2-OS MVs. We further validated that two MVs proteins, protein kinase C α and ras-related protein Ral-A, were up-regulated in MVs of Saos-2 cells compared to those of U2-OS cells under mineralization-induction. Our findings suggest that protein kinase C α and ras-related protein Ral-A might be involved in bone mineralization as MVs components.

  5. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti–6Al–4V–ELI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.P., E-mail: dpedreira@ufscar.br [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil); Palmieri, A.; Carinci, F. [Department of D.M.C.C.C., Section of Maxillofacial and Plastic Surgery, University of Ferrara, Ferrara (Italy); Bolfarini, C. [Department of Materials Engineering, Federal University of São Carlos, São Carlos (Brazil)

    2015-06-01

    Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti–6Al–4V–ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7 days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15 days. - Highlights: • Chemical treatments were effective for surface modification of Ti–6Al–4V. • Alkaline and phosphoric treatments induced osteopontin up-regulation. • Topographic formation on surface can induce RUNX2 up regulation. • Acid etch plus alkaline treatment accelerated the expression of some bone related genes.

  6. Role of P2 × 7 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes.

    Science.gov (United States)

    Li, Wenkai; Li, Guizhen; Zhang, Yingchi; Wei, Sheng; Song, Mingyu; Wang, Wei; Yuan, Xuefeng; Wu, Hua; Yang, Yong

    2015-12-10

    Imbalance in osteogenesis and adipogenesis of bone marrow stromal cells is a crucial pathological process of osteoporosis. P2 × 7-deficient mice were previously shown to exhibit an osteopenic phenotype and abnormal fat distribution, leading us to hypothesize that P2 × 7R activation was involved in the differentiation of BMSCs. Consequently, we investigated the effect of P2 × 7R activation on osteogenic and adipogenic differentiation of BMSCs in vitro, and established an ovariectomized (OVX) osteoporosis model to test P2 × 7R activation on adipocytes formation, trabecular and cortical bone parameters in vivo. Our results showed that activation of P2 × 7R by BzATP resulted in increase in the gene expression of osteoblastic markers, the activity of alkaline phosphatase and bone mineralization, and decrease in the gene expression of adipogenic markers and the number of adipocytes generated by BMSCs. MicroCT analysis showed that BzATP treatment ameliorated the micro-architecture of trabecular bones in OVX mice, while cortical bone parameters were unaffected. H&E staining analysis showed that was increase in the volume of trabecular bone and number of trabecular bone, and decrease in bone marrow adipocytes in BzATP-treated OVX mice compared with OVX mice. Also, activation of P2 × 7R transduced to ERK1/2 and JNK signaling pathways. This transduction was prevented by BBG, U0126, and SP600125. U0126 and SP600125 prevented BzATP-induced up-regulation of osteogenic-related genes expression and down-regulation of adipogenic-related genes expression. These data suggest that BzATP activates the differentiation of BMSCs into osteoblasts but not adipocytes by stimulating ERK1/2 and JNK signaling pathways in a P2 × 7R-dependent way.

  7. Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects.

    Science.gov (United States)

    Schmitt, Sandra C; Wiedmann-Al-Ahmad, Margit; Kuschnierz, Jens; Al-Ahmad, Ali; Huebner, Ute; Schmelzeisen, Rainer; Gutwald, Ralf

    2008-03-01

    In this in vitro study ovine osteoblast-like cells were cultured on seven different alloplastic biomaterials used for augmentation and for reconstruction of bone defects in dental and craniomaxillofacial surgery. The aim of this study was to examine the growth behaviour (viability, cell density and morphology) of ovine osteoblast-like cells on the investigated biomaterials to get knowledge which biomaterial is qualified to act as a cell carrier system in further in vivo experiments. The biomaterials were either synthetically manufactured or of natural origin. As synthetically manufactured biomaterials Ethisorb, MakroSorb, PalacosR, and PDS film were used. As biomaterials of natural origin BeriplastP, Bio-Oss and Titanmesh were investigated. The cell proliferation and cell colonization were analyzed by a proliferation assay and scanning electron microscopy. Osteoblast-like cells proliferated and attached on all biomaterials, except on Beriplast. On Ethisorb the highest cell proliferation rate was measured followed by PalacosR. Both biomaterials offer suitable growth and proliferation conditions for ovine osteoblast-like cells. The proliferation rates of Bio-Oss, MakroSorb, PDS-film and Titanmesh were low and SEM examinations of these materials showed less spread osteoblast-like cells. The results showed that ovine osteoblast-like cells appear to be sensitive to substrate composition and topography. This in vitro study provides the basis for further in vivo studies using the sheep model to examine the biocompatibility and the long-term interaction between the test material and tissue (bone regeneration).

  8. In vitro interactions between bacteria, osteoblast-like cells and macrophages in the pathogenesis of biomaterial-associated infections.

    Science.gov (United States)

    Subbiahdoss, Guruprakash; Fernández, Isabel C Saldarriaga; Domingues, Joana F da Silva; Kuijer, Roel; van der Mei, Henny C; Busscher, Henk J

    2011-01-01

    Biomaterial-associated infections constitute a major clinical problem that is difficult to treat and often necessitates implant replacement. Pathogens can be introduced on an implant surface during surgery and compete with host cells attempting to integrate the implant. The fate of a biomaterial implant depends on the outcome of this race for the surface. Here we studied the competition between different bacterial strains and human U2OS osteoblast-like cells (ATCC HTB-94) for a poly(methylmethacrylate) surface in the absence or presence of macrophages in vitro using a peri-operative contamination model. Bacteria were seeded on the surface at a shear rate of 11 1/s prior to adhesion of U2OS cells and macrophages. Next, bacteria, U2OS cells and macrophages were allowed to grow simultaneously under low shear conditions (0.14 1/s). The outcome of the competition between bacteria and U2OS cells for the surface critically depended on bacterial virulence. In absence of macrophages, highly virulent Staphylococcus aureus or Pseudomonas aeruginosa stimulated U2OS cell death within 18 h of simultaneous growth on a surface. Moreover, these strains also caused cell death despite phagocytosis of adhering bacteria in presence of murine macrophages. Thus U2OS cells are bound to loose the race for a biomaterial surface against S. aureus or P. aeruginosa, even in presence of macrophages. In contrast, low-virulent Staphylococcus epidermidis did not cause U2OS cell death even after 48 h, regardless of the absence or presence of macrophages. Clinically, S. aureus and P. aeruginosa are known to yield acute and severe biomaterial-associated infections in contrast to S. epidermidis, mostly known to cause more low-grade infection. Thus it can be concluded that the model described possesses features concurring with clinical observations and therewith has potential for further studies on the simultaneous competition for an implant surface between tissue cells and pathogenic bacteria in

  9. Inhibitory effect of apocynin on methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, Kwang Sik; Rhee, Sang Youl; Kim, Young Seol; Choi, Eun Mi

    2015-04-01

    Methylglyoxal (MG), a highly reactive metabolite of hyperglycemia, can enhance protein glycation, oxidative stress or inflammation. The present study investigated the effects of apocynin on the mechanisms associated with MG toxicity in osteoblastic MC3T3-E1 cells. Pretreatment of MC3T3-E1 cells with apocynin prevented the MG-induced protein glycation and formation of intracellular reactive oxygen species and mitochondrial superoxide in MC3T3-E1 cells. In addition, apocynin increased glutathione levels and restored the activity of glyoxalase I inhibited by MG. These findings suggest that apocynin provide a protective action against MG-induced cell damage by reducing oxidative stress and by increasing the MG detoxification system. Apocynin treatment decreased the levels of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6 induced by MG. Additionally, the nitric oxide level reduced by MG was significantly increased by apocynin. These findings indicate that apocynin might exert its therapeutic effects via upregulation of glyoxalase system and antioxidant activity. Taken together, apocynin may prove to be an effective treatment for diabetic osteopathy.

  10. Superior Pre-Osteoblast Cell Response of Etched Ultrafine-Grained Titanium with a Controlled Crystallographic Orientation

    Science.gov (United States)

    Baek, Seung Mi; Shin, Myeong Hwan; Moon, Jongun; Jung, Ho Sang; Lee, See Am; Hwang, Woonbong; Yeom, Jong Taek; Hahn, Sei Kwang; Kim, Hyoung Seop

    2017-03-01

    Ultrafine-grained (UFG) Ti for improved mechanical performance as well as its surface modification enhancing biofunctions has attracted much attention in medical industries. Most of the studies on the surface etching of metallic biomaterials have focused on surface topography and wettability but not crystallographic orientation, i.e., texture, which influences the chemical as well as the physical properties. In this paper, the influences of texture and grain size on roughness, wettability, and pre-osteoblast cell response were investigated in vitro after HF etching treatment. The surface characteristics and cell behaviors of ultrafine, fine, and coarse-grained Ti were examined after the HF etching. The surface roughness during the etching treatment was significantly increased as the orientation angle from the basal pole was increased. The cell adhesion tendency of the rough surface was promoted. The UFG Ti substrate exhibited a higher texture energy state, rougher surface, enhanced hydrophilic wettability, and better cell adhesion and proliferation behaviors after etching than those of the coarse- and fine-grained Ti substrates. These results provide a new route for enhancing both mechanical and biological performances using etching after grain refinement of Ti.

  11. An advanced tri-culture model to evaluate the dynamic interplay among osteoblasts, osteoclasts, and endothelial cells.

    Science.gov (United States)

    Pagani, Stefania; Torricelli, Paola; Veronesi, Francesca; Salamanna, Francesca; Cepollaro, Simona; Fini, Milena

    2018-01-01

    The dynamic metabolism and the numerous roles of bone tissue necessitate a suitable in vitro model to represent them. In order to investigate the interaction among the several cell types composing bone microenvironment, we studied a tri-culture model including human osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (HUVEC). While OBs are essential for bone deposition and OCs for bone resorption, the vasculature is necessary to provide growth factors, nutrients, and oxygen in the mature tissue. The results of this study showed a strong mutual influence between OBs, OCs, and HUVEC in term of proliferation, viability, and activity (release of ALP, Coll I, OPG, RANKL, VEGF, CTSK, TGFβ, and IL-6). The behavior of the single cultures demonstrated to be different compared to the bi- or tri-cultures and depending on the cell types involved: the coexistence of OBs and OCs stimulated the synthetic activity of both cell types, while the presence of HUVEC induced a stimulating role for OBs but mainly an inhibitory effect for OC. In addition, evidence of the effects of OBs and OCs on HUVEC is highlighted by their morphology: regular and able to "sketch" little vessels in presence of OBs, more disorganized and heterogeneous in presence of OCs. Taken together, these observations well characterize an advanced cellular model to be used as starting point for mimicking bone microenvironment in vivo, thus reducing the use of animals in the preclinical phase and offering a more reliable tool to test new and innovative biomaterials. © 2017 Wiley Periodicals, Inc.

  12. Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture.

    Science.gov (United States)

    Salles, Loise Pedrosa; Gomes-Cornélio, Ana Lívia; Guimarães, Felipe Coutinho; Herrera, Bruno Schneider; Bao, Sonia Nair; Rossa-Junior, Carlos; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario

    2012-07-01

    The main purpose of this study was to evaluate the biocompatibility and bioactivity of a new mineral trioxide aggregate (MTA)-based endodontic sealer, MTA Fillapex (MTA-F; Angelus, Londrina, Brazil), in human cell culture. Human osteoblast-like cells (Saos-2) were exposed for 1, 2, 3, and 7 days to MTA-F, Epiphany SE (EP-SE; SybronEndo, Orange, CA), and zinc oxide-eugenol sealer (ZOE). Unexposed cultures were the control group (CT). The viability of the cells was assessed by MTT assay and the morphology by scanning electron microscopy (SEM). The bioactivity of MTA-F was evaluated by alkaline phosphatase activity (ALP) and the detection of calcium deposits in the culture with alizarin red stain (ARS). Energy-dispersive X-ray spectroscopy (EDS) was used to chemically characterize the hydroxyapatite crystallites (HAP). Saos-2 cells were cultured for 21 days for ARS and SEM/EDS. ARS results were expressed as the number of stained nodules per area. Statistical analysis was performed with analysis of variance and Bonferroni tests (P CT > EP-SE > ZOE). SEM/EDS analysis showed hydroxyapatite crystals only in the MTA-F and CT groups. In the MTA-F group, crystallite morphology and chemical composition were different from CT. After setting, the cytotoxicity of MTA-F decreases and the sealer presents suitable bioactivity to stimulate HAP crystal nucleation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Soubrier, Anne-Sophie [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Thouverey, Cyril [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Cortet, Bernard [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex (France); Broux, Odile [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France); Caverzasio, Joseph [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Hardouin, Pierre [Physiopathology of Inflammatory Bone Diseases, EA 4490, University Lille North of France, Quai Masset, Bassin Napoleon, BP120, 62327 Boulogne sur Mer (France)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exert their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.

  14. Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106.

    Science.gov (United States)

    Li, Juan; Jiang, Lingyong; Liao, Ga; Chen, Guoping; Liu, Ying; Wang, Jun; Zheng, Yi; Luo, Songjiao; Zhao, Zhihe

    2009-02-01

    Centrifugation is an important step in biochemical and molecular biological researches. But the effects of centrifugal stress on cells are still unclear. In this study, osteoblastic cells UMR-106 were subjected to a moderate centrifugal stress at 209 x g for 10 min. Then the cell proliferation and gene transcription after centrifugation were analyzed with flow cytometry and Real-time RT-PCR techniques, respectively. The result showed that the cell proliferation and mRNA expression of Runx2/Cbfa1, Collagen I and osteocalcin changed shortly after centrifugal loading, but recovered to pre-load levels within 24 h. A dose-response study of exposure cells to centrifugal force at 209, 253 and 301 x g showed that the centrifugal forces within usually-used range can rapidly influenced the mRNA expression of the osteoblast-specific genes, but no statistical differences were found among the three centrifugal magnitudes. And the fast regulation in the investigated genes was proved to be related to increased c-fos mRNA levels and subsequent activation of RTK and integrity of cytoskeleton construction. The result showed that the osteoblastic cells displayed a fast auto-regulation to usually-used centrifugal stress through multiple signal pathways.

  15. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    Science.gov (United States)

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  16. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.

    Science.gov (United States)

    Gulati, Karan; Prideaux, Matthew; Kogawa, Masakazu; Lima-Marques, Luis; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2016-12-07

    The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro- and nano-scale topography have been suggested as essential. In this study, we present bone implants based on 3D-printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron-sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D-printing and anodization processes, which are scalable, simple and cost-effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro- and nano-scale topography are proposed as the new generation of multi-functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Phenolic content of Sicilian virgin olive oils and their effect on MG-63 human osteoblastic cell proliferation

    Directory of Open Access Journals (Sweden)

    García-Martínez, O.

    2014-09-01

    Full Text Available The aim of this study was, first, to investigate the influence of olive variety and elevation of orchards on the phenolic compound content of Sicilian virgin olive oils (VOOs and, second, to investigate the effects of VOO phenolic extracts on osteoblast cell growth using the human MG-63 osteosarcoma cell line. Olive oil phenolic content and its effect on human osteosarcoma cell proliferation varied according to the type of cultivar and the grove altitude. This variation was also observed within the same type of cultivar. This observation demonstrates that the cultivar and the grove location can significantly affect the chemical composition and bioactivity of virgin olive oil. Although this study supports the hypothesis that virgin olive oil phenolic fractions exert a beneficial effect on bone health, further studies assessing the in vivo accessibility of virgin olive oil phenolic compounds to osteoblast cells should be carried out.El objetivo del presente trabajo es investigar la influencia de la variedad y la altitud del cultivo en el contenido fenólico de aceites de oliva virgen Sicilianos. Asimismo, se ha investigado el efecto de los extractos fenólicos de los aceites en el crecimiento de osteoblastos usando la línea celular de osteosarcoma humano MG-63. El contenido fenólico y el efecto de los extractos analizados en la proliferación de la línea celular osteoblástica muestra una variabilidad consistente de acuerdo con el tipo y la altitud del cultivo. Estos datos demuestran que estas características pueden afectar significativamente la composición química y los efectos en salud del aceite de oliva virgen. Los resultados de este trabajo soportan la hipótesis de que las fracciones fenólicas de los aceites de oliva vírgenes ejercen un efecto beneficioso en la salud ósea. Asimismo, se deben realizar más estudios que establezcan la accesibilidad in vivo de los compuestos fenólicos del aceite de oliva virgen a las células osteoblásticas.

  18. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG-63) on different titanium surfaces.

    Science.gov (United States)

    Shi, Bin; Andrukhov, Oleh; Berner, Simon; Schedle, Andreas; Rausch-Fan, Xiaohui

    2014-08-01

    Interaction between osteogenesis and angiogenesis plays an important role in implant osseointegration. In the present study we investigated the influence of titanium surface properties on the angiogenic behaviors of endothelial cells grown in direct contact co-culture with osteoblasts. Human umbilical vein endothelial cells (HUVECs) and osteoblast-like cells (MG-63 cells) were grown in direct co-culture on the following titanium surfaces: acid-etched (A), hydrophilic A (modA), coarse-gritblasted and acid-etched (SLA) and hydrophilic SLA (SLActive). Cell proliferation was evaluated by cell counting combined with flow cytometry. The expression of von Willebrand Factor (vWF), thrombomodulin (TM), endothelial cell protein C receptor (EPCR), E-Selectin, as well as vascular endothelial growth factor (VEGF) receptors Flt-1 and KDR in HUVECs and VEGF in MG-63 were measured by qPCR. The dynamic behavior of endothelial cells was recorded by time-lapse microscopy. Proliferation of HUVECs was highest on A, followed by SLA, modA and SLActive surfaces. The expression of vWF, TM, EPCR, E-Selectin and Flt-1 in HUVECs was significantly higher on A than on all other surfaces. The expression of KDR in HUVECs grown on A surface was below detection limit. VEGF expression in MG-63 cells was significantly higher on SLActive vs SLA and modA vs A surfaces. Time-lapse microscopy revealed that HUVECs moved quickest and formed cell clusters earlier on A surface, followed by SLA, modA and SLActive surface. In co-culture conditions, proliferation and expression of angiogenesis associated genes in HUVECs are promoted by smooth hydrophobic Ti surface, which is in contrast to previous mono-culture studies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study

    Science.gov (United States)

    Miao, Xinchao; Wang, Donghui; Xu, Lianyi; Wang, Jie; Zeng, Deliang; Lin, Shuxian; Huang, Cui; Liu, Xuanyong; Jiang, Xinquan

    2017-01-01

    Nanotopography modification is a major focus of interest in current titanium surface design; however, the influence of the nanostructured surface on human cell/bacterium behavior has rarely been systematically evaluated. In this study, a homogeneous nanofiber structure was prepared on a titanium surface (Nano) by alkali-hydrothermal treatment, and the effects of this Nano surface on the behaviors of human MG-63 osteoblasts, human gingival epithelial cells (HGECs) and human gingival fibroblasts (HGFs) were evaluated in comparison with a smooth titanium surface (Smooth) by polishing and a micro-rough titanium surface (Micro) by sandblasting and acid etching. In addition, the impacts of these different surface morphologies on human THP-1 macrophage polarization and Streptococcus mutans attachment were also assessed. Our findings showed that the nanostructured surface enhanced the osteogenic activity of MG-63 cells (Nano=Micro>Smooth) at the same time that it improved the attachment of HGECs (Nano>Smooth>Micro) and HGFs (Nano=Micro>Smooth). Furthermore, the surface with nanotexture did not affect macrophage polarization (Nano=Micro=Smooth), but did reduce initial bacterial adhesion (Nano

  20. Texture analyses show synergetic effects of biomechanical and biochemical stimulation on mesenchymal stem cell differentiation into early phase osteoblasts.

    Science.gov (United States)

    Park, So Hee; Shin, Ji Won; Kang, Yun Gyeong; Hyun, Jin-Sook; Oh, Min Jae; Shin, Jung-Woog

    2014-02-01

    We investigated the structural complexity and texture of the cytoskeleton and nucleus in human mesenchymal stem cells during early phase differentiation into osteoblasts according to the differentiation-induction method: mechanical and/or chemical stimuli. For this, fractal dimension and a number of parameters utilizing the gray-level co-occurrence matrix (GLCM) were calculated based on single-cell images after confirmation of differentiation by immunofluorescence staining. The F-actin and nuclear fractal dimensions were greater in both stimulus groups compared with the control group. The GLCM values for energy and homogeneity were lower in fibers of the F-actin cytoskeleton, indicating a dispersed F-actin arrangement during differentiation. In the nuclei of both stimulus groups, higher values for energy and homogeneity were calculated, indicating that the chromatin arrangement was chaotic during the early phase of differentiation. It was shown and confirmed that combined stimulation with mechanical and chemical factors accelerated differentiation, even in the early phase. Fractal dimension analysis and GLCM methods have the potential to provide a framework for further investigation of stem cell differentiation.

  1. MiR-214 regulates the function of osteoblast under simulated microgravity by targeting ATF4

    Science.gov (United States)

    Li, Yingxian; Wang, Xiaogang; Li, Qi; Lv, Ke; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Background: MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3'-untranslated region (UTR) of mRNAs, resulting in translational repression. Growing evidence shows that microRNAs (miRNAs) regu-late various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; How-ever, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast dif-ferentiation remains elusive. Methods: To study the potential involvement of miRNAs in osteoblast differentiation under stimulated microgravity, we analyzed the expression of 20 bone relative miRNAs using real time PCR platform to find particularly miRNAs whose expression is altered during osteoblast differentiation. TargetScan, miRBase and Miranda were used to predict the target gene of candidate miRNA. To investigate whether ATF4 can be directly targeted by miR-214, we engineered luciferase reporters that have either the wild-type 3'UTRs of these genes, or the mutant UTRs with a 6 base pair (bp) deletion in the target sites. Lastly, to address the in vivo role of miR-214 in bone formation, tail suspension mice model was used to simulate the change of osteoblast function and bone loss. Results: Recent studies have sug-gested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify miR-214 in MC3T3-E1 cells, which is a primary mouse osteoblasts cell line, to promote osteoblast differentiation by repressing Activating Transcription Factor4 (ATF4) ex-pression at the posttranscriptional level. What is more, miR-214 was found to be transcribed in C2C12 cells during bone morphogenetic protein 2-induced (BMP2-induced) osteogenesis, and overexpression of miR-214 attenuated BMP2-induced osteoblastogenesis

  2. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  3. Role of S-palmitoylation on IFITM5 for the interaction with FKBP11 in osteoblast cells.

    Directory of Open Access Journals (Sweden)

    Takashi Tsukamoto

    Full Text Available Recently, one of the interferon-induced transmembrane (IFITM family proteins, IFITM3, has become an important target for the activity against influenza A (H1N1 virus infection. In this protein, a post-translational modification by fatty acids covalently attached to cysteine, termed S-palmitoylation, plays a crucial role for the antiviral activity. IFITM3 possesses three cysteine residues for the S-palmitoylation in the first transmembrane (TM1 domain and in the cytoplasmic (CP loop. Because these cysteines are well conserved in the mammalian IFITM family proteins, the S-palmitoylation on these cysteines is significant for their functions. IFITM5 is another IFITM family protein and interacts with the FK506-binding protein 11 (FKBP11 to form a higher-order complex in osteoblast cells, which induces the expression of immunologically relevant genes. In this study, we investigated the role played by S-palmitoylation of IFITM5 in its interaction with FKBP11 in the cells, because this interaction is a key process for the gene expression. Our investigations using an established reporter, 17-octadecynoic acid (17-ODYA, and an inhibitor for the S-palmitoylation, 2-bromopalmitic acid (2BP, revealed that IFITM5 was S-palmitoylated in addition to IFITM3. Specifically, we found that cysteine residues in the TM1 domain and in the CP loop were S-palmitoylated in IFITM5. Then, we revealed by immunoprecipitation and western blot analyses that the interaction of IFITM5 with FKBP11 was inhibited in the presence of 2BP. The mutant lacking the S-palmitoylation site in the TM1 domain lost the interaction with FKBP11. These results indicate that the S-palmitoylation on IFITM5 promotes the interaction with FKBP11. Finally, we investigated bone nodule formation in osteoblast cells in the presence of 2BP, because IFITM5 was originally identified as a bone formation factor. The experiment resulted in a morphological aberration of the bone nodule. This also indicated that

  4. Development of hematopoietic stem cell activity in the mouse embryo.

    NARCIS (Netherlands)

    A.M. Müller (Albrecht); A. Medvinsky; J. Strouboulis (John); F.G. Grosveld (Frank); E.A. Dzierzak (Elaine)

    1994-01-01

    textabstractThe precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipie

  5. Expression of cell adhesion and differentiation related genes in MC3T3 osteoblasts plated on titanium alloys: role of surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Sista, Subhash [CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007 (India); Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217 (Australia); Wen, Cuie [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Hodgson, Peter D. [Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217 (Australia); Pande, Gopal, E-mail: gpande@ccmb.res.in [CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007 (India)

    2013-04-01

    It is important to understand the cellular and molecular events that take place at the cell–material interface of implants used for bone repair. An understanding of the mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material is fundamental in deciding the fate of the cells that come in contact with it. In this study, we compared the relative gene expression of markers that are known to be associated with cell adhesion and differentiation in MC3T3 osteoblast cells, at various time points after plating the cells on surfaces of titanium (Ti) and its two alloys, titanium–zirconium (TiZr) and titanium–niobium (TiNb) by using Quantitative Real Time Polymerase Chain Reaction (RT-PCR). Our analysis indicated that expression of adhesion supporting genes was higher on TiZr surface as compared to Ti and TiNb. The behavior of these genes is possibly driven by a higher surface energy of TiZr. However no significant difference in the expression of differentiation related genes could be seen between the two alloys, although on both substrates it was higher as compared to unalloyed Ti. We propose that substrate composition of the alloys can influence the adhesion and differentiation related gene expression and that Ti alloys are better substrates for inducing osteogenesis as compared to unalloyed Ti. - Highlights: ► Methodology for comparing gene expression in osteoblasts plated on Ti, TiZr or TiNb ► Alloys with higher surface energy (TiZr) induce cell adhesion genes more efficiently ► Alloyed Ti is superior to unalloyed Ti to induce osteoblast differentiation genes.

  6. Human osteoblast damage after antiseptic treatment.

    Science.gov (United States)

    Vörös, Pauline; Dobrindt, Oliver; Perka, Carsten; Windisch, Christoph; Matziolis, Georg; Röhner, Eric

    2014-01-01

    Antiseptics are powerful medical agents used for w