WorldWideScience

Sample records for mouse liver microsomes

  1. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Metabolism of Separase Inhibitor Sepin-1 in Human, Mouse, and Rat Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-05-01

    Full Text Available Separase, a known oncogene, is widely overexpressed in numerous human tumors of breast, bone, brain, blood, and prostate. Separase is an emerging target for cancer therapy, and separase enzymatic inhibitors such as sepin-1 are currently being developed to treat separase-overexpressed tumors. Drug metabolism plays a critical role in the efficacy and safety of drug development, as well as possible drug–drug interactions. In this study, we investigated the in vitro metabolism of sepin-1 in human, mouse, and rat liver microsomes (RLM using metabolomic approaches. In human liver microsomes (HLM, we identified seven metabolites including one cysteine–sepin-1 adduct and one glutathione–sepin-1 adduct. All the sepin-1 metabolites in HLM were also found in both mouse and RLM. Using recombinant CYP450 isoenzymes, we demonstrated that multiple enzymes contributed to the metabolism of sepin-1, including CYP2D6 and CYP3A4 as the major metabolizing enzymes. Inhibitory effects of sepin-1 on seven major CYP450s were also evaluated using the corresponding substrates recommended by the US Food and Drug Administration. Our studies indicated that sepin-1 moderately inhibits CYP1A2, CYP2C19, and CYP3A4 with IC50 < 10 μM but weakly inhibits CYP2B6, CYP2C8/9, and CYP2D6 with IC50 > 10 μM. This information can be used to optimize the structures of sepin-1 for more suitable pharmacological properties and to predict the possible sepin-1 interactions with other chemotherapeutic drugs.

  3. Metabolism of methylstenbolone studied with human liver microsomes and the uPA⁺/⁺-SCID chimeric mouse model.

    Science.gov (United States)

    Geldof, Lore; Lootens, Leen; Polet, Michael; Eichner, Daniel; Campbell, Thane; Nair, Vinod; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Eenoo, Peter Van

    2014-07-01

    Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate steroid metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in vitro models are preferred to human excretion for nonpharmaceutical grade substances. In this study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the phase I metabolism of a new steroid product containing, according to the label, methylstenbolone. Analysis revealed the presence of both methylstenbolone and methasterone, a structurally closely related steroid. Via HPLC fraction collection, methylstenbolone was isolated and studied with both models. Using HLM, 10 mono-hydroxylated derivatives (U1-U10) and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse urine only di-hydroxylated metabolites (U11-U12) were identified. Although closely related, neither methasterone nor its metabolites were detected after administration of isolated methylstenbolone. Administration of the steroid product resulted mainly in the detection of methasterone metabolites, which were similar to those already described in the literature. Methylstenbolone metabolites previously described were not detected. A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone misuse. In one out of three samples, previously tested positive for methasterone, methylstenbolone and U13 were additionally detected, indicating the applicability of the method. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Biotransformation of a novel antimitotic agent, I-387, by mouse, rat, dog, monkey, and human liver microsomes and in vivo pharmacokinetics in mice.

    Science.gov (United States)

    Ahn, Sunjoo; Kearbey, Jeffrey D; Li, Chien-Ming; Duke, Charles B; Miller, Duane D; Dalton, James T

    2011-04-01

    3-(1H-Indol-2-yl)phenyl)(3,4,5-trimethoxyphenyl)methanone (I-387) is a novel indole compound with antitubulin action and potent antitumor activity in various preclinical models. I-387 avoids drug resistance mediated by P-glycoprotein and showed less neurotoxicity than vinca alkaloids during in vivo studies. We examined the pharmacokinetics and metabolism of I-387 in mice as a component of our preclinical development of this compound and continued interest in structure-activity relationships for antitubulin agents. After a 1 mg/kg intravenous dose, noncompartmental pharmacokinetic analysis in plasma showed that clearance (CL), volume of distribution at steady state (Vd(ss)), and terminal half-life (t(1/2)) of I-387 were 27 ml per min/kg, 5.3 l/kg, and 7 h, respectively. In the in vitro metabolic stability study, half-lives of I-387 were between 10 and 54 min by mouse, rat, dog, monkey, and human liver microsomes in the presence of NADPH, demonstrating interspecies variability. I-387 was most stable in rat liver microsomes and degraded quickly in monkey liver microsomes. Liquid chromatography-tandem mass spectrometry was used to identify phase I metabolites. Hydroxylation, reduction of a ketone group, and O-demethylation were the major metabolites formed by the liver microsomes of the five species. The carbonyl group of I-387 was reduced and identified as the most labile site in human liver microsomes. The results of these drug metabolism and pharmacokinetic studies provide the foundation for future structural modification of this pharmacophore to improve stability of drugs with potent anticancer effects in cancer patients.

  5. Purification and characterization of an amidohydrolase for N4-long-chain fatty acyl derivatives of 1-beta-D-arabinofuranosylcytosine from mouse liver microsomes.

    Science.gov (United States)

    Hori, K; Tsuruo, T; Tsukagoshi, S; Sakurai, Y

    1984-03-01

    N4-Long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase, a metabolizing enzyme for N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with long-chain fatty acids, was purified from mouse liver microsomes. The purification was accomplished by solubilization of liver microsomes with Triton X-100, diethylaminoethyl cellulose chromatography, gel filtrations, hydroxyapatite chromatography, and concanavalin A:Sepharose chromatography. On sodium dodecyl sulfate:polyacrylamide gel electrophoresis, the purified enzyme preparation produced a single protein band with a molecular weight of 54,000. The enzyme had an optimal pH of 9.0, and the Michaelis constant for N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was 67 microM. The thiols such as dithiothreitol or 2-mercaptoethanol stabilized the enzyme and stimulated its activity. p-Chloromercuribenzoate, N-ethylmaleimide, diisopropylfluorophosphate, and phenylmethylsulfonyl fluoride strongly inhibited the reaction. Bovine serum albumin markedly stimulated the enzyme activity, whereas detergents such as Triton X-100, deoxycholate, and sodium dodecyl sulfate had little effect. The enzyme did not require monovalent or divalent cations. Among the series of N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with different chain lengths of acyl residues, the purified enzyme preferentially hydrolyzed the derivatives with long-chain fatty acids (C12 to C18), and N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was the most susceptible. The purified enzyme was inactive on various N-acylamino acids, amides, oligopeptides, proteins, N-acylsphingosines (ceramides), triglyceride, lecithin, and lysolecithin. These results suggest that N4-long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase may be a new type of linear amidase.

  6. [Immunosuppressant effect of cyclophosphamide activated in vitro by liver microsomes from different strains of mice].

    Science.gov (United States)

    Telegin, L Iu; Zhirnov, G F; Mazurov, A V; Pevnitskiĭ, L A

    1981-07-01

    The paper is concerned with activation of cyclophosphamide by mouse liver microsomes in vitro. Liver microsomes from BALB/c mice metabolize cyclophosphamide more effectively as compared with those from DBA/2 mice, which manifested by a more intense output of products having alkylating or immunodepressant properties. This seems likely to be a consequence of the increased P-450 cytochrome content in liver microsomes from BALB/c mice, as well as of its structural characteristics in the mouse. The relationship between the immunodepressant effect of cyclophosphamide in vivo and in vitro in mice of varied genotypes is discussed.

  7. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  8. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  9. High affinity binding of [3H]cocaine to rat liver microsomes

    International Nuclear Information System (INIS)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    ] 3 H]cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in [ 3 H]cocaine binding. On the other hand, chronic administration of cocaine reduced [ 3 H]cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of [ 3 H]cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced [ 3 H]cocaine binding to liver with a different rank order of potency than their displacement of [ 3 H]cocaine binding to striatum. This high affinity [ 3 H]cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  10. In vitro biotransformation of flavonoids by rat liver microsomes

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Breinholt, V.; Justesen, U.

    1998-01-01

    1. Sixteen naturally occurring flavonoids were investigated as substrates for cytochrome P450 in uninduced and Aroclor 1254-induced rat liver microsomes. Naringenin, hesperetin, chrysin, apigenin, tangeretin, kaempferol, galangin and tamarixetin were all metabolized extensively by induced rat liver...... pathway leading to the corresponding 3',4'-dihydroxylated flavonoids either by hydroxylation or demethylation. Structural requirements for microsomal hydroxylation appeared to be a single or no hydroxy group on the B-ring of the flavan nucleus. The presence of two or more hydroxy groups on the B......-ring seemed to prevent further hydroxylation. The results indicate that demethylation only occurs in the B-ring when the methoxy group is positioned at C-4'-, and not at the C-3'-position. 3. The CYP1A isozymes were found to be the main enzymes involved in flavonoid hydroxylation, whereas other cytochrome P...

  11. Oxidation of esterified arachidonate by rat liver microsomes

    International Nuclear Information System (INIS)

    Davis, H.W.; Suzuki, T.; Schenkman, J.B.

    1986-01-01

    The authors have previously demonstrated a relationship between phospholipid arachidonate in liver microsomes and malondialdehyde (MDA) formation during lipid peroxidation. In this study arachidonic acid (U- 14 C) was incorporated into rat liver microsomes and NADPH-supported peroxidation was carried out at 37 0 C for 15 minutes. The microsomes were pelleted by centrifugation and the labeled products in the supernatant were isolated by a solid phase method. Pellets were hydrolyzed with phospholipase A 2 and extracted with diethyl ether and the products from both fractions were separated by reverse phase HPLC. The results show that (1) oxidation occurs in all of the major phospholipids but that phosphatidylethanolamine is the most susceptible; (2) a linear correlation exists between MDA formation and supernatant radioactivity; (3) several different polar products are found in both the supernatant and the hydrolyzed pellet but that the ratios of product peaks in HPLC do not change during the peroxidation, indicating no secondary metabolism or propagation; and (4) cytochrome P-450 is not involved in the peroxidative reactions since no oxidation occurs in the absence of Fe 3+ and since product formation is unaffected in the presence of carbon monoxide

  12. Studies on the transverse localization of lysophospholipase II in bovine liver microsomes by immunological techniques

    NARCIS (Netherlands)

    Moonen, H.; Bosch, H. van den

    1979-01-01

    1. 1. Lysophospholipase activity solubilized from bovine liver microsomes could be precipitated for more than 80% by antibodies evoked in rabbits against the purified bovine liver lysophospholipase II. 2. 2. After solubilization of the microsomes in 1.5% sodium deoxycholate, an immunoprecipitate

  13. Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes.

    Science.gov (United States)

    Stiborova, Marie; Cechova, Tereza; Borek-Dohalska, Lucie; Moserova, Michaela; Frei, Eva; Schmeiser, Heinz H; Paca, Jan; Arlt, Volker M

    2012-01-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite

  14. UPLC/MS MS data of testosterone metabolites in human and zebrafish liver microsomes and whole zebrafish larval microsomes

    Directory of Open Access Journals (Sweden)

    Moayad Saad

    2018-02-01

    Full Text Available This article represents data regarding a study published in Toxicology in vitro entitled “ in vitro CYP-mediated drug metabolism in the zebrafish (embryo using human reference compounds” (Saad et al., 2017 [1]. Data were acquired with ultra-performance liquid chromatography – accurate mass mass spectrometry (UPLC-amMS. A full spectrum scan was conducted for the testosterone (TST metabolites from the microsomal stability assay in zebrafish and humans. The microsomal proteins were extracted from adult zebrafish male (MLM and female (FLM livers, whole body homogenates of 96 h post fertilization larvae (EM and a pool of human liver microsomes from 50 donors (HLM. Data are expressed as the abundance from the extracted ion chromatogram of the metabolites.

  15. In vitro metabolism of [14C]-toluene by human and rat liver microsomes and liver slices

    International Nuclear Information System (INIS)

    Chapman, D.E.; Moore, T.J.; Michener, S.R.; Powis, G.

    1990-01-01

    Toluene metabolites produced by liver microsomes from six human donors included benzylalcohol (Balc), benzaldehyde (Bald) and benzoic acid (Bacid). Microsomes from only one human donor metabolized toluene to p-cresol and o-cresol. Human liver microsomes also metabolized Balc to Bald. Balc metabolism required NADPH, was inhibited by carbon monoxide, and was decreased at a buffer pH of 10. Balc metabolism was not inhibited by ADP-ribose or sodium azide. These results suggest that cytochrome P450 is responsible for the in vitro metabolism of Balc by human liver microsomes. Toluene metabolites formed by human liver slices and released into the incubation media included hippuric acid, and Bacid. Cresols or cresol-conjugates were not detected in liver slice incubation media from any human donor. Toluene metabolism by human liver was compared to metabolism by comparable liver preparations from male Fischer F344 rats. Rates of toluene metabolism by human liver microsomes and liver slices were 9-fold and 1.3-fold greater than for rat liver, respectively. Covalent binding of toluene to human liver microsomes and liver slices was 21-fold and 4-fold greater than for comparable rat liver preparations. Covalent binding of toluene to human microsomes required NADPH, was significantly decreased by coincubation with 4 mM cysteine or 4 mM glutathione, and radioactivity associated with microsomes was decreased by subsequent digestion of microsomes with protease. These results suggest that toluene metabolism and covalent binding of toluene are underestimated if the male Fischer 344 rat is used as a model for human toluene metabolism

  16. Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver

    NARCIS (Netherlands)

    Peters, W. H.; Jansen, P. L.

    1986-01-01

    Human liver microsomal bilirubin UDP-glucuronyltransferase catalyzes formation of bilirubin mono- and diglucuronide. KmUDPGA and Vmax of the enzyme are 0.6 mM and 1.69 nmol/mg protein X min. In vitro, bilirubin readily dissolves in the microsomal lipid phase. Taking this into account a Kmbilirubin

  17. Photoeffects of near ultraviolet light upon a polycyclic aromatic hydrocarbon exposed to mouse skin microsomes

    International Nuclear Information System (INIS)

    Peirano, W.B.

    1991-01-01

    Near ultraviolet (UV) light has been reported to both enhance and inhibit the tumor incidence in mice dermally exposed to benzo(a)pyrene (BaP) or polycyclic aromatic hydrocarbon (PAH) mixtures. Near UV light interacts with PAHs producing a variety of oxygenated products such as phenols, endoperoxides and quinones. However, little is known about BaP products formed from near UV irradiation of BaP-exposed mouse skin. Therefore, 14 C-BaP was incubated with 3-methylcholanthrene (3-MC) induced C 3 H/HeJ and DBA/2J mouse skin microsomes with or without a 365 nm light source. The results indicated that the concurrent 365 nm light irradiation of induced mouse skin microsomes and BaP greatly enhanced the total conversion of BaP to its products, approximately 3-fold for the C 3 H/HeJ and approximately 7-fold for the DBA/2J mouse microsomes, compared to the induced mouse skin microsomes and BaP alone. HPLC analyses of organic extracts indicated a more than additive enhancement of the formation of most of the individual cochromatographed BaP metabolites due to the combined interaction of 365 nm light with BaP and skin microsomes. Similar interactions were observed using benz(a)anthracene (BaA) in this system. These data show that near UV light alters the metabolic profile of PAHs produced by mouse skin microsomes

  18. Comparative Metabolism Study of Five Protoberberine Alkaloids in Liver Microsomes from Rat, Rhesus Monkey, and Human.

    Science.gov (United States)

    Li, Yan; Zhou, Yanyan; Si, Nan; Han, Lingyu; Ren, Wei; Xin, Shaokun; Wang, Hongjie; Zuo, Ran; Wei, Xiaolu; Yang, Jian; Zhao, Haiyu; Bian, Baolin

    2017-11-01

    Protoberberine alkaloids including berberine, palmatine, jatrorrhizine, coptisine, and epiberberine are major components in many medicinal plants. They have been widely used for the treatment of cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. However, the metabolism of five protoberberine alkaloids among different species has not been clarified previously. In order to elaborate on the in vitro metabolism of them, a comparative analysis of their metabolic profile in rat, rhesus monkey, and human liver microsomes was carried out using ultrahigh-performance liquid chromatography coupled with a high-resolution linear trap quadrupole-Orbitrap mass spectrometer (UHPLC-electrospray ionization-Orbitrap MS) for the first time. Each metabolite was identified and semiquantified by its accurate mass data and peak area. Fifteen metabolites were characterized based on accurate MS/MS spectra and the proposed MS/MS fragmentation pathways including demethylation, hydroxylation, and methyl reduction. Among them, the content of berberine metabolites in human liver microsomes was similar with those in rhesus monkey liver microsomes, whereas berberine in rat liver microsomes showed no demethylation metabolites and the content of metabolites showed significant differences with that in human liver microsomes. On the contrary, the metabolism of palmatine in rat liver microsomes resembled that in human liver microsomes. The content of jatrorrhizine metabolites presented obvious differences in all species. The HR-ESI-MS/MS fragmentation behavior of protoberberine alkaloids and their metabolic profile in rat, rhesus monkey, and human liver microsomes were investigated for the first time. The results demonstrated that the biotransformation characteristics of protoberberine alkaloids among different species had similarities as well differences that would be beneficial for us to better understand the pharmacological activities of protoberberine alkaloids

  19. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects

    Science.gov (United States)

    Ushijima, Kentarou; Tsuruoka, Shu-ichi; Tsuda, Hidetoshi; Hasegawa, Gohki; Obi, Yuri; Kaneda, Tae; Takahashi, Masaki; Maekawa, Tomohiro; Sasaki, Tomohiro; Koshimizu, Taka-aki; Fujimura, Akio

    2009-01-01

    AIM To investigate a potential interaction between cranberry juice and diclofenac, a substrate of CYP2C9. METHODS The inhibitory effect of cranberry juice on diclofenac metabolism was determined using human liver microsome assay. Subsequently, we performed a clinical trial in healthy human subjects to determine whether the repeated consumption of cranberry juice changed the diclofenac pharmacokinetics. RESULTS Cranberry juice significantly suppressed diclofenac metabolism by human liver microsomes. On the other hand, repeated consumption of cranberry juice did not influence the diclofenac pharmacokinetics in human subjects. CONCLUSIONS Cranberry juice inhibited diclofenac metabolism by human liver microsomes, but not in human subjects. Based on the present and previous findings, we think that although cranberry juice inhibits CYP2C9 activity in vitro, it does not change the pharmacokinetics of medications metabolized by CYP2C9 in clinical situations. PMID:19694738

  20. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes

    International Nuclear Information System (INIS)

    Liang, T.; Cheung, A.H.; Reynolds, G.F.; Rasmusson, G.H.

    1985-01-01

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a K/sub i/ value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [ 3 H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([ 3 H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2- 3 H]Diazo-MAPD binds to a single high affinity site in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000

  1. Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol

    NARCIS (Netherlands)

    Bessems, J.G.M.; Koppele, J.M. te; Dijk, P.A. van; Stee, L.L.P. van; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    1. The cytochrome P450-dependent binding of paracetamol and a series of 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -C(H)3, -C2H5, -iC3H7) have been determined with β-naphthoflavone (βNF)-induced rat liver microsomes and produced reverse type I spectral changes. K(s,app) varied

  2. Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Buc-Calderon, P.; Roberfroid, M. (Universite Catholique de Louvain, Brussels (Belgium))

    1989-09-01

    Captodative substituted olefins are radical scavengers which react with free radicals to form stabilized radical adducts. One of those compounds, N-(paramethoxyphenylacetyl)dehydroalanine (AD-5), may react and scavenge both superoxide anion (O-2) and alk-oxyl radicals (RO.), and in this way prevent the appearance of their mediated biological effects. Nitrofurantoin and tert-butyl hydroperoxide were used as model compounds to stimulate free radical production and their mediated lipid peroxidation in rat liver microsomes. In addition, lipid peroxidation was also initiated by exposure of rat liver microsomal suspensions to ionizing radiation (gamma rays). The microsomal lipid peroxidation induced by these chemicals and physical agents was inhibited by the addition of AD-5. These effects were dose-dependent in a millimolar range of concentration. In addition, AD-5 has no effect on microsomal electron transport, showing that NADPH-cytochrome P450 reductase activity was not modified. These data, together with the comparisons of the effects of AD-5 and some antioxidant molecules such as superoxide dismutase, uric acid, and mannitol, support the conclusion that inhibition of lipid peroxidation by AD-5 is the result of its free radical scavenger activity. In addition, the inhibitory effect of AD-5 on microsomal lipid peroxidation was dependent of the nature of the free radical species involved in the initiation of the process, suggesting that O-2 is scavenged more efficiently than RO.

  3. ROLE OF LEPTIN ON CYTOCHROME P-450 AND SOME LIVER MICROSOMAL ENZYMES ACTIVITIES IN THE OBESE AND LEAN MICE

    International Nuclear Information System (INIS)

    HEBEISHY, M.I.A.; MAZEN, G.M.A.; SHAHIN, M.I

    2008-01-01

    Leptin is a hormone that is secreted by adipocytes and regulates body weight through its effect on satiety and energy metabolism. The obese mouse is deficient in this protein and is characterized by obesity and other metabolic disorders. This study investigated the alterations of several hepatic cytochrome P 4 -5 0 (CYP), conjugation and antioxidant enzymes in lean and obese mice and the role of leptin in the modulation of these enzymes. Lean and obese male mice were injected with leptin (100 μg / rat) for 15 days. The obtained results revealed that administration of leptin to lean mice caused a significant elevation in the level of blood glucose, serum insulin, 6α, 6β, 16α- hydroxylation of testosterone, the activity of CYP 1 A 1 , CYP 4 A and GSH reductase in liver microsomes while serum corticosterone and the activity of total GSH were significantly decreased when compared to lean control mice. Moreover, obese mice treated with leptin recorded significant reduction in body weight, blood glucose concentration, serum levels of insulin and corticosterone, 7α and 16α- hydroxylation of testosterone, the activity of CYP 1A 1, CYP 2 B 1 and CYP 4 A and GST in liver microsomes. On the other hand, 6α, 6β-hydroxylation of testosterone, the activity of CYP 2 E 1 and GSH reductase in liver microsome were significantly increased when compared to obese control mice. The mechanism for the observed alterations may be due to direct leptin effects or via indirect alterations in insulin, corticosterone and/or growth hormone

  4. PHOTOMETRIC EVIDENCE FOR THE OSMOTIC BEHAVIOR OF RAT LIVER MICROSOMES

    Science.gov (United States)

    Tedeschi, Henry; James, Joseph M.; Anthony, William

    1963-01-01

    Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions. PMID:14064105

  5. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    International Nuclear Information System (INIS)

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-01

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  6. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    International Nuclear Information System (INIS)

    Robey, S.; Mavis, R.

    1986-01-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with 3 H-α-tocopherol (αT*) which allows virtually complete oxidation of the αT* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of αT* for 10 minutes at 37 0 C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 μM Fe 2+ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of αT* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of αT* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both αT* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of α-tocopherol

  7. Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450db1.

    OpenAIRE

    Manns, M P; Johnson, E F; Griffin, K J; Tan, E M; Sullivan, K F

    1989-01-01

    Type 1, liver kidney microsomal autoantibodies (LKM-1) are associated with a subgroup of idiopathic autoimmune type, chronic active hepatitis (CAH). The antigenic specificity of LKM-1 autoantibodies from 13 patients was investigated by immunoblot analysis of human liver microsomal proteins. Polypeptides of 50, 55, and 64 kD were detected with these antisera. A high titer LKM-1 serum was selected to screen a human liver lambda gt11 cDNA expression library, resulting in the isolation of several...

  8. Liver/kidney microsomal antibody type 1 and liver cytosol antibody type 1 concentrations in type 2 autoimmune hepatitis

    OpenAIRE

    Muratori, L; Cataleta, M; Muratori, P; Lenzi, M; Bianchi, F

    1998-01-01

    Background—Liver/kidney microsomal antibody type 1 (LKM1) and liver cytosol antibody type 1 (LC1) are the serological markers of type 2 autoimmune hepatitis (AIH). 
Aims—Since LKM1 and LC1 react against two distinct liver specific autoantigens (cytochrome P450IID6 (CYP2D6) and a 58 kDa cytosolic polypeptide respectively), the aim was to see whether LKM1 and LC1 concentrations correlate with liver disease activity. 
Patients—Twenty one patients with type 2 AIH were studied. 
Methods—A...

  9. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.

    Science.gov (United States)

    Gates, Leah A; Lu, Ding; Peterson, Lisa A

    2012-03-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects.

  10. CHARACTERIZATION OF HUMAN LIVER MICROSOMAL UDP-GLYCOSYLTRANSFERASES USING PHOTOAFFINITY ANALOGS

    NARCIS (Netherlands)

    LITTLE, JM; DRAKE, RR; VONK, R; KUIPERS, F; LESTER, R; RADOMINSKA, A

    The photoaffinity analogs [beta-P-32]5-azido-UDP-glucuronic acid ([P-32]5N3UDP-GlcUA) and [beta-P-32]5-azido-UDP-glucose ([P-32]5N(3)UDP-Glc) were used to characterize UDP-glycosyl-transferases of microsomes prepared from human liver. Photoincorporation of both probes into proteins in the 50- to

  11. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    Science.gov (United States)

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Liver microsomal fraction is known to participate in:

    African Journals Online (AJOL)

    Abdullahi Balarabe

    Bayero Journal of Pure and Applied Sciences, 5(1): 11 – 16. Received: November 2011 ... of diet rich in fruit and vegetable may decrease the risk of cancer ((Steinmetz .... during analysis and experiment. The differences .... the liver mitochondrial membrane (Balzan et al.,. 1999). .... and Plasma Malondialdehyde in Human.

  13. [Comparative metabolism of three amide alkaloids from Piper longum in five different species of liver microsomes].

    Science.gov (United States)

    He, Huan; Guo, Wei-Wei; Chen, Xiao-Qing; Zhao, Hai-Yu; Wu, Xia

    2016-08-01

    Piperine, piperlonguminine and pellitorine are three major amide alkaloids from Piper longum, showing a variety of pharmacological activities. In order to investigate the different metabolism pathways of these compounds in five species of liver microsomes in vitro, the data of full mass spectrum, and MS2, MS3 spectra of these three alkaloids were collected and analyzed by using ultra-high-performance liquid chromatography coupled with a LTQ-orbitrap mass spectrometer (UHPLC-LTQ-Orbitrap MS); gragment ion information was collected and combined with fragmentation regularities of mass spectra and accurate mass spectrometry data of metabolites, to compare the metabolism difference of three amide alkaloids in liver microsomes of human, rhesus monkey, Beagle dogs, rats and mice. 3 metabolites of piperine, 2 metabolites of piperlonguminine and 1 metabolite of pellitorine were identified quickly. The results showed that the major metabolic pathways of these amide alkaloids in liver microsomes were methylenedioxy group demethylation and oxidation reaction, and metabolic rates were different between species. This study provides basis for further research on in vivo metabolism of piperine analogues from Piper longum. Copyright© by the Chinese Pharmaceutical Association.

  14. Development of vitamin D3 25-hydroxylase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Thierry-Palmer, M.; Cullins, S.; Rashada, S.; Gray, T.K.; Free, A.

    1986-01-01

    The authors have determined the ontogeny of vitamin D 3 25-hydroxylase activity in rat liver microsomes. Microsomes from fetuses, neonates, and their mothers were incubated with 44 nM 3 H-vitamin D 3 in the presence of an NADPH generating system, oxygen, KCl, and MgCl 2 . Lipid extracts of the incubation samples were partially purified by thin-layer chromatography. Tritiated 25-hydroxy vitamin D 3 (250HD 3 ) was analyzed by high-pressure liquid chromatography using 94/6 hexane/isopropanol. Production rate for 250HD 3 in the mothers ranged from 0.22 to 0.30 pmol/mg protein/hr. Activities in the fetuses and neonates were 2.1, 12.9, 32.0, 35.8, and 71.0% of that of their mothers at -3, 0, 2, 7, and 15 days of age. The cytosolic fraction protected the substrate from degradation, stimulated the vitamin D 3 25-hydroxylase reaction in neonates and mothers (1.4 to 1.7 fold increase), and was absolutely required for 25-hydroxylase activity in fetuses. These data suggest that microsomal vitamin D 3 25-hydroxylase activity develops slowly and approaches full activity near the weaning stage. A cytosolic factor present as early as -3 days of age stimulates the activity of the microsomal vitamin D 3 25-hydroxylase

  15. Metabolism of indole alkaloid tumor promoter, (-)-indolactam V, which has the fundamental structure of teleocidins, by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, N.; Irie, K.; Tokuda, H.; Koshimizu, K.

    1987-07-01

    Metabolic activation and/or deactivation of indole alkaloid tumor promoter, (-)-indolactam V (ILV), was examined using rat liver microsomes. Reaction of ILV with the microsomes supplemented with NADPH and MgCl/sub 2/ gave three major metabolites, which were identified as (-)-N13-desmethylindolactam V and two diastereomers of (-)-2-oxyindolactam V at C-3. The tumor-promoting activities of these metabolites were evaluated by induction of Epstein-Barr virus early antigen and inhibition of specific binding of (/sup 3/H)-12-O-tetradecanoylphorbol-13-acetate to a mouse epidermal particulate fraction, and proved to be conspicuously lower than that of ILV. These results demonstrate that the metabolism of ILV results in detoxification, and that it itself is the tumor-promoting entity. Studies on the enzymes concerned with this metabolism suggested the involvement of cytochrome P-450-containing mixed-function oxidases. Similar deactivation seems to be possible by skin, where the mixed-function oxidases are known to exist.

  16. Lichen planus, liver kidney microsomal (LKM1) antibodies and hepatitis C virus antibodies.

    Science.gov (United States)

    Divano, M C; Parodi, A; Rebora, A

    1992-01-01

    No anti-liver kidney microsomal (LKM1) antibodies were detected in 46 patients with LP, 16 of whom had also a chronic liver disease (CLD). In contrast, anti-hepatitis C virus (HCV) antibodies were found in 10% of patients with LP and in 50% of those with LP and CLD. Anti-HCV antibodies may be considered as a false-positive reaction in 56% of cases, especially when anti-LKM1 antibodies are present. Our findings do not support such a hypothesis, but suggest that CLD in LP patients is, at least in Italy, mostly a postviral chronic active hepatitis.

  17. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    Science.gov (United States)

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  18. Incubation of 14C-trichloroethylene vapor with rat liver microsomes: uptake of radioactivity and covalent protein binding of metabolites

    International Nuclear Information System (INIS)

    Bolt, H.M.; Wolowski, L.; Buchter, A.; Bolt, W.; Gil, D.L.

    1977-01-01

    Microsomal uptake irreversible protein binding of labelled trichloroehtylene was measured following incubation with rat liver microsomes in an all-glass vacuum system. If the cofactor for oxidative metabolism, NADPH, is not added, the gaseous trichloroethylene rapidly equilibrates with the microsomal suspension. Addition of NADPH results in a further uptake of 14 C-trichloroethylene from the gas phase, linearly with time, which is due to enzymic metabolism. This part of uptake is inhibited by some arylimidazoles and 1.2.3-benzothiadiazoles. The compounds of greatest inhibitory potency were 6-chloro-1.2.3-benzothiadiazole and 5.6-dimethyl-1.2.3-benzothiadiazole. Part of the metabolites of 14 C-trichloroethylene formed by rat liver microsomes were irreversibly bound to microsomal protein, amounting up to 1 nmol per mg microsomal protein per hour. Model experiments on uptake of 14 C-trichloroethylene from the gas phase by albumin solutions and liposomal suspensions (from lecithin) showed a rapid equilibration of trichloroethylene also with these systems. Comparison with previous analogous data on vinyl chloride revealed an about 10 times higher affinity of trichloroethylene to albumin and lipid, consistent with the behaviour of both compounds in the rat liver microsomal system. (orig.) [de

  19. An integrated study for the utilization of anthraquinone compounds extract “Heshouwu” In vivo and their comparative metabolism in liver microsomes using UPLC-ESI-Q-TOF/MSn

    Directory of Open Access Journals (Sweden)

    Sha Chen

    2018-01-01

    Full Text Available Objective: Anthraquinone (AQ, a major bioactive component of the traditional Chinese medicine HeShouWu, has widespread applications in industry and medicine. The objective of the current study is to explore the differences in the bioavailability of anthraquinones in vivo and the metabolism in liver microsomes. Materials and Methods: In vivo, we used a reliable UPLC-ESI-QqQ-MS/MS method to measure seven AQ compounds in the jugular vein plasma of rats following oral administration of HeShouWu. Furthermore, in order to quantify the bioavailability of AQs in vivo and to further understand the metabolism of these compounds, we compared the in vitro metabolism of AQ in different species with respect to metabolic profiles, the enzymes involved, and catalytic efficiency using liver microsomes from human (HLM, mouse (MLM, rat (RLM, and beagle dog (DLM. Results: We identified two metabolic pathways, including the hydroxylation and glucuronidation of AQ, in the liver microsomes of humans and other species using UPLC-ESI-Q-TOF. We found that substitutions on the AQ ring were crucial to the activity and regioselectivity of its hydroxylation. In general, hydroxylation activity decreased greatly with β-COOH (rhein and enhanced dramatically with β-OH (emodin. We also found that glucuronidation of the compound emodin-8-O-β-D-glucoside acts as the main isoform in AQ hydroxylation in HLM and DLM. Total microsomal intrinsic clearance values for AQ were greatest in mouse microsomes, followed by those in dog, human, and rat microsomes. Conclusion: The absorption of different anthrquinone compounds varied based on the compound structure, the metabolism types and products of anthraquinones in liver microsomes were different in different species. These findings provide vital information for a deeper unuunderstanding of the metabolism of AQs.

  20. Effect of cholesterol feeding on tissue lipid perioxidation, glutathione peroxidase activity and liver microsomal functions in rats and guinea pigs

    NARCIS (Netherlands)

    TSAI, A. C.; THIE, G. M.; Lin, C. R.

    1977-01-01

    The effect of cholesterol feeding on liver and aortic nonenzymatic lipid peroxidation and glutathione peroxidase activities, and on liver microsomal NADPH-dependent lipid peroxidation, codeine hydroxylation and cytochrome P-450 levels was examined in rats and guinea pigs. One percent cholesterol was

  1. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  2. Stereoselective formation of a cholesterol ester conjugate from fenvalerate by mouse microsomal carboxyesterase(s).

    Science.gov (United States)

    Miyamoto, J; Kaneko, H; Takamatsu, Y

    1986-06-01

    In accordance with in vivo findings, of the four chiral isomers of fenvalerate (S-5602 Sumicidin, Pydrin, [RS]-alpha-cyano-3-phenoxybenzyl [RS]-2-(4-chlorophenyl)isovalerate), only the [2R, alpha S]-isomer (B-isomer) yielded cholesteryl [2R]-2-(4-chlorophenyl)isovalerate (CPIA-cholesterol ester) in the in vitro study using several tissue homogenates of mice, rats, dogs, and monkeys. There were species differences in the extent of CPIA-cholesterol-ester formation, with mouse tissues showing relatively higher activity than those of other animals. The kidney, brain, and spleen of mice showed relatively higher capacities to form this ester compared to other tissues, and the enzyme activity was mainly localized in microsomal fractions. The CPIA-cholesterol ester did not seem to be produced by three known biosynthetic pathways of endogenous cholesterol esters--acyl-CoA:cholesterol O-acyltransferase (ACAT), lecithin:cholesterol O-acyltransferase (LCAT), and cholesterol esterase. Carboxyesterase(s) of mouse kidney microsomes solubilized by digitonin hydrolyzed only the B alpha-isomer of fenvalerate, yielding CPIA, whereas they yielded the corresponding cholesterol ester in the presence of artificial liposomes containing cholesterol. Thus, it appears that the stereoselective formation of the CPIA-cholesterol ester results from the stereoselective formation of the CPIA-carboxyesterase complex only from the B alpha-isomer, which subsequently undergoes cleavage by cholesterol to yield the CPIA-cholesterol ester.

  3. Isolation and structural elucidation of tiamulin metabolites formed in liver microsomes of pigs

    DEFF Research Database (Denmark)

    Lykkeberg, Anne Kruse; Cornett, Claus; Halling-Sørensen, Bent

    2006-01-01

    Although the antimicrobial tiamulin is extensively metabolized in pigs, the metabolism is not well investigated. In this work the NADPH dependent metabolism of tiamulin in liver microsomes from pigs has been studied. The tiamulin metabolites formed in the incubations were analysed using LC-MS, an...... 20% of tiamulin was deethylated, 10% was hydroxylated in the 2beta-position and 7% was hydroxylated in the 8alpha-position. About 40% of tiamulin was metabolized during the incubation conditions used. The protein precipitation in the incubations was performed using perchloric acid...

  4. Liver/kidney microsomal antibody type 1 and liver cytosol antibody type 1 concentrations in type 2 autoimmune hepatitis.

    Science.gov (United States)

    Muratori, L; Cataleta, M; Muratori, P; Lenzi, M; Bianchi, F B

    1998-05-01

    Liver/kidney microsomal antibody type 1 (LKM1) and liver cytosol antibody type 1 (LC1) are the serological markers of type 2 autoimmune hepatitis (AIH). Since LKM1 and LC1 react against two distinct liver specific autoantigens (cytochrome P450IID6 (CYP2D6) and a 58 kDa cytosolic polypeptide respectively), the aim was to see whether LKM1 and LC1 concentrations correlate with liver disease activity. Twenty one patients with type 2 AIH were studied. All sera were tested by indirect immunofluorescence, counterimmunoelectrophoresis, and immunoblotting visualised by enhanced chemiluminescence. To evaluate LKM1 and LC1 levels, the 50 kDa microsomal reactivity (corresponding to CYP2D6) and the 58 kDa cytosolic reactivity were quantified by densitometric analysis. Seven patients were positive for LKM1, nine for LC1, and five for both. Serial serum samples at onset and during immunosuppressive treatment were analysed in 13 patients (four positive for LKM1, six positive for LC1 and three positive for both). During remission, LKM1 concentration remained essentially unchanged in six of seven patients, and decreased in only one. Conversely, in two of nine patients, LC1 was completely lost, and, in the remaining seven, LC1 concentration was reduced by more than 50%. After immunosuppression tapering or withdrawal, flare ups of liver necrosis ensued with increasing LC1 concentration, but not LKM1. LC1 concentration, at variance with that of LKM1, parallels liver disease activity, and its participation in the pathogenic mechanisms of liver injury can be hypothesised.

  5. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  6. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  7. Glucuronidation of trans-resveratrol by human liver and intestinal microsomes and UGT isoforms.

    Science.gov (United States)

    Brill, Shirley S; Furimsky, Anna M; Ho, Mark N; Furniss, Michael J; Li, Yi; Green, Adam G; Bradford, Wallace W; Green, Carol E; Kapetanovic, Izet M; Iyer, Lalitha V

    2006-04-01

    Resveratrol (trans-resveratrol, trans-3,5,4'-trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3-O-glucuronide and resveratrol 4'-O-glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3-O-glucuronide (Km = 149 microM) and 4'-O-glucuronide (Km = 365 microM), respectively. The glucuronide conjugates were formed at higher levels (up to 10-fold) by intestinal rather than liver microsomes. Resveratrol was co-incubated with substrates of UGT1A1 (bilirubin and 7-ethyl-10-hydroxycamptothecin (SN-38)) and UGT1A9 (7-hydroxytrifluoromethyl coumarin (7-HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN-38 (Ki = 6.2 +/- 2.1 microM) and 7-HFC (Ki = 0.6 +/- 0.2 microM). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.

  8. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    Science.gov (United States)

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  9. In vitro metabolism of the anti-androgenic fungicide vinclozolin by rat liver microsomes.

    Science.gov (United States)

    Sierra-Santoyo, Adolfo; Angeles-Soto, Esperanza; de Lourdes López-González, Ma; Harrison, Randy A; Hughes, Michael F

    2012-03-01

    Vinclozolin (V) is a fungicide used in agricultural settings. V administered to rats is hydrolyzed to 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1) and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2). V, M1 and M2 have antiandrogenic properties by interacting with the androgen receptor. Data on V, M1 and M2 biotransformation are limited. Our objective was to characterize V metabolism by rat liver microsomes. V was incubated with non-treated adult male Long-Evans rat liver microsomes and NADPH. Several metabolites were detected following the extraction of incubate with acetonitrile and analysis by HPLC/DAD/MSD. One metabolite was identified as [3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione] (M4), which was gradually converted to 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutylanilide (M5). Both co-eluted in the same HPLC peak. Another metabolite ([M7]) was detected by UV but was unstable for mass spectral analysis. The K(M app) for co-eluted M4/M5 and [M7] was 53.7 and 135.4 μM, the V(max app) was 0.812 and 0.669 nmoles/min/mg protein, and CL(int) was 15.1 and 4.9 ml/min/g protein, respectively. Pilocarpine, orphenadrine and proadifen and anti-rat cytochrome P450 (CYP)2A, 2B and 3A antibodies inhibited M4/M5 and [M7] formation. These results indicate that V is efficiently metabolized by CYP. Determination of the metabolites of V will provide further insight into the relationship between toxicity and tissue dose of V and its metabolites.

  10. Distinct ontogenic patterns of overt and latent DGAT activities of rat liver microsomes.

    Science.gov (United States)

    Waterman, Ian J; Price, Nigel T; Zammit, Victor A

    2002-09-01

    We have studied the ontogeny of the two functional diacylglycerol acyltransferase (DGAT) activities (overt and latent) during postnatal development in rat liver. We find that the ontogenic patterns of the two are highly distinct. Overt DGAT shows a transient rise in activity up to day 4 postnatally, after which it declines until weaning; thereafter, it increases steadily to reach high adult values that may contribute to the high rates of turnover of cytosolic triacylglycerol (TAG). By contrast, latent DGAT activity increases continuously during the suckling period but falls sharply upon weaning onto chow but not onto a high-fat diet. Rates of TAG secretion by hepatocytes are higher than in the adult during the first 7 days after birth, and are largely dependent on the mobilization of the abundant intrahepatocyte TAG as a source of acyl moieties. When the hepatic steatosis is cleared (after day 7) the TAG secretion rate declines by 80% to reach adult values. Quantification of the content of mRNA for the DGAT1 and DGAT2 genes does not show correlation with either of the DGAT activities. We conclude that post-translational modification may play an important role in the overt and latent distribution of DGAT activity in the liver microsomal membrane.

  11. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  12. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  13. Heme synthesis in normal mouse liver and mouse liver tumors

    International Nuclear Information System (INIS)

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  14. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane.

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M P; Albano, E; Bianchi, F B

    2000-04-01

    Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack. The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum. Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes. AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.

  15. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    Parkinson, Andrew; Mudra, Daniel R.; Johnson, Cory; Dwyer, Anne; Carroll, Kathleen M.

    2004-01-01

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  16. Identification of a tryptanthrin metabolite in rat liver microsomes by liquid chromatography/electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Lee, Sang Kyu; Kim, Ghee Hwan; Kim, Dong Hyeon; Kim, Dong Hyun; Jahng, Yurngdong; Jeong, Tae Cheon

    2007-10-01

    Tryptanthrin originally isolated from Isatis tinctoria L. has been characterized to have anti-inflammatory activities through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase mediated prostaglandin and leukotriene syntheses. To characterize phase I metabolite(s), tryptanthrin was incubated with rat liver microsomes in the presence of NADPH-generating system. One metabolite was identified by liquid chromatography/electrospray ionization-tandem mass spectrometry. M1 could be identified as a metabolite mono-hydroxylated on the aromatic ring of indole moiety from the MS(2) spectra of protonated tryptanthrin and M1. The structure of metabolite was confirmed as 8-hydroxytryptanthrin with a chemically synthesized authentic standard. The formation of M1 was NADPH-dependent and was inhibited by SKF-525A, a general CYP-inhibitor, indicating the cytochrome P450 (CYP)-mediated reaction. In addition, it was proposed that M1 might be formed by CYP 1A in rat liver microsomes from the experiments with enriched rat liver microsomes.

  17. Hepatitis C virus infection associated with liver-kidney microsomal antibody type 1 (LKM1) autoantibodies in children.

    Science.gov (United States)

    Bortolotti, Flavia; Muratori, Luigi; Jara, Paloma; Hierro, Loreto; Verucchi, Gabriella; Giacchino, Raffaella; Barbera, Cristiana; Zancan, Lucia; Guido, Maria; Resti, Massimo; Pedditzi, Sabrina; Bianchi, Francesco; Gatta, Angelo

    2003-02-01

    To evaluate the clinical pattern and evolution of chronic hepatitis C in children with liver/kidney microsomal antibody type 1 autoantibodies (LKM1). A multicenter, retrospective study, including the following groups of children with hepatitis C virus infection: (1). 21 consecutive LKM1-positive patients, (2). 42 age- and sex- matched LKM1-negative patients, and (3). 4 interferon-induced LKM1-positive cases. LKM1 reactivity to human microsomes and recombinant cytochrome P450IID6 (CYP2D6) was assayed by immunoblotting. Clinical and biochemical features overlapped in LKM1-positive and LKM1-negative children, but a fibrosis score >3 (range 0-6) was significantly more frequent (P =.04) in the former. Reactivity to microsomal protein and CYP2D6 was significantly (P =.02) associated with LKM1 titers >or=1:320 and was found in 39% of patients, including severe cases and both children (of 4 treated) who achieved a sustained alanine aminotransferase (ALT) normalization after steroid treatment. Five of 7 LKM1-positive children treated with interferon had an ALT exacerbation. LKM1-positive hepatitis C in children is characterized by a wide spectrum of biochemical, serologic, and histologic features. Whether autoimmunity may contribute to liver damage in a subgroup of patients with more severe liver disease, high LKM1 titers, and reactivity to CYP2D6 is a question deserving further investigation.

  18. Isolation and structural elucidation of tiamulin metabolites formed in liver microsomes of pigs.

    Science.gov (United States)

    Lykkeberg, Anne Kruse; Cornett, Claus; Halling-Sørensen, Bent; Hansen, Steen Honoré

    2006-09-18

    Although the antimicrobial tiamulin is extensively metabolized in pigs, the metabolism is not well investigated. In this work the NADPH dependent metabolism of tiamulin in liver microsomes from pigs has been studied. The tiamulin metabolites formed in the incubations were analysed using LC-MS, and three major metabolites were isolated using solid phase extraction and preparative HPLC. The final structure elucidations were performed by tandem mass spectrometry and (1)H and (13)C NMR. The structures of the metabolites were found to be 2beta-hydroxy-tiamulin, 8alpha-hydroxy-tiamulin and N-deethyl-tiamulin. In addition, the LC-MS chromatograms revealed two other minor metabolites. From their chromatography and from MS(2) analysis the structures were estimated to be 2beta-hydroxy-N-deethyl-tiamulin and 8alpha-hydroxy-N-deethyl-tiamulin, but the structures were not confirmed by NMR. In these studies approximately 20% of tiamulin was deethylated, 10% was hydroxylated in the 2beta-position and 7% was hydroxylated in the 8alpha-position. About 40% of tiamulin was metabolized during the incubation conditions used. The protein precipitation in the incubations was performed using perchloric acid, and the preparative purification was performed under alkaline conditions. Therefore, the stability of the metabolites under these conditions was studied. The metabolites were found to be stable in the acid solution, but under alkaline conditions, particularly at room temperature, the stability of especially 8alpha-hydroxy-tiamulin was considerably reduced (40% loss after 1 week).

  19. Stereoselective in vitro metabolism of rhynchophylline and isorhynchophylline epimers of Uncaria rhynchophylla in rat liver microsomes.

    Science.gov (United States)

    Wang, Xin; Qiao, Zhou; Liu, Jia; Zheng, Mei; Liu, Wenyuan; Wu, Chunyong

    2017-11-10

    1. The objective was to investigate the underlying mechanism of the stereoselectivity in the metabolism of rhynchophylline (RIN) and isorhynchophylline (IRN) epimers in rat liver microsomes (RLM). 2. After incubation, eight metabolites of RIN (M1-5) and IRN (M6-8) reacted at A- and C-ring were identified using LC-Q-TOF/MS. Metabolic pathways included oxidation, hydroxylation, N-oxidation and dehydrogenation. In addition, hydroxylation at A-ring was the major metabolic pathway for RIN whereas the oxidation at C-ring was the major one for IRN. 3. Enzyme kinetics showed that the intrinsic clearance (CL int ) for IRN elimination was 1.9-fold higher than RIN and the degradation half-life (T 1/2 ) of RIN was 4.7-fold higher than that of IRN, indicating IRN was more favorable to be metabolized than RIN in RLM. 4. Data from chemical inhibition study demonstrated CYP3A was the predominant isoform involved in the metabolic elimination of both epimers, as well as the formation of M1-8. 5. In conclusion, data revealed that due to the spatial configurations at C-7 position, RIN and IRN epimers possessed different hepatic metabolic pathways and elimination rates which were mainly mediated by CYP3A.

  20. Detection of liver kidney microsomal type 1 antibody using molecularly based immunoassays.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Davies, E T; Cheeseman, P; Mieli-Vergani, G; Vergani, D

    2002-12-01

    To assess the diagnostic value of two commercial molecularly based immunoassays detecting liver kidney microsomal type 1 antibody (LKM1). The performance of Varelisa and LKM1 enzyme linked immunosorbent assay (ELISA) was compared with immunofluorescence, and two validated research techniques-an in house ELISA and a radioligand assay measuring antibodies to P4502D6. Thirty serum samples from three patients with autoimmune hepatitis type 2 covering immunofluorescence titres of 1/10 to 1/10 240 and 55 LKM1 negative controls were tested. All 30 sera that were LKM1 positive by immunofluorescence were positive by the in house ELISA, the radioligand assay, and LKM1-ELISA, and 29 were also positive by Varelisa. None of the 55 sera negative for LKM1 by immunofluorescence was positive by the in house ELISA and radioligand assay, but one was positive by Varelisa and 14 were positive using the LKM1-ELISA. Agreement between immunofluorescence, the in house ELISA, the radioligand assay, and Varelisa was high (kappa > 0.8), and agreement between immunofluorescence and LKM1-ELISA was moderate (kappa = 0.63). The assay kit marketed as Varelisa allows accurate detection of LKM1.

  1. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    OpenAIRE

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confo...

  2. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    Science.gov (United States)

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  3. The rabbit liver microsomal biotransformation of 1,1-dialkylethylenes: enantioface selection of epoxidation and enantioselectivity of epoxide hydrolysis.

    Science.gov (United States)

    Bellucci, G; Chiappe, C; Cordoni, A; Marioni, F

    1994-01-01

    The rabbit liver microsomal biotransformation of alpha-methylstyrene (1a), 2-methyl-1-hexene (1b), 2,4,4-trimethyl-1-pentene (1c), and 1,3,3-trimethyl-1-butene (1d) has been investigated with the aim at establishing the enantioface selection of the cytochrome P-450-promoted epoxidation of the double bond and the enantioselectivity of microsomal epoxide hydrolase(mEH)-catalyzed hydrolysis of the resulting epoxides. GLC on a Chiraldex G-TA (ASTEC) column was used to determine the enantiomeric composition of the products. The epoxides 2 first produced in incubations carried out in the presence of an NADPH regenerating system were not detected, being rapidly hydrolyzed by mEH to diols 3. The enantiomeric composition of the latter showed that no enantioface selection occurred in the epoxidation of 1c and 1d, and a very low (8%) ee of the (R)-epoxide was formed from 1b. Incubation of racemic epoxides 2b-d with the microsomal fraction showed that the mEH-catalyzed hydrolysis of 2c and 2d was practically nonenantioselective, while that of 2b exhibited a selectivity E = 4.9 favoring the hydrolysis of the (S)-enantiomer. A comparison of these results with those previously obtained for linear and branched chain alkyl monosubstituted oxiranes shows that the introduction of the second alkyl substituent suppresses the selectivity of the mEH reaction of the latter and reverses that of the former substrates.

  4. Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-05-01

    Full Text Available Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP enzyme activities in human liver microsomes were evaluated using liquid chromatography–tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4’-hydroxylation with a Ki value of 16.3 μM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4’-hydroxylation (Ki, 3.7 μM; kinact, 0.102 min−1, CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 μM; kinact, 0.082 min−1, and CYP3A4-catalyzed midazolam 1’-hydroxylation (Ki, 23.0 μM; kinact, 0.050 min−1 in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1’-hydroxylation at 100 μM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 μM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 μM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 μM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates.

  5. Influence of sex hormones on relative quantities of multiple species of cytochrome P-450 in rat liver microsomes

    International Nuclear Information System (INIS)

    Fujita, S.; Peisach, J.; Chevion, M.; Hebrew Univ., Jerusalem

    1981-01-01

    EPR spectra of rat liver microsomes from male, female and hormonally-treated castrated hepatectomized rats were studied. The spectra, especially in the region of gsub(max) suggested a heterogeneity of local environments of the low spin ferric heme indicative of multiple structures for cytochrome P-450. Certain features in the spectrum correlated with sexual differences. It is suggested that the changes in the relative amplitudes of the EPR features represent differences in the relative abundance of the individual proteins in the mixture that, in turn, are related to the sexual differences of metabolic patterns for reactions catalyzed by cytochrome P-450. (author)

  6. Determination of the 4-monohydroxy metabolites of perhexiline in human plasma, urine and liver microsomes by liquid chromatography.

    Science.gov (United States)

    Davies, Benjamin J; Herbert, Megan K; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2006-11-07

    The use of perhexiline (PHX) is limited by hepatic and neurological toxicity associated with elevated concentrations in plasma that are the result of polymorphism of the cytochrome P450 2D6 isoform (CYP2D6). PHX is cleared by hepatic oxidation that produces three 4-monohydroxy metabolites: cis-OH-PHX, trans1-OH-PHX and trans2-OH-PHX. The current study describes an HPLC-fluorescent method utilising pre-column derivatization with dansyl chloride. Following derivatization, the metabolites were resolved on a C18 column with a gradient elution using a mobile phase composed of methanol and water. The method described is suitable for the quantification of the metabolites in human plasma and urine following clinical doses and for kinetic studies using human liver microsomes. The method demonstrates sufficient sensitivity, accuracy and precision between 5.0 and 0.01, 50.0 and 0.2 and 1.0 and 0.005 mg/l in human plasma, urine and liver microsomes, respectively, with intra-assay coefficients of variation and bias D6 extensive metaboliser (EM) patients at steady state with respect to PHX dosing determined that the mean (+/-S.D.) renal clearances of trans1-OH-PHX and cis-OH-PHX were 1.58+/-0.35 and 0.16+/-0.06l/h, respectively. The mean (+/-S.D.) dose recovered in urine as free and glucuronidated 4-monohydroxy PHX metabolites was 20.6+/-11.6%.

  7. Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane

    Science.gov (United States)

    Muratori, L; Parola, M; Ripalti, A; Robino, G; Muratori, P; Bellomo, G; Carini, R; Lenzi, M; Landini, M; Albano, E; Bianchi, F

    2000-01-01

    BACKGROUND—Liver/kidney microsomal antibody type 1 (LKM1) is the marker of type 2 autoimmune hepatitis (AIH) and is detected in up to 6% of patients with hepatitis C virus (HCV) infection. It recognises linear and conformational epitopes of cytochrome P450IID6 (CYP2D6) and may have liver damaging activity, provided that CYP2D6 is accessible to effector mechanisms of autoimmune attack.
METHODS—The presence of LKM1 in the plasma membrane was investigated by indirect immunofluorescence and confocal laser microscopy of isolated rat hepatocytes probed with 10 LKM1 positive sera (five from patients with AIH and five from patients with chronic HCV infection) and a rabbit polyclonal anti-CYP2D6 serum.
RESULTS—Serum from both types of patient stained the plasma membrane of non-permeabilised cells, where the fluorescent signal could be visualised as discrete clumps. Conversely, permeabilised hepatocytes showed diffuse submembranous/cytoplasmic staining. Adsorption with recombinant CYP2D6 substantially reduced plasma membrane staining and LKM1 immunoblot reactivity. Plasma membrane staining of LKM1 colocalised with that of anti-CYP2D6. Immunoprecipitation experiments showed that a single 50 kDa protein recognised by anti-CYP2D6 can be isolated from the plasma membrane of intact hepatocytes.
CONCLUSIONS—AIH and HCV related LKM1 recognise CYP2D6 exposed on the plasma membrane of isolated hepatocytes. This observation supports the notion that anti-CYP2D6 autoreactivity may be involved in the pathogenesis of liver damage.


Keywords: liver/kidney microsomal antibody type 1; autoimmunity; autoimmune hepatitis; hepatitis C virus infection; confocal microscopy PMID:10716687

  8. Photoaffinity labeling of rat liver microsomal morphine UDP-glucuronosyltransferase by ( sup 3 H)flunitrazepam

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin, J.; Tephly, T.R. (Univ. of Iowa, Iowa City (USA))

    1990-09-01

    Benzodiazepines have been shown to competitively inhibit morphine glucuronidation in rat and human hepatic microsomes. Flunitrazepam exerted a potent competitive inhibition of rat hepatic morphine UDP-glucuronosyltransferase (UDPGT) activity (Ki = 130 microM). It has no effect on the activity of p-nitrophenol, 17 beta-hydroxysteroid, 3 alpha-hydroxysteroid, or 4-hydroxybiphenyl UDPGTs. Because flunitrazepam is an effective photoaffinity label for benzodiazepine receptors, studied were performed in solubilized rat hepatic microsomes and with partially purified preparations of morphine UDPGT to determine the enhancement of flunitrazepam inhibition and binding to morphine UDPGT promoted by exposure to UV light. Under UV light, flunitrazepam inhibition was markedly enhanced. UV light exposure also led to a marked increase in binding of (3H)flunitrazepam to microsomal protein, which was protected substantially by preincubation with morphine. Testosterone, androsterone, and UDP-glucuronic acid did not protect against UV-enhanced flunitrazepam binding, and morphine did not reverse flunitrazepam binding once binding had occurred. As morphine UDPGT was purified, a good correlation was found between the increases in specific activity of morphine UDPGT and flunitrazepam binding to protein. Chromatofocusing chromatography showed that flunitrazepam bound only to fractions containing active morphine UDPGT, and no binding to 4-hydroxybiphenyl UDPGT was observed. Fluorography of a sodium dodecyl sulfate-polyacrylamide electrophoresis gel of solubilized hepatic microsomes that had been treated with (3H) flunitrazepam under UV light revealed a band with a monomeric molecular weight between 54,000 and 58,000. This monomeric molecular weight compares favorably with the reported monomeric molecular weight of homogeneous morphine UDPGT (56,000).

  9. Effect of radio-detoxified endotoxin on the liver microsomal drug metabolizing enzyme system in rats

    International Nuclear Information System (INIS)

    Bertok, L.; Szeberenyi, S.

    1983-01-01

    E. coli endotoxin (LPS) depresses the hepatic microsomal mono-oxygenase activity. Radio-detoxified LPS (TOLERIN: 60 Co irradiated endotoxin preparation) decreases this biotransforming activity to a smaller extent. Phenobarbital, an inducer of this mono-oxygenase system, failed to induce in LPS-treated animals. In radio-detoxified LPS-treated rats, phenobarbital induced the mono-oxygenase and almost fully restored the biotransformation

  10. Effect of rat whole-body irradiation on oxidase chain and glucose-6-phosphatase of liver microsome: influence of cysteamine

    International Nuclear Information System (INIS)

    Bernard, Pierre.

    1979-11-01

    Three enzymatic systems of the male rat liver endoplasmic reticulum were studied by biochemical methods. Two means of investigation were used: - whole-body irradiation of the animal, - administration of cysteamine. The results obtained are discussed, in view of the functioning of these enzymatic systems, from two viewpoints: - the study of enzymatic radiolesions in relation to the radiobiological effect on the animal, the organ and the sub-cellular organite, - the study of chemical radioprotection. After a 900 R whole-body gamma irradiation a severe drop was observed in the enzymatic activity of two essential elements of the microsome oxydase chain: NADPH cytochrome P450 reductase and ethylmorphine N-demethylation. Glucose 6 phosphatase is also impaired by irradiation. Here it seems that the microsomal protein fraction could be responsible for the change in the enzyme activity. The irradiation effect is therefore not specific to one enzyme. The changes in these enzymatic activities correspond to the different phases of the acute irradiation syndrome which also affects the weight of the experimental animal and of the organ studied. Cysteamine used under chemical radioprotection conditions was found to be especially useful as a means of investigation complementary to the study of enzymatic radiolesions. From the combined action of irradiation and of the radioprotector it was possible to obtain a partial idea of the mechanisms of these radiolesions [fr

  11. Role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    van Maanen, J.M.; de Ruiter, C.; de Vries, J.; Kootstra, P.R.; Gobas, F.; Pinedo, H.M.

    1985-09-01

    Covalent binding of /sup 3/H-labeled VP 16-213 to rat liver and HeLa cell microsomal proteins was studied in vitro. Metabolic activation by cytochrome P-450 was found to play a role in the covalent binding of VP 16-213 to rat liver microsomal proteins, as shown by the need of NADPH cofactor, the increased binding after phenobarbital pretreatment and the inhibition by SFK-525A. Addition of ascorbic acid or alpha-phenyl-N-tert. butylnitrone to the incubation mixture depressed covalent binding by about 85%, suggesting that formation of a reactive metabolite from the phenolic structure may be involved in the binding process. VP 16-213 did not inhibit aminopyrine N-demethylase at the concentration used in the binding experiments (17 microM), indicating that metabolism of its methylenedioxy group does not play a role in binding to microsomal proteins. HeLa cell microsomes were found to possess aminopyrine N-demethylase activity. Covalent binding of radiolabeled VP 16-213 to HeLa cell microsomes decreased by about 64% if NADPH was omitted.

  12. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  13. In vitro formation of metabolic-intermediate cytochrome P450 complexes in rabbit liver microsomes by tiamulin and various macrolides.

    Science.gov (United States)

    Carletti, Monica; Gusson, Federica; Zaghini, Anna; Dacasto, Mauro; Marvasi, Luigi; Nebbia, Carlo

    2003-01-01

    Tiamulin and a number of macrolides were evaluated as to their ability in forming metabolic-intermediate (MI) complexes with cytochrome P450 in liver microsomes from rabbits bred for meat production. Complex formation, which occurred only in preparations where the expression of P450 3A was increased as the result of rifampicin pre-treatment and with different kinetics, was in the order tiamulin > erythromycin > TAO approximately roxithromycin approximately tylosin and did not take place with tilmicosin and spiramycin. Most of the tested compounds underwent an oxidative N-dealkylation and a good relationship could be found between the rate of N-dealkylase activity in induced preparations and the aptitude in generating MI complexes. Although the results from in vitro studies should be interpreted with caution, it is suggested that the potential for in vivo drug interactions also exists in the rabbit for tiamulin and for four out of the six tested macrolides.

  14. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Kim

    2017-03-01

    Full Text Available AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP or uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 μM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 μM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.

  15. In vitro metabolism studies of 18F-labeled 1-phenylpiperazine using mouse liver S9 fraction

    International Nuclear Information System (INIS)

    Ryu, Eun Kyoung; Choe, Yearn Seong; Kim, Dong Hyun; Ko, Bong-Ho; Choi, Yong; Lee, Kyung-Han; Kim, Byung-Tae

    2006-01-01

    The in vitro metabolism of 1-(4-[ 18 F]fluoromethylbenzyl)-4-phenylpiperazine ([ 18 F]1) and 1-(4-[ 18 F]fluorobenzyl)-4-phenylpiperazine ([ 18 F]2) was investigated using mouse liver S9 fraction. Results were compared to those of in vivo metabolism using mouse blood and bone and to in vitro metabolism using mouse liver microsomes. Defluorination was the main metabolic pathway for [ 18 F]1 in vitro and in vivo. Based on TLC, HPLC and LC-MS data, [ 18 F]fluoride ion and less polar radioactive metabolites derived from aromatic ring oxidation were detected in vitro, and the latter metabolites were rapidly converted into the former with time, whereas only the [ 18 F]fluoride ion was detected in vivo. Similarly, the in vitro metabolism of [ 18 F]2 using either S9 fraction or microsomes showed the same pattern as the in vivo method using blood; however, the radioactive metabolites derived from aromatic ring oxidation were not detected in vivo. These results demonstrate that liver S9 fraction can be widely used to investigate the intermediate radioactive metabolites and to predict the in vivo metabolism of radiotracers

  16. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    Science.gov (United States)

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  17. Clinical features and effect of antiviral therapy on anti-liver/kidney microsomal antibody type 1 positive chronic hepatitis C.

    Science.gov (United States)

    Ferri, Silvia; Muratori, Luigi; Quarneti, Chiara; Muratori, Paolo; Menichella, Rita; Pappas, Georgios; Granito, Alessandro; Ballardini, Giorgio; Bianchi, Francesco B; Lenzi, Marco

    2009-06-01

    Anti-liver/kidney microsomal antibody type 1 (anti-LKM1), a serological marker of type 2 autoimmune hepatitis, is also detected in a small proportion of patients with hepatitis C. This study aimed to evaluate clinical features and effect of antiviral therapy in patients with hepatitis C who are anti-LKM1 positive. Sixty consecutive anti-LKM1 positive and 120 age and sex-matched anti-LKM1 negative chronic hepatitis C patients were assessed at diagnosis and during follow-up. Of these, 26 anti-LKM1 positive and 72 anti-LKM1 negative received antiviral therapy. Anti-LKM1 was detected by indirect immunofluorescence and immunoblot. Number of HCV-infected hepatocytes and intrahepatic CD8+ lymphocytes was determined by immunohistochemistry. At diagnosis anti-LKM1 positive patients had higher IgG levels and more intrahepatic CD8+ lymphocytes (p 0.022 and 0.046, respectively). Viral genotypes distribution and response to therapy were identical. Hepatic flares during antiviral treatment only occurred in a minority of patients in concomitance with anti-LKM1 positivity. Immune system activation is more pronounced in anti-LKM1 positive patients with hepatitis C, possibly representing the expression of autoimmune mechanisms of liver damage. Antiviral treatment is as beneficial in these patients as in anti-LKM1 negative patients, and the rare necroinflammatory flares are effectively controlled by corticosteroids, allowing subsequent resumption of antiviral therapy.

  18. Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry

    OpenAIRE

    Vikingsson, Svante; Josefsson, Martin; Green, Henrik

    2015-01-01

    The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 3...

  19. Characterization of anti-liver-kidney microsome antibody (anti-LKM1) from hepatitis C virus-positive and -negative sera.

    Science.gov (United States)

    Yamamoto, A M; Cresteil, D; Homberg, J C; Alvarez, F

    1993-06-01

    Hepatitis C virus-related antibodies were found in sera positive for antibodies to liver/kidney microsome antibody, usually considered a marker of autoimmune hepatitis. The aim of this study was to analyze the specificity of this autoantibody in sera from patients with and without hepatitis C virus infection. Fifteen anti-hepatitis C virus- and anti-liver kidney microsome-positive sera were compared with 11 sera from patients with autoimmune hepatitis, for reactivity against rat and human liver microsomal proteins, P450IID6 recombinant proteins, and various synthetic peptides spanning the 241-429 amino acids sequence of the P450IID6. Ten of 11 sera from patients with autoimmune hepatitis bound to recombinant proteins spanning the P450IID6 region between amino acids 72 and 458. These sera bound to the 254-271 peptide, and some also recognized the 321-351, 373-389 and 410-429 peptides. Four of 15 antihepatitis C virus recognized the fusion protein coded by the full-length P450IID6 complementary DNA; 3 of them also reacted with the P450IID6 region between amino acids 72-456. Only 1 sera recognized the 321-351 peptide. P450IID6 antigenic sites recognized by anti-hepatitis C virus-positive sera were different from those recognized by sera from patients with autoimmune hepatitis.

  20. Frequency and significance of antibodies to liver/kidney microsome type 1 in adults with chronic active hepatitis.

    Science.gov (United States)

    Czaja, A J; Manns, M P; Homburger, H A

    1992-10-01

    To assess the frequency of antibodies to liver/kidney microsome type 1 (anti-LKM1) in patients with chronic active hepatitis, 131 such patients were tested by an indirect immunofluorescence assay. Of 62 patients with type 1 autoimmune hepatitis, none were seropositive. In contrast, 3 of 11 patients with autoimmune hepatitis and antimitochondrial antibodies (27%) were seropositive for anti-LKM1. Each had responded to corticosteroid therapy, and retesting of sera confirmed that each had been misclassified as antimitochondrial antibody positive. None of the patients with chronic active hepatitis B (14 patients) or C (24 patients) had anti-LKM1. Similarly, none of the 20 patients with cryptogenic disease had these antibodies. It is concluded that anti-LKM1 is specific for type 2 autoimmune hepatitis and is infrequent in adult patients seen at a referral center in the United States for chronic active hepatitis. Anti-LKM1 reactivity may be misinterpreted as antimitochondrial antibody reactivity by indirect immunofluorescence. Chronic hepatitis B and C virus infections are not important stimuli for the production of anti-LKM1, and testing for anti-LKM 1 is unlikely to clarify the nature of cryptogenic disease.

  1. Pharmacokinetic study of isocorynoxeine metabolites mediated by cytochrome P450 enzymes in rat and human liver microsomes.

    Science.gov (United States)

    Zhao, Lizhu; Zang, Bin; Qi, Wen; Chen, Fangfang; Wang, Haibo; Kano, Yoshihiro; Yuan, Dan

    2016-06-01

    Isocorynoxeine (ICN) is one of the major bioactive tetracyclic oxindole alkaloids found in Uncaria rhynchophylla (Miq.) Jacks. that is widely used for the treatment of hypertension, vascular dementia, and stroke. The present study was undertaken to assess the plasma pharmacokinetic characteristics of major ICN metabolites, and the role of simulated gastric and intestinal fluid (SGF and SIF), human and rat liver microsomes (HLMs and RLMs), and seven recombinant human CYP enzymes in the major metabolic pathway of ICN. A rapid, sensitive and accurate UHPLC/Q-TOF MS method was validated for the simultaneous determination of ICN and its seven metabolites in rat plasma after oral administration of ICN at 40mg/kg. It was found that 18.19-dehydrocorynoxinic acid (DCA) and 5-oxoisocorynoxeinic acid (5-O-ICA) were both key and predominant metabolites, rather than ICN itself, due to the rapid and extensive metabolism of ICN in vivo. The further study indicated that ICN was mainly metabolized in human or rat liver, and CYPs 2C19, 3A4 and 2D6 were the major enzymes responsible for the biotransformation of ICN to DCA and 5-O-ICA in human. These findings are of significance in understanding of the pharmacokinetic nature of tetracyclic oxindole alkaloids, and provide helpful information for the clinical co-administration of the herbal preparations containing U. rhynchophylla with antihypertensive drugs that are mainly metabolized by CYP3A4 and CYP2C19. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-05

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Effect of Gender on the Rate of Metabolism of Midazolam in Humans Using Liver Microsomes

    Science.gov (United States)

    1997-05-01

    pronounced in persons who are hypertensive , dehydrated, or vasoconstricted due to high sympathetic tone. MDZ blocks the catecholamine response to...Physicians Desk Reference, 1994). Pharmacokinetics of the Drua Oral MDZ is absorbed by the small intestine and delivered to the liver via the portal ...Biochemical Pharmacology, 32(22), 4389-4397. Gascon, M. P., & Dayer, P. (1991), In vitro forecasting of drugs which may interfere with the

  4. [Structural reorganization and change in the lipid composition of rat liver microsomes in chlorophos poisoning].

    Science.gov (United States)

    Boldeskul, A E; Gubskiĭ, Iu I; Mel'nik, A A; Fal'kovskaia, E N

    1993-01-01

    The influence of chlorophos on the endoplasmatic reticulum of rat liver has been studied using the methods of gas-liquid chromatography and fluorescence. Experiments have demonstrated an increase of lysophosphatidylethanolamine, total phospholipids, unsaturated fatty acids (C20:4 n6, C18:1 n11, C18:1 n7) and a decrease of phosphatidylserine and phosphatidylethanolamine. Changes in microviscosity and surface charge were also shown.

  5. Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes.

    Science.gov (United States)

    Yamazaki, H; Mimura, M; Oda, Y; Inui, Y; Shiraga, T; Iwasaki, K; Guengerich, F P; Shimada, T

    1993-07-01

    We reported previously that the potent mutagen 6-aminochrysene is catalyzed principally by rat liver microsomal P4501A and P4502B enzymes to reactive metabolites that induce umu gene expression in O-acetyltransferase-over-expressing strain Salmonella typhimurium NM2009; the proposal was made that there are different mechanisms in the formation of reactive N-hydroxylated and diolepoxide metabolites by P450 enzymes (Yamazaki, H. and Shimada, T., Biochem. Pharmacol., 44, 913-920, 1992). Here we further examined the roles of human liver P450 enzymes and the mechanism of activation of 6-aminochrysene by rat and human P450 enzymes in the Salmonella tester strains. Liver microsomes from 18 different human samples catalyzed activation of 6-aminochrysene more efficiently in S. typhimurium NM2009 than in the original strain of S. typhimurium TA1535/pSK1002. The rates of 6-aminochrysene activation in 18 human liver samples showed good correlation to the contents of P4502B6 as well as contents of P4503A4 and the respective mono-oxygenase activities catalyzed by P4503A4. Among purified P450 enzymes examined, P4501A2 as well as P4503A4 were highly active in transforming 6-amino-chrysene to reactive metabolites, suggesting the involvement of different human P450 enzymes in the reaction. Four human samples that contained relatively high levels of particular P450 enzymes in their microsomes were selected and used for further characterization. Liver microsomes from human samples HL-13 and HL-4 that contained the highest levels of P4502B6 and P4503A4 respectively, were sensitive to the respective antibodies raised against monkey P4502B and human P4503A4; the activity in sample HL-16 having the highest level of P4501A2 was inhibited by anti-P4501A2 IgG. alpha-Naphthoflavone enhanced the activation of 6-aminochrysene very significantly in human liver microsomes enriched in P4503A4 and P4502B6 enzymes. Pentachlorophenol, an inhibitor of acetyltransferase activity, suppressed the

  6. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  7. Uptake and disposition of mirex in hepatocytes and subcellular fractions in CD1 mouse liver

    International Nuclear Information System (INIS)

    Charles, A.K.; Rosenbaum, D.P.; Ashok, L.; Abraham, R.

    1985-01-01

    In vivo uptake and disposition of [ 14 C]mirex by CD1 mouse liver subcellular fractions and cells of different nuclear ploidy were examined following single or multiple doses of mirex injected intraperitoneally. Significant amounts of mirex were rapidly taken up by liver (21-29%), suggesting that liver is one of the primary sites of accumulation of the chemical. Among subcellular fractions, mirex was predominantly distributed in mitochondria and microsomes in the irreversibly bound form (about 20%), although its levels fluctuated considerably with time. Mirex was completely dissociated with trichloroacetic acid treatment from both nuclear and plasma membrane fractions, although the total uptake by these fractions was markedly high. The time course of uptake and concentration-dependent disposition of mirex revealed that polyploid hepatocytes selectively accumulated higher amounts of the chemical (two to three times) compared to diploid hepatocytes. The increased affinity of polyploid cells to mirex may indicate a greater susceptibility of this cell type to the chemical insult and also may suggest a possible early involvement of polyploids in the tumorigenic process in rodent livers

  8. A novel assay for detecting antibodies to cytochrome P4502D6, the molecular target of liver kidney microsomal antibody type 1.

    Science.gov (United States)

    Kerkar, N; Ma, Y; Hussain, M; Muratori, L; Targett, C; Williams, R; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1999-03-04

    Liver Kidney Microsomal type 1 (LKM1) antibody, the diagnostic marker of autoimmune hepatitis type 2, is also found in a proportion of patients with hepatitis C virus infection (HCV). It is detected conventionally by the subjective immunofluorescence technique. Our aim was to establish a simple and objective enzyme-linked immunosorbent assay (ELISA) that measures antibodies to cytochrome P4502D6 (CYP2D6), the target of LKM1. An indirect ELISA using eukaryotically expressed CYP2D6 was designed. Absorbance values obtained against a reference microsomal preparation were subtracted from those obtained against a microsomal preparation over-expressing CYP2D6, thus removing the non-CYP2D6-specific reaction. Sera from 51 LKM1 positive patients (21 autoimmune hepatitis and 30 with HCV infection), 111 LKM1 negative patients with chronic liver disease (including 20 with HCV infection) and 43 healthy controls were tested. Of 51 patients positive by immunofluorescence, 48 were also positive by ELISA while all the 154 LKM1 negative subjects were also negative by ELISA. There was a high degree of association between IFL and ELISA as demonstrated by a kappa reliability value of 0.96. The absorbance values by ELISA correlated with immunofluorescence LKM1 titres both in autoimmune hepatitis (r = 0.74, p < 0.001) and HCV infection (r = 0.67, p < 0.001). The simple, objective ELISA described has the potential to replace the standard immunofluorescence technique.

  9. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    Science.gov (United States)

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  10. The effect of trimethoprim on CYP2C8 mediated rosiglitazone metabolism in human liver microsomes and healthy subjects

    Science.gov (United States)

    Hruska, M W; Amico, J A; Langaee, T Y; Ferrell, R E; Fitzgerald, S M; Frye, R F

    2005-01-01

    Aims Rosiglitazone, a thiazolidinedione antidiabetic medication used in the treatment of Type 2 diabetes mellitus, is predominantly metabolized by the cytochrome P450 (CYP) enzyme CYP2C8. The anti-infective drug trimethoprim has been shown in vitro to be a selective inhibitor of CYP2C8. The purpose of this study was to evaluate the effect of trimethoprim on the CYP2C8 mediated metabolism of rosiglitazone in vivo and in vitro. Methods The effect of trimethoprim on the metabolism of rosiglitazone in vitro was assessed in pooled human liver microsomes. The effect in vivo was determined by evaluating rosiglitazone pharmacokinetics in the presence and absence of trimethoprim. Eight healthy subjects (four men and four women) completed a randomized, cross-over study. Subjects received single dose rosiglitazone (8 mg) in the presence and absence of trimethoprim 200 mg given twice daily for 5 days. Results Trimethoprim inhibited rosiglitazone metabolism both in vitro and in vivo. Inhibition of rosiglitazone para-hydroxylation by trimethoprim in vitro was found to be competitive with apparent Ki and IC50 values of 29 µm and 54.5 µm, respectively. In the presence of trimethoprim, rosiglitazone plasma AUC was increased by 31% (P = 0.01) from 2774 ± 645 µg l−1 h to 3643 ± 1051 µg l−1 h (95% confidence interval (Cl) for difference 189, 1549), and half-life was increased by 27% (P = 0.006) from 3.3 ± 0.5 to 4.2 ± 0.8 h (95% Cl for difference 0.36, 1.5). Trimethoprim reduced the para-O-sulphate rosiglitazone/rosiglitazone and the N-desmethylrosiglitazone/rosiglitazone AUC(0–24) ratios by 22% and 38%, respectively. Conclusions These results indicate that trimethoprim is a competitive inhibitor of CYP2C8-mediated rosiglitazone metabolism in vitro and that trimethoprim administration increases plasma rosiglitazone concentrations in healthy subjects. PMID:15606443

  11. Selective inhibition of CYP2C8 by fisetin and its methylated metabolite, geraldol, in human liver microsomes.

    Science.gov (United States)

    Shrestha, Riya; Kim, Ju-Hyun; Nam, Wongshik; Lee, Hye Suk; Lee, Jae-Mok; Lee, Sangkyu

    2018-04-01

    Fisetin is a flavonol compound commonly found in edible vegetables and fruits. It has anti-tumor, antioxidant, and anti-inflammatory effects. Geraldol, the O-methyl metabolite of fisetin in mice, is reported to suppress endothelial cell migration and proliferation. Although the in vivo and in vitro effects of fisetin and its metabolites are frequently reported, studies on herb-drug interactions have not yet been performed. This study was designed to investigate the inhibitory effect of fisetin and geraldol on eight isoforms of human cytochrome P450 (CYP) by using cocktail assay and LC-MS/MS analysis. The selective inhibition of CYP2C8-catalyzed paclitaxel hydroxylation by fisetin and geraldol were confirmed in pooled human liver microsomes (HLMs). In addition, an IC 50 shift assay under different pre-incubation conditions confirmed that fisetin and geraldol shows a reversible concentration-dependent, but not mechanism-based, inhibition of CYP2C8. Moreover, Michaelis-Menten, Lineweaver-burk plots, Dixon and Eadie-Hofstee showed a non-competitive inhibition mode with an equilibrium dissociation constant of 4.1 μM for fisetin and 11.5 μM for geraldol, determined from secondary plot of the Lineweaver-Burk plot. In conclusion, our results indicate that fisetin showed selective reversible and non-competitive inhibition of CYP2C8 more than its main metabolite, geraldol, in HLMs. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. Modulation of catechol estrogen synthesis by rat liver microsomes: effects of treatment with growth hormone or testosterone

    International Nuclear Information System (INIS)

    Quail, J.A.; Jellinck, P.H.

    1987-01-01

    The ability of GH from various mammalian species, administered to normal mature male rats by constant infusion, to decrease the hepatic 2-hydroxylation of estradiol (E2) to female levels, as measured by the release of 3 H 2 O from [2-3H]E2, was determined. Rat and human GH (hGH) showed the highest activity while ovine GH was inactive. PRL (0.6 IU/h X kg) administered together with hGH (0.02 IU/h X kg) did not antagonize the feminizing action of GH. Infusion of hGH into male rats decreased the affinity of estradiol 2-hydroxylase for its steroid substrate and altered the linear Lineweaver-Burk plot towards a nonlinear hyperbolic plot characteristic of the female. The apparent Michaelis-Menten constant (Km) for the reaction was 1.69 microM for males and 2.75 microM for testosterone-treated ovariectomized females. An equal mixture of liver microsomes from male and female rats gave kinetic values similar to those observed with males alone. Neonatal imprinting with androgen did not alter the magnitude of the response of female rats to treatment with testosterone and/or GH at maturity and the androgen effect could only be shown in ovariectomized animals. The results with rats of different endocrine status were corroborated by the kinetic data and by the pattern of metabolites obtained with [4- 14 C]E2 when examined by TLC and autoradiography. The hormonal control of estradiol 2-hydroxylase, the key enzyme in catechol estrogen formation, and the contribution of sex-specific multiple forms of the enzyme to this reaction are discussed

  13. Immunological cross-reactivity to multiple autoantigens in patients with liver kidney microsomal type 1 autoimmune hepatitis.

    Science.gov (United States)

    Choudhuri, K; Gregorio, G V; Mieli-Vergani, G; Vergani, D

    1998-11-01

    We describe two patients with liver kidney microsomal antibody type 1 (LKM1)-positive autoimmune hepatitis (AIH) with associated endocrinopathies. The first patient had insulin-dependent diabetes (IDDM), and the second patient had Addison's disease and hypoparathyroidism, and is also positive for islet cell antibodies, without overt diabetes. To account for the existence of multiple endocrinopathy in these patients, we investigated whether there is sequence similarity between the target of LKM1 antibodies, cytochrome P4502D6 (CYP2D6), and other human proteins, and if so, whether this structural similarity produces a detectable cross-reactive immune response. Our database search identified two proteins, carboxypeptidase H, an autoantigen in insulin-dependent diabetes, and 21-hydroxylase, the major autoantigen in Addison's disease, that share sequence similarity to the second major LKM1 epitope on CYP2D6. We tested the reactivity of sera from these patients to the homologous regions of the three autoantigens using an enzyme-linked immunosorbent assay (ELISA). The cut-off for positivity was established by testing sera from 22 healthy children. To determine the significance of reactivity to the peptide homologues of the three autoantigens, we investigated 16 additional patients with LKM1 AIH and 20 children with chronic hepatitis B virus infection as pathological controls. We found that reactivity to the second major epitope of CYP2D6 is significantly associated with reactivity to the homologous regions of carboxypeptidase H (CPH) and 21-hydroxylase (21-OHase) in patients with LKM1 AIH, and that this simultaneous recognition is cross-reactive. We suggest that a cross-reactive immune response between homologous autoantigens may contribute to the development of multiple endocrinopathies in LKM1 AIH.

  14. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of withaferin A on tumor growth and metastasis in liver in a nude mouse model. Methods: Withaferin A was injected through a portal vein to the orthotopic liver tumor in a nude mice model. Xenogen in vivo imaging system was used to monitor tumor growth and metastasis. The effect of ...

  15. Biliary excretion of ouabain in isolated perfused rat liver after treatment with microsomal enzyme inducers

    International Nuclear Information System (INIS)

    Nevasaari, K.; Alakare, B.; Kaerki, N.T.

    1976-01-01

    The effect of pretreatment with spironolactone, phenobarbital and 3,4-benzpyrene on biliary excretion of ouabain was studied in isolated perfused rat liver system after a single dose of 3 H-ouabain. Spironolactone pretreatment (100 mg/kg intraperitoneally for 4 days) changed the time course of the excretion, thus accelerating the transport of ouabain into the bile. Phenobarbital pretreatment (75 mg/kg intraperitoneally for 4 days) enhanced bile flow and increased biliary excretion of ouabain only after 15 min. At longer time periods the increase in bile flow diluted the bile level of ouabain there being no difference in the amounts excreted into the bile between the treated and untreated groups. 3,4-benzpyrene pretreatment (20 mg/kg intraperitoneally for 4 days) was without efffect on biliary excretion of ouabain. The results suggest that spironolactone differs from phenobarbital in its enhancing effect on biliary excretion of ouabain, possibly through a specific effect on an unknown hepatic transport mechanism. (author)

  16. Evidence of a genetic basis for the different geographic occurrences of liver/kidney microsomal antibody type 1 in hepatitis C.

    Science.gov (United States)

    Muratori, Paolo; Czaja, Albert J; Muratori, Luigi; Granito, Alessandro; Guidi, Marcello; Ferri, Silvia; Volta, Umberto; Mantovani, Wilma; Pappas, Georgios; Cassani, Fabio; Lenzi, Marco; Bianchi, Francesco B

    2007-01-01

    Antibodies to liver/kidney microsome type 1 occur in Italian patients with hepatitis C, but rarely develop in North American patients. Our goals were to compare the frequencies of the HLA markers associated with autoimmune expression in Italian and North American patients with chronic hepatitis C and to determine genetic bases for regional differences in antibody production. HLA B8, DR3, DR4, DR7, DR11, DR13, DQ2, and the B8-DR3-DQ2 haplotype were determined by microlymphocytotoxicity and polymerase chain reaction in 105 Italian patients (50 with microsomal antibodies), 100 North American patients (none with microsomal antibodies), and Italian and North American healthy control subjects. Italian patients with microsomal antibodies differed from North American patients without these antibodies by having a higher frequency of HLA DR7 (54% vs. 27%, P=0.002). HLA DR7 occurred more frequently in seropositive Italian patients than in seronegative counterparts (54% vs. 11% P < 0.0001), Italian healthy control subjects (54% vs. 29%, P=0.0009), and North American healthy control subjects (54% vs. 19%, P < 0.0001). The frequency of HLA DR7 was similar in North American patients and controls (27% vs. 19%, P=0.2), but it was lower than in Italian controls (19% vs. 29%, P=0.059). Seropositive Italian patients had a lower frequency of HLA DR11 than seronegative Italian patients and Italian controls (18% vs. 34%, P=0.07, and 18% vs. 35%, P=0.02, respectively). In contrast to seropositive Italian patients, North American patients had HLA DR4 (30% vs. 12%, P=0.02), HLA DR13 (29% vs. 10%, P=0.01), and the B8-DR3-DQ2 haplotype (23% vs. 6%, P=0.01) more often. Similarly, HLA DR4 and the B8-DR3-DQ2 phenotype were more frequent in North American patients than in Italian controls (30% vs. 16%, P=0.005, and 23% vs. 7%, P=0.00002, respectively). HLA DR7 is associated with the development of microsomal antibodies in Italian patients with chronic hepatitis C. The lower frequency of HLA DR7

  17. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate.

    Science.gov (United States)

    Venkatakrishnan, K; von Moltke, L L; Greenblatt, D J

    2001-04-01

    The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.

  18. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin.

    Science.gov (United States)

    Gill, Katherine L; Houston, J Brian; Galetin, Aleksandra

    2012-04-01

    Previous studies have shown the importance of the addition of albumin for characterization of hepatic glucuronidation in vitro; however, no reports exist on the effects of albumin on renal or intestinal microsomal glucuronidation assays. This study characterized glucuronidation clearance (CL(int, UGT)) in human kidney, liver, and intestinal microsomes in the presence and absence of bovine serum albumin (BSA) for seven drugs with differential UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B7 specificity, namely, diclofenac, ezetimibe, gemfibrozil, mycophenolic acid, naloxone, propofol, and telmisartan. The impact of renal CL(int, UGT) on accuracy of in vitro-in vivo extrapolation (IVIVE) of glucuronidation clearance was investigated. Inclusion of 1% BSA for acidic drugs and 2% for bases/neutral drugs in incubations was found to be suitable for characterization of CL(int, UGT) in different tissues. Although BSA increased CL(int, UGT) in all tissues, the extent was tissue- and drug-dependent. Scaled CL(int, UGT) in the presence of BSA ranged from 2.22 to 207, 0.439 to 24.4, and 0.292 to 23.8 ml · min(-1) · g tissue(-1) in liver, kidney, and intestinal microsomes. Renal CL(int, UGT) (per gram of tissue) was up to 2-fold higher in comparison with that for liver for UGT1A9 substrates; in contrast, CL(int, UGT) for UGT2B7 substrates represented approximately one-third of hepatic estimates. Scaled renal CL(int, UGT) (in the presence of BSA) was up to 30-fold higher than intestinal glucuronidation for the drugs investigated. Use of in vitro data obtained in the presence of BSA and inclusion of renal clearance improved the IVIVE of glucuronidation clearance, with 50% of drugs predicted within 2-fold of observed values. Characterization and consideration of kidney CL(int, UGT) is particularly important for UGT1A9 substrates.

  19. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  20. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...

  1. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfer protein.

    Science.gov (United States)

    Bremmer, D R; Trower, S L; Bertics, S J; Besong, S A; Bernabucci, U; Grummer, R R

    2000-10-01

    We conducted three experiments to determine the effects of nutritional and hormonal status on microsomal triglyceride transfer protein (MTP) activity and mass. In experiment 1, 18 nonlactating Holstein cows, 75 d before expected calving date, in their second gestation or greater were monitored from d 75 to 55 prepartum. Cows were fed a control diet from d 75 to 62 prepartum for covariable measurements. From d 61 to 55 prepartum, six cows continued to receive the control diet, six cows were restricted to 2.3 kg of grass hay/d, and six cows were fed the control diet plus 1.8 kg of concentrate/d and 500 ml of propylene glycol given 2 times/d as an oral drench. Plasma glucose and serum insulin concentrations were highest in cows that received propylene glycol and lowest in feed restricted cows. Plasma nonesterified fatty acids (NEFA) and liver triglyceride (TG) concentrations were highest in feed restricted cows and not different between cows that received the control diet and cows that received propylene glycol. Hepatic MTP activity and mass were not affected by treatment in experiment 1. In experiment 2, bovine hepatocytes isolated from the caudate process of five preruminating Holstein bull calves were incubated with either 0, 0.5, 1.0, or 2.0 mM NEFA for 48 h. Intracellular TG increased linearly as NEFA concentration in the media increased. Concentration of NEFA in the incubation media had no effect on MTP activity or mass. There was a quadratic effect of concentration of NEFA in the incubation media on MTP mRNA. In experiment 3, bovine hepatocytes isolated from the caudate process of five preruminating Holstein bull calves were incubated with 2 mM [1-14C]oleate for 24 h to accumulate TG, followed by a 36-h period of TG depletion, during which hepatocytes were incubated with no hormone, 10 nM insulin, or 10 nM glucagon. There was no effect of insulin or glucagon on intracellular TG, MTP activity or mass. Cells incubated with no hormone had higher levels of MTP m

  2. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  3. Effects of thiol antioxidants on the atropselective oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) by rat liver microsomes.

    Science.gov (United States)

    Wu, Xianai; Lehmler, Hans-Joachim

    2016-02-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0-10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol), 4-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol), and 4,5-136 (2,2',3,3',6,6'-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136, and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo.

  4. Transcriptomic profiling of trichloroethylene exposure in male mouse liver

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2015-03-01

    Full Text Available Chronic Trichloroethylene (TCE exposure could induce hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE for 5 days. As a beginning step, we profiled gene expression alterations induced by the TCE in mouse livers. Here we describe in detail the experimental methods, quality controls, and other information associated with our data deposited into Gene Expression Omnibus (GEO under GSE58819. Our data provide useful information for gene expression responses to TCE in mouse liver.

  5. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Karen R Jonscher

    Full Text Available Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.

  6. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    Science.gov (United States)

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  7. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  8. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  9. The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: in vitro studies using human liver microsomes.

    Science.gov (United States)

    Kerry, N L; Somogyi, A A; Bochner, F; Mikus, G

    1994-01-01

    1. The enzyme kinetics of dextromethorphan O-demethylation in liver microsomes from three extensive metabolisers (EM) with respect to CYP2D6 indicated high (Km1 2.2-9.4 microM) and low (Km2 55.5-307.3 microM) affinity sites whereas microsomes from two poor metabolisers (PM) indicated a single site (Km 560 and 157 microM). Similar differences were shown for 3-methoxymorphinan O-demethylation to 3-hydroxymorphinan (Km 6.9-9.6 microM in EM subjects; Km 307 and 213 microM in PM subjects). 2. Dextromethorphan O-demethylation was inhibited competitively by quinidine (Ki 0.1 microM), rac-perhexiline (Ki 0.4 microM), dextropropoxyphene (Ki 6 microM), rac-methadone (Ki 8 microM), and 3-methoxymorphinan (Ki 15 microM). These compounds were also potent inhibitors of 3-methoxymorphinan O-demethylation with IC50 values ranging from 0.02-12 microM. Anti-LKM1 serum inhibited both dextromethorphan and 3-methoxymorphinan O-demethylations in a titre-dependent manner. 3. The Michaelis-Menten constant for dextromethorphan N-demethylation to 3-methoxymorphinan (Km 632-977 microM) and dextrorphan N-demethylation to 3-hydroxymorphinan (Km 1571-4286 microM) did not differ between EM and PM microsomes. These N-demethylation reactions were not inhibited by quinidine and rac-methadone or LKM1 antibodies. 4. Dextromethorphan and 3-methoxymorphinan are metabolised by the same P450 isoform, CYP2D6, whereas the N-demethylation reactions are not carried out by CYP2D6. PMID:7826826

  10. Comparison of epoxide and free-radical mechanisms for activation of benzo[a]pyrene by Sprague-Dawley rat liver microsomes

    International Nuclear Information System (INIS)

    Selkirk, J.K.

    1980-01-01

    Coincubation of [6- 3 H]benzo[a]pyrene ([6- 3 H]BP) and [ 14 C]BP with SD rat liver microsomes produced metabolic profiles that showed that the C-6 of BP was not affected by formation of 4,5-dihydro-4,5-dihydroxy-BP, 7,8-dihydro-7,8-dihydroxy-BP, and 9,10-dihydro-9,10-dihydroxy-BP nor the 3- and 9-phenols of BP. Complete retention of tritium at C-6, except in the three quinones, confirmed the radical-cation model for formation of the 6-oxo-radical followed by oxidation to quinone. Epoxide formation at the carcinogenically active regions of BP appeared to biochemically isolate from 6-position activation and suggested that the microsomal epoxide pathway is unrelated to the radicalcation scheme. These molar ratios derived from double-label experiments reinforced the current literature that indicates the epoxide mechanism as the major pathway toward carcinogenic forms of BP

  11. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    Science.gov (United States)

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  12. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2015-01-01

    Full Text Available Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug–drug interactions mediated via inhibition of the major CYP isozymes.

  13. [The effect of alpha-tocopherol and ionol on the physical structure of the membranes of rat liver microsomes under conditions of antioxidant insufficiency].

    Science.gov (United States)

    Gubskiĭ, Iu I; Boldeskul, A E; Primak, R G; Zadorina, O V

    1989-01-01

    Physiochemical conformity of the alpha-tocopherol interaction with hepatic microsomal membranes has been studied by means of fluorescent probes (pyrene and 1-anilinonaphthalene-8-sulphonate). The microsomal membrane microviscosity is shown to sharply decrease under conditions of the antioxidant deficiency with vitamin E expelled into animals normalizes microviscosity, but feebly influences the microsomal surface charge. Microcalorimetry has been used to establish that penetration of tocopherol into microsomal membranes was accompanied by the exothermic effect.

  14. Strategy for Hepatotoxicity Prediction Induced by Drug Reactive Metabolites Using Human Liver Microsome and Online 2D-Nano-LC-MS Analysis.

    Science.gov (United States)

    Zhuo, Yue; Wu, Jian-Lin; Yan, Xiaojing; Guo, Ming-Quan; Liu, Ning; Zhou, Hua; Liu, Liang; Li, Na

    2017-12-19

    Hepatotoxicity is a leading cause of drug withdrawal from the market; thus, the assessment of potential drug induced liver injury (DILI) in preclinical trials is necessary. More and more research has shown that the covalent modification of drug reactive metabolites (RMs) for cellular proteins is a possible reason for DILI. Unfortunately, so far no appropriate method can be employed to evaluate this kind of DILI due to the low abundance of RM-protein adducts in complex biological samples. In this study, we proposed a mechanism-based strategy to solve this problem using human liver microsomes (HLMs) and online 2D nano-LC-MS analysis. First, RM modification patterns and potential modified AA residues are determined using HLM and model amino acids (AAs) by UHPLC-Q-TOF-MS. Then, a new online 2D-nano-LC-Q-TOF-MS method is established and applied to separate the digested modified microsomal peptides from high abundance peptides followed by identification of RM-modified proteins using Mascot, in which RM modification patterns on specific AA residues are added. Finally, the functions and relationship with hepatotoxicity of the RM-modified proteins are investigated using ingenuity pathway analysis (IPA) to predict the possible DILI. Using this strategy, 21 proteins were found to be modified by RMs of toosendanin, a hepatotoxic drug with complex structure, and some of them have been reported to be associated with hepatotoxicity. This strategy emphasizes the identification of drug RM-modified proteins in complex biological samples, and no pretreatment is required for the drugs. Consequently, it may serve as a valuable method to predict potential DILI, especially for complex compounds.

  15. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    Science.gov (United States)

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  16. 2,2',3,3',6,6'-Hexachlorobiphenyl (PCB 136) is Enantioselectively Oxidized to Hydroxylated Metabolites by Rat Liver Microsomes

    Science.gov (United States)

    Wu, Xianai; Pramanik, Ananya; Duffel, Michael W.; Hrycay, Eugene G.; Bandiera, Stelvio M.; Lehmler, Hans-Joachim; Kania-Korwel, Izabela

    2011-01-01

    Developmental exposure to multiple-ortho substituted polychlorinated biphenyls (PCBs) causes adverse neurodevelopmental outcomes in laboratory animals and humans by mechanisms involving the sensitization of Ryanodine receptors (RyRs). In the case of PCB 136, the sensitization of RyR is enantiospecific, with only (-)-PCB 136 being active. However, the role of enantioselective metabolism in the developmental neurotoxicity of PCB 136 is poorly understood. The present study employed hepatic microsomes from phenobarbital (PB-), dexamethasone (DEX-) and corn oil (VEH-)treated male Sprague-Dawley rats to investigate the hypothesis that PCB 136 atropisomers are enantioselectively metabolized by P450 enzymes to potentially neurotoxic, hydroxylated PCB 136 metabolites. The results demonstrated the time- and isoform-dependent formation of three metabolites, with 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) being the major metabolite. The formation of 5-OH-PCB 136 increased with the activity of P450 2B enzymes in the microsomal preparation, which is consistent with PCB 136 metabolism by rat P450 2B1. The minor metabolite 4-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-4-ol) was produced by a currently unidentified P450 enzymes. An enantiomeric enrichment of (-)-PCB 136 was observed in microsomal incubations due to the preferential metabolism of (+)-PCB 136 to the corresponding 5-OH-PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl-5-ol) atropisomer. 4-OH-PCB 136 displayed an enrichment of the atropisomer formed from (-)-PCB 136; however, the enrichment of this metabolite atropisomer didn't affect the enantiomeric enrichment of the parent PCB because 4-OH-PCB 136 is only a minor metabolite. Although the formation of 5- and 4-OH-PCB 136 atropisomers increased with time, the enantioselective formation of the OH-PCB metabolites resulted in constant enantiomeric enrichment, especially at later incubation times. These observations not only demonstrate that the chiral signatures of

  17. Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice.

    Science.gov (United States)

    Kishida, T; Ataki, H; Takebe, M; Ebihara, K

    2000-04-01

    The effect of soybean meal fermented by Aspergillus awamori on the acute lethality of acetaldehyde, pentobarbital sleeping time, and cytochrome P-450 content of the hepatic microsomes was studied in mice. Most of the daidzin and genistin in soybean meal (SBM) were converted into the respective aglycones, daidzein and genistein, by fermentation. In experiment 1, mice were fed isonitrogenic test diets with one of the following five protein sources for 28 d: casein, SBM, fermented and hot-air-dried SBM (FSBM-HD), fermented and freeze-dried SBM (FSBM-FD), or methanol-extracted FSBM-FD (FSMB-FD-R). The acute lethality of acetaldehyde in mice fed the FSBM-FD diet was significantly lower than that in mice fed the SBM, FSBM-HD, or FSBM-FD-R diet. In experiments 2 and 3, mice were fed isonitrogenic test diets with one of the following four protein sources for 28 d: casein, SBM, FSBM-FD, and FSBM-FD-R. The pentobarbital sleeping time was significantly shorter and the cytochrome P-450 content was significantly higher in the mice fed the FSBM-FD diet than the respective value in mice fed the other test diets. In experiment 4, mice were fed one of eight diets which contained different levels of aglycone obtained by varying the proportion of FSBM-FD and FSBM-FD-R, for 28 d. The cytochrome P-450 content in hepatic microsomes increased as the dietary level of isoflavonoid aglycones increased, but there was a saturation phenomenon. These results suggest that soy isoflavonoid aglycones are more potent inducers of cytochrome P-450 than isoflavonoid glycosides.

  18. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.

    Science.gov (United States)

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M; Nachtmann, C

    1999-09-01

    Monensin (MON) is an ionophore antibiotic widely used in veterinary practice as a coccidiostatic or a growth promoter. The aims of this study were to characterize the P-450 isoenzyme(s) involved in the biotransformation of the ionophore and to investigate how this process may be affected by tiamulin and other chemotherapeutic agents known to produce toxic interactions with MON when administered concurrently in vivo. In liver microsomes from untreated rats (UT) or from rats pretreated, respectively, with ethanol (ETOH), beta-naphthoflavone (betaNAF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), or dexamethasone (DEX), the rate of MON O-demethylation was the following: DEX > PCN > PB > UT = ETOH > betaNAF; similar results were obtained by measuring total MON metabolism. In addition, the extent of triacetyloleandomycin-mediated P-450 complexes was greatly reduced by the prior addition of 100 microM MON. In DEX-treated microsomes, MON O-demethylation was found to fit monophasic Michaelis-Menten kinetics (K(M) = 67.6 +/- 0.01 microM; V(max) = 4.75 +/- 0.76 nmol/min/mg protein). Tiamulin markedly inhibited this activity in an apparent competitive manner, with a calculated K(i) (Dixon plot) of 8.2 microM and an IC(50) of about 25 microM. At the latter concentration, only ketoconazole or metyrapone, which can bind P-450 3A, inhibited MON O-demethylase to a greater extent than tiamulin, whereas alpha-naphthoflavone, chloramphenicol, or sulphametasine was less effective. These results suggest that P-450 3A plays an important role in the oxidative metabolism of MON and that compounds capable of binding or inhibiting this isoenzyme could be expected to give rise to toxic interactions with the ionophore.

  19. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    Science.gov (United States)

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  20. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis.

    Science.gov (United States)

    Ananieva, Elitsa A; Van Horn, Cynthia G; Jones, Meghan R; Hutson, Susan M

    2017-02-01

    Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A positive feedback loop between progesterone and microsomal prostaglandin E synthase-1-mediated PGE2 promotes production of both in mouse granulosa cells.

    Science.gov (United States)

    Tamura, Kazuhiro; Naraba, Hiroaki; Hara, Takahiko; Nakamura, Kota; Yoshie, Mikihiro; Kogo, Hiroshi; Tachikawa, Eiichi

    2016-03-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is primarily expressed in granulosa cells (GCs) in the preovulatory follicle. Both prostaglandin E2 (PGE2) and progesterone (P4) are implicated in various reproductive functions. Here, we demonstrate that mPges-1 may be a direct downstream target gene of the P4 receptor and P4-stimulated PGE2 secretion can stimulate P4 production in a newly generated mouse GC line (GtsT). Treatment of GtsT cells with a P4 receptor agonist, norgestrel, markedly increased mPGES-1 expression detected by RT-PCR analysis. PGE2 secretion measured by an enzyme-linked immunosorbent assay was enhanced by P4 treatment. Luciferase assays revealed that the proximal promoter region of the mPges-1 gene was responsible for the effects of P4 treatment. Conversely, PGE2 treatment stimulated P4 secretion, which coordinated with mRNA expression of steroidogenic acute regulatory protein. Taken together, P4 may regulate mPGES-1 expression to increase PGE2 secretion and in turn P4 production. An autocrine loop between P4 and PGE2 might function to maintain the increased levels of both in GCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants.

    Science.gov (United States)

    Zheng, Xiaobo; Erratico, Claudio; Luo, Xiaojun; Mai, Bixian; Covaci, Adrian

    2016-05-01

    The in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), and individual α-, β- and γ-hexabromocyclododecane (HBCD) isomers catalyzed by cytochrome P450 (CYP) enzymes was screened using cat liver microsomes (CLMs). Six hydroxylated metabolites, namely 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42), 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47), 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), 4'-hydroxy-2,2',4,5'- tetrabromodiphenyl ether (4'-OH-BDE-49), and 2'-hydroxy-2,3',4,4'-tetrabromodiphenyl ether (2'-OH-BDE-66), were identified and quantified after incubation of BDE-47. A di-OH-tetra-BDE was also found as metabolite of BDE-47 with CLMs. 5-OH-BDE-47 was the major metabolite formed. Five hydroxylated metabolites (3'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (3'-OH-BDE-99), 5'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (5'-OH-BDE-99), 6-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (6-OH-BDE-99), 6'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (6'-OH-BDE-99), and 4'-hydroxy-2,2',4,5,5'-pentabromodiphenyl ether (4'-OH-BDE-101) were formed from BDE-99 incubated with CLMs. Concentrations of BDE-99 metabolites were lower than those of BDE-47. Four or more mono-hydroxylated HBCD (OH-HBCDs), four or more di-hydroxylated HBCD (di-OH-HBCDs), five or more mono-hydroxylated pentabromocyclododecanes (OH-PBCDs), and five or more di-hydroxylated pentabromocyclododecenes (di-OH-PBCDs) were detected after incubation of α-, β-, or γ-HBCD with CLMs. No diastereoisomeric or enantiomeric enzymatic isomerisation was observed incubating α-, β- or γ-HBCD with CLMs. Collectively, our data suggest that (i) BDE-47 is metabolized at a faster rate than BDE-99 by CLMs, (ii) OH-HBCDs are the major hydroxylated metabolites of α-, β- and γ-HBCD produced by CLMs, and (iii) the oxidative metabolism of BDE-47 and

  3. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  4. T cell progenitors in the mouse fetal liver

    International Nuclear Information System (INIS)

    Rabinowich, H.; Umiel, T.; Globerson, A.

    1983-01-01

    Fourteen-day mouse fetal liver was found to contain cells capable of giving rise to T as well as B cell functions. The experimental system consisted of congenic C3H/DiSn and (C3H/DiSn X C3H.SW)F1 lethally irradiated (900 R) mice reconstituted with C3H/DiSn fetal liver or bone marrow cells. Assays included thyroid allograft rejection as well as in vitro measurement of reactivity to phytohemagglutinin (PHA) and concanavalin A (Con A) and in a mixed lymphocyte culture (MLC) system in spleen, lymph node, and thymus cells. The fetal liver chimeras were found to become as capable as the bone marrow chimeras in responding in these various assays. The T cell responses lagged behind the responses to the B cell mitogens dextran sulfate (DXS) and lipopolysaccharide (LPS) (30 days after reconstitution, as compared with 14 days for DXS and 21 for LPS). The reacting cells were of the donor genotype, as revealed after treatment with C3H/DiSn (H-2k) anti-C3H.SW (H-2b) congenic sera. T cell responses were not manifest in thymectomized (TX) chimeras. Hence, the liver seems to contain cells capable of developing into T cell lineages in a thymus-dependent process

  5. Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Vikingsson, Svante; Josefsson, Martin; Gréen, Henrik

    2015-01-01

    The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 35 urine samples from authentic cases were analyzed with liquid chromatography quadrupole tandem time of flight mass spectrometry. Using HLMs 41 metabolites of AKB-48 and 37 metabolites of 5F-AKB-48 were identified, principally represented by hydroxylation but also ketone formation and dealkylation. Monohydroxylated metabolites were replaced by di- and trihydroxylated metabolites within 30 min. The metabolites from the HLM incubations accounted for on average 84% (range, 67-100) and 91% (range, 71-100) of the combined area in the case samples for AKB-48 and 5F-AKB-48, respectively. While defluorinated metabolites accounted for on average 74% of the combined area after a 5F-AKB-48 intake only a few identified metabolites were shared between AKB-48 and 5F-AKB-48, illustrating the need for a systematic approach to identify unique metabolites. HLMs in combination with case samples seem suitable for this purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry.

    Science.gov (United States)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe; Linnet, Kristian

    2015-03-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products. This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using an authentic urine sample and high-resolution accurate-mass Fourier transform Orbitrap mass spectrometry, we identified 16 phase-I metabolites of 5F-AKB-48. The modifications included mono-, di-, and trihydroxylation on the adamantyl ring alone or in combination with hydroxylation on the N-fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having the hydroxyl groups on the adamantyl ring. The results presented here may be used to select metabolites specific of 5F-AKB-48 for use in clinical and forensic screening. Copyright © 2014 John Wiley & Sons, Ltd.

  7. In vitro screening of reversible and time-dependent inhibition on CYP3A by TM208 and TM209 in rat liver microsomes

    Directory of Open Access Journals (Sweden)

    Miaoran Ning

    2012-04-01

    Full Text Available TM208 and TM209, dithiocarbamate derivatives with potential anti-cancer effects, were evaluated in reversible and time-dependent cytochrome P450 (CYP 3A inhibition assays in rat liver microsomes using testosterone as probe substrate. Both compounds were found to be weak reversible inhibitors and moderate mechanism-based inhibitors of rat CYP3A. For reversible inhibition on rat CYP3A, the Ki values of competitive inhibition model were 12.10±1.75 and 13.94±1.31 μM, respectively. For time-dependent inhibition, the inactivation constants (Kl were 31.93±12.64 and 32.91±15.58 μM, respectively, and the maximum inactivation rates (kinact were 0.03497±0.0069 and 0.07259±0.0172 min−1 respectively. These findings would provide useful in vitro information for future in vivo DDI studies on TM208 or TM209.

  8. Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity.

    Science.gov (United States)

    Achour, Brahim; Dantonio, Alyssa; Niosi, Mark; Novak, Jonathan J; Fallon, John K; Barber, Jill; Smith, Philip C; Rostami-Hodjegan, Amin; Goosen, Theunis C

    2017-10-01

    Quantitative characterization of UDP-glucuronosyltransferase (UGT) enzymes is valuable in glucuronidation reaction phenotyping, predicting metabolic clearance and drug-drug interactions using extrapolation exercises based on pharmacokinetic modeling. Different quantitative proteomic workflows have been employed to quantify UGT enzymes in various systems, with reports indicating large variability in expression, which cannot be explained by interindividual variability alone. To evaluate the effect of methodological differences on end-point UGT abundance quantification, eight UGT enzymes were quantified in 24 matched liver microsomal samples by two laboratories using stable isotope-labeled (SIL) peptides or quantitative concatemer (QconCAT) standard, and measurements were assessed against catalytic activity in seven enzymes ( n = 59). There was little agreement between individual abundance levels reported by the two methods; only UGT1A1 showed strong correlation [Spearman rank order correlation (Rs) = 0.73, P quantitative proteomic data should be validated against catalytic activity whenever possible. In addition, metabolic reaction phenotyping exercises should consider spurious abundance-activity correlations to avoid misleading conclusions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Multiple viral/self immunological cross-reactivity in liver kidney microsomal antibody positive hepatitis C virus infected patients is associated with the possession of HLA B51.

    Science.gov (United States)

    Bogdanos, D-P; Lenzi, M; Okamoto, M; Rigopoulou, E I; Muratori, P; Ma, Y; Muratori, L; Tsantoulas, D; Mieli- Vergani, G; Bianchi, F B; Vergani, D

    2004-01-01

    Liver Kidney Microsomal autoantibody type 1(LKM1) directed to cytochrome P4502D6 (CYP2D6) characterises autoimmune hepatitis type-2 (AIH-2), but is also found in a proportion of chronic hepatitis C virus (HCV) infected patients, CYP2D6252-271 being a major B- cell autoepitope. Molecular mimicry and immunological cross-reactivity between CYP2D6252-271, HCV polyprotein and the infected cell protein 4 (ICP4) of herpes simplex virus type 1 (HSV-1) have been suggested as triggers for the induction of LKM1, but reactivity and cross-reactivity to the relevant sequences have not been investigated experimentally. CYP2D6252-271 and its viral homologues were constructed and tested by ELISA in the sera of 46 chronically infected HCV patients, 23 of whom were LKM1 positive. Reactivity to the E1 HCV and ICP4 HSV1 mimics was frequently found in HCV infected patients irrespectively of their LKM1 status; viral/self cross-reactivity (as indicated by inhibition studies), however, was present in the only 2 of the 23 LKM1 seropositive HCV patients, who possessed the HLA allotype B51. Our results indicate that in HCV infected patients virus/self cross-reactivity is dependent on a specific immunogenetic background, a finding awaiting confirmation by studies in larger series of patients.

  10. [Detection and the production mechanism of antinuclear antibodies (ANA) and anti-liver/kidney microsomal tpe 1 antibodies (anti-LKM1) in patients with chronic hepatitis C].

    Science.gov (United States)

    Bai, Li; Lu, Hai-Ying; Feng, Zhen-Ru; Yu, Min; Li, Wen-Gang; Gong, Wei-Bo; Zhao, Nu-en-ji-ya; Xu, Xiao-Yuan

    2009-08-01

    To investigate the prevalence of antinuclear antibodies (ANA) and anti-liver/ kidney microsomal type 1 antibodies (anti-LKM1) in patients with chronic hepatitis C (CHC)and to explore the mechanism of production of these autoantibodies. Serum samples were collected from 360 patients with CHC (case group), 69 patients with chronic hepatitis B (CHB) and 69 patients with autoimmune hepatitis (AIH) (control group). Serum ANA and anti-LKM1 were detected by indirect immunofluorescence (HF) technique and enzyme-linked immunosorbent assay (ELISA), respectively. Multi-factor analysis was performed to explore the correlations of the production of autoantibodies with some factors such as age, sex, viral loads, HCV genotype, biochemical parameters and clinical characteristics. Fifty-four (15%) of 360 patients infected with HCV were positive in autoantibodies. The prevalence of ANA and anti-LKM1 were 12.5% (45/360) and 2.5% (9/ 360), respectively. The positive rate of autoantibodies in patients with CHC was significantly higher than that in patients with CHB (15% vs 2.9%, P = 0.006), but significantly lower than that in patients with AIH (15% vs 47.9%, P 0.05). Autoantibodies related to AIH can be detected in CHC patients; interferon may not induce the production of autoantibodies; it is very likely that HCV infection induces the autoimmune reaction and the production of autoantibodies.

  11. Effect of treatment with cadmium on kinetic properties of Na+, K+-ATPase and glucose-6-phosphatase activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Modi, Hiren R.; Patil, Nisha; Katyare, Surendra S.

    2008-01-01

    Studies on Cd hepatotoxicity have focused mainly on induction of cytochrome P 450 system and related enzymes. In the present study young adult male rats given a single intra-peritoneal injection of Cd (0.84 mg Cd/kg body weight) and effects on kinetic parameters rat liver microsomal Na + , K + -ATPase and G6Pase were evaluated at the end of 1 month and 1 week. The substrate and temperature kinetics parameters were examined and attempts were made to seek correlation with changes in lipid/phospholipid profiles. The Na + , K + ATPase activity decreased only in 1 week Cd-treated group but recovered at the end of 1 month. The activity resolved in two distinct kinetic components in control as well as the experimental groups. In 1 week Cd-treated group the K m value of both the components was unchanged, whereas V max value decreased. In 1-month Cd-treated group V max value only of component I increased. The catalytic efficiency of both the components was not affected in the experimental groups. In 1-week Cd-treated group the energy of activations at high-temperature range (E H ) and low-temperature range (E L ) decreased, whereas for 1-month Cd-treated group the energies of activations did not change. The G6Pase activity measured at 37 deg. C was high only in 1-month Cd-treated group. The activity resolved in two kinetically distinguishable components in control as well as in the experimental groups. K m value of component I decreased in both the Cd-treated groups. In 1-month Cd-treated group the V max value of component II increased. The catalytic efficiency of G6Pase was unchanged despite changes in K m and V max . In 1-week Cd-treated group the E H and E L decreased, whereas only E L showed decrease in 1-month Cd-treated group. Cholesterol (CHL) content increased in both the Cd-treated groups. Content of lysophospholipid (Lyso), spinghomyelin (SPM) and phosphatidic acid (PA) increased, whereas phosphatidylcholine (PC) and phosphatidylserine (PS) decreased in 1-week Cd

  12. A comparative study of precision cut liver slices, hepatocytes, and liver microsomes from the Wistar rat using metronidazole as a model substance

    DEFF Research Database (Denmark)

    Sidelmann, U. G.; Cornett, Claus; Tjornelund, J.

    1996-01-01

    1. Metronidazole is metabolized by rat liver in vitro models to form a hydroxy metabolite, an acetic acid metabolite, a glucuronic acid conjugate, and a sulphate conjugate. 2. Four different in vitro systems for investigation of drug metabolism based on liver preparations from the male Wistar rat...

  13. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.**

    Science.gov (United States)

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  14. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.

    Science.gov (United States)

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  15. Sex-related difference in the inductions by perfluoro-octanoic acid of peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase in rat liver.

    Science.gov (United States)

    Kawashima, Y; Uy-Yu, N; Kozuka, H

    1989-01-01

    Inductions by perfluoro-octanoic acid (PFOA) of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase were compared in liver between male and female rats. Marked inductions of these four parameters were seen concurrently in liver of male rats, whereas the inductions in liver of female rats were far less pronounced. The sex-related difference in the response of rat liver to PFOA was much more marked than that seen with p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). Hormonal manipulations revealed that this sex-related difference in the inductions is strongly dependent on sex hormones, namely that testosterone is necessary for the inductions, whereas oestradiol prevented the inductions by PFOA. PMID:2570571

  16. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

    Science.gov (United States)

    Usmani, Khawja A; Cho, Taehyeon M; Rose, Randy L; Hodgson, Ernest

    2006-09-01

    Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.

  17. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5′-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Soon-Sang Kwon

    2016-04-01

    Full Text Available Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP and uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.

  18. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes.

    Science.gov (United States)

    Granvil, C P; Madan, A; Sharkawi, M; Parkinson, A; Wainer, I W

    1999-04-01

    The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.

  19. Fenproporex N-dealkylation to amphetamine--enantioselective in vitro studies in human liver microsomes as well as enantioselective in vivo studies in Wistar and Dark Agouti rats.

    Science.gov (United States)

    Kraemer, Thomas; Pflugmann, Thomas; Bossmann, Michael; Kneller, Nicole M; Peters, Frank T; Paul, Liane D; Springer, Dietmar; Staack, Roland F; Maurer, Hans H

    2004-09-01

    Fenproporex (FP) is known to be N-dealkylated to R(-)-amphetamine (AM) and S(+)-amphetamine. Involvement of the polymorphic cytochrome P450 (CYP) isoform CYP2D6 in metabolism of such amphetamine precursors is discussed controversially in literature. In this study, the human hepatic CYPs involved in FP dealkylation were identified using recombinant CYPs and human liver microsomes (HLM). These studies revealed that not only CYP2D6 but also CYP1A2, CYP2B6 and CYP3A4 catalyzed this metabolic reaction for both enantiomers with slight preference for the S(+)-enantiomer. Formation of amphetamine was not significantly changed by quinidine and was not different in poor metabolizer HLM compared to pooled HLM. As in vivo experiments, blood levels of R(-)-amphetamine and S(+)-amphetamine formed after administration of FP were determined in female Dark Agouti rats (fDA), a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats (mDA), an intermediate model, and in male Wistar rats (WI), a model of the human CYP2D6 extensive metabolizer phenotype. Analysis of the plasma samples showed that fDA exhibited significantly higher plasma levels of both amphetamine enantiomers compared to those of WI. Corresponding plasma levels in mDA were between those in fDA and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher amphetamine plasma levels, which did not significantly differ from those in fDA. The in vivo studies suggested that CYP2D6 is not crucial to the N-dealkylation but to another metabolic step, most probably to the ring hydroxylation. Further studies are necessary for elucidating the role of CYP2D6 in FP hydroxylation.

  20. Studies to further investigate the inhibition of human liver microsomal CYP2C8 by the acyl-β-glucuronide of gemfibrozil.

    Science.gov (United States)

    Jenkins, S M; Zvyaga, T; Johnson, S R; Hurley, J; Wagner, A; Burrell, R; Turley, W; Leet, J E; Philip, T; Rodrigues, A D

    2011-12-01

    In previous studies, gemfibrozil acyl-β-glucuronide, but not gemfibrozil, was found to be a mechanism-based inhibitor of cytochrome P450 2C8. To better understand whether this inhibition is specific for gemfibrozil acyl-β-glucuronide or whether other glucuronide conjugates are potential substrates for inhibition of this enzyme, we evaluated several pharmaceutical compounds (as their acyl glucuronides) as direct-acting and metabolism-dependent inhibitors of CYP2C8 in human liver microsomes. Of 11 compounds that were evaluated as their acyl glucuronide conjugates, only gemfibrozil acyl-β-glucuronide exhibited mechanism-based inhibition, indicating that CYP2C8 mechanism-based inhibition is very specific to certain glucuronide conjugates. Structural analogs of gemfibrozil were synthesized, and their glucuronide conjugates were prepared to further examine the mechanism of inhibition. When the aromatic methyl groups on the gemfibrozil moiety were substituted with trifluoromethyls, the resulting glucuronide conjugate was a weaker inhibitor of CYP2C8 and mechanism-based inhibition was abolished. However, the glucuronide conjugates of monomethyl gemfibrozil analogs were mechanism-based inhibitors of CYP2C8, although not as potent as gemfibrozil acyl-β-glucuronide itself. The ortho-monomethyl analog was a more potent inhibitor than the meta-monomethyl analog, indicating that CYP2C8 favors the ortho position for oxidation and potential inhibition. Molecular modeling of gemfibrozil acyl-β-glucuronide in the CYP2C8 active site is consistent with the ortho-methyl position being the favored site of covalent attachment to the heme. Moreover, hydrogen bonding to four residues (Ser100, Ser103, Gln214, and Asn217) is implicated.

  1. Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.

    Science.gov (United States)

    Li, Yujuan; Zhang, Yushi; Wang, Rui; Wei, Lizhong; Deng, Yulin; Ren, Wei

    2017-05-01

    Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS n data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1).

    Science.gov (United States)

    Yamamoto, A M; Cresteil, D; Boniface, O; Clerc, F F; Alvarez, F

    1993-05-01

    Anti-liver-kidney microsome type-1 antibodies (LKM1), present in sera from a group of patients with autoimmune hepatitis, are directed against P450IID6. Previous work, using cDNA constructions spanning most of the P450IID6 protein defined the main immunogenic site between the amino acids (aa), 254-271 and predicted the presence of other putative immunogenic sites in the molecule. Fusion proteins from new cDNA constructions, spanning so-far-untested regions between aa 1-125 and 431-522, were not recognized by LKM1-positive sera. Synthetic peptides, representing sequences from putative immunogenic regions or previously untested regions, allowed a precise definition of four antigenic sites located between peptides 257-269, 321-351, 373-389 and 410-429, which were recognized, respectively, by 14, 8, 1 and 2 out of 15 LKM1-positive sera tested. The minimal sequence of the main antigenic site (peptide 257-269) recognized by the autoantibody was established to be WDPAQPPRD (peptide 262-270). In addition, deletion and replacement experiments showed that aa 263 (Asp) was essential for the binding of the autoantibody to peptide 262-270. Analysis of the second most frequently recognized peptide between aa 321-351, was performed using peptides 321-339 and 340-351 in competitive inhibition studies. Complete elimination of antibody binding to peptide 321-351 obtained by absorption of both shorter peptides indicated that peptide 321-351 is a discontinuous antigenic site. LKM1-positive sera reacting against peptide 321-351 recognized either both the shorter peptides or just one of them preferentially. Results of the present study suggest that the production of LKM1 antibodies is an antigen-driven, poly- or oligoclonal B cell response. The identification of antigenic sites will allow: (i) the development of specific diagnostic tests and (ii) further studies on the pathogenic value of LKM1 antibodies in autoimmune hepatitis.

  3. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes

    International Nuclear Information System (INIS)

    Jia Nuan; Liu Xin; Wen Jun; Qian Linyi; Qian Xiaohong; Wu Yutian; Fan Guorong

    2007-01-01

    Carbon tetrachloride (CCl 4 ) is a well-known model compound for producing chemical hepatic injury. Cytochrome P450 is an important monooxygenase in biology. We investigated the CYP450 protein expression in the in vivo hepatotoxicity of rats induced by CCl 4 . In this experiment, CCl 4 were administered to male rats, and their livers at 24 h post-dosing were applied to the proteomic analysis. Blood biochemistry and histopathology were examined to identify specific changes. At the same time, a novel acetylation stable isotopic labeling method coupled with LTQ-FTICR mass spectrometry was applied to disclose the changes of cytochrome P450 expression amounts. The quantitative proteomics method demonstrated its correlation coefficient was 0.9998 in a 100-fold dynamic range and the average ratio of the labeled peptides was 1.04, which was very close to the theoretical ratio of 1.00 and the standard deviation (S.D.) of 0.21. With this approach, 17 cytochrome P450 proteins were identified and quantified with high confidence. Among them, the expression amount of 2C11, 3A2, and 2 E1 were down-regulated, while that of 2C6, 2B2, and 2B1 were up-regulated

  4. Cancer chemoprevention by ginseng in mouse liver and other organs.

    Science.gov (United States)

    Nishino, H; Tokuda, H; Ii, T; Takemura, M; Kuchide, M; Kanazawa, M; Mou, X Y; Bu, P; Takayasu, J; Onozuka, M; Masuda, M; Satomi, Y; Konoshima, T; Kishi, N; Baba, M; Okada, Y; Okuyama, T

    2001-01-01

    Oral administration of red ginseng extracts (1% in diet for 40 weeks) resulted in the significant suppression of spontaneous liver tumor formation in C3H/He male mice. Average number of tumors per mouse in control group was 1.06, while that in red ginseng extracts-treated group was 0.33 (p<0.05). Incidence of liver tumor development was also lower in red ginseng extracts-treated group, although the difference from control group was not statistically significant. Anti-carcinogenic activity of white ginseng extracts, besides red ginseng extracts, was also investigated. In the present study, the administration of white ginseng extracts was proven to suppress tumor promoter-induced phenomena in vitro and in vivo. It is of interest that oral administration of the extracts of Ren-Shen-Yang- Rong-Tang, a white ginseng-containing Chinese medicinal prescription, resulted in the suppression of skin tumor promotion by 12-o-tetradecanoylphorbol-13-acetate in 7,12-dimethylbenz[a]anthracene-initiated CD-1 mice. These results suggest the usefulness of ginseng in the field of cancer prevention. PMID:11748379

  5. Detection on immunoblot of new proteins from the soluble fraction of the cell recognized either by anti-liver-kidney microsome antibodies type 1 or by anti-liver cytosol antibodies type 1--relationship with hepatitis C virus infection.

    Science.gov (United States)

    Ballot, E; Desbos, A; Monier, J C

    1996-09-01

    Antibodies directed against liver cytosol protein, called anti-liver cytosol type 1 (LC1 Ab), have been described by both immunofluorescence (IF) and immunodiffusion techniques in sera from patients with autoimmune hepatitis (AIH). They have never been found in association with antibodies directed against the hepatitis C virus (HCV), unlike the anti-liver-kidney microsome antibodies type 1 (LKM1 Ab), the serological marker of AIH type 2. This suggests that there are two subgroups of AIH type 2, i.e., HCV-related and non-HCV-related. In this study, immunoblotting experiments were performed using proteins from the soluble phase of the rat liver cell; 141 sera which tested positive for LKM1 Ab by IF, 24 identified as having LC1 Ab by IF, and 50 from blood donors as controls were analyzed. Three bands were stained by LC1 Ab sera more often than by the control sera, and with a statistically significant frequency. These 3 proteins were located at apparent Mr 50,000, 55,000, and 60,000. The LKM1 Ab-positive sera as defined by IF stained six bands with a statistically significant frequency compared to the controls. Their apparent Mr were 35,000, 39,000, 47,000, 50,000, 55,000, and 60,000. LKM1 Ab-positive sera which were anti-HCV negative recognized a 60,000 protein belonging to the soluble phase of the cell, with a statistically significant frequency compared to LKM1 Ab-positive sera which were anti-HCV positive. This 60,000 protein was also recognized by LC1 Ab-positive sera, which were almost always anti-HCV negative. The presence of antibodies against a 60,000 protein from the soluble phase of the cell is discussed in terms of the anti-HCV serological markers found in the sera from patients with AIH.

  6. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  7. An optimized method for mouse liver sinusoidal endothelial cell isolation

    International Nuclear Information System (INIS)

    Meyer, Jeremy; Lacotte, Stéphanie; Morel, Philippe; Gonelle-Gispert, Carmen; Bühler, Léo

    2016-01-01

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  8. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  9. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver

    DEFF Research Database (Denmark)

    Aparicio-Vergara, Marcela; Tencerova, Michaela; Morgantini, Cecilia

    2017-01-01

    Liver perfusion is a common technique used to isolate parenchymal and non-parenchymal liver cells for in vitro experiments. This method allows hepatic cells to be separated based on their size and weight, by centrifugation using a density gradient. To date, other methods allow the isolation of only...... one viable hepatic cellular fraction from a single mouse; either parenchymal (hepatocytes) or non-parenchymal cells (i.e., Kupffer cells or hepatic stellate cells). Here, we describe a method to isolate both hepatocytes and Kupffer cells from a single mouse liver, thereby providing the unique...... advantage of studying different liver cell types that have been isolated from the same organism....

  10. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Soulard, Patricia; McLaughlin, Meg; Stevens, Jessica; Connolly, Brendan; Coli, Rocco; Wang Leyu [Research Technology Center, Pfizer Global Research and Development, Cambridge, MA (United States); Moore, Jennifer; Kuo, Ming-Shang T. [Pfizer Global Research and Development, San Diego, CA (United States); LaMarr, William A.; Ozbal, Can C. [Biotrove, Inc., Woburn, MA (United States); Bhat, B. Ganesh [Pfizer Global Research and Development, San Diego, CA (United States)], E-mail: gbhat@gnf.org

    2008-10-03

    Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes. The methodology developed allows the use of a nonradioactive substrate which avoids interference by the endogenous SCD1 substrate and/or product that exist in the non-purified enzyme source. Throughput of the assay was up to twenty 384-well assay plates per day. The assay was linear with protein concentration and time, and was saturable for stearoyl-CoA substrate (K{sub m} = 10.5 {mu}M). The assay was highly reproducible with an average Z' value = 0.6. Conjugated linoleic acid and sterculic acid, known inhibitors of SCD1, exhibited IC{sub 50} values of 0.88 and 0.12 {mu}M, respectively. High-throughput mass spectrometry screening of over 1.7 million compounds in compressed format demonstrated that the enzyme target is druggable. A total of 2515 hits were identified (0.1% hit rate), and 346 were confirmed active (>40% inhibition of total SCD activity at 20 {mu}M - 14% conformation rate). Of the confirmed hits 172 had IC{sub 50} values of <10 {mu}M, including 111 <1 {mu}M and 48 <100 nM. A large number of potent drug-like (MW < 450) hits representing six different chemical series were identified. The application of mass spectrometry to high-throughput screening permitted the development of a high-quality screening protocol for an otherwise intractable

  11. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry

    International Nuclear Information System (INIS)

    Soulard, Patricia; McLaughlin, Meg; Stevens, Jessica; Connolly, Brendan; Coli, Rocco; Wang Leyu; Moore, Jennifer; Kuo, Ming-Shang T.; LaMarr, William A.; Ozbal, Can C.; Bhat, B. Ganesh

    2008-01-01

    Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes. The methodology developed allows the use of a nonradioactive substrate which avoids interference by the endogenous SCD1 substrate and/or product that exist in the non-purified enzyme source. Throughput of the assay was up to twenty 384-well assay plates per day. The assay was linear with protein concentration and time, and was saturable for stearoyl-CoA substrate (K m = 10.5 μM). The assay was highly reproducible with an average Z' value = 0.6. Conjugated linoleic acid and sterculic acid, known inhibitors of SCD1, exhibited IC 50 values of 0.88 and 0.12 μM, respectively. High-throughput mass spectrometry screening of over 1.7 million compounds in compressed format demonstrated that the enzyme target is druggable. A total of 2515 hits were identified (0.1% hit rate), and 346 were confirmed active (>40% inhibition of total SCD activity at 20 μM - 14% conformation rate). Of the confirmed hits 172 had IC 50 values of <10 μM, including 111 <1 μM and 48 <100 nM. A large number of potent drug-like (MW < 450) hits representing six different chemical series were identified. The application of mass spectrometry to high-throughput screening permitted the development of a high-quality screening protocol for an otherwise intractable target, SCD1. Further medicinal

  12. Antithyroid microsomal antibody

    Science.gov (United States)

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... Granulomatous thyroiditis Hashimoto thyroiditis High levels of these antibodies have also been linked with an increased risk ...

  13. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    OpenAIRE

    DWI RAMADHANI; SITI NURHAYATI; TUR RAHARDJO

    2014-01-01

    The presence of malarial pigment (haemozoin) due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional ...

  14. Analyzing the temporal regulation of translation efficiency in mouse liver

    Directory of Open Access Journals (Sweden)

    Peggy Janich

    2016-06-01

    Full Text Available Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013 [1]. We have recently reported on the use of ribosome profiling (RPF-seq, a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]. Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

  15. EFFECTS OF THIOL ANTIOXIDANTS ON THE ATROPSELECTIVE OXIDATION OF 2,2′,3,3′,6,6′-HEXACHLOROBIPHENYL (PCB 136) BY RAT LIVER MICROSOMES

    Science.gov (United States)

    Wu, Xianai; Lehmler, Hans-Joachim

    2015-01-01

    Chiral polychlorinated biphenyl (PCB) congeners, such as PCB 136, are atropselectively metabolized to various hydroxylated PCB metabolites (HO-PCBs). The present study investigates the effect of two thiol antioxidants, glutathione and N-acetyl-cysteine (NAC), on profiles and chiral signatures of PCB 136 and its HO-PCB metabolites in rat liver microsomal incubations. Liver microsomes prepared from rats pretreated with phenobarbital were incubated with PCB 136 (5 μM) in the presence of the respective antioxidant (0–10 mM), and levels and chiral signatures of PCB 136 and its HO-PCB metabolites were determined. Three metabolites, 5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol), 4-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4-ol) and 4,5-136 (2,2′,3,3′,6,6′-hexachlorobiphenyl-4,5-diol), were detected in all incubations, with 5-136 being the major metabolite. Compared to microsomal incubations without antioxidant, levels of 4,5-136 increased with increasing antioxidant concentration, whereas levels of PCB 136 and both mono-HO-PCBs were not affected by the presence of either antioxidant. PCB 136, 4-136 and 5-136 displayed significant atropisomeric enrichment; however, the direction and extent of the atropisomeric enrichment was not altered in the presence of an antioxidant. Because 4,5-136 can either be conjugated to a sulfate or glucuronide metabolite that is readily excreted or further oxidized a potentially toxic PCB 136 quinone, the effect of both thiol antioxidants on 4,5-136 formation suggests that disruptions of glutathione homeostasis may alter the balance between both metabolic pathways and, thus, PCB 136 toxicity in vivo. PMID:26155892

  16. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes. Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenyl-nitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline.

    Science.gov (United States)

    Klinger, W; Karge, E; Kretzschmar, M; Rost, M; Schulze, H P; Dargel, R; Reinemann, C; Rein, H

    1996-07-01

    For the investigation of luminol (LM)-and lucigenin (LC)-amplified chemiluminescence (CL) in rat liver microsomes using both a liquid-scintillation counter (LKB/Wallac 1219 Rackbeta) and a Berthold luminometer (AutoLumat LB 953) optimal incubation mixtures and conditions and basic kinetics have been established. Whereas calibration curves for both LM- and LC-CL are performed with hydrogenperoxide (LC quantum yield is 6.25 fold higher as that of LM), distinct differences were revealed with microsomes, indicating that different reactive oxygen species (ROS) are determined: Both LM- and LC-CL follow the kinetics of enzymatic reactions in terms of dependence on protein and NADPH or NADH concentration, time course, temperature etc., but with differences. LM-CL does not work without addition of Fe2+, whereas LC-CL does. Both copper ions and copper bound in a complex abolish CL, LC-CL being much more sensitive. Isolated cytochrome P-450 (P450) and NADPH P450 reductase from liver of pheno-barbital treated rats alone proved to be inactive in LM-and LC-CL production, whereas te combination 1:1 without and with addition of lipid was highly active in both LM-and LC-CL. Ascorbic acid and glutathione as scavengers diminish both LM- and LC-CL in concentrations higher then 10(5). Dimethyl-sulfoxide (DMSO) was ineffective in LM-CL up to concentrations of 0.2 M, the very high concentration of 2 M diminished LM-CL only to 1/3. LC-CL was diminished starting at concentrations of 100 mM and at 2 M only 10% of maximum LC-CL was observed. The trap substance N-t-butyl-a-phenylnitrone (BNP) also diminished LC-CL more effectively than LM-CL. Clearcut differences were revealed by the addition of catalase and superoxide dismutase: both enzymes diminished LM-CL only, without any influence on LC-CL. Hexobarbital, a potent uncoupler of P450, enhances LM-CL fivefold, whereas LC-CL is barely influenced. Aniline (without uncoupling capability) decreased both LM-and LC-CL increasingly with increasing

  17. Hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirai, Y.; Koga, N.; Tomokuni, K.

    1983-01-01

    The hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/ was investigated with specific reference to the oxygen utilization of liver slices. In control rats, the major oxygen utilization of the liver slices was attributed to mitochondrial particles. Since the mitochondrial oxygen utilization was inhibited by cyanide, the microsomal oxygen utilization was induced by NADPH and phenobarbital (a substrate for microsomal mixed function oxidase). Changes in oxygen utilization were observed in the recovery course of rats intoxicated with CCl/sub 4/, and the recovery of mitochondria was found to be faster than that of microsomes. A sex difference was present in the recovery mechanism of the microsomes.

  18. Activation of farnesoid X receptor induces RECK expression in mouse liver

    International Nuclear Information System (INIS)

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-01

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver

  19. Activation of farnesoid X receptor induces RECK expression in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaomin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Wu, Weibin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Zhou, Lei, E-mail: yhchloech@gmail.com [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  20. N-Hydroxylation of 4-Aminobiphenyl by CYP2E1 Produces Oxidative Stress in a Mouse Model of Chemically Induced Liver Cancer

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S.; Tung, Aveline; McPherson, J. Peter; Grant, Denis M.

    2015-01-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(−/−) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  1. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  2. Microsomal metabolism of trenbolone acetate metabolites ...

    Science.gov (United States)

    Trenbolone acetate (TBA) is a synthetic growth promoter widely used in animal agriculture, and its metabolites are suspected endocrine disrupting compounds in agriculturally impacted receiving waters. However, beyond the three widely recognized TBA metabolites (17-trenbolone, 17-trenbolone and trendione), little is known about other metabolites formed in vivo and subsequently discharged into the environment, with some evidence suggesting these unknown metabolites comprise a majority of the TBA mass dosed to the animal. Here, we explored the metabolism of the three known TBA metabolites using rat liver microsome studies. All TBA metabolites are transformed into a complex mixture of monohydroxylated products. Based on product characterization, the majority are more polar than the parent metabolites but maintain their characteristic trienone backbone. A minor degree of interconversion between known metabolites was also observed, as were higher order hydroxylated products with a greater extent of reaction. Notably, the distribution and yield of products were generally comparable across a series of variably induced rat liver microsomes, as well as during additional studies with human and bovine liver microsomes. Bioassays conducted with mixtures of these transformation products suggest that androgen receptor (AR) binding activity is diminished as a result of the microsomal treatment, suggesting that the transformation products are generally less potent than

  3. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    Science.gov (United States)

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  4. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  5. Mouse models in liver cancer research: A review of current literature

    Science.gov (United States)

    Leenders, Martijn WH; Nijkamp, Maarten W; Rinkes, Inne HM Borel

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in East-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used, especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common type of primary liver cancer, accounting for 70%-85% of cases. PMID:19058325

  6. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    Mouse Model by Downregulation of Cell Signaling Pathway. Leading to Invasion and ... intravasation into blood or lymphatic vessels and extravasation into new ..... The development of the chicked. New York: H. Holt and company, 1908. 3.

  7. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    Science.gov (United States)

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Effect of dietary advanced glycation end products on mouse liver.

    Directory of Open Access Journals (Sweden)

    Raza Patel

    Full Text Available UNLABELLED: The exact pathophysiology of non-alcoholic steatohepatitis (NASH is not known. Previous studies suggest that dietary advanced glycation end products (AGEs can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034, compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01 and aspartate aminotransferase (P = 0.02 than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.

  9. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease.

    Science.gov (United States)

    Kerkar, Nanda; Choudhuri, Kaushik; Ma, Yun; Mahmoud, Ayman; Bogdanos, Dimitrios P; Muratori, Luigi; Bianchi, Francesco; Williams, Roger; Mieli-Vergani, Giorgina; Vergani, Diego

    2003-02-01

    Cytochrome P4502D6 (CYP2D6), target of liver kidney microsomal autoantibody type 1 (LKM1), characterizes autoimmune hepatitis type 2 (AIH2) but is also found in patients with chronic hepatitis C virus (HCV) infection. To provide a complete linear epitope B cell map of CYP2D6, we tested peptides spanning the entire sequence of CYP2D6. In addition to confirming previously described antigenic sites, we identified four new epitopes (193-212, 238-257, 268-287, and 478-497). CYP2D6(193-212) is immunodominant and was the target of 12 of 13 (93%) patients with AIH2 and 5 of 10 (50%) HCV/LKM1-positive patients. Because LKM1 is present in both AIH2 and a viral infection, we tested whether Abs to CYP2D6(193-212) arise through cross-reactive immunity between virus and self. We identified a hexameric sequence "RLLDLA" sharing 5 of 6 aa with "RLLDLS" of HCV(2985-2990) and all 6 aa with CMV(130-135). Of 17 CYP2D6(193-212)-reactive sera, 11 (7 AIH and 4 HCV) reacted by ELISA with the HCV homologue, 8 (5 AIH and 3 HCV) with the CMV homologue, and 8 (5 AIH and 3 HCV) showed double reactivity. Autoantibody binding to CYP2D6(193-212) was inhibited by preincubation with HCV(2977-2996) or CMV(121-140). Recombinant HCV-nonstructural protein 5 and CMV-UL98 proteins also inhibited Ab binding to CYP2D6(193-212). Affinity-purified CYP2D6(193-212)-specific Ab inhibited the metabolic activity of CYP2D6. The demonstrated similarity and cross-reactivity between CYP2D6(193-212) and two unrelated viruses suggests that multiple exposure to viruses mimicking self may represent an important pathway to the development of autoimmunity.

  10. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  11. Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring

    NARCIS (Netherlands)

    Pruis, M. G. M.; Lendvai, A.; Bloks, V. W.; Zwier, M. V.; Baller, J. F. W.; de Bruin, A.; Groen, A. K.; Plosch, T.

    AimMetabolic programming via components of the maternal diet during gestation may play a role in the development of different aspects of the metabolic syndrome. Using a mouse model, we aimed to characterize the role of maternal western-type diet in the development of non-alcoholic fatty liver

  12. Tbx3 Promotes Liver Bud Expansion During Mouse Development by Suppression of Cholangiocyte Differentiation

    NARCIS (Netherlands)

    Lüdtke, Timo H.-W.; Christoffels, Vincent M.; Petry, Marianne; Kispert, Andreas

    2009-01-01

    After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor

  13. Sensitivity of mitochondria of the mouse liver cells to radiation

    International Nuclear Information System (INIS)

    Shima, Akihiro

    1974-01-01

    In order to study the sensitivity of mitochondria (Mt) of the liver cells to radiation, 0.4 mg of riboflavine (RF) was intraperitoneally injected into mice which had been fed RF deficient food for 13 weeks. Three hours later 400 R of X-ray (190 KVP, 25 mA, 0.5 mmCu, 0.5 mmAl filter, FSD 61.5 cm, and HVL 0.80 mmCu) were irradiated to the whole body, and giant Mt of the liver cells were observed. When the liver cells were observed 24 hours after injection, neither giant Mt nor mitotic findings of Mt were found. All Mt observed were small (1.2 μ), although mice received 400 R of X-ray. (Serizawa, K.)

  14. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  15. Sensitivity of mitochondria of the mouse liver cells to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shima, A [Tokyo Univ. (Japan). Faculty of Science

    1974-06-01

    In order to study the sensitivity of mitochondria (Mt) of the liver cells to radiation, 0.4 mg of riboflavine (RF) was intraperitoneally injected into mice which had been fed RF deficient food for 13 weeks. Three hours later 400 R of X-ray (190 KVP, 25 mA, 0.5 mmCu, 0.5 mmAl filter, FSD 61.5 cm, and HVL 0.80 mmCu) were irradiated to the whole body, and giant Mt of the liver cells were observed. When the liver cells were observed 24 hours after injection, neither giant Mt nor mitotic findings of Mt were found. All Mt observed were small (1.2 ..mu..), although mice received 400 R of X-ray.

  16. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver

    International Nuclear Information System (INIS)

    Conti, Aline de; Tryndyak, Volodymyr; Churchwell, Mona I.; Melnyk, Stepan; Latendresse, John R.; Muskhelishvili, Levan; Beland, Frederick A.; Pogribny, Igor P.

    2014-01-01

    Highlights: • Treatment of female mice with tamoxifen caused genotoxic changes in the livers. • Tamoxifen treatment did not affect the hepatic epigenome. • Tamoxifen caused over-expression of hepatic Lcn13 and Pparγ genes. • Mice are resistant to tamoxifen-induced liver carcinogenesis and fatty liver injury. - Abstract: Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N 2 -yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N 2 -yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen

  17. Differences in both glycosylation and binding properties between rat and mouse liver prolactin receptors.

    Science.gov (United States)

    Lascols, O; Cherqui, G; Munier, A; Picard, J; Capeau, J

    1994-05-01

    To investigate whether glycanic chains of prolactin receptors (PRL-R) play a role in hormone binding activity, comparison was made of rat and mouse liver solubilized receptors with respect to both their affinity for the hormone and their glycosylation properties. As compared with rat receptors, mouse receptors exhibited a 2-fold higher affinity for human growth hormone (hGH), the hormone being bound by both tissues with a lactogenic specificity. Along with this increased affinity, mouse receptors had a 2 lower M(r) relative to rat receptors (62 kDa versus 64 kDa as measured on hGH cross-linked receptors). These differences could be ascribed to different glycosylation properties of the receptors from the two species, as supported by the followings. 1) After treatment with endoglycosidase F (endo F), rat and mouse PRL-R no longer exhibited any difference in their M(r) (54 kDa for both cross-linked receptors). 2) Neuraminidase treatment increased by 37% the binding of hGH to mouse receptors, but was ineffective on the hormone-binding to rat receptors. Conversely, wheat germ agglutinin (WGA), another sialic acid specific probe, decreased hGH binding to rat receptors by 25%, but had no effect on this process for mouse ones. 3) Marked differences were observed in the recoveries of rat and mouse hormone-receptor (HR) complexes from ricin-1- (RCA1-), concanavalin A- (ConA-) and WGA-immobilized lectins. These differences were reduced (RCA1 and ConA) or abolished (WGA) after rat and mouse receptor desialylation by neuraminidase, a treatment which decreased the M(r) of both receptors by 2 kDa. Taken together, these results strongly suggest that the PRL-R from rat and mouse liver contain biantennary N-linked oligosaccharidic chains with distinct type of sialylation, which may account for their differential hormone-binding affinities.

  18. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  19. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined with ...

  20. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Omar A Mesarwi

    Full Text Available Obstructive sleep apnea (OSA is associated with the progression of non-alcoholic fatty liver disease (NAFLD to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1, a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis.Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2 or normoxia (16% O2 for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking.Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03, which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia.Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver

  1. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Sumedha S Gunewardena

    Full Text Available During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth to maturity (60-days after birth. Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2 RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  2. Inhibitory effect of gene combination in a mouse model of colon cancer with liver metastasis.

    Science.gov (United States)

    DU, Tong; Niu, Hongxin

    2014-09-01

    The aim of the present study was to establish an animal liver metastasis model with human colon cancer and investigate the inhibitory effect of the wild type (WT) p53 gene combined with thymidine kinase/ganciclovir (TK/GCV) and cytosine deaminase/5-fluorocytosine (CD/5-FC) systems on liver metastasis of colon cancer. A nude mouse liver metastasis model with human colon cancer was established via a spleen cultivation method. A total of 32 nude mice were randomly divided into four groups, each group with eight mice. Group 1 mice received splenic injections of SW480 cells (control group), while group 2 mice were injected with SW480/p53 cells in the spleen. Group 3 mice were administered splenic injections of SW480/TK-CD cells, and GCV and 5-FC were injected into the abdominal cavity. Finally, group 4 mice received splenic injections of SW480/p53 cells mixed in equal proportion with SW480/TK-CD cells, as well as GCV and 5-FC injections in the abdominal cavity. These cells described were constructed in our laboratory and other laboratories. The number of liver metastatic tumors, the liver metastasis rate, conventional pathology, electron microscopy and other indicators in the nude mice of each group were compared and observed. The nude mouse liver metastasis model with human colon cancer was successfully established; the liver metastasis rate of the control group was 100%. The results demonstrated that the rate of liver metastasis in the nude mice in each treatment group decreased, as well as the average number of liver metastatic tumors. Furthermore, the effect of the treatment group with genetic combination (group 4) was the most effective, demonstrating that WTp53 had a synergistic effect with TK/GCV and CD/5-FC. Therefore, the present study successfully established a mouse model of liver metastasis with colon cancer by injecting human colon cancer cells in the spleen. Combined gene therapy was shown to have a synergistic effect, which effectively inhibited the

  3. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Science.gov (United States)

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  4. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  5. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease

    International Nuclear Information System (INIS)

    Griffett, Kristine; Burris, Thomas P.

    2016-01-01

    The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inverse agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. - Highlights: • The LXR antagonist GSK2033 suppresses the expression of lipogenic genes FASN and SREBF1 in HepG2 cells. • GSK2033 exhibits sufficient exposure to perform animal experiments targeting the liver. • GSK2033 has fails to suppress hepatic Fasn and Srebf1 expression in an animal model of non-alcoholic fatty liver disease. • GSK2033 may regulate the activity of several nuclear receptors.

  6. Sera of children with hepatitis C infection and anti-liver-kidney microsome-1 antibodies recognize different CYP2D6 epitopes than adults with LKM+/HCV+ sera.

    Science.gov (United States)

    Herzog, D; Yamamoto, A M; Jara, P; Maggiore, G; Sarles, J; Alvarez, F

    1999-11-01

    Liver-kidney microsome type 1 (LKM1) antibodies are specific markers of autoimmune hepatitis (AIH) type 2. Antibodies to LKM1 have been found in 2% to 3% of adults infected with hepatitis C virus (HCV) without AIH. Thirty percent of these antibodies are directed against linear sequences of CYP2D6 protein. LKM1 antibodies in HCV+/LKM1+ sera and in sera of AIH patients do not recognize the same CYP2D6 epitopes. The current study was conducted to determine whether LKM1 antibodies in HCV+/LKM1+ children's sera are the result of the same immune response as the antibodies described in AIH type 2 and in HCV+/LKM1+ adult patients. Sera from 10 HCV+/LKM1+ children were tested against human liver microsomal and cytosolic proteins by Western blot analysis and against synthetic peptides of the CYP2D6 sequence between amino acids 200 and 429 by dot blot. The same sera were tested against radiolabeled CYP2D6 by immunoprecipitation. Four of 10 sera tested by Western blot analysis showed immunoglobulin (Ig) G-type antibodies against CYP2D6, and 2 had antibodies against proteins of 58, 66, and 84 kDa. One of the sera also contained IgM-type anti-66-kDa and 84-kDa proteins. The radioligand test detected anti-CYP2D6 antibodies in 9 of 10 patients. Five of the anti-CYP2D6-positive sera recognized a peptide between amino acids 200 and 429 including amino acids 254-271. Most HCV+/LKM1+ sera from children recognize conformational epitopes of the CYP2D6 antigen, and half recognize linear epitopes. Some HCV+/LKM1+ sera demonstrated antibodies against the AIH type 2 main antigenic site of the CYP2D6. Screening of HCV RNA should be performed before starting treatment of presumed autoimmune hepatitis associated with LKM1.

  7. Overlapping but distinct specificities of anti-liver-kidney microsome antibodies in autoimmune hepatitis type II and hepatitis C revealed by recombinant native CYP2D6 and novel peptide epitopes

    Science.gov (United States)

    Klein, R; Zanger, U M; Berg, T; Hopf, U; Berg, P A

    1999-01-01

    Anti-liver-kidney microsome antibodies (anti-LKM) occur in autoimmune hepatitis (AIH) type II and in a subset of patients with hepatitis C. Anti-LKM1 in AIH are directed against cytochrome P4502D6 (CYP2D6), but conflicting data exist concerning the specificity of anti-LKM in hepatitis C. The aim of this study was to evaluate binding specificities of anti-LKM antibodies in both diseases using novel test antigens as well as their inhibitory capacity on CYP2D6 enzyme activity. Sera from 22 patients with AIH type II and 17 patients with hepatitis C being anti-LKM-positive in the immunofluorescence test were investigated for binding to native recombinant CYP2D6 and liver microsomes by ELISA and immunoblotting, and to synthetic peptides covering the region 254–339 (254–273, 257–269, 270–294, 291–310, 307–324, 321–339, 373–389) as well as the novel peptide 196–218 by ELISA. Furthermore, all sera were tested for inhibition of CYP2D6-dependent bufuralol 1′-hydroxylase activity. Twenty of the 22 AIH type II sera (91%) and nine of the 17 hepatitis C sera (53%) were positive for CYP2D6 by ELISA and/or immunoblotting. The previously described major peptide epitope comprising CYP2D6 amino acids 257–269 was recognized by 16 of the 22 AIH sera but by only one hepatitis C serum. A further epitope, 196–218, could be defined for the first time as another immunodominant epitope for AIH because it was recognized by 15 of the 22 AIH (68%) but only three of the 17 hepatitis C sera (18%). With the exception of the peptide 254–273, the other peptides showed no significant reactivity. Analysing the inhibitory properties of anti-LKM antibodies it emerged that 95% of AIH sera and 88% of hepatitis C sera inhibited enzyme function. These data indicate that anti-LKM antibodies in AIH and hepatitis C react with CYP2D6, as shown by their inhibitory activity, and that besides the known epitope 257–269 a further immunodominant epitope exists on CYP2D6 which is recognized

  8. Microsomal lipid peroxidation as a mechanism of cellular damage. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Kornbrust, D.J.

    1979-01-01

    The NADPH/iron-dependent peroxidation of lipids in rat liver microsomes was found to be dependent on the presence of free ferrous ion and maintains iron in the reduced Fe/sup 2 +/ state. Chelation of iron by EDTA inhibited peroxidation. Addition of iron, after preincubation of microsomes in the absence of iron, did not enhance the rate of peroxidation suggesting that iron acts by initiating peroxidative decomposition of membrane lipids rather than by catalyzing the breakdown of pre-formed hydroperoxides. Liposomes also underwent peroxidation in the presence of ferrous iron at a rate comparable to intact microsomes and was stimulated by ascorbate. Carbon tetrachloride initiated lipid peroxidation in the absence of free metal ions. Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely between different tissues and species. The effects of paraquat on lipid peroxidation was also studied. (DC)

  9. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    Directory of Open Access Journals (Sweden)

    DWI RAMADHANI

    2014-03-01

    Full Text Available The presence of malarial pigment (haemozoin due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional light microscope and simple polarized light microscope were collected. All images were analyzed using ImageJ 1.47 software to measure the haemozoin areas. Our results showed that non birefringent haemozoin and birefringent haemozoin area was significantly different. This was because when using conventional light microscope the brown area that contained images of non birefringent haemozoin images also contained Kupffer cells which appeared as the same brown color as haemozoin. In contrast, haemozoin gave bright effect and can be easily differentiated with Kupffer cells in the birefringent haemozoin images. This study concluded that haemozoin detection in mouse liver histology using a simple polarized light microscope was more accurate compared to that of conventional light microscope.

  10. Adult Mouse Liver Contains Two Distinct Populations of Cholangiocytes

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-08-01

    Full Text Available The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.

  11. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Hye Young Ji

    2012-01-01

    Full Text Available DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP enzymes and four UDP-glucuronosyltransferase (UGT enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50 values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions.

  12. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  13. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    International Nuclear Information System (INIS)

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-01-01

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα

  14. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangkyu, E-mail: 49park@cku.ac.kr [Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709 (Korea, Republic of); Ko, Eun Hee [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  15. Effect of adeturone on the concentration of endogenous sulfhydryl groups in mouse spleen and liver

    International Nuclear Information System (INIS)

    Pantev, T.; Bychvarova, K.

    1981-01-01

    Levels of endogenous sulfhydryl groups (total, protein, and non-protein) in mouse liver and spleen were studied for response to the radioprotective drug Adeturone (AET adenosine triphosphate) as recorded at various time intervals (5 - 90 min) following administration of a 300 mg/kg b.w. dose. Spleen sulfhydryl concentration levels tended to elevation, with the peak effect noted at 45 min post-treatment. In the liver, augmentation was observed only for non-protein sylfhydryl groups, at 10 and 15 min post-treatment (time intervals when Adeturone affords maximum protection against radiation); at the 60 min, however, there was a statistically reliable drop. The findings indicate that Adeturone treatment produces response patterns of opposite directions in liver and spleen endogenous thiols. (A.B.)

  16. Establishment of a novel radioligand assay using eukaryotically expressed cytochrome P4502D6 for the measurement of liver kidney microsomal type 1 antibody in patients with autoimmune hepatitis and hepatitis C virus infection.

    Science.gov (United States)

    Ma, Y; Gregorio, G; Gäken, J; Muratori, L; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1997-06-01

    Liver kidney microsomal type 1 antibody (LKM1) is the diagnostic marker of autoimmune hepatitis (AIH) type 2 and is also found in patients with hepatitis C virus (HCV) infection. Cytochrome P4502D6 (CYP2D6) is the documented target antigen of LKM1 in AIH, but not in HCV infection. To compare the reactivity in the two conditions, we established a radioligand assay using eukaryotically expressed CYP2D6 as target. A 1.2-kb human CYP2D6 cDNA was isolated from a human liver cDNA library and subcloned into an in vitro transcription vector pSP64 Poly(A). Recombinant CYP2D6 was then produced by in vitro transcription/translation, metabolically labelled with 35S methionine and used in the immunoprecipitation assay. Antibodies that bound radiolabelled CYP2D6 were immunoprecipitated and their levels assessed as cpm. Sera from 50 LKM1-positive patients (26 with AIH; 24 with HCV infection), 128 LKM1-negative patients and 57 normal controls were tested. Reactivity to 35S labelled CYP2D6 was observed in all LKM1-positive sera from patients with AIH and HCV infection, but in none of the controls. The cpm in both conditions were significantly higher than in normal controls (pLKM1 (r 0.87, p<0.001 and r=0.64, p<0.001 for AIH and HCV infection, respectively). Reactivity to 35S labelled CYP2D6 was inhibited by addition of an excess of eukaryotically expressed CYP2D6. CYP2D6 is a major target antigen of both AIH and HCV infection. The novel radioligand assay is highly sensitive and specific.

  17. Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    International Nuclear Information System (INIS)

    Grimm, Martin; Thalheimer, Andreas; Gasser, Martin; Bueter, Marco; Strehl, Johanna; Wang, Johann; Nichiporuk, Ekaterina; Meyer, Detlef; Germer, Christoph T; Waaga-Gasser, Ana M

    2010-01-01

    The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth. CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired t test when appropriate. Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+) which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location. This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic growth in a colorectal liver metastases mouse model simulating the

  18. Metabolic activation of 2-methylfuran by rat microsomal systems

    International Nuclear Information System (INIS)

    Ravindranath, V.; Boyd, M.R.

    1985-01-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins

  19. Time-course comparison of xenobiotic activators of CAR and PPARα in mouse liver

    International Nuclear Information System (INIS)

    Ross, Pamela K.; Woods, Courtney G.; Bradford, Blair U.; Kosyk, Oksana; Gatti, Daniel M.; Cunningham, Michael L.; Rusyn, Ivan

    2009-01-01

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)α are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARα will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR α. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPARα in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens

  20. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    Science.gov (United States)

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  1. MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging.

    Science.gov (United States)

    Bates, David J; Li, Na; Liang, Ruqiang; Sarojini, Harshini; An, Jin; Masternak, Michal M; Bartke, Andrzej; Wang, Eugenia

    2010-02-01

    The Ames dwarf mouse is well known for its remarkable propensity to delay the onset of aging. Although significant advances have been made demonstrating that this aging phenotype results primarily from an endocrine imbalance, the post-transcriptional regulation of gene expression and its impact on longevity remains to be explored. Towards this end, we present the first comprehensive study by microRNA (miRNA) microarray screening to identify dwarf-specific lead miRNAs, and investigate their roles as pivotal molecular regulators directing the long-lived phenotype. Mapping the signature miRNAs to the inversely expressed putative target genes, followed by in situ immunohistochemical staining and in vitro correlation assays, reveals that dwarf mice post-transcriptionally regulate key proteins of intermediate metabolism, most importantly the biosynthetic pathway involving ornithine decarboxylase and spermidine synthase. Functional assays using 3'-untranslated region reporter constructs in co-transfection experiments confirm that miRNA-27a indeed suppresses the expression of both of these proteins, marking them as probable targets of this miRNA in vivo. Moreover, the putative repressed action of this miRNA on ornithine decarboxylase is identified in dwarf mouse liver as early as 2 months of age. Taken together, our results show that among the altered aspects of intermediate metabolism detected in the dwarf mouse liver--glutathione metabolism, the urea cycle and polyamine biosynthesis--miRNA-27a is a key post-transcriptional control. Furthermore, compared to its normal siblings, the dwarf mouse exhibits a head start in regulating these pathways to control their normality, which may ultimately contribute to its extended health-span and longevity.

  2. In vitro metabolism of 2,2',3,4',5,5',6-heptachlorobiphenyl(CB187) with liver microsomes of rats, hamsters and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Koga, N.; Ohta, C.; Kanamaru, T. [Nakamura Gakuen Univ., Fukuoka (Japan); Haraguchi, K. [Daiichi Coll. of Pharmaceutical Sciences, Fukuoka (Japan); Kato, Y.; Yamada, S. [Univ. of Shizuoka, Shizuoka (Japan)

    2004-09-15

    PCB congeners possess extremely high lipophilicity and biological stability, and as a result they are not easily eliminated from the body once ingested. In particular, not only 2,4,5-trichlorosubstituted but also 6 or more chlorine-substituted PCBs such as 2,2',3',4,4',5-hexa-chlorobiphenyl (hexaCB) (CB138), 2,2',4,4',5,5'-hexaCB (CB153), 2,2',3,4,4',5,5'-heptachloro-biphenyl (heptaCB) (CB180) and 2,2',3,4',5,5',6-heptaCB (CB187) have been detected in blood and adipose tissues of mammals and human mother's milk at higher concentration. In addition, the 4-hydroxy (OH)-metabolite of CB187 has been reported to be present in human blood at the highest concentration of that derived from other PCB congeners. Although CB187, a tri-ortho-PCB, is one of the minor component in the commercial PCB preparations such as Clophen, Aroclor and Kanechlor, the toxic equivalency factor (TEF) which is used for dioxin-like PCB congeners including coplanar-PCBs and mono-ortho-PCBs to assess the potency of the toxicity has not been set up for di- and tri-ortho-PCB congeners. These facts indicate that 4-OH-PCB187 become more persistent and more important toxicologically than the parent CB187. However, there is little report about biotransformation in vivo or in vitro of CB187 in animals. Therefore, we examined CB187 metabolism by liver microsomes of rats, hamsters and guinea pigs.

  3. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  4. DNA damage in mouse and rat liver by caprolactam and benzoin, evaluated with three different methods.

    Science.gov (United States)

    Parodi, S; Abelmoschi, M L; Balbi, C; De Angeli, M T; Pala, M; Russo, P; Taningher, M; Santi, L

    1989-11-01

    Benzoin and caprolactam were examined for their capability of inducing alkaline DNA fragmentation in mouse and rat liver DNA after treatment in vivo. Three different methods were used. With the alkaline elution technique we measured an effect presumably related to the conformation of the DNA coil. With a viscometric and a fluorometric unwinding method we measured an effect presumably related to the number of unwinding points in DNA. For both compounds only the alkaline elution technique was clearly positive. The results suggest that both caprolactam and benzoin can induce an important change in the conformation of the DNA coil without inducing true breaks in DNA.

  5. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T

    1997-01-01

    To elucidate the physiological role of the Ca2+ binding protein parvalbumin, we have generated transgenic mice carrying the full-length complementary DNA (cDNA) of rat parvalbumin under the control of the heavy-metal inducible metallothionein IIA promoter. Immunohistochemical and biochemical...... methods have been used to detect the presence of ectopic parvalbumin expression in different tissues. Here we show the expression of parvalbumin in endothelial cells lining the liver sinusoids in situ and after isolation in vitro. The hemodynamic effects of endothelin 1, a peptide hormone mediating potent...... vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  6. Low prevalence of liver-kidney microsomal autoantibodies of type 1 (LKM1) in hepatitis C seropositive subjects on Crete, Greece.

    Science.gov (United States)

    Drygiannakis, D; Lionis, C; Drygiannakis, I; Pappas, G; Kouroumalis, E

    2001-01-01

    Hepatitis C is a serious problem on the Greek island of Crete, where a high prevalence of antibodies against hepatitis C (anti-HCV) has recently been reported. This article reports the findings of a study carried out in Crete, which investigated the prevalence of serum autoantibodies in patients with chronic hepatitis C. One hundred and forty two patients (59 men and 83 women), who were found anti-HCV seropositive in two hospitals and two Primary Health Care Centres in Crete, were eligible. Sixty healthy blood donors (46 men, 14 women), which were negative to anti-HCV, were used as the control group. They were randomly selected from those attending Rethymnon Hospital. Autoantibodies were identified using the indirect immunofluorescence (IFL) technique on human epithelial cells from larynx cancer (HEp-2 cells), rat liver-kidney-stomach substrate (CT3) and Chrithidia Luciliae (CL). Serum autoantibodies were detected in 104 HCV patients, yielding an overall prevalence of 73.2%. The most frequent autoantibodies were antinuclear antibodies (ANA), positive in 72 patients (50.7%). Anti-smooth muscle antibodies (ASMA) were detected in 33 patients (23.2%). Only one patient was positive for LKM1 autoantibodies. No autoantibodies were found in 38 patients (26.7%). Autoantibodies were also found in 5 out of the 60 examined healthy blood donors (8.3%). Autoantibodies, mainly ANA and ASMA are very common in HCV seropositive patients from Crete. By contrast LKM1 autoantibodies are exceptionally rare in these patients.

  7. A mouse radiation-induced liver disease model for stereotactic body radiation therapy validated in patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wu, Zhi-Feng; Zhang, Jian-Ying; Shen, Xiao-Yun; Gao, Ya-Bo; Hu, Yong; Zeng, Zhao-Chong; Zhou, Le-Yuan

    2016-01-01

    Purpose: Lower radiation tolerance of the whole liver hinders dose escalations of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) treatment. This study was conducted to define the exact doses that result in radiation-induced liver disease (RILD) as well as to determine dose constraints for the critical organs at risk (OARs) in mice; these parameters are still undefined in HCC SBRT. Methods: This study consisted of two phases. In the primary phase, mice treated with helical tomotherapy-based SBRT were stratified according to escalating radiation doses to the livers. The pathological differences, signs [such as mouse performance status (MPS)], and serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT)/albumin levels were observed. Radiation-induced disease severities of the OARs were scored using systematic evaluation standards. In the validation phase in humans, 13 patients with HCC who had undergone radiotherapy before hepatectomy were enrolled to validate RILD pathological changes in a mouse study. Results: The evaluation criteria of the mouse liver radiotherapy-related signs were as follows: MPS ≥ 2.0 ± 0.52, AST/ALT ≥ 589.2 ± 118.5/137.4 ± 15.3 U/L, serum albumin ≤ 16.8 ± 2.29 g/L. The preliminary dose constraints of the OARs were also obtained, such as those for the liver (average dose ≤ 26.36 ± 1.71 Gy) and gastrointestinal tract (maximum dose ≤ 22.63 Gy). Mouse RILD models were able to be developed when the livers were irradiated with average doses of ≥31.76 ± 1.94 Gy (single fraction). RILD pathological changes in mice have also been validated in HCC patients. Conclusions: Mouse RILD models could be developed with SBRT based on the dose constraints for the OARs and evaluation criteria of mouse liver radiotherapy-related signs, and the authors’ results favor the study of further approaches to treat HCC with SBRT.

  8. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization.

    Science.gov (United States)

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y; Wakeham, Andrew; Cairns, Rob A; Mak, Tak W

    2017-01-10

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.

  9. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  10. Low prevalence of liver-kidney microsomal autoantibodies of type 1 (LKM1 in hepatitis C seropositive subjects on Crete, Greece

    Directory of Open Access Journals (Sweden)

    Pappas Georgios

    2001-06-01

    Full Text Available Abstract Background Hepatitis C is a serious problem on the Greek island of Crete, where a high prevalence of antibodies against hepatitis C (anti-HCV has recently been reported. This article reports the findings of a study carried out in Crete, which investigated the prevalence of serum autoantibodies in patients with chronic hepatitis C. Patients and Methods One hundred and forty two patients (59 men and 83 women, who were found anti-HCV seropositive in two hospitals and two Primary Health Care Centres in Crete, were eligible. Sixty healthy blood donors (46 men, 14 women, which were negative to anti-HCV, were used as the control group. They were randomly selected from those attending Rethymnon Hospital. Autoantibodies were identified using the indirect immunofluorescence (IFL technique on human epithelial cells from larynx cancer (HEp-2 cells, rat liver-kidney-stomach substrate (CT3 and Chrithidia Luciliae (CL. Results Serum autoantibodies were detected in 104 HCV patients, yielding an overall prevalence of 73.2%. The most frequent autoantibodies were antinuclear antibodies (ANA, positive in 72 patients (50.7%. Anti-smooth muscle antibodies (ASMA were detected in 33 patients (23.2%. Only one patient was positive for LKM1 autoantibodies. No autoantibodies were found in 38 patients (26.7%. Autoantibodies were also found in 5 out of the 60 examined healthy blood donors (8.3%. Conclusions Autoantibodies, mainly ANA and ASMA are very common in HCV seropositive patients from Crete. By contrast LKM1 autoantibodies are exceptionally rare in these patients.

  11. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily......The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  12. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    Science.gov (United States)

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  13. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    Science.gov (United States)

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  14. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    Science.gov (United States)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  15. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis

    Science.gov (United States)

    Méndez-Lucas, Andrés; Duarte, João; Sunny, Nishanth E.; Satapati, Santhosh; He, TianTeng; Fu, Xiaorong; Bermúdez, Jordi; Burgess, Shawn C.; Perales, Jose C.

    2013-01-01

    Background & Aims Hepatic gluconeogenesis helps maintain systemic energy homeostasis by compensating for discontinuities in nutrient supply. Liver specific deletion of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) abolishes gluconeogenesis from mitochondrial substrates, deregulates lipid metabolism and affects TCA cycle. While, mouse liver almost exclusively expresses PEPCK-C, humans equally present a mitochondrial isozyme (PEPCK-M). Despite clear relevance to human physiology, the role of PEPCK-M and its gluconeogenic potential remain unknown. Here, we test the significance of PEPCK-M in gluconeogenesis and TCA cycle function in liver-specific PEPCK-C knockout and WT mice. Methods The effects of the overexpression of PEPCK-M were examined by a combination of tracer studies and molecular biology techniques. Partial PEPCK-C re-expression was used as a positive control. Metabolic fluxes were evaluated in isolated livers by NMR using 2H and 13C tracers. Gluconeogenic potential, together with metabolic profiling, were investigated in vivo and in primary hepatocytes. Results PEPCK-M expression partially rescued defects in lipid metabolism, gluconeogenesis and TCA cycle function impaired by PEPCK-C deletion, while ~10% re-expression of PEPCK-C normalized most parameters. When PEPCK-M was expressed in the presence of PEPCK-C, the mitochondrial isozyme amplified total gluconeogenic capacity, suggesting autonomous regulation of oxaloacetate to phosphoenolpyruvate fluxes by the individual isoforms. Conclusions We conclude that PEPCK-M has gluconeogenic potential per se, and cooperates with PEPCK-C to adjust gluconeogenic/TCA flux to changes in substrate or energy availability, hinting at a role in the regulation of glucose and lipid metabolism in human liver. PMID:23466304

  16. Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease.

    Directory of Open Access Journals (Sweden)

    Donna N Douglas

    2010-02-01

    Full Text Available Severe Combined Immune Deficient (SCID/Urokinase-type Plasminogen Activator (uPA mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk/ganciclovir (GCV system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK/GCV system of hepatic failure in SCID/uPA mice.In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32-87%. Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH.Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced cytotoxicity targeted to residual mouse hepatocytes

  17. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    Science.gov (United States)

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  18. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  19. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  20. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  1. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  2. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  3. Age dependent in vitro metabolism of bifenthrin in rat and human hepatic microsomes.

    Science.gov (United States)

    Nallani, Gopinath C; Chandrasekaran, Appavu; Kassahun, Kelem; Shen, Li; ElNaggar, Shaaban F; Liu, Zhiwei

    2018-01-01

    Bifenthrin, a pyrethroid insecticide, undergoes oxidative metabolism leading to the formation of 4'-hydroxy-bifenthrin (4'-OH-BIF) and hydrolysis leading to the formation of TFP acid in rat and human hepatic microsomes. In this study, age-dependent metabolism of bifenthrin in rats and humans were determined via the rates of formation of 4'-OH-BIF and TFP acid following incubation of bifenthrin in juvenile and adult rat (PND 15 and PND 90) and human (18years) liver microsomes. Furthermore, in vitro hepatic intrinsic clearance (CL int ) of bifenthrin was determined by substrate consumption method in a separate experiment. The mean V max (±SD) for the formation of 4'-OH-BIF in juvenile rat hepatic microsomes was 25.0±1.5pmol/min/mg which was significantly lower (pbifenthrin occurs primarily via oxidative pathway with relatively lesser contribution (~30%) from hydrolytic pathway in both rat and human liver microsomes. The CL int values for bifenthrin, determined by monitoring the consumption of substrate, in juvenile and adult rat liver microsomes fortified with NADPH were 42.0±7.2 and 166.7±20.5μl/min/mg, respectively, and the corresponding values for human liver microsomes were 76.0±4.0 and 21.3±1.2μl/min/mg, respectively. The data suggest a major species difference in the age dependent metabolism of bifenthrin. In human liver microsomes, bifenthrin is metabolized at a much higher rate in juveniles than in adults, while the opposite appears to be true in rat liver microsomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    Science.gov (United States)

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  5. Microarray data reveal relationship between Jag1 and Ddr1 in mouse liver.

    Directory of Open Access Journals (Sweden)

    Lara A Underkoffler

    Full Text Available Alagille syndrome is an autosomal dominant disorder involving bile duct paucity and cholestasis in addition to cardiac, skeletal, ophthalmologic, renal and vascular manifestations. Mutations in JAG1, encoding a ligand in the Notch signaling pathway, are found in 95% of patients meeting clinical criteria for Alagille syndrome. In order to define the role of Jag1 in the bile duct developmental abnormalities seen in ALGS, we previously created a Jag1 conditional knockout mouse model. Mice heterozygous for the Jag1 conditional and null alleles demonstrate abnormalities in postnatal bile duct growth and remodeling, with portal expansion and increased numbers of malformed bile ducts. In this study we report the results of microarray analysis and identify genes and pathways differentially expressed in the Jag1 conditional/null livers as compared with littermate controls. In the initial microarray analysis, we found that many of the genes up-regulated in the Jag1 conditional/null mutant livers were related to extracellular matrix (ECM interactions, cell adhesion and cell migration. One of the most highly up-regulated genes was Ddr1, encoding a receptor tyrosine kinase (RTK belonging to a large RTK family. We have found extensive co-localization of Jag1 and Ddr1 in bile ducts and blood vessels in postnatal liver. In addition, co-immunoprecipitation data provide evidence for a novel protein interaction between Jag1 and Ddr1. Further studies will be required to define the nature of this interaction and its functional consequences, which may have significant implications for bile duct remodeling and repair of liver injury.

  6. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock

    2008-01-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  7. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    Science.gov (United States)

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p system, with the intrinsic clearance calculated from full kinetic data is recommended for generation of the CYP2C9 ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  9. Metabolomics (liver and blood profiling) in a mouse model in response to fasting: A study of hepatic steatosis

    NARCIS (Netherlands)

    Ginneken, V. van; Verhey, E.; Poelmann, R.; Ramakers, R.; Dijk, K.W. van; Ham, L.; Voshol, P.; Havekes, L.; Eck, M. van; Greef, J. van der

    2007-01-01

    A metabolomic approach was applied to a mouse model of starvation-induced hepatic steatosis. After 24 h of fasting it appears that starvation reduced the phospholipids (PL), free cholesterol (FC), and cholesterol esters (CE) content of low-density lipoproteins (LDL). In liver lipid profiles major

  10. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  11. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case Study

    Science.gov (United States)

    Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...

  12. Exogenous iron and γ-irradiation induce NO-synthase synthesis in mouse liver

    International Nuclear Information System (INIS)

    Mikoyan, V.D.; Voevodskaya, N.V.; Kubrina, L.N.; Malenkova, I.V.; Vanin, A.F.

    1994-01-01

    Protein synthesis inhibitor (cycloheximide, CHI) and exogenous antioxidant (phenazan) suppress the synthesis of NO in mouse liver in vivo which is induced by administration to the animals of γ-irradiation, bacterial lipopolysaccharide (LPS), or Fe 2+ -citrate together with LPS. Biosynthesis of NO was monitored by the ESR signal of paramagnetic mononitrosyl iron complexes with the exogenous ligand diethyldithiocarbamate (MNIC-DETC) 30 min after addition of the ligand. The complexes arise from NO binding to DETC complexes with exogenous and endogenous Fe 2+ , which act as selective NO traps. The enhancement of NO biosynthesis after γ-irradiation or LPS or LPS + Fe 2+ -citrate is apparently due to the induction of the synthesis of NO-synthase, which is inhibited by cycloheximide. This process is triggered by reactive oxygen species, presumably through the activation of the transcription factor protein NFkB. The accumulation of free radical oxygen species is inhibited by the antioxidant phenazan

  13. Morphological Lesions in Mouse Liver and Lungs After Lung Exposure to Carbon Nanotubes

    DEFF Research Database (Denmark)

    Szarek, J.; Mortensen, Alicja; Jackson, P.

    2013-01-01

    Introduction: Engineered nanoparticles are smaller than 100 nm in at least one direction and designed to improve or achieve new physicochemical properties. Consequently, toxicological properties may also change. Carbon nanotubes have attracted industrial interest due to their unique properties....... Materials and Methods: One day before mating, 30 mice (C57BL/6BomTac, Taconic Europe, Denmark) were given 67 μg multi-walled carbon nanotubes (NM-400, Nanocyl, Belgium) intratracheally (group A). A further 30 control mice (group B) received vehicle (Millipore water with 2% mouse serum). Lungs and liver were...... taken from six animals from each group for histopathological examination (haematoxylin and eosin staining) 6 weeks (A1, B1 group) and 4 months (A2, B2) after exposure. Results: Lungs in A1 mice showed bronchiolar subepithelial oedema and perivascular oedema and sporadic hyperaemia and the presence...

  14. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Ørskov, Cathrine; Rasmussen, Susanne

    2005-01-01

    for MEKK1 in definitive mouse erythropoiesis. Although Mekk1(DeltaKD) mice are alive and fertile on a 129 x C57/BL6 background, the frequency of Mekk1(DeltaKD) embryos that develop past embryonic day (E) 14.5 is dramatically reduced when backcrossed into the C57/BL6 background. At E13.5, Mekk1(Delta......KD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non......-cell-autonomous manner. Based on immunohistochemical and hemoglobin chain transcription analysis, we propose that the failure of definitive erythropoiesis is due to a deficiency in enucleation activity caused by insufficient macrophage-mediated nuclear DNA destruction....

  15. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P4503A via the formation of a stable metabolic intermediate complex. Studies in primary hepatocyte cultures and liver microsomes of the pig.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; Monshouwer, M; Van Miert, A S

    1995-05-01

    Tiamulin is a semisynthetic antibiotic frequently used in agricultural animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds that are simultaneously administered. To explain this, it has been suggested that tiamulin selectively inhibits oxidative drug metabolism via the formation of a cytochrome P450 metabolic intermediate complex. The aim of the present study was to provide further support for this hypothesis. When hepatic microsomes and cultured primary pig hepatocytes were incubated with tiamulin, a maximum in the absorbance spectrum at 455 nm was observed, which disappeared after adding KFe(CN)6. When hepatocytes were incubated with tiamulin for 72 hr, cytochrome P450 content and cytochrome P4503A apoprotein levels were increased. Tiamulin strongly inhibited and concentration dependently inhibited the hydroxylation rate of testosterone at the 6 beta-position in both microsomes and hepatocytes, and the microsomal N-demethylation rate of ethylmorphine. Other testosterone hydroxylations were inhibited to a lesser extent or not affected. The relative inhibition of the hydroxylation of testosterone at the 6 beta-position was more pronounced in microsomes from rifampicin- and triacetyloleandomycin-treated pigs. The results indicate that cytochrome P450 complex formation can at least partly explain the interactions observed with tiamulin. Tiamulin seems to be a strong, probably selective, inhibitor of the cytochrome P4503A subfamily and an interesting tool for further research.

  16. Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection.

    Science.gov (United States)

    Maeng, Sejung; Lee, Hye Won; Bashir, Qudsia; Kim, Tae Im; Hong, Sung-Jong; Lee, Tae Jin; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo; Pak, Jhang Ho

    2016-03-01

    Clonorchis sinensis is a high-risk pathogenic helminth that strongly provokes inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma in chronically infected individuals. Chronic inflammation is associated with an increased risk of various cancers due to the disruption of redox homeostasis. Accordingly, the present study was conducted to examine the time course relationship between histopathological changes and the appearance of oxidative stress markers, including lipid peroxidation, enzymes involved in lipid peroxidation, and mutagenic DNA adducts in the livers of mice infected with C. sinensis, as well as proinflammatory cytokines in infected mouse sera. Histopathological phenotypes such as bile duct epithelial hyperplasia, periductal fibrosis, edema and inflammatory infiltration increased in infected livers in a time-dependent manner. Intense immunoreactivity of lipid peroxidation products (4-hydroxy-2-nonenal; malondialdehyde), cyclooxygenase-2, 5-lipoxygenase and 8-oxo-7,8-dihydro-2'-deoxyguanosine were concomitantly observed in these injured regions. We also found elevated expressions of cyclooxygenase-2 and 5-lipoxygenase in C. sinensis excretory-secretory product-treated cholangiocarcinoma cells. Moreover, the levels of proinflammatory cytokines such as TNF-α, ILβ-1 and IL-6 were differentially upregulated in infected sera. With regard to oxidative stress-mediated carcinogenesis, our findings suggest that C. sinensis infestation may disrupt host redox homeostasis, creating a damaging environment that favors the development of advanced hepatobiliary diseases such as clonorchiasis-associated cholangiocarcinoma. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH.

    Science.gov (United States)

    Baron, Morgane; Leroyer, Aurélie S; Majd, Zouher; Lalloyer, Fanny; Vallez, Emmanuelle; Bantubungi, Kadiombo; Chinetti-Gbaguidi, Giulia; Delerive, Philippe; Boulanger, Chantal M; Staels, Bart; Tailleux, Anne

    2011-09-01

    Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are complex pathologies characterized by lipid accumulation, chronic inflammation and extensive tissue remodelling. Microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, might not only be biomarkers, but also functional actors in these pathologies. The apoE2-KI mouse is a model of atherosclerosis and NAFLD. Activation of the nuclear receptor PPARα decreases atherosclerosis and components of non-alcoholic steatohepatitis (NASH) in the apoE2-KI mouse. (1) To determine whether MPs are present in atherosclerotic lesions, liver and plasma during atherosclerosis and NASH progression in apoE2-KI mice, and (2) to study whether PPARα activation modulates MP concentrations. ApoE2-KI mice were fed a Western diet to induce atherosclerosis and NASH. MPs were isolated from atherosclerotic lesions, liver and blood and quantified by flow cytometry. An increase of MPs was observed in the atherosclerotic lesions and in the liver of apoE2-KI mice upon Western diet feeding. PPARα activation with fenofibrate decreased MP levels in the atherosclerotic lesions in a PPARα-dependent manner, but did not influence MP concentrations in the liver. Here we report that MPs are present in atherosclerotic lesions and in the liver of apoE2-KI mice. Their concentration increased during atherosclerosis and NASH development. PPARα activation differentially modulates MP levels in a tissue-specific manner. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. TRAPPING AND IDENTIFICATION OF THE DICHLOROACETATE RADICAL FROM THE REDUCTIVE DEHALOGENATION OF TRICHLOROACETATE BY MOUSE AND RAT LIVER MICROSOMES. (R825954)

    Science.gov (United States)

    A key question in the risk assessment of trichloroethylene (TRI) is the extent to which its carcinogenic effects might depend on the formation of dichloroacetate (DCA) as a metabolite. One of the metabolic pathways proposed for the formation of DCA from TRI is by the reductive...

  19. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    Full Text Available It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/- γc(-/- mice using an adenovirus encoding herpes virus thymidine kinase (AdTk and two consecutive doses of ganciclovir (GCV. We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.

  20. Manifestation of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Different Dietary Mouse Models

    Directory of Open Access Journals (Sweden)

    Vera HI Fengler

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH, which are usually associated with obesity and metabolic syndrome, are considerable health and economic issues due to the rapid increase of their prevalence in Western society. Histologically, the diseases are characterised by steatosis, hepatic inflammation, and if further progressed, fibrosis. Dietary-induced mouse models are widely used in investigations of the development and progression of NAFLD and NASH; these models attempt to mimic the histological and metabolic features of the human diseases. However, the majority of dietary mouse models fail to reflect the whole pathophysiological spectrum of NAFLD and NASH. Some models exhibit histological features similar to those seen in humans while lacking the metabolic context, while others resemble the metabolic conditions leading to NAFLD in humans but fail to mimic the whole histological spectrum, including progression from steatosis to liver fibrosis, and thus fail to mimic NASH. This review summarises the advantages and disadvantages of the different dietary-induced mouse models of NAFLD and NASH, with a focus on the genetic background of several commonly used wild-type mouse strains as well as gender and age, which influence the development and progression of these liver diseases.

  1. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  2. A balanced diet is necessary for proper entrainment signals of the mouse liver clock.

    Directory of Open Access Journals (Sweden)

    Akiko Hirao

    Full Text Available BACKGROUND: The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. PRINCIPAL FINDING: To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3-4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6-0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.], for 2 days. When each nutrient was tested alone (100% nutrient, an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. CONCLUSIONS: Our results strongly suggest the following: (1 balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2 a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary

  3. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model.

    Science.gov (United States)

    Kan, Fangming; Ye, Lei; Yan, Tao; Cao, Jiaqi; Zheng, Jianhua; Li, Wuping

    2017-08-22

    Human hepatitis B virus (HBV) infection is an important public health issue in the Asia-Pacific region and is associated with chronic hepatitis, liver fibrosis, cirrhosis and even liver cancer. However, the underlying mechanisms of HBV-associated liver fibrosis remain incompletely understood. In the present study, proteomic and transcriptomic approaches as well as biological network analyses were performed to investigate the differentially expressed molecular signature and key regulatory networks that were associated with HBV-mediated liver fibrosis. RNA sequencing and 2DE-MALDI-TOF/TOF were performed on liver tissue samples obtained from HBV-infected C57BL/6 mouse generated via AAV8-HBV virus. The results showed that 322 genes and 173 proteins were differentially expressed, and 28 HBV-specific proteins were identified by comprehensive proteomic and transcriptomic analysis. GO analysis indicated that the differentially expressed proteins were predominantly involved in oxidative stress, which plays a key role in HBV-related liver fibrosis. Importantly, CAT, PRDX1, GSTP1, NXN and BLVRB were shown to be associated with oxidative stress among the differentially expressed proteins. The most striking results were validated by Western blot and RT-qPCR. The RIG-I like receptor signaling pathway was found to be the major signal pathway that changed during HBV-related fibrosis. This study provides novel insights into HBV-associated liver fibrosis and reveals the significant role of oxidative stress in liver fibrosis. Furthermore, CAT, BLVRB, NXN, PRDX1, and IDH1 may be candidates for detection of liver fibrosis or therapeutic targets for the treatment of liver fibrosis.

  4. Uptake of [3H]colchicine into brain and liver of mouse, rat, and chick

    International Nuclear Information System (INIS)

    Bennett, E.L.; Alberti, M.H.; Flood, J.F.

    1981-01-01

    The uptake of [ring A-4- 3 H] colchicine and [ring C-methoxy- 3 H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy- 3 H] and [ring A- 3 H]colchicine was also studied in rats. The general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkaloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments, support the hypotheses that structural alterations in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation

  5. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  6. [125I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin-binding species in mouse liver induced by agonists for the Ah receptor: Characterization and identification

    International Nuclear Information System (INIS)

    Poland, A.; Teitelbaum, P.; Glover, E.

    1989-01-01

    The admininistration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to C57BL/6J mice produces a dose-related increase in the hepatic uptake of [ 125 I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin ([ 125 I]Cl3DpD) in vivo and the binding of the radioligand to liver homogenate in vitro. The TCDD-induced hepatic binding species was found to be predominantly in the microsomal fraction and was inactivated by heating at 60 degree, trypsin, and mercurials. The TCDD-induced binding species was found to have an apparent equilibrium dissociation constant, KD, ([ 125 I]Cl3DpD) of 56 +/- 16 nM and a pool size, Bmax, of 22 +/- 5 nmol/g of liver. A number of halogenated dibenzo-p-dioxins, biphenyls, and polycyclic aromatic hydrocarbons compete with [ 125 I]Cl3DpD binding to this species; all are aromatic and planar. The distinctive profile of this binding species, a protein of large pool size induced in the microsomal fraction of liver but not other tissues and induced by agonists for the Ah receptor, suggested that this moiety might be cytochrome P3-450. The coincidence of the major microsomal species covalently labeled with the photoaffinity ligand [ 125 I]2-iodo-3-azido-7,8-dibromodibenzo-p-dioxin and that immunochemically stained with polyclonal antiserum that binds to cytochrome P3-450 confirms this hypothesis. This is a novel role for a cytochrome P-450 isozyme, as an induced sequestration site that enhances the hepatic localization of the agonist drug

  7. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    International Nuclear Information System (INIS)

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E.

    2007-01-01

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPARα) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPARα-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPARα-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection

  8. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  9. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-01-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  10. Mouse Precision-Cut Liver Slices as an ex Vivo Model To Study Idiosyncratic Drug-Induced Liver Injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Groothuis, Geny M. M.; Merema, M.T.

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in

  11. Influence of whole body irradiation on induction of the hepatic microsomal system metabolizing drugs

    International Nuclear Information System (INIS)

    Szyszko, A.; Bitny-Szlachto, S.

    1977-01-01

    Effects of whole body irradiation (600 R) on rat liver aminophenazone demethylase activities of the liver homogenate 10,000 X g supernatant and its microsomal fraction were compared. Either activities were found to be decreased by irradiation by some 35%. The phenobarbital treatment (3 x 100 mg/kg i.p.) has turned out to provide higher relative augmentation of the liver demethylase activity in irradiated than in unirradiated rats. The cytoplasmic activity was found to be augmented by phenobarbital treatment 2,21-fold in unirradiated, and 3,20-fold in irradiated rats, and the microsomal activity increased 3,28-fold and 3,77-fold, respectively. Microsomal levels of cytochrome P-450 were found to be not affected by irradiation. (author)

  12. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  13. Hepatic microsomal phospholipids in rats exposed intratracheally to coal fly ash

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Chauhan, S.S.; Misra, U.K.

    1986-01-01

    The effects of intratracheal administration of fly ash (50 mg/kg body weight, daily for 7 days) on hepatic microsomal phospholipid metabolism has been studied in rats using various phospholipid precursors, viz NaH 2 32 PO 4 , (methyl- 14 C)-choline, and (methyl- 14 C)-methionine. Fly ash administration significantly increased microsomal phosphatidylcholine (PC), and lysophosphatidylcholine (LPC). The incorporation of NaH 2 32 PO 4 into total liver phospholipids, PC and Phosphatidyl ethanolamine (PE) was significantly increased in fly ash-treated rats as compared to the control. Fly ash administration also increased the incorporation of (methyl- 14 C)-choline into microsomal PC. Incorporation of (methyl- 14 C)-methionine into microsomal PC was not affected. Fly ash administration decreased the per cent distribution of arachidonic acid in PC and PE and increased that of oleic acid in PC and of linoleic acid in PE. (orig.)

  14. The comparison of lipid profiling in mouse brain and liver after starvation and a high-fat diet: A medical systems biology approach

    NARCIS (Netherlands)

    Ginneken, V.J.T. van; Verheij, E.; Hekman, M.; Greef, J. van der; Feskens, E.J.M.; Poelmann, R.E.

    2011-01-01

    We investigated with LC-MS techniques, measuring approximately 109 lipid compounds, in mouse brain and liver tissue after 48 hours of starvation and a High-Fat Diet if brain and liver lipid composition changed. We measured Cholesterolesters (ChE), Lysophosphatidyl-cholines (LPC), Phosphatidylcholine

  15. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARα and CAR

    Science.gov (United States)

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...

  16. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for Involvement of the Nuclear Receptors PPARα and CAR

    Science.gov (United States)

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects related to liver carcinogenesis through the nucle...

  17. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  18. Hepatic microsomal metabolism of BDE-47 and BDE-99 by lesser snow geese and Japanese quail.

    Science.gov (United States)

    Krieger, Lisa K; Szeitz, András; Bandiera, Stelvio M

    2017-09-01

    In the present study, we investigated the oxidative biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) by liver microsomes from wild lesser snow geese (Chen caerulescens caerulescens) and domesticated Japanese quail (Coturnix japonica). Formation of hydroxy-metabolites was analyzed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with avian liver microsomes produced sixteen hydroxy-metabolites, eight of which were identified using authentic standards. The major metabolites formed by liver microsomes from individual lesser snow geese were 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42), 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47), and 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether (4'-OH-BDE-49). By comparison, 4-OH-BDE-42 and 4'-OH-BDE-49, but not 3-OH-BDE-47, were major metabolites of Japanese quail liver microsomes. Unidentified metabolites included monohydroxy- and dihydroxy-tetrabromodiphenyl ethers. Incubation of BDE-99 with avian liver microsomes produced seventeen hydroxy-metabolites, twelve of which were identified using authentic standards. The major metabolites formed by lesser snow goose liver microsomes were 2,4,5-tribromophenol, 3-OH-BDE-47, 4'-OH-BDE-49, 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether (4-OH-BDE-90), and 5'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (5'-OH-BDE-99). By comparison, the major metabolites produced by liver microsomes from Japanese quail included 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 2-hydroxy-2',3,4,4',5-pentabromodiphenyl ether (2-OH-BDE-123), but not 3-OH-BDE-47. Unidentified metabolites consisted of monohydroxy-pentabromodiphenyl ethers, monohydroxy-tetrabromodiphenyl ethers and dihydroxy-tetrabromodiphenyl ethers. Another difference between the two species was that formation rates of BDE-47 and BDE-99 metabolites were greater with liver

  19. Cholesterol esterification by mouse liver homogenate. Contribution to the study of ACYL-CoA: Cholesterol ACYL transferase in mammalian liver

    International Nuclear Information System (INIS)

    Soares, M.G.C.B.

    1976-01-01

    A cholesterol- esterifying enzyme from mouse liver has been partially characterized. The enzyme which showed optimum activity at pH 7,1 and required ATP and CoA, was identified as an acyl CoA: cholesterol acyl transferase (E.C.2.3.1.26). As a fuction of time the percentage of esterified cholesterol increased linearly during the first hour of incubation and continued to increase but not linearly with 4 hours, after which time no further net esterefication was observed. The relative concentration of esterified cholesterol remained constant between the fourth and twelveth hours of incubation but afterwards decreased when the incubation continued until 24 hours. The cholesterol- esterifying activity was 24,0+- 2,9 nmoles cholesterol esterified per gram tissue wet weight per minute. The mean percentages of free cholesterol esterified in and 24 hours respectively were 14,8+- 1,6 e 21,9+- 4,5. The subfractionation of labelled cholesteryl esters after one hour incubation of liver homogenate with 4-C 14 -Cholesterol showed the order of preference for the formation of the different ester classes to be monounsatured > diunsatured ≥ saturated >> polyunsaturated. The properties of the enzyme frommouse liver do not markedly differ from those of the previously recorded ACAT activity of rat liver. (Author) [pt

  20. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  1. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  2. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  3. Amelioration of radiation induced decrease in activity of catalase and superoxide dismutase in mouse liver by Punica granatum

    International Nuclear Information System (INIS)

    Sharma, Jaimala; Mathur, Aarti

    2013-01-01

    Ionizing radiation generates reactive oxygen species (ROS) in irradiated tissue. Cells of liver have their own defence system, the antioxidant system to deactivate ROS. Antioxidant system includes enzymatic and non-enzymatic components. Liver is rich in endogenous antioxidants and related enzymes. Catalase and Superoxide dismutase (SOD) are powerful antioxidant enzymes. In the present study Punica granatum fruit rind Ethanol extract (PGFRE) was tested against 60 Co gamma radiation induced alteration in Swiss albino mouse. Healthy adult (25±2) Swiss albino mouse were selected and divided into four groups. The first group was sham irradiated. The second group was irradiated with 8 Gy 60 Co gamma radiation only and served as control. The third group was administered with Ethanol extract of Punica granatum fruit rind one hour before irradiation at the dose rate of 10 mg/kg body weight orally. Animals were exposed to 8 Gy 60 Co gamma radiation. Fourth group was administered with Ethanol extract of Punica granatum fruit rind at the dose rate of 10 mg/kg body weight. Mice were sacrificed at various post irradiation intervals and liver was removed, weighed and analysed biochemically for Catalase and SOD activity. Catalase and SOD activity decreased up till 7th post irradiation day in 8 Gy irradiated group than normal. In PGFRE pretreated irradiated group catalase and SOD activity were higher than the corresponding control group at all the intervals. These results indicate that PGFRE extract protects damage to the catalase and SOD activity in liver of Swiss albino mouse against lethal dose of gamma radiation. (author)

  4. Inhibition of rat microsomal lipid peroxidation by the oral administration of D002

    Directory of Open Access Journals (Sweden)

    Menéndez R.

    2000-01-01

    Full Text Available The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS. When D002 (5-100 mg/kg body weight was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46% occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40% and brain (28-44% microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.

  5. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Schulz, Nadja; Drescher, Andrea; Bergheim, Ina; Machann, Jürgen; Schick, Fritz; Siegel-Axel, Dorothea; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Hennige, Anita M

    2014-01-01

    Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.

  6. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    Science.gov (United States)

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  7. Ob/ob mouse livers show decreased oxidative phosphorylation efficiencies and anaerobic capacities after cold ischemia.

    Directory of Open Access Journals (Sweden)

    Michael J J Chu

    Full Text Available BACKGROUND: Hepatic steatosis is a major risk factor for graft failure in liver transplantation. Hepatic steatosis shows a greater negative influence on graft function following prolonged cold ischaemia. As the impact of steatosis on hepatocyte metabolism during extended cold ischaemia is not well-described, we compared markers of metabolic capacity and mitochondrial function in steatotic and lean livers following clinically relevant durations of cold preservation. METHODS: Livers from 10-week old leptin-deficient obese (ob/ob, n = 9 and lean C57 mice (n = 9 were preserved in ice-cold University of Wisconsin solution. Liver mitochondrial function was then assessed using high resolution respirometry after 1.5, 3, 5, 8, 12, 16 and 24 hours of storage. Metabolic marker enzymes for anaerobiosis and mitochondrial mass were also measured in conjunction with non-bicarbonate tissue pH buffering capacity. RESULTS: Ob/ob and lean mice livers showed severe (>60% macrovesicular and mild (<30% microvesicular steatosis on Oil Red O staining, respectively. Ob/ob livers had lower baseline enzymatic complex I activity but similar adenosine triphosphate (ATP levels compared to lean livers. During cold storage, the respiratory control ratio and complex I-fueled phosphorylation deteriorated approximately twice as fast in ob/ob livers compared to lean livers. Ob/ob livers also demonstrated decreased ATP production capacities at all time-points analyzed compared to lean livers. Ob/ob liver baseline lactate dehydrogenase activities and intrinsic non-bicarbonate buffering capacities were depressed by 60% and 40%, respectively compared to lean livers. CONCLUSIONS: Steatotic livers have impaired baseline aerobic and anaerobic capacities compared to lean livers, and mitochondrial function indices decrease particularly from after 5 hours of cold preservation. These data provide a mechanistic basis for the clinical recommendation of shorter cold storage durations in

  8. Action of DTPA on hepatic plutonium. II. DTPA-induced removal of monomeric plutonium from mouse liver parenchymal cells

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Peterson, D.P.; Lindenbaum, A.

    1978-01-01

    Liver parenchymal cells were isolated 6 and 24 hr following the administration of diethylenetriaminepentaacetic acid (DTPA, 0.25 mmole/kg) to mice previously injected with 239 Pu-citrate (4.4 μCi/kg). Isolated parenchymal cells contained 440 dpm Pu/10 6 cells at 24 hr after Pu injection, just prior to DTPA administration. The PU content decreased to 330 dpm/10 6 cells at 6 hr and 140 dpm/10 6 cells at 24 hr after DTPA administration. Thus DTPA induced a striking decrease in the Pu content of isolated liver parenchymal cells. Parenchymal cells isolated from control mice not treated with DTPA changed little in Pu content from 24 to 48 hr after Pu injection. By 24 hr after DTPA treatment, the decrease in the Pu content of isolated liver parenchymal cells could account for the DTPA-induced release of Pu from the intact liver. Thus in the liver DTPA appears to act preferentially on the Pu associated with parenchymal cells. Liver parenchymal cells isolated 6 hr after DTPA administration and containing 330 dpm Pu/10 6 cells were incubated in vitro in the absence of added DTPA. After 18 hr of incubation the cells contained 130 dpm Pu/10 6 cells. This level corresponds to the level observed in cells isolated 24 hr after DTPA administration. Cells isolated from untreated mice lost only 15% of their Pu content during a similar in vitro incubation. Thus, by 6 hr after DTPA administration to the mouse, isolated liver parenchymal cells appeared to retain their ability to release Pu in vitro with no need for additional exposure to DTPA. The physiological significance of this finding is discussed

  9. Modification of nanocellulose by poly-lysine can inhibit the effect of fumonisin B1 on mouse liver cells.

    Science.gov (United States)

    Jebali, Ali; Yasini Ardakani, Seyed Ali; Shahdadi, Hossein; Balal Zadeh, Mohammad Hossein; Hekmatimoghaddam, Seyedhossein

    2015-02-01

    Fumonisin B1 is an important mycotoxin, mainly produced by Fusarium verticillioides. It has toxic effects on liver, brain, and kidney cells. The first aim of this study was to synthesize nanocellulose modified with poly-lysine (NMPL), and the second aim was to evaluate the adsorption of fumonisin B1 by NMPL. As third aim, the function of mouse liver cells was investigated after exposure to fumonisin B1, and fumonisin B1+ NMPL. In this study, NMPL was prepared using cross-linker, and then incubated with fumonisin B1 at controlled conditions. After incubation, the adsorption and release of fumonisin B1 were evaluated in each condition. Next, mouse liver cells were separately exposed to fumonisin B1, NMPL, and (fumonisin B1+NMPL). Then, the level of aniline aminotransferase (ALT) and aspartate aminotransferase (AST) was evaluated. It was found that both adsorption and release of fumonisin B1 were not affected by temperature and incubation time, but affected by pH and concentration of NMPL. Also, this study showed NMPL could adsorb fumonisin B1 in different foodstuffs. Importantly, although the levels of ALT and AST were increased when the cells were treated with fumonisin B1 alone, they were not affected when exposed to NMPL or (fumonisin B1+NMPL). The authors suggest that NMPL is a good adsorbent to remove and inhibit fumonisin B1. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras.

    Science.gov (United States)

    Braeuning, Albert; Schwarz, Michael

    2010-11-01

    Cytochrome P450 (CYP) hemoproteins play an important role in hepatic biotransformation. Recently, β-catenin and Ha-ras signaling have been identified as players controlling transcription of various CYP genes in mouse liver. The aim of the present study was to analyze the role of β-catenin and Ha-ras in the regulation of heme synthesis. Heme synthesis-related gene expression was analyzed in normal liver, in transgenic mice expressing activated β-catenin or Ha-ras, and in hepatomas. Regulation of the aminolevulinate dehydratase promoter was studied in vitro. Elevated expression of mRNAs and proteins involved in heme biosynthesis was linked to β-catenin activation in perivenous hepatocytes, in transgenic hepatocytes, and in hepatocellular tumors. Stimulation of the aminolevulinate dehydratase promoter by β-catenin was independent of the β-catenin/T-cell-specific transcription factor dimer. By contrast, activation of Ha-ras repressed heme synthesis-related gene expression. The present data suggest that β-catenin enhances the expression of both CYPs and heme synthesis-related genes, thus coordinating the availability of CYP apoprotein and its prosthetic group heme. The reciprocal regulation of heme synthesis by β-catenin and Ha-ras-dependent signaling supports our previous hypothesis that antagonistic action of these pathways plays a major role in the control of zonal gene expression in healthy mouse liver and aberrant expression patterns in hepatocellular tumors.

  11. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  12. Impact of associating liver partition and portal vein occlusion for staged hepatectomy on tumor growth in a mouse model of liver metastasis.

    Science.gov (United States)

    Kikuchi, Yutaro; Hiroshima, Yukihiko; Matsuo, Kenichi; Murakami, Takashi; Kawaguchi, Daisuke; Kasahara, Kohei; Tanaka, Kuniya

    2018-01-01

    The impact of associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS) on tumor growth activity was investigated. A BALB/c mouse model (male, 8-10 weeks old) of liver metastasis labeled by red fluorescent protein was established. Changes in future liver remnant (FLR) volumes, tumor growth activity, and levels of cytokines and growth factors in liver tissues during the treatment period were compared among the models involving ALPPS, portal vein ligation (PVL), or sham operation. The ratio of the FLR volume to body weight at 24 h after the procedure was greater for ALPPS (4.45 ± 0.12 × 10 -2 ) than for PVL (3.79 ± 0.12 × 10 -2 ; P = 0.003) and sham operation (3.18 ± 0.16 × 10 -2 ; P < 0.001). No differences in tumor progression in the FLR were observed at any time point after the procedures. Within the deportalized liver (DL), although tumor progression was observed during a later period after ALPPS (9 days postoperative) and PVL (12 days postoperative), no acceleration of tumor growth after ALPPS was observed in an early period similar to PVL. ALPPS induces a rapid increase in FLR volume and avoids remnant tumor progression during the early postoperative period. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  13. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    Science.gov (United States)

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  14. Teratogenic study of phenobarbital and levamisole on mouse fetus liver tissue using biospectroscopy.

    Science.gov (United States)

    Ashtarinezhad, Azadeh; Panahyab, Ataollah; Shaterzadeh-Oskouei, Shahrzad; Khoshniat, Hessam; Mohamadzadehasl, Baharak; Shirazi, Farshad H

    2016-09-05

    Biospectroscopic investigations have attracted attention of both the clinicians and basic sciences researchers in recent years. Scientists are discovering new areas for FTIR biospectroscopy applications in medicine. The aim of this study was to measure the possibility of FTIR-MSP application for the recognition and detection of fetus abnormalities after exposure of pregnant mouse to phenobarbital (PB) and levamisole (LEV) alone or in combination. PB is one of the most widely used antiepileptic drugs (AEDs), with sedative and hypnotic effects. When used by pregnant women, it is known to be a teratogenic agent. LEV is an antihelminthic drug with some applications in immune-deficiency as well as colon cancer therapy. Four groups of ten pregnant mice were selected for the experiments as follows: one control group received only standard diet, one group was injected with 120mg/kg of BP, one group was injected with 10mg/kg of LEV, and the last group was treated simultaneously with both BP and LEV at the above mentioned doses. Drugs administration was performed on gestation day 9 and fetuses were dissected on pregnancy day 15. Each dissected fetus was fixed, dehydrated and embedded in paraffin. Sections of liver (10μm) were prepared from control and treated groups by microtome and deparaffinized with xylene. The spectra were taken by FTIR-MSP in the region of 4000-400cm(-1). All the spectra were normalized based on amide II band (1545cm(-1)) after baseline correction of the entire spectrum, followed by classification using PCA, ANN and SVM. Both morphological and spectral changes were shown in the treated fetuses as compared to the fetuses in the control group. While cleft palate and C-R elongation were seen in PB injected fetuses, developmental retardation was mostly seen in the LEV injected group. Biospectroscopy revealed that both drugs mainly affected the cellular lipids and proteins, with LEV causing more changes in amide I and lipid regions than PB. Application of

  15. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    Directory of Open Access Journals (Sweden)

    Xufeng Fu

    2018-02-01

    Full Text Available Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma. Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP. The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the

  16. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    Science.gov (United States)

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora.

  17. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver

    OpenAIRE

    Yao, Xuan; Hou, Sarina; Zhang, Duo; Xia, Hongfeng; Wang, Yu-Cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2014-01-01

    Background Thyroid hormones (THs) are potent hormones modulating liver lipid homeostasis. The perturbation of lipid homeostasis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a very common liver disorder. It was reported that NAFLD patients were associated with higher incidence of hypothyroidism. However, whether abnormal thyroid function contributes to the pathogenesis of NAFLD remains unclear. Results We used in vivo models to investigate the influence of hypothyroidism and TH ...

  18. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart

    2008-01-01

    be required for liver function. METHODS: Mice in which Cdc42 was ablated in hepatocytes and bile duct cells were generated by Cre-loxP technology. Livers were examined by histologic, immunohistochemical, ultrastructural, and serum analysis to define the effect of loss of Cdc42 on liver structure. RESULTS...... of 2 months, the canaliculi between hepatocytes were greatly enlarged, although the tight junctions flanking the canaliculi appeared normal. Regular liver plates were absent. E-cadherin expression pattern and gap junction localization were distorted. Analysis of serum samples indicated cholestasis...

  19. Mutagenicity of anthraquinone and hydroxylated anthraquinones in the Ames/Salmonella microsome system.

    Science.gov (United States)

    Liberman, D F; Fink, R C; Schaefer, F L; Mulcahy, R J; Stark, A A

    1982-01-01

    The mutagenicity of anthracene, anthraquinone, and four structurally similar compounds of each was evaluated in the Ames/Salmonella microsome assay. Anthraquinone was shown to be mutagenic for strains TA1537, TA1538, and TA98 in the absence of rat liver homogenate. The four anthraquinone derivatives tested were mutagenic for TA1537 exclusively. None of the anthracenes exhibited mutagenic activity. PMID:7103489

  20. Mutagenicity of anthraquinone and hydroxylated anthraquinones in the Ames/Salmonella microsome system.

    OpenAIRE

    Liberman, D F; Fink, R C; Schaefer, F L; Mulcahy, R J; Stark, A A

    1982-01-01

    The mutagenicity of anthracene, anthraquinone, and four structurally similar compounds of each was evaluated in the Ames/Salmonella microsome assay. Anthraquinone was shown to be mutagenic for strains TA1537, TA1538, and TA98 in the absence of rat liver homogenate. The four anthraquinone derivatives tested were mutagenic for TA1537 exclusively. None of the anthracenes exhibited mutagenic activity.

  1. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity

    International Nuclear Information System (INIS)

    Bennett, W.M.; Mela-Riker, L.M.; Houghton, D.C.; Gilbert, D.N.; Buss, W.C.

    1988-01-01

    Aminoglycoside antibiotics achieve bacterial killing by binding to bacterial ribosomes and inhibiting protein synthesis. To examine whether similar mechanisms could be present in renal tubular cells prior to the onset of overt proximal tubular necrosis due to these drugs, we isolated microsomes from Fischer rats given 20 mg/kg gentamicin every 12 h subcutaneously for 2 days and from vehicle-injected controls. Concomitant studies of renal structure, function, and mitochondrial respiration were carried out. [3H]leucine incorporation into renal microsomes of treated animals was reduced by 21.9% (P less than 0.01), whereas brain and liver microsomes from the same animals were unaffected. Gentamicin concentration in the renal microsomal preparation was 56 micrograms/ml, a value 7- to 10-fold above concentrations necessary to inhibit bacterial growth. Conventional renal function studies were normal (blood urea, serum creatinine, creatinine clearance). Treated animals showed only a mild reduction of inulin clearance, 0.71 compared with 0.93 ml.min-1.100 g-1 in controls (P less than 0.05), and an increase in urinary excretion of N-acetylglucosaminidase of 20 compared with 14.8 units/l (P less than 0.05). Renal slice transport of p-aminohippuric acid, tetraethylammonium, and the fractional excretion of sodium were well preserved. There was no evidence, as seen by light microscopy, of proximal tubular necrosis. Mitochondrial cytochrome concentrations were normal and respiratory activities only slightly reduced. Processes similar to those responsible for bacterial killing could be involved in experimental gentamicin nephrotoxicity before overt cellular necrosis

  2. Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model.

    Science.gov (United States)

    Murata, Hiroshi; Yagi, Takahito; Iwagaki, Hiromi; Ogino, Tetsuya; Sadamori, Hiroshi; Matsukawa, Hiroyoshi; Umeda, Yuzoh; Haga, Sanae; Takaka, Noriaki; Ozaki, Michitaka

    2007-12-01

    The mechanism of injury in steatotic liver under pathological conditions been extensively examined. However, the mechanism of an impaired regeneration is still not well understood. The aim of this study was to analyze the mechanism of impaired regeneration of steatotic liver after partial hepatectomy (PH). db/db fatty mice and lean littermates were used for the experiments. Following 70% PH, the survival rate and recovery of liver mass were examined. Liver tissue was histologically examined and analyzed by western blotting and RT-PCR. Of 35 db/db mice, 25 died within 48 h of PH, while all of the control mice survived. Liver regeneration of surviving db/db mice was largely impaired. In db/db mice, mitosis of hepatocytes after PH was disturbed, even though proliferating cell nuclear antigen (PCNA) expression (G1 to S phase marker) in hepatocytes was equally observed in both mice groups. Interestingly, phosphorylation of Cdc2 in db/db mice was suppressed by reduced expression of Wee1 and Myt1, which phosphorylate Cdc2 in S to G2 phase. In steatotic liver, cell-cycle-related proliferative disorders occurred at mid-S phase after PCNA expression. Reduced expression of Wee1 and Myt1 kinases may therefore maintain Cdc2 in an unphosphorylated state and block cell cycle progression in mid-S phase. These kinases may be critical factors involved in the impaired liver regeneration in fatty liver.

  3. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-01-01

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  4. Modeling Dynamics and Function of Bone Marrow Cells in Mouse Liver Regeneration

    NARCIS (Netherlands)

    Pedone, Elisa; Olteanu, Vlad-Aris; Marucci, Lucia; Muñoz-Martin, Maria Isabel; Youssef, Sameh A; de Bruin, Alain; Cosma, Maria Pia

    2017-01-01

    In rodents and humans, the liver can efficiently restore its mass after hepatectomy. This is largely attributed to the proliferation and cell cycle re-entry of hepatocytes. On the other hand, bone marrow cells (BMCs) migrate into the liver after resection. Here, we find that a block of BMC

  5. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Derdak, Zoltan; Villegas, Kristine A; Harb, Ragheb; Wu, Annie M; Sousa, Aryanna; Wands, Jack R

    2013-04-01

    p53 and its transcriptional target miRNA34a have been implicated in the pathogenesis of fatty liver. We tested the efficacy of a p53 inhibitor, pifithrin-α p-nitro (PFT) in attenuating steatosis, associated oxidative stress and apoptosis in a murine model of non-alcoholic fatty liver disease (NAFLD). C57BL/6 mice were fed a high-fat (HFD) or control diet for 8 weeks; PFT or DMSO (vehicle) was administered three times per week. Markers of oxidative stress and apoptosis as well as mediators of hepatic fatty acid metabolism were assessed by immunohistochemistry, Western blot, real-time PCR, and biochemical assays. PFT administration suppressed HFD-induced weight gain, ALT elevation, steatosis, oxidative stress, and apoptosis. PFT treatment blunted the HFD-induced upregulation of miRNA34a and increased SIRT1 expression. In the livers of HFD-fed, PFT-treated mice, activation of the SIRT1/PGC1α/PPARα axis increased the expression of malonyl-CoA decarboxylase (MLYCD), an enzyme responsible for malonyl-CoA (mCoA) degradation. Additionally, the SIRT1/LKB1/AMPK pathway (upstream activator of MLYCD) was promoted by PFT. Thus, induction of these two pathways by PFT diminished the hepatic mCoA content by enhancing MLYCD expression and function. Since mCoA inhibits carnitine palmitoyltransferase 1 (CPT1), the decrease of hepatic mCoA in the PFT-treated, HFD-fed mice increased CPT1 activity, favored fatty acid oxidation, and decreased steatosis. Additionally, we demonstrated that PFT abrogated steatosis and promoted MLYCD expression in palmitoleic acid-treated human HepaRG cells. The p53 inhibitor PFT diminished hepatic triglyceride accumulation and lipotoxicity in mice fed a HFD, by depleting mCoA and favoring the β-oxidation of fatty acids. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Biensø, Rasmus Sjørup; Hassing, Helle Adser

    2015-01-01

    As the demand for hepatic glucose production increases during exercise, regulation of liver substrate choice and gluconeogenic activity becomes essential. The aim of the present study was to investigate the effect of a single exercise bout on gluconeogenic protein content and regulation of enzymes...... involved in substrate utilization in the liver. Mice were subjected to 1 h of treadmill exercise, and livers were removed immediately, 4 or 10 h after exercise. Glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxylase (PEPCK) mRNA contents in the liver increased immediately after exercise, while...... phosphorylation decreased immediately after exercise may indicate that carbohydrates rather than fatty acids are utilized for oxidation in the liver during non-exhaustive exercise....

  7. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Koyama, Ryo; Mizuta, Ryushin

    2017-01-10

    Our previous study suggested that the highly toxic α,β-unsaturated aldehyde acrolein, a byproduct of oxidative stress, plays a major role in acetaminophen-induced liver injury. In this study, to determine the involvement of acrolein in the liver injury and to identify novel therapeutic options for the liver damage, we examined two putative acrolein scavengers, a thiol compound cysteamine and a hydroxylamine N-benzylhydroxylamine, in cell culture and in mice. Our results showed that cysteamine and N-benzylhydroxylamine effectively prevented the cell toxicity of acrolein in vitro and acetaminophen-induced liver injury in vivo, which suggested that acrolein is involved in the liver damage, and these two drugs can be potential therapeutic options for this condition.

  8. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  9. Effects of x-rays or aseptic inflammatory reaction on the circadian rythm of tyrosine aminotransferase in mouse liver (TAT activity of mouse liver)

    International Nuclear Information System (INIS)

    Jungowska-Klin, B.

    1979-01-01

    The circadian rhythm of tyrosine aminotransferase (TAT) was investigated during 48 hours in the liver of mice subjected to: a/ subcutaneous inflammatory reaction, b/ ionizing radiation. The cyclic changes in the circadian enzyme activity were described with a harmonic function. In relation to the control mice in the experimental mice statistically significant changes were demonstrated in the activity of tyrosine aminotransferase associated with desynchronization of the circadian TAT rhythm, particularly evident in the first hours of the first day of the experiment. The functions of enzyme activity changed in the second 24-hours period showed, both qualitatively and quantitatively, a tendency for a gradual return of normal TAT activity in the 24-hour periods. (author)

  10. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    Science.gov (United States)

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  11. Properties of the catalase molecule obtained from acatalasemic and hypocatalasemic mice Part I. Effects of denaturants on the catalase activity in the mouse liver

    OpenAIRE

    佐藤, 征紀

    1985-01-01

    Homogenates of mouse liver with isotonic sucrose solution were separated by the cell fractionation with repeating centrifugation. The supernatants were used for the inhibition test with the reagents such as 3,5 diiodosalicylic acid lithium salt (LIS), guanidine and azide, heat, acid and alkali. After various treatments, the remaining catalase activities were measured and showed as a relative enzyme activity. Stability of catalase in liver supernatants was compared normal (C3H/C(as)C(as)) and ...

  12. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    Science.gov (United States)

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  13. Action of plasma and liver extract from adult mice on the mitotic activity of young mouse liver.

    Science.gov (United States)

    García, A L; Inda, A M; Echave Llanos, J M

    1991-06-01

    Inbred C3HS male mice, standardized for periodicity analysis were used. A hundred and seventy 25 +/- 2 days old mice were injected at 16:00 hs with saline, plasma or liver extract from 27 mice 90 days old. Controls were made at 08/16, 12/20, 16/24, 08/40, 12/44, 16/48, 08/64, 12/68 and 16/72 (time of day/time post-injection). The mitotic activity of the hepatocytes and litoral cells were determined. The injection of small doses of extract and plasma inhibits the mitotic activity of hepatocytes during the first and second following days. A compensatory wave appears in the third day. The extract inhibits the mitotic activity of litoral cells in the first day of control only, whereas the plasma inhibits this variable in the second and third day.

  14. Multi-omic investigations of mouse liver subjected to simulated spaceflight freezing and storage protocols

    Data.gov (United States)

    National Aeronautics and Space Administration — This study compares standard laboratory protocols for tissue freezing and storage with a simulation of the delayed processing of liver specimens and long-term...

  15. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  16. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kathleen M., E-mail: gilbertkathleenm@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Reisfeld, Brad, E-mail: brad.reisfeld@colostate.edu [Colorado State University, Fort Collins, CO (United States); Zurlinden, Todd J., E-mail: tjzurlin@rams.colostate.edu [Colorado State University, Fort Collins, CO (United States); Kreps, Meagan N., E-mail: MNKreps@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Erickson, Stephen W., E-mail: serickson@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States); Blossom, Sarah J., E-mail: blossomsarah@uams.edu [University of Arkansas for Medical Sciences, Arkansas Children' s Hospital Research Institute, Little Rock, AR 72202 (United States)

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  17. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis

    International Nuclear Information System (INIS)

    Gilbert, Kathleen M.; Reisfeld, Brad; Zurlinden, Todd J.; Kreps, Meagan N.; Erickson, Stephen W.; Blossom, Sarah J.

    2014-01-01

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL +/+ mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL +/+ mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. - Highlights: • We developed a toxicodynamic model to study effects of trichloroethylene on liver. • We examined protective as well as pro-inflammatory events in the liver. • Trichloroethylene inhibits IL-6 production by macrophages. • Trichloroethylene

  18. Modeling toxicodynamic effects of trichloroethylene on liver in mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Gilbert, Kathleen M; Reisfeld, Brad; Zurlinden, Todd J; Kreps, Meagan N; Erickson, Stephen W; Blossom, Sarah J

    2014-09-15

    Chronic exposure to industrial solvent and water pollutant trichloroethylene (TCE) in female MRL+/+mice generates disease similar to human autoimmune hepatitis. The current study was initiated to investigate why TCE-induced autoimmunity targeted the liver. Compared to other tissues the liver has an unusually robust capacity for repair and regeneration. This investigation examined both time-dependent and dose-dependent effects of TCE on hepatoprotective and pro-inflammatory events in liver and macrophages from female MRL+/+mice. After a 12-week exposure to TCE in drinking water a dose-dependent decrease in macrophage production of IL-6 at both the transcriptional and protein level was observed. A longitudinal study similarly showed that TCE inhibited macrophage IL-6 production. In terms of the liver, TCE had little effect on expression of pro-inflammatory genes (Tnfa, Saa2 or Cscl1) until the end of the 40-week exposure. Instead, TCE suppressed hepatic expression of genes involved in IL-6 signaling (Il6r, gp130, and Egr1). Linear regression analysis confirmed liver histopathology in the TCE-treated mice correlated with decreased expression of Il6r. A toxicodynamic model was developed to estimate the effects of TCE on IL-6 signaling and liver pathology under different levels of exposure and rates of repair. This study underlined the importance of longitudinal studies in mechanistic evaluations of immuntoxicants. It showed that later-occurring liver pathology caused by TCE was associated with early suppression of hepatoprotection rather than an increase in conventional pro-inflammatory events. This information was used to create a novel toxicodynamic model of IL-6-mediated TCE-induced liver inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Stereospecificity (ST) of the microsomal ethanol oxidizing system (MEOS)

    International Nuclear Information System (INIS)

    Alderman, J.; Kato, S.; Lasker, J.; Lieber, C.S.

    1987-01-01

    The ST of MEOS for the ethanol 1R hydrogen has been variously reported as absolute, partial or absent, with free radical involvement postulated in the latter case. To determine both the ST of MEOS and the participation of free radicals in the reaction, they investigated MEOS ST using 1R[1- 3 H] ethanol as substrate. ST is expressed as the fraction of 3 H labeling in acetaldehyde formed, relative to that in ethanol, and ranges from 0.5 to 0. Partial ST was observed using liver microsomes from both rats and hamsters; it significantly decreased after ethanol feeding. 0.1 mM desferrioxamine (dfx) did not increase ST in any of these microsomal preparations while ferric EDTA decreased it, suggesting that ethanol treatment induces a cytochrome P-450 with lower ST rather than increasing free radical involvement. This is supported by a virtual absence of ST observed in a reconstituted system containing purified hamster P-450/sub ALC/, a liver cytochrome P-450 isozyme induced in hamsters by ethanol treatment. Their results indicate that, unlike other enzymes that oxidize ethanol, MEOS has only partial ST. Thus, ST alone cannot be used as an index of free radical involvement but, when evaluated with the response of ST to dfx, it indicated that MEOS is unlikely to involve free radical attack on ethanol in solution

  20. Effect of ethionine on hepatic mitochondrial and microsomal calcium uptake

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Zinermon, W.D.; Latoni, L.

    1988-01-01

    Ethionine, an ethyl analog of methionine, produces a variety of physiological and pathological effects in animals. These range from acute effects in the liver, kidney, pancreas, and other organs to liver carcinogenesis. Female rats when injected with ethionine exhibit a rapid decrease in hepatic adenosine triphosphate levels followed by a marked inhibition of RNA and protein synthesis and accumulation of triglycerides. Since calcium transport in mitochondria and microsomes is ATP dependent, it becomes interesting to find out if ethionine administration has any effect on subcellular calcium transport. Calcium has recently gained an increased controversy regarding its role in chemical induced lethal cell damage. Certain groups believe that influx of extracellular calcium across the damaged plasma membrane might actually mediate the irreversible damage to the cell, whereas according to other, entry of calcium into the cell is secondary to the damage. The present study was carried out to investigate the calcium [ 45 Ca] transport in mitochondria and microsomes following ethionine administration. The effect of carbon tetrachloride on calcium uptake in ethionine treated rats was also studied

  1. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  2. MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections

    Science.gov (United States)

    Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.

    2018-02-01

    Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.

  3. Age dependence of rat liver function measurements

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Poulsen, H E; Hansen, B A

    1989-01-01

    Changes in the galactose elimination capacity, the capacity of urea-N synthesis and antipyrine clearance were studied in male Wistar rats at the age of 8, 20 and 44 weeks. Further, liver tissue concentrations of microsomal cytochrome P-450, microsomal protein and glutathione were measured. All...... liver function measurements increased from the age of 8 to 44 weeks when expressed in absolute values. In relation to body weight, these function measurements were unchanged or reduced from week 8 to week 20. At week 44, galactose elimination capacity and capacity of urea-N synthesis related to body...... weight were increased by 10% and 36%, respectively, and antipyrine plasma clearance was reduced to 50%. Liver tissue concentrations of microsomal cytochrome P-450 and microsomal protein increased with age when expressed in absolute values, but were unchanged per g liver, i.e., closely related to liver...

  4. Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor.

    Science.gov (United States)

    Liu, Xiang-Feng; Long, Hai-Jiao; Miao, Xiong-Ying; Liu, Guo-Li; Yao, Hong-Liang

    2017-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a natural abundant flavonoid, is produced in different vegetables and fruits. Fisetin has been reported to relate to various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Dopamine receptors (DRs) belonging to G protein‑coupled receptor family, are known as the target of ~50% of all modern medicinal drugs. DRs consist of various proteins, functioning as transduction of intracellular signals for extracellular stimuli. We found that fisetin performed as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion. Caspase-3 signaling was activated to induce apoptosis for fisetin administration. Furthermore, TGF‑β1 was also inhibited in fisetin-treated liver cancer cells, reducing epithelial-mesenchymal transition (EMT). Additionally, fisetin downregulated VEGFR1, p-ERK1/2, p38 and pJNK, ameliorating liver cancer progression. In vivo, the orthotopically implanted tumors from mice were inhibited by fisetin adminisatration accompanied by prolonged survival rate and higher levels of dopamine. Together, the results indicated a novel therapeutic strategy to suppress liver cancer progression associated with DR2 regulation, indicating that dopamine might be of importance in liver cancer progression.

  5. Effect of bullfrog (Rana catesbeiana oil administered by gavage on the fatty acid composition and oxidative stress of mouse liver

    Directory of Open Access Journals (Sweden)

    L.P. Silva

    2004-10-01

    Full Text Available The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil, corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity in mouse liver. The activities of aspartate aminotransferase (AST, alkaline phosphatase (ALP, alanine aminotransferase (ALT, and gamma-glutamyltransferase (GGT, biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60% in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05 compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25% was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively, suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.

  6. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  7. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver.

    Science.gov (United States)

    Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J; White, Thomas A; Liu, Chen; Choi, Jeong-Hyeon; Miller, Jordan D; Roberts, Lewis R; LeBrasseur, Nathan K; Robertson, Keith D

    2017-01-02

    High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.

  8. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF on Mouse Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Berna Tezcan

    2017-12-01

    Full Text Available Objective: Brainderived neurotrophic factor (BDNF promotes the development and differentiation of neurons and synapses, as well as neuronal survival, by acting on specific neuronal groups in the central and peripheral nervous systems. However, the direct effect of BDNF on apoptosis in peripheral tissues is not known. The aim of this study was to investigate the relationship between BDNF and apoptosis, and the density and distribution of BDNF receptors in liver and kidney tissues by histological and immunehistochemical methods. Methods: Seven wild-type and 7 BDNF heterozygous (reduced BDNF levels male mice were used in the study. Caspase-3 and TUNEL immunehistochemical stainings were performed in order to investigate the presence of apoptosis in the liver and kidney tissues of the studied groups. Apoptosis-entering cells were counted and the groups were compared. Concentration and distribution of BDNF receptors, tropomyosin-related kinase B (TrkB and nerve growth factor receptor p75 (NGFR p75, in liver and kidney tissues were also examined by immunehistochemical analyzes. Results: As a result of Caspase-3 and TUNEL immune histochemical staining, more cells were counted to enter the apoptotic process in sections of BDNF heterozygous group compared to control group (p<0.0001. In both groups TrkB and NGFR p75 receptors in liver and kidney tissues were determined in trace amounts, but there was no difference in intensity and distribution between the studied groups. Conclusion: According to our histological and immune histochemical stainings and statistical analysis of cell count between groups, it was found that BDNF is protect ive against apoptosis in liver and kidney. The lack of difference between the studied groups in terms of intensity and distribution of BDNF receptors, suggests that BDNF receptor distribution in the liver and kidney tissues may be different from the nervous system or that BDNF may differ in affinity for these receptors.

  9. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Yange Liu

    2017-01-01

    Full Text Available In the present study, the components of A. cinnamomea (AC mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt and phosphor-nuclear factor-κB (NF-κB in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  10. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.

    Science.gov (United States)

    Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S

    2004-08-01

    An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.

  11. Liver

    International Nuclear Information System (INIS)

    Bernardino, M.E.; Sones, P.J. Jr.; Barton Price, R.; Berkman, W.A.

    1984-01-01

    Evaluation of the liver for focal lesions is extremely important because the liver is one of the most common sites for metastatic disease. Most patients with metastatic deposits to the liver have a survival rate of about 6 months. Thus, metastatic disease to the liver has an extremely grave prognosis. In the past patients with hepatic lesions had no therapeutic recourse. However, with recent aggressive surgical advances (such as partial hepatectomies) and hepatic artery embolization, survival of patients with hepatic metastases has increased. Thus it is important for noninvasive imaging not only to detect lesions early in their course, but also to give their true hepatic involvement and the extent of the neoplastic process elsewhere in the body. Recent advances in imaging have been rapidly changing over the past 5 years. These changes have been more rapid in computed tomography (CT) and ultrasound than in radionuclide imaging. Thus, the question addressed in this chapter is: What is the relationship of hepatic ultrasound to the other current diagnostic modalities in detecting metastatic liver disease and other focal liver lesions? Also, what is its possible future relationship to nuclear magnetic resonance?

  12. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  13. Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum.

    Directory of Open Access Journals (Sweden)

    Alejandra Rodriguez

    2009-09-01

    Full Text Available Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe(-/- mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe(-/- mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes.

  14. CAR and PXR-dependent transcriptional changes in the mouse liver after exposure to propiconazole

    Science.gov (United States)

    Exposure to the conazoles propiconazole and triadimefon but not myclobutanilled to tumors in mice after 2 years. Transcript profiling studies in the livers ofwild-type mice after short-term exposure to the conazoles revealed signatures indicating the involvement ofthe nuclear rec...

  15. Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells

    Science.gov (United States)

    Wu, Xiaopeng; Zeng, Hu; Zhang, Xianming; Zhao, Ying; Sha, Haibo; Ge, Xiaomei; Zhang, Minyue; Gao, Xiang; Xu, Qiang

    2004-01-01

    Recent reports suggested that phosphatase of regenerating liver (PRL)-3 might be involved in colorectal carcinoma metastasis with an unknown mechanism. Here we demonstrated that PRL-3 expression was up-regulated in human liver carcinoma compared with normal liver. PRL-3 was also highly expressed in metastatic melanoma B16-BL6 cells but not in its lowly metastatic parental cell line, B16 cells. B16 cells transfected with PRL-3 cDNA displayed morphological transformation from epithelial-like shape to fibroblast-like shape. PRL-3-overexpressed cells showed much higher migratory ability, which could be reversed by specific anti-sense oligodeoxynucleotide and the phosphatase inhibitors sodium orthovanadate or potassium bisperoxo oxovanadate V. Meanwhile, the expression of the catalytically inactive PRL-3 mutations (D72A or C104S) significantly reduced the cell migratory capability. In addition, PRL-3 transfectants demonstrated altered extracellular matrix adhesive property and up-regulated integrin-mediated cell spreading efficiency. Furthermore, we confirmed that PRL-3 could facilitate lung and liver metastasis of B16 cells in an experimental metastasis model in mice, consistent with accelerated proliferation and growth rate both in vitro and in vivo. Together, these observations provide convincing evidence that PRL-3 truly plays a causal role in tumor metastasis. PMID:15161639

  16. Lipotoxicity and steatohepatitis in an overfed mouse model for non-alcoholic fatty liver disease

    NARCIS (Netherlands)

    Gaemers, Ingrid C.; Stallen, Jan M.; Kunne, Cindy; Wallner, Christian; van Werven, Jochem; Nederveen, Aart; Lamers, Wouter H.

    2011-01-01

    The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test

  17. Role of PGC-1{alpha} in exercise and fasting induced adaptations in mouse liver

    DEFF Research Database (Denmark)

    Haase, Tobias Nørresø; Jørgensen, Stine Ringholm; Leick, Lotte

    2011-01-01

    The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training ind...... role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training induced improvements in oxidative capacity of the liver is regulated by PGC-1a.......The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training...... induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild type (WT) and PGC-1a KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate...

  18. Inhibition of the phospholipid transfer within the organelles of cells in the irradiated rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Kaznacheev, Yu S; Kolomiytseva, I K [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1975-01-01

    Phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) exchange between different subcellular fractions of liver has been studied in normal rats and 1 hr after gamma-irradiation of rats at a dose of 1200 R. The rate of PC transfer in microsome-mitochondrion and microsome-nucleus systems is 1.5 to 2 times higher than that of PE. Early after irradiation the rates of PE and PC transfer decrease in both microsome-mitochondrion and microsome-nucleus systems.

  19. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  20. Distribution of trans-resveratrol and its metabolites after acute or sustained administration in mouse heart, brain, and liver.

    Science.gov (United States)

    Menet, Marie-Claude; Baron, Stephanie; Taghi, Meryam; Diestra, Remi; Dargère, Delphine; Laprévote, Olivier; Nivet-Antoine, Valérie; Beaudeux, Jean-Louis; Bédarida, Tatiana; Cottart, Charles-Henry

    2017-08-01

    Trans-resveratrol is widely studied for its potentially beneficial effects on numerous disorders. It is rapidly metabolized and its metabolites can exhibit biological activity. The present study aimed to investigate whether acute or sustained trans-resveratrol administration impacted on the distribution of trans-resveratrol and its metabolites in brain, heart, and liver. We used ultra-HPLC quadrupole-TOF (UHPLC-Q-TOF) in a full-scan mode to identify and assess large numbers of resveratrol metabolites. For acute intake, mice were overfed with a single dose of trans-resveratrol (150 mg/kg) and organs were collected after 30 and 60 min. For sustained intake, trans-resveratrol was given in the chow (0.04% w/w corresponding to 40 mg/kg/day), and plasma and the organs were collected after 3 months of this resveratrol diet. We found that trans-resveratrol-3-O-glucuronide and resveratrol-3-sulfate were the main metabolites found after acute intake, and free trans-resveratrol (in the brain and heart) and dihydroresveratrol derivatives were found after sustained administration CONCLUSIONS: Our results show notable differences between acute and sustained administration of trans-resveratrol and distribution of trans-resveratrol and its metabolites in mouse heart, brain, and liver. The results suggest a strategy for development of galenic forms of resveratrol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gene expression of drug metabolizing enzymes in adult and aged mouse liver: A modulation by immobilization stress

    International Nuclear Information System (INIS)

    Mikhailova, O.N.; Gulyaeva, L.F.; Filipenko, M.L.

    2005-01-01

    The role of stress in the regulation of enzymatic systems involved in the biotransformation of xenobiotics, as well as endogenous substrates in the liver was investigated using single immobilization stress as a model. Adult (3 months of age) and aged (26 months) C3H/a male mice were used. Cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2), glutathione S-transferase M1 (GSTM1), aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and catechol-O-methyltransferase (COMT) mRNA levels in the mouse liver were measured by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method. Excluding CYP1A1, experiments revealed significant differences in the expression of these genes between adult- and aged-control animals. The influence of stress on the expression of genes studied was shown to be higher in adult mice than in aged ones. Our results clearly demonstrate the lack of response or even the attenuation of gene expression in aged animals that may play an important role in age-related pathologies and diseases

  2. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    Science.gov (United States)

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  3. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  4. NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiongjie [Pacific Northwest National Laboratory, Richland, Washington 99352; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99352; Zhang, Xu [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99352

    2017-07-01

    The health effects of exposing to ionizing radiation are attracting great interest in the space exploration community and patients considering radiotherapy. However, the impact to metabolism after exposure to high dose radiation has not yet been clearly defined in livers. In the present study, 1H nuclear magnetic resonance (NMR) based metabolomics combined with multivariate data analysis are applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole body exposure to either gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) radiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification of potential biomarkers associated with gamma and proton irradiation. The results show that the radiation exposed groups can be well separated from the control group. At the same radiation dosage, the group exposed to proton radiation is well separated from the group exposed to gamma radiation, indicating different radiation sources induce different alterations based on metabolic profiling. Common to both gamma and proton radiation at the high radiation doses studied in this work, compared with the control groups the concentrations of choline, O-phosphocholine and trimethylamine N-oxide are decreased statistically, while those of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate are statistically and significantly elevated after exposure to radiation. Since these altered metabolites are associated with multiple biological pathways, the changes suggest that the exposure to radiation induce abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be good candidates of pre-diagnose biomarkers for ionizing radiation in liver.

  5. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  6. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes.

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J Shawn; Okoro, Emmanuel U; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and

  7. The hepatotoxic potential of a Prudhoe Bay crude oil: effect on mouse liver weight and composition

    International Nuclear Information System (INIS)

    Khan, S.; Irfan, M.; Rahimtula, A.D.

    1987-01-01

    The hepatotoxic properties of a Prudhoe Bay Crude Oil (PBCO) were evaluated in mice. Administration of PBCO (5.0 m1/kg body wt, daily for 2 days) to mice resulted in an increase in (i) liver wet and dry weight, (ii) hepatic total proteins RNA, glycogen and lotal lipids, and (iii) individual lipids such as cholesterol, triglycerides and phospholipids. Hepatic protein biosynthesis, determined in vivo by administration of L-[ 14 C] Leucine was increased in PBCO exposed in mice. The rate of 3 H incorporation from 3 H 2 O was significantly enhanced in liver fatty acids, cholesterol, triglycerides and thus ultimately in total lipids. Also, an increase in 3 H incorporation was noticed in hepatic glycogen after PBCO administration. The results suggest that PBCO may induce hepatotoxicity by altering the intermediary metabolism of biochemical constituents. (author) 39 refs

  8. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  9. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    Full Text Available Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  10. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  11. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    Science.gov (United States)

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  12. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis.

    Science.gov (United States)

    Ray, Jessica L; Kopec, Anna K; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H; Williams, Kurt J; Leung, Patrick S; Gershwin, M Eric; Luyendyk, James P

    2017-04-01

    Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Response of developing mouse liver irradiated in utero and its modification by 2-mercaptopropionylglycine

    International Nuclear Information System (INIS)

    Pareek, B.P.; Mehta, G.; Bhartiya, H.C.; Dev, P.K.

    1983-01-01

    Pregnant Swiss albino mice were exposed at gestation days 14.25, 16.25 and 18.25 to 1.5 Gy gamma radiation from 60 Co in the presence or absence of 2-mercaptopropionylglycine (MPG). Liver was taken from the litters born to these mothers at different post-partum intervals. The maximum sensitivity was found in 4-week-old animals irradiated at gestation day 14.25. In the MPG treated groups, the number of total cells was higher than in the controls but less than in normals. The increase in pyknotic nuclei and necrotic and binucleate cells was significantly lowered by MPG. (Auth.)

  14. Hepatoprotective effect of MMP-19 deficiency in a mouse model of chronic liver fibrosis

    Czech Academy of Sciences Publication Activity Database

    Jiroušková, Markéta; Žbodáková, Olga; Gregor, Martin; Chalupský, Karel; Sarnová, Lenka; Hajduch, M.; Ehrmann, J.; Jirkovska, M.; Sedláček, Radislav

    2012-01-01

    Roč. 7, č. 10 (2012), e46271 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500520812; GA ČR GAP303/10/2044 Grant - others:MŠMT(CZ) CZ.1.05/1.1.00/02.0109; MŠMT(CZ) CZ.1.05/2.1.00/01.0030 Institutional support: RVO:68378050 Keywords : matrix metalloproteinase * liver * fibrosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  15. Subcellular distribution of Pu-239 in the liver of rat, mouse, Syrian and Chinese hamster

    International Nuclear Information System (INIS)

    Winter, R.; Seidel, A.

    1980-01-01

    The aim of our studies was to elucidate the biochemical mechanisms responsible for the differences in the biological half life of actinides in the liver of different mammalian species. Rats and mice were chosen as models for rapid elimination, and Syrian and Chinese hamsters as models for slow elimination. To distinguish between fixation in lysosomes and mitochondria, the lysosomes were isolated following injection of Triton WR1339 6 days after 239 Pu administration. The animals were sacrificed 4 days later. In order to study the possible association with ferritin, 59 Fe was also injected. Liver homogenates were subjected to differential and isopycnic centrifugation in a sucrose density gradient. The typical shift in the density of the lysosomal marker acid phosphatase from rho approximately 1.2 to rho approximately 1.1 following Triton WR1339 injection was observed in all species. It was possible therefore to separate lysosomes from other cell organelles, especially mitochondria. It was concluded that: 1) Mitochondria can virtually be excluded as binding sites in all four species; 2) Lysosomes are one important storage site in rats, mice and Syrian hamsters; 3) If 239 Pu is bound to another cell constituent in addition to lysosomes in the hamster species (which is not yet proven) its density should be approximately 1.17. (H.K.)

  16. Lipid peroxidation in microsomes of murine bone marrow after low-dose γ-irradiation

    International Nuclear Information System (INIS)

    Schwenke, K.; Coslar, S.; Muehlensiepen, H.; Altman, K.I.; Feinendegen, L.E.

    1994-01-01

    The principal aim of the study was to investigate the effect of low-dose γ-irradiation on lipid peroxidation (LPO) in murine bone marrow. To this end, the degree of LPO in suspensions of microsomes of murine bone marrow cells (BMC) was determined in terms of malondialdehyde (MDA) formation after whole-body or in vitro exposure to various doses of γ-radiation. These effects were compared to some extent with similar effects in liver and spleen preparations. As to the effect of γ-irradiation on LPO in BMC, the response depends on the dose level and on whether whole-body or in vitro exposures are involved. Whole-body irradiation did not result in an increase in LPO in BMC microsomes, even at such high doses as 15 Gy, although hepatic microsomes showed a marked increase. In contrast, in vitro irradiation of BMC microsomes with 0.1, 10 and 50 Gy brought about an increase in LPO. This increase was already significant (P < 0.05) at 0.1 Gy following a post-irradiation incubation and substantial at 50 Gy, even without subsequent incubation. The results show that low doses of γ-irradiation are able to induce an elevation of LPO in murine BMC microsomes, but only after in vitro irradiation. In the case of whole-body irradiation cellular radical scavengers and other metabolic reactions may prevent a measurable increase in LPO. This is partly illustrated by the case of vitamin-E deficiency, where a substantial increase in LPO in BMC microsomes is observed even without γ-irradiation in comparison with euvitaminotic mice because normally occurring radicals are not scavenged sufficiently. (orig.)

  17. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    Science.gov (United States)

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  18. The feasibility research of galactosyl-anti-mouse CD3 monoclonal antibody being used as carrier of immunotherapy after surgical operation of liver cancer

    International Nuclear Information System (INIS)

    Li Yunchun; Guan Changtian; Yang Xiaochuan; He Sheng; Jiang Ping; Yuan Lin

    2000-01-01

    Objective: To probe into the feasibility of galactosyl-anti-mouse CD 3 monoclonal antibody (Gal-Ant-CD 3 McAb) being used as carrier of immunotherapy after surgical operation of liver cancer. Methods: Gal-Ant-CD 3 McAb was prepared by the covalent coupling of anti-mouse CD 3 monoclonal antibody (Ant-CD 3 McAb) with a bifunctional reagent, 2-imino-2-methoxyethyl-1-thio-galactose. After Gal-Ant-CD 3 McAb and Ant-CD 3 McAb were labelled with 131 I or 125 I, the data of biodistribution in mice, and of imaging in rabbit were obtained. After tumour infiltrating lymphocytes (TIL) and Gal-Ant-CD 3 McAb were coupled into Gal-Ant-CD 3 McAb-TIL, its liver taxis and cytotoxic activity against autologous cancer cells were measured in vitro. Results: Gal-Ant-CD 3 McAb had remarkable livertaxis and its uptake in per gram liver was (59.0 +- 2.1)% that was more than two-fold higher than that of Ant-CD 3 McAb. Gal-Ant-CD 3 McAb-TIL had an obvious liver taxis and cytotoxic activity against autologous cancer cells in vitro. Conclusion: Gal-Ant-CD 3 McAb can be used as the carrier of immunotherapy after surgical operation of liver cancer

  19. Hepatitis B spliced protein (HBSP) promotes the carcinogenic effects of benzo [alpha] pyrene by interacting with microsomal epoxide hydrolase and enhancing its hydrolysis activity

    International Nuclear Information System (INIS)

    Chen, Jin-Yan; Chen, Wan-Nan; Jiao, Bo-Yan; Lin, Wan-Song; Wu, Yun-Li; Liu, Ling-Ling; Lin, Xu

    2014-01-01

    The risk of hepatocellular carcinoma (HCC) increases in chronic hepatitis B surface antigen (HBsAg) carriers who often have concomitant increase in the levels of benzo[alpha]pyrene-7,8-diol-9,10-epoxide(±) (BPDE)-DNA adduct in liver tissues, suggesting a possible co-carcinogenesis of Hepatitis B virus (HBV) and benzo[alpha]pyrene in HCC; however the exact mechanisms involved are unclear. The interaction between hepatitis B spliced protein (HBSP) and microsomal epoxide hydrolase (mEH) was confirmed using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assay; the effects of HBSP on mEH-mediated B[alpha]P metabolism was examined by high performance liquid chromatography (HPLC); and the influences of HBSP on B[alpha]P carcinogenicity were evaluated by bromodeoxyuridine cell proliferation, anchorage-independent growth and tumor xenograft. HBSP could interact with mEH in vitro and in vivo, and this interaction was mediated by the N terminal 47 amino acid residues of HBSP. HBSP could greatly enhance the hydrolysis activity of mEH in cell-free mouse liver microsomes, thus accelerating the metabolism of benzo[alpha]pyrene to produce more ultimate carcinnogen, BPDE, and this effect of HBSP requires the intact HBSP molecule. Expression of HBSP significantly increased the formation of BPDE-DNA adduct in benzo[alpha]pyrene-treated Huh-7 hepatoma cells, and this enhancement was blocked by knockdown of mEH. HBSP could enhance the cell proliferation, accelerate the G1/S transition, and promote cell transformation and tumorigenesis of B[alpha]P-treated Huh-7 hepatoma cells. Our results demonstrated that HBSP could promote carcinogenic effects of B[alpha]P by interacting with mEH and enhancing its hydrolysis activity

  20. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis.

  1. Flow cytometric measurement of the metabolism of benzo [a] pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolities. Using present instrumentation the technique could easily detect 1 x 10/sup 6/ molecules per cells of benzo [a]pyrene and 1 x 10/sup 7/ molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivative suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism

  2. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    Directory of Open Access Journals (Sweden)

    Conforto Tara L

    2012-04-01

    Full Text Available Abstract Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p p Ihh; female-specific Cdx4, Cux2, Tox, and Trim24 and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver.

  3. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  4. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  5. In vitro inhibitory effects of major bioactive constituents of Andrographis paniculata, Curcuma longa and Silybum marianum on human liver microsomal morphine glucuronidation: A prediction of potential herb-drug interactions arising from andrographolide, curcumin and silybin inhibition in humans.

    Science.gov (United States)

    Uchaipichat, Verawan

    2018-02-01

    This study aimed to investigate the liver microsomal inhibitory effects of silybin, silychristin, andrographolide, and curcumin by using morphine as an in vitro UGT2B7 probe substrate, and predict the magnitude of the herb-drug interaction arising from these herbal constituents' inhibition in vivo. Studies were performed in the incubation with and without bovine serum albumin (BSA). Andrographolide and curcumin showed a marked inhibition on morphine 3- and 6-glucuronidation with IC 50 of 50&87 and 96&111 μM, respectively. In the presence of 2%BSA, andrographolide also showed a strong inhibition on morphine 3- and 6-glucuronidation (IC 50 4.4&21.6 μM) whereas curcumin showed moderate inhibition (IC 50 338&333 μM). In the absence and presence of 2%BSA, morphine 3- and 6-glucuronidation was moderately inhibited by silybin (IC 50 583&862 and 1252&1421 μM, respectively), however was weakly inhibited by silychristin (IC 50 3527&3504 and 1124&1530 μM, respectively). The K i of andrographolide, curcumin and silybin on morphine 3- and 6-glucuronidation were 7.1&9.5, 72.7&65.2, and 224.5&159.7 μM, respectively, while the respective values generated from the system containing 2%BSA were 2.4&3.1, 96.4&108.8, and 366.3&394.5 μM. Using the in vitro and in vivo extrapolation approach, andrographolide was herbal component that may have had a potential interaction in vivo when it was co-administered with morphine. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS.

    Science.gov (United States)

    Meyer, Markus R; Du, Peng; Schuster, Frank; Maurer, Hans H

    2010-12-01

    Since the late 1990s, many derivatives of the α-pyrrolidinophenone (PPP) drug class appeared on the drugs of abuse market. The latest compound was described in 2009 to be a classic PPP carrying a methylenedioxy moiety remembering the classic entactogens (ecstasy). Besides Germany, 3,4-methylene-dioxypyrovalerone (MDPV) has appeared in many countries in Europe and Asia, indicating its worldwide importance for forensic and clinical toxicology. The aim of the presented work was to identify the phase I and II metabolites of MDPV and the human cytochrome-P450 (CYP) isoenzymes responsible for its main metabolic step(s). Finally, the detectability of MDPV in urine by the authors' systematic toxicological analysis (STA) should be studied. The urine samples were extracted after and without enzymatic cleavage of conjugates. The metabolites were separated and identified after work-up by GC-MS and liquid chromatography (LC)-high-resolution MS (LC-HR-MS). The studies revealed the following phase I main metabolic steps in rat and human: demethylenation followed by methylation, aromatic and side chain hydroxylation and oxidation of the pyrrolidine ring to the corresponding lactam as well as ring opening to the corresponding carboxylic acid. Using LC-HR-MS, most metabolite structures postulated according to GC-MS fragmentation could be confirmed and the phase II metabolites were identified. Finally, the formation of the initial metabolite demethylenyl-MDPV could be confirmed using incubation of human liver microsomes. Using recombinant human CYPs, CYP 2C19, CYP 2D6 and CYP 1A2 were found to catalyze this initial step. Finally, the STA allowed the detection of MDPV metabolites in the human urine samples. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    International Nuclear Information System (INIS)

    Sinha, Mahuya; Das, Dipesh Kr; Dey, Sanjit; Datta, Sanjukta; Ghosh, Santinath

    2012-01-01

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60 Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  8. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Tai Tin Tsoi, J N; Ragetli, H M; Timmerman, H; Blast, A

    1988-01-01

    Allyl alcohol is hepatotoxic. It is generally believed that acrolein, generated out of allyl alcohol by cytosolic alcohol dehydrogenase, is responsible for this toxicity. The effect of acrolein in vitro and in vivo on the glutathione (GSH) dependent protection of liver microsomes against lipid

  9. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Rainbow trout liver microsomes were used to study the rate of ring-hydroxylation of phenol (PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultroviolet (UV) and elect...

  10. Protection from diclofenac-induced liver injury by Yulangsan polysaccharide in a mouse model.

    Science.gov (United States)

    Huang, Jianchun; Nguyen, Vanphuc; Tang, Xiaojun; Wei, Jinbin; Lin, Xing; Lai, Zefeng; Doan, Vanminh; Xie, Qiuqiao; Huang, Renbin

    2016-12-04

    Millettia pulchra Kurz var-laxior (Dunn) Z. Wei, a wild-growing plant of the family Fabaceae is known to possess multifarious medicinal properties. Yulangsan polysaccharide (YLSPS) is a chief ingredient of its root, which has been used in Chinese traditional medicine with a long history for remedy of acute or chronic hepatitis and jaundice. To investigate the ability of the YLSPS to protect against diclofenac-induced hepatotoxicity in mice. Mice were orally treated with YLSPS daily 1h after the injection of diclofenac for 2 weeks. Dimethyl diphenyl bicarboxylate was used as a reference drug. YLSPS effectively reduced the elevated levels of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and enhanced the reduction of superoxide dismutase, catalase, and glutathione peroxidase activities in the liver. Moreover, the content of malondialdehyde was reduced by treatment with YLSPS, and histological findings also confirmed the anti-hepatotoxic activity. In addition, YLSPS significantly inhibited proinflammatory mediators, such as tumor necrosis factor-alpha and interleukin 1 beta. YLSPS also enhanced mitochondrial antioxidants and inhibited cell death by preventing the down-regulation of Bcl-2 and the up-regulation and release of Bax along with caspase 9 and 3 activity; thus, these findings confirm the involvement of mitochondria in diclofenac-induced apoptosis. The results indicate that protective effects of YLSPS against diclofenac-induced acute hepatic injury may rely on its effect on reducing oxidative stress, suppressing inflammatory responses, and improving drug-metabolizing enzyme activity in the liver. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. In vitro inactivation of hepatic microsomal phospholipase A2 by the marine natural product manoalide

    International Nuclear Information System (INIS)

    Master, M.M.; Jacobs, R.S.

    1986-01-01

    The effects of manoalide (MLD) and several analogs (isolated from the sponge Luffariella variabilis) on mouse hepatic microsomal phospholipase A 2 (PLA 2 ) activity was investigated. Microsomal PLA 2 , a membrane bound, Ca ++ dependent enzyme with an alkaline pH optimum, functions in intracellular phospholipid turnover. In vitro PLA 2 activity was assayed by preincubating MLD or analogs (2.5-100μM) with microsomes for 60 min. at 37 0 C, combining this mixture with 14 C-phosphatidylcholine and CaCl 2 , and incubating at 37 0 C for 40 minutes. Enzyme activity was quantitated by measurement of the extracted 14 C-arachidonic acid product. MLD inhibited PLA 2 in a dose-dependent manner, with an IC 50 = 94μM. Lineweaver-Burk analysis suggests that MLD inhibits PLA 2 noncompetitively. One of the analogs, producing a comparable dose-response curve to MLD, was found to be more potent (IC 50 = 33μM). Another analog facilitated PLA 2 activity (15%) at 25μM, followed by inactivation at higher doses (IC 50 > 100 μM). Facilitation of PLA 2 activity was seen with concentrations as low as 2.5μM of a third analog, and significant inactivation of PLA 2 was evident. These results indicate that MLD is not as potent against microsomal PLA 2 as has been shown with purified bee venom and cobra venom PLA 2 's

  12. Interaction of rocuronium with human liver cytochromes P450

    OpenAIRE

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-01-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver micro...

  13. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  14. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    International Nuclear Information System (INIS)

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M.

    2006-01-01

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V max of 2141 ± 500 nmol/min/mg and a K m of 11 ± 4 μM. This enzyme was inhibited by pyrazole with a K I of 3.1 ± 0.57 μM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V max of 115 nmol/min/mg and a K m of 15 ± 2 μM and was not inhibited by pyrazole

  15. Radiation dose to mouse liver cells from ingestion of tritiated food or water

    International Nuclear Information System (INIS)

    Komatsu, K.; Okumura, Y.; Sakamoto, K.

    1990-01-01

    Tritium incorporated into tissues and DNA of mice was studied after daily ingestion of tritiated food or tritiated water. The tritiated food used was a commercial preparation mixed with brine shrimp that had been reared in tritiated sea water. After ingestion of tritiated food or water for up to 22 d, the specific activity of 3H in tissues was measured as tissue-free-water 3H, tissue-bound 3H, and DNA-bound 3H. Carbon-14 glucose was added to food and drinking water to compare the 3H intake from food with that from water. The specific activity of 3H in tissues was then corrected by the specific activity of 14C in tissues to determine the 3H incorporation from the same amount of ingested food and water. DNA-bound 3H after the ingestion of tritiated food was 4.6 times higher than that of tritiated water, while tissue-bound 3H was 2.2 times higher. The radiation dose to liver from 3H incorporated through food was twofold higher than from tritiated water, which was mainly from the high incorporation of 3H into DNA. Our results demonstrated that the dose calculation based on tissue-free-water 3H alone would under-estimate the radiation exposure of the human population exposed to tritiated food

  16. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  17. GOLGA2 loss causes fibrosis with autophagy in the mouse lung and liver.

    Science.gov (United States)

    Park, Sungjin; Kim, Sanghwa; Kim, Min Jung; Hong, Youngeun; Lee, Ah Young; Lee, Hyunji; Tran, Quangdon; Kim, Minhee; Cho, Hyeonjeong; Park, Jisoo; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2018-01-01

    Autophagy is a biological recycling process via the self-digestion of organelles, proteins, and lipids for energy-consuming differentiation and homeostasis. The Golgi serves as a donor of the double-membraned phagophore for autophagosome assembly. In addition, recent studies have demonstrated that pulmonary and hepatic fibrosis is accompanied by autophagy. However, the relationships among Golgi function, autophagy, and fibrosis are unclear. Here, we show that the deletion of GOLGA2, encoding a cis-Golgi protein, induces autophagy with Golgi disruption. The induction of autophagy leads to fibrosis along with the reduction of subcellular lipid storage (lipid droplets and lamellar bodies) by autophagy in the lung and liver. GOLGA2 knockout mice clearly demonstrated fibrosis features such as autophagy-activated cells, densely packed hepatocytes, increase of alveolar macrophages, and decrease of alveolar surfactant lipids (dipalmitoylphosphatidylcholine). Therefore, we confirmed the associations among Golgi function, fibrosis, and autophagy. Moreover, GOLGA2 knockout mice may be a potentially valuable animal model for studying autophagy-induced fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Abetalipoproteinemia: A novel mutation of microsomal triglyceride ...

    African Journals Online (AJOL)

    Hager Barakizou

    2016-01-25

    Jan 25, 2016 ... Abetalipoproteinemia: A novel mutation of microsomal triglyceride transfer protein (MTP) gene in a young Tunisian patient. Hager Barakizou a,. *, Souha Gannouni a. , Khalil Messaoui a. , Mathilde Difilippo b. ,. Agne`s Sassolas b. , Fethi Bayoudh a a Department of Pediatrics, Military Hospital of Tunis, ...

  19. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  20. Interleukin 17, Produced by γδ T Cells, Contributes to Hepatic Inflammation in a Mouse Model of Biliary Atresia and Is Increased in Livers of Patients.

    Science.gov (United States)

    Klemann, Christian; Schröder, Arne; Dreier, Anika; Möhn, Nora; Dippel, Stephanie; Winterberg, Thomas; Wilde, Anne; Yu, Yi; Thorenz, Anja; Gueler, Faikah; Jörns, Anne; Tolosa, Eva; Leonhardt, Johannes; Haas, Jan D; Prinz, Immo; Vieten, Gertrud; Petersen, Claus; Kuebler, Joachim F

    2016-01-01

    Biliary atresia (BA) is a rare disease in infants, with unknown mechanisms of pathogenesis. It is characterized by hepatobiliary inflammatory, progressive destruction of the biliary system leading to liver fibrosis, and deterioration of liver function. Interleukin (IL) 17A promotes inflammatory and autoimmune processes. We studied the role of IL17A and cells that produce this cytokine in a mouse model of BA and in hepatic biopsy samples from infants with BA. We obtained peripheral blood and liver tissue specimens from 20 patients with BA, collected at the time of Kasai portoenterostomy, along with liver biopsies from infants without BA (controls). The tissue samples were analyzed by reverse transcription quantitative polymerase chain reaction (PCR), in situ PCR, and flow cytometry analyses. BA was induced in balb/cAnNCrl mice by rhesus rotavirus infection; uninfected mice were used as controls. Liver tissues were collected from mice and analyzed histologically and by reverse transcriptase PCR; leukocytes were isolated, stimulated, and analyzed by flow cytometry and PCR analyses. Some mice were given 3 intraperitoneal injections of a monoclonal antibody against IL17 or an isotype antibody (control). Livers from rhesus rota virus-infected mice with BA had 7-fold more Il17a messenger RNA than control mice (P = .02). γδ T cells were the exclusive source of IL17; no T-helper 17 cells were detected in livers of mice with BA. The increased number of IL17a-positive γδ T cells liver tissues of mice with BA was associated with increased levels of IL17A, IL17F, retinoid-orphan-receptor C, C-C chemokine receptor 6, and the IL23 receptor. Mice that were developing BA and given antibodies against IL17 had lower levels of liver inflammation and mean serum levels of bilirubin than mice receiving control antibodies (191 μmol/L vs 78 μmol/L, P = .002). Liver tissues from patients with BA had 4.6-fold higher levels of IL17 messenger RNA than control liver tissues (P = .02

  1. Quantitative analysis of multiple high-resolution mass spectrometry images using chemometric methods: quantitation of chlordecone in mouse liver.

    Science.gov (United States)

    Mohammadi, Saeedeh; Parastar, Hadi

    2018-05-15

    In this work, a chemometrics-based strategy is developed for quantitative mass spectrometry imaging (MSI). In this regard, quantification of chlordecone as a carcinogenic organochlorinated pesticide (C10Cll0O) in mouse liver using the matrix-assisted laser desorption ionization MSI (MALDI-MSI) method is used as a case study. The MSI datasets corresponded to 1, 5 and 10 days of mouse exposure to the standard chlordecone in the quantity range of 0 to 450 μg g-1. The binning approach in the m/z direction is used to group high resolution m/z values and to reduce the big data size. To consider the effect of bin size on the quality of results, three different bin sizes of 0.25, 0.5 and 1.0 were chosen. Afterwards, three-way MSI data arrays (two spatial and one m/z dimensions) for seven standards and four unknown samples were column-wise augmented with m/z values as the common mode. Then, these datasets were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) using proper constraints. The resolved mass spectra were used for identification of chlordecone in the presence of a complex background and interference. Additionally, the augmented spatial profiles were post-processed and 2D images for each component were obtained in calibration and unknown samples. The sum of these profiles was utilized to set the calibration curve and to obtain the analytical figures of merit (AFOMs). Inspection of the results showed that the lower bin size (i.e., 0.25) provides more accurate results. Finally, the obtained results by MCR for three datasets were compared with those of gas chromatography-mass spectrometry (GC-MS) and MALDI-MSI. The results showed that the MCR-assisted method gives a higher amount of chlordecone than MALDI-MSI and a lower amount than GC-MS. It is concluded that a combination of chemometric methods with MSI can be considered as an alternative way for MSI quantification.

  2. Chromatographic separation of piracetam and its metabolite in a mixture of microsomal preparations, followed by an MS/MS analysis.

    Science.gov (United States)

    Sahu, Kapendra; Siddiqui, Anees A; Shaharyar, Mohammad; Ahmad, Niyaz; Anwar, Mohammad; Ahmad, Farhan J

    2013-07-01

    A rapid bioanalytical method was evaluated for the simultaneous determination of piracetam and its metabolite (M1) in human microsomal preparations by fast ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). In addition, a validated method of M1 in rat plasma was developed and successfully applied on pharmacokinetic studies. The present study was carried out to determine the metabolic pathways of piracetam for phase I metabolism and used cytochrome P450 isoforms responsible for the piracetam metabolism in human liver microsomes (HLMs). While additional potential metabolites of piracetam were suggested by computer-modeling. The resulting 2-(2-oxopyrrolidin-1-yl) acetic acid was the sole metabolite detected after the microsomal treatment. The amide hydrolysis mainly underwent to form a metabolite i.e., 2-(2-oxopyrrolidin-1-yl) acetic acid (M1). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis

    NARCIS (Netherlands)

    Wouters, Kristiaan; van Gorp, Patrick J.; Bieghs, Veerle; Gijbels, Marion J.; Duimel, Hans; Luetjohann, Dieter; Kerksiek, Anja; van Kruchten, Roger; Maeda, Nobuyo; Staels, Bart; van Bilsen, Marc; Shiri-Sverdlov, Ronit; Hofker, Marten H.

    Nonalcoholic steatohepatitis (NASH) involves liver lipid accumulation (steatosis) combined with hepatic inflammation. The transition towards hepatic inflammation represents a key step in pathogenesis, because it will set the stage for further liver damage, culminating in hepatic fibrosis, cirrhosis,

  4. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis

    NARCIS (Netherlands)

    Wouters, Kristiaan; van Gorp, Patrick J.; Bieghs, Veerle; Gijbels, Marion J.; Duimel, Hans; Lütjohann, Dieter; Kerksiek, Anja; van Kruchten, Roger; Maeda, Nobuyo; Staels, Bart; van Bilsen, Marc; Shiri-Sverdlov, Ronit; Hofker, Marten H.

    2008-01-01

    Nonalcoholic steatohepatitis (NASH) involves liver lipid accumulation (steatosis) combined with hepatic inflammation. The transition towards hepatic inflammation represents a key step in pathogenesis, because it will set the stage for further liver damage, culminating in hepatic fibrosis, cirrhosis,

  5. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  6. Comparison of the subcellular distribution of monomeric 239Pu and 59Fe in the liver of rat, mouse, and Syrian and Chinese hamsters

    International Nuclear Information System (INIS)

    Winter, R.; Seidel, A.

    1982-01-01

    The subcellular distribution of 239 Pu and 59 Fe 10 days after intravenous injection as a citrate complex was investigated by sucrose density gradient centrifugation in the liver of rat, mouse, and Syrian and Chinese hamsters. Lysosomes were separated from other cell constituents by injection of the nonionic detergent Triton WR 1339 4 days before sacrifice. The Triton-induced decrease in the density of the lysosomes was very similar in all four animal species and was followed closely by a corresponding decrease of the median density of the 239 Pu profiles in rat, mouse, and, to a smaller extent, Syrian hamster. However, in Chinese hamster a clear correspondence between lysosomes and 239 Pu was not found 10 days after nuclide injection. It was concluded that lysosomes are the main storage organelles fo 239 Pu in the liver of rat and mouse and that in all four animal species mitochondria and endoplasmic reticulum do not play any significant role in binding the radionuclide. The relevance of pericellular membranes has to be checked. The distribution patterns of 59 Fe and 239 Pu were quite different

  7. 67Ga in transferrin-unbound form is taken up by inflamed liver of mouse treated with CCl4

    International Nuclear Information System (INIS)

    Ohkubo, Yasuhito; Sasayama, Akio; Takegahara, Ikumi; Katoh, Shinsuke; Abe, Kenichi; Kohno, Hiroyuki; Kubodera, Akiko.

    1990-01-01

    In order to investigate whether or not transferrin is involved in the uptake of 67 Ga by inflamed liver (acute inflammatory tissues) the uptake of 67 Ga by the liver of mice treated with carbon tetrachloride (CCl 4 ) was studied. The serum GPT value reached its maximum on the 1st day after the CCl 4 treatment. The uptake of 67 Ga by the liver also reached its maximum on the 1st day after the CCl-4 treatment and the amount uptake into inflamed liver was about 6 times that uptaken into normal liver. On the other hand, the uptake of 125 I-transferrin into inflamed liver on the 1st day after CCl 4 treatment was only about 1.6 times that into normal liver. Moreover, cold Fe 3+ decreased the uptake of 67 Ga by normal liver but increased the uptake of 67 Ga by inflamed liver. These results show that transferrin plays an important role in the uptake of 67 Ga by normal liver but not by inflamed liver, i.e. 67 Ga in the transferrin-unbound form is preferentially taken up by inflamed liver. (author)

  8. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis.

    Science.gov (United States)

    Duarte, Tiago L; Caldas, Carolina; Santos, Ana G; Silva-Gomes, Sandro; Santos-Gonçalves, Andreia; Martins, Maria João; Porto, Graça; Lopes, José Manuel

    2017-04-01

    In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe -/- mice (an established model of human HFE-hemochromatosis). Wild-type, Nrf2 -/- , Hfe -/- and double knockout (Hfe/Nrf2 -/- ) female mice on C57BL/6 genetic background were sacrificed at the age of 6 (young), 12-18 (middle-aged) or 24 months (old) for evaluation of liver pathology. Despite the parenchymal iron accumulation, Hfe -/- mice presented no liver injury. The combination of iron overload (Hfe -/- ) and defective antioxidant defences (Nrf2 -/- ) increased the number of iron-related necroinflammatory lesions (sideronecrosis), possibly due to the accumulation of toxic oxidation products such as 4-hydroxy-2-nonenal-protein adducts. The engulfment of dead hepatocytes led to a gradual accumulation of iron within macrophages, featuring large aggregates. Myofibroblasts recruited towards the injury areas produced substantial amounts of collagen fibers involving the liver parenchyma of double-knockout animals with increased hepatic fibrosis in an age-dependent manner. The genetic disruption of Nrf2 promotes the transition from iron accumulation (siderosis) to liver injury in Hfe -/- mice, representing the first demonstration of spontaneous hepatic fibrosis in the long term in a mouse model of hereditary hemochromatosis displaying mildly elevated liver iron. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Phosphatase and tensin homolog-β-catenin signaling modulates regulatory T cells and inflammatory responses in mouse liver ischemia/reperfusion injury.

    Science.gov (United States)

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-06-01

    The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  10. Differential response of the liver to bile acid treatment in a mouse model of Niemann-Pick disease type C [version 2; referees: 2 approved, 1 not approved

    Directory of Open Access Journals (Sweden)

    Elena-Raluca Nicoli

    2018-04-01

    Full Text Available Niemann-Pick disease type C (NPC disease is a neurodegenerative lysosomal storage disease caused by mutations in the NPC1 or NPC2 genes. Liver disease is also a common feature of NPC that can present as cholestatic jaundice in the neonatal period. Liver enzymes can remain elevated above the normal range in some patients as they age. We recently reported suppression of the P450 detoxification system in a mouse model of NPC disease and also in post-mortem liver from NPC patients. We demonstrated the ability of the hydrophobic bile acid ursodeoxycholic acid (UDCA (3α, 7β-dihydroxy-5β-cholanic acid to correct the P450 system suppression. UDCA is used to treat several cholestatic disorders and was tested in NPC due to the P450 system being regulated by bile acids. Here, we compare the effect of UDCA and cholic acid (CA, another bile acid, in the NPC mouse model. We observed unexpected hepatotoxicity in response to CA treatment of NPC mice. No such hepatotoxicity was associated with UDCA treatment. These results suggest that CA treatment is contraindicated in NPC patients, whilst supporting the use of UDCA as an adjunctive therapy in NPC patients.

  11. Acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in hepatic microsomes from induced mice.

    Science.gov (United States)

    Lewandowski, M; Chui, Y C; Levi, P; Hodgson, E

    1991-02-01

    A simple and sensitive method for the separation of 14C-labelled acetanilide, 4-hydroxyacetanilide, 3-hydroxyacetanilide and 2-hydroxyacetanilide was developed using thin-layer chromatography. This separation is the basis for the assay of acetanilide 4-hydroxylase and acetanilide 2-hydroxylase activity in liver microsomes from DBA2/N male mice that had been treated with phenobarbital, 3-methylcholanthrene, isosafrole or n-butylbenzodioxole. Microsomes were incubated with [14C]acetanilide and extracted with benzene and ethyl acetate. The extract was applied to silica gel plates and developed with a hexane/isopropanol/ammonium hydroxide/water solvent system. The radiolabelled phenolic metabolites and the parent compound were detected using a Berthold Automatic TLC Linear Analyzer. Although the 4-hydroxylated metabolite was the primary product detected, this method can be used to detect other phenolic metabolites.

  12. Identification of metabolites of gardenin A in rat liver microsomes ...

    African Journals Online (AJOL)

    performance liquid chromatography coupled with linear ion-trap Orbitrap mass spectrometry .... phosphate buffer (0.1 mol/L, pH 7.4), magnesium ..... VI, India, CSIR, 1962; pp 446-448. 3. Perry LM. Medicinal Plants of East and Southeast Asia:.

  13. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect beta-Oxidation

    OpenAIRE

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Dobeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathologica...

  14. A reliable radiochromatographic assay technique for hepatic microsomal 16α-hydroxylase activity towards oestrone 3-sulphate

    International Nuclear Information System (INIS)

    Tsoutsoulis, C.J.; Hobkirk, R.

    1980-01-01

    A reliable procedure for the assay of liver microsomal 16α-hydroxylation of oestrone 3-sulphate has been developed for the guinea pig. It is based on the rapid, quantitative separation of oestradiol and oestriol by Sephadex LH-20 columns after the chemical reduction and enzymic hydrolysis of the incubation products. Microsomal preparations and incubation conditions that optimized 16α-hydroxylation of oestrone 3-sulphate were employed. Under these circumstances, reduction of the substrate at C-17 and hydrolysis of the sulphate were minimized. Conditions were established that yielded reaction linearity with respect to time and microsomal concentration. This hydroxylation had an absolute requirement for NADPH, which could not be satisfied by NADH. Apparent Ksub(m) values for oestrone 3-sulphate and NADPH, under the conditions used, were 14μM and 0.17mM respectively. 16α-hydroxylase activity was present in the liver microsomal fraction from heavily pigmented, female English Shorthaired guinea pigs. Much lower activity was detected in mature pigmented males and albino females. No activity could be demonstrated in mature, albino males. (author)

  15. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Pérez-Martínez, Laura; Pérez-Matute, Patricia; Aguilera-Lizarraga, Javier; Rubio-Mediavilla, Susana; Narro, Judit; Recio, Emma; Ochoa-Callejero, Laura; Oteo, José-Antonio; Blanco, José-Ramón

    2014-07-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the general population. The NAFLD spectrum ranges from simple steatosis to cirrhosis. The chemokine CCL5/RANTES plays an important role in the progression of hepatic inflammation and fibrosis. The objective of this study was to examine the effects of maraviroc, a CCR5 antagonist, on liver pathology in a NAFLD mouse model. A total of 32 male C57BL/6 mice were randomly assigned to one of four groups: (i) control group (chow diet plus tap water); (ii) maraviroc group (chow diet plus maraviroc in drinking water); (iii) high-fat diet (HFD) group (HFD plus tap water); and (iv) maraviroc/HFD group (HFD plus maraviroc). All mice were sacrificed 16 weeks after the beginning of the experiment. Biochemical analyses and liver examinations were performed. Mice in the HFD group showed a tendency towards increased body mass gain and liver damage compared with the maraviroc/HFD group. Moreover, liver weight in the HFD group was significantly higher than in the maraviroc/HFD group. Hepatic triglyceride concentration in the maraviroc/HFD group was significantly lower than in the HFD group. Interestingly, the maraviroc/HFD group exhibited a lower degree of steatosis. Furthermore, hepatic CCL5/RANTES expression was significantly lower in the maraviroc/HFD group than in the HFD group. Overall, no differences were observed between the control group and the maraviroc group. Maraviroc ameliorates hepatic steatosis in an experimental model of NAFLD. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Fairburn, B; Muthana, M; Hopkinson, K; Slack, L K; Mirza, S; Georgiou, A S; Espigares, E; Wong, C; Pockley, A G

    2006-09-01

    The stress protein gp96 exhibits a number of immunological activities, the majority of studies into which have used gp96 purified from a variety of tissues. On the basis of 1-D gel electrophoresis, the purity of these preparations has been reported to range between 70% and 99%. This study analyzed gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry (MS-MS). The procedure for purifying gp96 was reproducible, as similar protein profiles were observed in replicate gels of gp96 preparations. The purity of the preparations was typically around 70%, with minor co-purified proteins of varying molecular weights and mobilities being present. Dominant bands at 95-100 kDa in preparations from Wistar rats and C57BL/6 mice were identified as gp96 by ECL Western blotting. Multiple bands having similar, yet distinct molecular weights and differing pI mobility on ECL Western blots were confirmed as being gp96 in preparations from Wistar rats using MS-MS. The most striking feature of the 2-D gel analysis was the presence of additional dominant bands at 55 kDa in preparations from Wistar rats, and at 75-90 kDa in preparations from C57BL/6 mice. These were identified as gp96 by ECL Western blotting and, in the case of preparations from Wistar rats, by MS-MS. Although the lower molecular weight, gp96-related molecules might be partially degraded gp96, their reproducible presence, definition and characteristics suggest that they are alternative, species-specific isoforms of the molecule. A 55 kDa protein which exhibited a lower pI value than gp96 was present in all preparations and this was identified as calreticulin, another putative immunoregulatory molecule. This study confirms the reproducibility of the gp96 purification protocol and reveals the presence of multiple gp96 isoforms, some of which likely result from post-translational modifications such as differential glycosylation and

  17. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    Science.gov (United States)

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides.

  18. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  19. The tobacco carcinogen NNK is stereoselectively reduced by human pancreatic microsomes and cytosols.

    Science.gov (United States)

    Trushin, Neil; Leder, Gerhard; El-Bayoumy, Karam; Hoffmann, Dietrich; Beger, Hans G; Henne-Bruns, Doris; Ramadani, Marco; Prokopczyk, Bogdan

    2008-07-01

    Cigarette smoking increases the risk of cancer of the pancreas. The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the only known environmental compound that induces pancreatic cancer in laboratory animals. Concentrations of NNK are significantly higher in the pancreatic juice of smokers than in that of nonsmokers. The chiral NNK metabolite, (R,S)-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is itself a potent pancreatic carcinogen in rats. The carcinogenicity of NNAL is related to its stereochemistry; (S)-NNAL is a more potent lung tumorigen in the A/J mouse than is (R)-NNAL. In this study, we determined the potential of the human pancreas to convert NNK into NNAL. Human pancreatic microsomes and cytosols were incubated with [5-(3)H]NNK, and the metabolic products were determined by high-performance liquid chromatography (HPLC). (S)-NNAL was the predominant isomer formed in all cytosolic incubations. In ten microsomal samples, NNAL was formed at an average rate of 3.8 +/- 1.6 pmol/mg/min; (R)-NNAL was the predominant isomer in this group. The average rate of NNAL formation in 18 other microsomal samples was significantly lower, 0.13 +/- 0.12 pmol/mg/min (p < 0.001); (S)-NNAL was the predominant isomer formed in this group. In human pancreatic tissues, there is intraindividual variability regarding the capacity for, and stereoselectivity of, carbonyl reduction of NNK.

  20. Elevation of liver endoplasmic reticulum stress in a modified choline-deficient l-amino acid-defined diet-fed non-alcoholic steatohepatitis mouse model.

    Science.gov (United States)

    Muraki, Yo; Makita, Yukimasa; Yamasaki, Midori; Amano, Yuichiro; Matsuo, Takanori

    2017-05-06

    Endoplasmic reticulum (ER) stress caused by accumulation of misfolded proteins is observed in several kinds of diseases. Since ER stress is reported to be involved in the progression of non-alcoholic steatohepatitis (NASH), highly sensitive and simple measurement methods are required for research into developing novel therapy for NASH. To investigate the involvement of ER stress in NASH pathogenesis in a mouse model, an assay for liver ER stress was developed using ER stress activated indicator-luciferase (ERAI-Luc) mice. To establish the assay method for detection of ER stress in the liver, tunicamycin (TM) (0.3 mg/kg i. p.) was administered to ERAI-Luc mice, and the luciferase activity was measured in ex vivo and in vivo. To evaluate ER stress in the NASH model, ERAI-Luc mice were fed a modified choline-deficient l-amino acid-defined (mCDAA) diet for 14 weeks. After measurement of ER stress by luminescence imaging, levels of liver lipids and pro-fibrotic and pro-inflammatory gene expression were measured as NASH-related indexes. In non-invasive whole-body imaging, TM elevated luciferase activity in the liver, induced by activation of ER stress. The highest luminescence in the liver was confirmed by ex vivo imaging of isolated tissues. In parallel with progression of NASH, elevated luminescence induced by ER stress in liver was observed in mCDAA diet-fed ERAI-Luc mice. Luciferase activity was significantly and positively correlated to levels of triglyceride and free cholesterol in the liver, as well as to the mRNA expression of type 1 collagen α1 chain and tumor necrosis factor α. These data indicated that the use of ERAI-Luc mice was effective in the detection of ER stress in the liver. Moreover, the NASH model using ERAI-Luc mice can be a useful tool to clarify the role of ER stress in pathogenesis of NASH and to evaluate effects of drugs targeted against ER stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver

    DEFF Research Database (Denmark)

    Maag Kristensen, Caroline; Brandt, Christina Tingbjerg; Jørgensen, Stine Ringholm

    2017-01-01

    of specific UPR pathways and increased activity of the ATF6 pathway in the liver with aging. Lifelong exercise training prevented the age-associated change in BiP and IRE1α protein, but not cleaved ATF6 protein and resulted in further decreased PERK protein. Taken together, the present study provides evidence...... that the capacity and activity of the three UPR pathways are differentially regulated in the liver with aging and lifelong exercise training. In addition, PGC-1α does not seem to regulate the activity of hepatic UPR in response to exercise training, but to influence the capacity of the liver to induce UPR......Aging is associated with changes in several metabolic pathways affecting liver function including the adaptive unfolded protein response (UPR). On the other hand, exercise training has been shown to exert beneficial effects on metabolism in the liver and exercise training has been reported...

  2. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation.

    Science.gov (United States)

    Afrin, Rejina; Arumugam, Somasundaram; Rahman, Azizur; Wahed, Mir Imam Ibne; Karuppagounder, Vengadeshprabhu; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Suzuki, Kenji; Yoneyama, Hiroyuki; Ueno, Kazuyuki; Watanabe, Kenichi

    2017-03-01

    Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Precision-cut mouse liver slices as an ex vivo model to study the mechanism of inflammatory stress-related idiosyncratic drug-induced liver injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Chen, Y.; Starokozhko, Viktoriia; Merema, Maja; Groothuis, Genoveva

    2012-01-01

    Idiosyncratic drug reactions (IDRs) can be defined as adverse drug reactions that occur in a small minority of the patients taking clinically-relevant doses and do not involve the known pharmacological effects of the drug. IDR related to hepatotoxicity or idiosyncratic drug-induced liver injury

  4. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  5. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    Science.gov (United States)

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  6. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  7. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse.

    Directory of Open Access Journals (Sweden)

    Kimberly K Gray

    Full Text Available Rift Valley fever virus (RVFV is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that

  8. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    Science.gov (United States)

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2.

    Science.gov (United States)

    Martini, E; Abuaf, N; Cavalli, F; Durand, V; Johanet, C; Homberg, J C

    1988-01-01

    A new autoantibody was detected by immunoprecipitation in the serum of 21 patients with chronic active hepatitis. The antibody reacted against a soluble cytosolic antigen in liver. The antibody was organ specific but not species specific and was therefore called anti-liver cytosol antibody Type 1 (anti-LC1). In seven of 21 cases, no other autoantibody was found; the remaining 14 cases had anti-liver/kidney microsome antibody Type 1 (anti-LKM1). With indirect immunofluorescence, a distinctive staining pattern was observed with the seven sera with anti-LC1 and without anti-LKM1. The antibody stained the cytoplasm of hepatocytes from four different animal species and spared the cellular layer around the central veins of mouse and rat liver that we have called juxtavenous hepatocytes. The immunofluorescence pattern disappeared after absorption of sera by a liver cytosol fraction. The 14 sera with both antibodies displayed anti-LC1 immunofluorescent pattern after absorption of anti-LKM1 by the liver microsomal fraction. The anti-LC1 was found in the serum only in patients with chronic active hepatitis of unknown cause. Anti-LC1 antibody was not found in sera from 100 patients with chronic active hepatitis associated with anti-actin antibody classic chronic active hepatitis Type 1, 100 patients with primary biliary cirrhosis, 157 patients with drug-induced hepatitis and a large number of patients with liver and nonliver diseases. This new antibody was considered a second marker of chronic active hepatitis associated with anti-LKM1 (anti-LKM1 chronic active hepatitis) or autoimmune chronic active hepatitis Type 2.

  11. The effect of fenbuconazole on cell proliferation and enzyme induction in the liver of female CD1 mice

    International Nuclear Information System (INIS)

    Juberg, Daland R.; Mudra, Daniel R.; Hazelton, George A.; Parkinson, Andrew

    2006-01-01

    Fenbuconazole, a triazole fungicide, has been associated with an increase in the incidence of liver adenomas in female mice following long-term dietary exposure. The aim of this study was to evaluate whether the mode of action for liver tumor formation by fenbuconazole is similar to that of phenobarbital. Treatment of CD1 mice with 0, 20, 60, 180 or 1300 ppm fenbuconazole for up to 4 weeks caused a dose-dependent increase in liver weight that was associated with centrilobular hepatocellular hypertrophy, cytoplasmic eosinophilia and panlobular hepatocellular vacuolation, as well as an initial increase in the cell proliferation labeling index. Fenbuconazole also caused a dose-dependent increase in liver microsomal cytochromes b 5 and P450 and the levels of immunoreactive CYP2B10 and its associated activity 7-pentoxyresorufin O-dealkylation (PROD). Treatment of mice with 1000 ppm phenobarbital elicited the same effects as treatment of mice with 1300 ppm fenbuconazole, except that phenobarbital was more effective than fenbuconazole at inducing PROD activity, even though fenbuconazole induced CYP2B10 to the same extent as did phenobarbital. This difference was attributed to the ability of fenbuconazole to bind tightly to CYP2B10 and partially mask its catalytic activity in liver microsomes, which is characteristic of several azole-containing drugs. All hepatocellular changes and induced enzyme activity returned to control levels within 4 weeks of discontinuing treatment with fenbuconazole or phenobarbital, indicating that the observed changes were fully reversible. We conclude that fenbuconazole is a phenobarbital-type inducer of mouse liver cytochrome P450, and the mode of action by which fenbuconazole induces liver adenomas in mice is similar to that of phenobarbital

  12. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model.

    Science.gov (United States)

    Singh, Ratnesh K; Lui, Edmund; Wright, David; Taylor, Adrian; Bakovic, Marica

    2017-09-01

    We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.

  13. Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low-dose-rate gamma rays.

    Science.gov (United States)

    Yi, Lan; Hu, Nan; Yin, Jie; Sun, Jing; Mu, Hongxiang; Dai, Keren; Ding, Dexin

    2017-01-01

    The biological effects of low-dose or low-dose-rate ionizing radiation on normal tissues has attracted attention. Based on previous research, we observed the morphology of liver tissues of C57BL/6J mice that received irradiation dose rates increased. Additionally, differential protein expression in liver tissues was analyzed using a proteomics approach. Compared with the matched group in the 2D gel analysis of the irradiated groups, 69 proteins had ≥ 1.5-fold changes in expression. Twenty-three proteins were selected based on ≥2.5-fold change in expression, and 22 of them were meaningful for bioinformatics and protein fingerprinting analysis. These molecules were relevant to cytoskeleton processes, cell metabolism, biological defense, mitochondrial damage, detoxification and tumorigenesis. The results from real-time PCR and western blot (WB) analyses showed that calreticulin (CRT) was up-regulated in the irradiated groups, which indicates that CRT may be relevant to stress reactions when mouse livers are exposed to low-dose irradiation and that low-dose-rate ionizing radiation may pose a cancer risk. The CRT protein can be a potential candidate for low-dose or low-dose-rate ionizing radiation early-warning biomarkers. However, the underlying mechanism requires further investigation.

  14. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury.

    Science.gov (United States)

    Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P

    2014-06-01

    Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.

  15. Cytosolic Phosphoenolpyruvate Carboxykinase Does Not Solely Control the Rate of Hepatic Gluconeogenesis in the Intact Mouse Liver

    OpenAIRE

    Burgess, Shawn C.; He, TianTeng; Yan, Zheng; Lindner, Jill; Sherry, A. Dean; Malloy, Craig R.; Browning, Jeffrey D.; Magnuson, Mark A.

    2007-01-01

    When dietary carbohydrate is unavailable, glucose required to support metabolism in vital tissues is generated via gluconeogenesis in the liver. Expression of phosphoenolpyruvate carboxykinase (PEPCK), commonly considered the control point for liver gluconeogenesis, is normally regulated by circulating hormones to match systemic glucose demand. However, this regulation fails in diabetes. Because other molecular and metabolic factors can also influence gluconeogenesis, the explicit role of PEP...

  16. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  17. Enantioselective metabolism of hydroxychloroquine employing rats and mice hepatic microsomes

    Directory of Open Access Journals (Sweden)

    Carmem Dickow Cardoso

    2009-12-01

    Full Text Available Hydroxychloroquine (HCQ is an important chiral drug used, mainly, in the treatment of rheumatoid arthritis, systemic lupus erythematosus and malaria, and whose pharmacokinetic and pharmacodynamic properties look to be stereoselective. Respecting the pharmacokinetic properties, some previous studies indicate that the stereoselectivity could express itself in the processes of metabolism, distribution and excretion and that the stereoselective metabolism looks to be a function of the studied species. So, the in vitro metabolism of HCQ was investigated using hepatic microsomes of rats and mice. The microsomal fraction of livers of Wistar rats and Balb-C mice was separated by ultracentrifugation and 500 μL were incubated for 180 minutes with 10 μL of racemic HCQ 1000 μg mL-1. Two stereospecific analytical methods, high performance liquid chromatography (HPLC and capillary electrophoresis (CE, were used to separate and quantify the formed metabolites. It was verified that the main formed metabolite is the (--(R-desethyl hydroxychloroquine for both animal species.A hidroxicloroquina (HCQ é um importante fármaco quiral usado, principalmente, no tratamento de artrite reumatóide, lupus eritematoso sistêmico e malária e cujas propriedades farmacocinéticas e farmacodinâmicas parecem ser estereosseletivas. Em relação às propriedades farmacocinéticas, alguns estudos prévios indicam que a estereosseletividade pode se expressar nos processos de metabolismo, distribuição e excreção e que o metabolismo estereosseletivo parece ser função da espécie estudada. Sendo assim, o metabolismo in vitro da HCQ foi investigado usando microssomas de fígado de ratos e de camundongos. A fração microssômica de fígados de ratos Wistar e de camundongos Balb-C foi isolada por ultracentrifugação e 500 μL foram incubados por 180 minutos com 10 μL de HCQ racêmica 1000 μg mL-1. Dois métodos analíticos estereoespecíficos, por cromatografia líquida de

  18. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis.

    Science.gov (United States)

    Lu, Hong; Lei, Xiaohong; Zhang, Qinghao

    2015-07-30

    The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology. We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter. Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in

  19. Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease

    International Nuclear Information System (INIS)

    Bradford, Blair U.; O'Connell, Thomas M.; Han, Jun; Kosyk, Oksana; Shymonyak, Svitlana; Ross, Pamela K.; Winnike, Jason; Kono, Hiroshi; Rusyn, Ivan

    2008-01-01

    Metabolomic evaluation of urine and liver was conducted to assess the biochemical changes that occur as a result of alcohol-induced liver injury. Male C57BL/6J mice were fed an isocaloric control- or alcohol-containing liquid diet with 35% of calories from corn oil, 18% protein and 47% carbohydrate/alcohol for up to 36 days ad libitum. Alcohol treatment was initiated at 7 g/kg/day and gradually reached a final dose of 21 g/kg/day. Urine samples were collected at 22, 30 and 36 days and, in additional treatment groups, liver and serum samples were harvested at 28 days. Steatohepatitis was induced in the alcohol-fed group since a 5-fold increase in serum alanine aminotransferase activity, a 6-fold increase in liver injury score (necrosis, inflammation and steatosis) and an increase in lipid peroxidation in liver were observed. Liver and urine samples were analyzed by nuclear magnetic resonance spectroscopy and electrospray infusion/Fourier transform ion cyclotron resonance-mass spectrometry. In livers of alcohol-treated mice the following changes were noted. Hypoxia and glycolysis were activated as evidenced by elevated levels of alanine and lactate. Tyrosine, which is required for L-DOPA and dopamine as well as thyroid hormones, was elevated possibly reflecting alterations of basal metabolism by alcohol. A 4-fold increase in the prostacyclin inhibitor 7,10,13,16-docosatetraenoic acid, a molecule important for regulation of platelet formation and blood clotting, may explain why chronic drinking causes serious bleeding problems. Metabolomic analysis of the urine revealed that alcohol treatment leads to decreased excretion of taurine, a metabolite of glutathione, and an increase in lactate, n-acetylglutamine and n-acetylglycine. Changes in the latter two metabolites suggest an inhibition of the kidney enzyme aminoacylase I and may be useful as markers for alcohol consumption

  20. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    Science.gov (United States)

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  2. Binding of bilirubin and its structural analogues to hepatic microsomal bilirubin UDP glucuronyltransferase

    International Nuclear Information System (INIS)

    Vanstapel, F.; Blanckaert, N.

    1987-01-01

    Hepatic glucuronidation of the asymmetrical natural bilirubin molecule results in formation of two different positional isomers, bilirubin C-8 monoglucuronide and bilirubin C-12 monoglucuronide. In view of the existence of multiple isoforms of UDPglucuronyltransferase, which is the microsomal enzyme system responsible for bilirubin esterification, the authors performed kinetic analysis of microsomal glucuronidation of bilirubin and a number of its structural congeners to determine whether synthesis of the two monoglucuronide isomers involved two distinct substrate-binding sites or reflected two different modes of binding to a single catalytic site. Both isomers were found in all tested species (man, rat, guinea pig, sheep), but there were marked species differences in the C-8/C-12 ratio of monoglucuronide found in bile or formed by liver microsomes. Correspondence between in vivo and in vitro results for such regioselectivity of glucuronidation was excellent in each species. On the basis of these results of kinetic analysis of bilirubin esterification at variable pigment substrate concentrations and inhibition studies with alternative substrates, the authors postulate that both natural monoglucuronide isomers are synthesized at a single binding site. Possible mechanisms responsible for the markedly regioselective esterification of bilirubin by rat and sheep liver were investigated by study of glucuronidation of selected structural analgoues of the pigment. Collectively, their findings suggest that the molecular from(s) of bilirubin able to engage in catalytically effective binding to UDPglucuronyltransferase does (do) not correspond with intramolecularly hydrogen-bonded conformers and that the nature of the β-substituents of the outer pyrromethenone rings is a key determinant of glucuronidation rate

  3. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    Science.gov (United States)

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  4. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    NARCIS (Netherlands)

    Öztürk Akcora, Büsra; Storm, Gerrit; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for

  5. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis.

    Science.gov (United States)

    Baghdasaryan, Anna; Fuchs, Claudia D; Österreicher, Christoph H; Lemberger, Ursula J; Halilbasic, Emina; Påhlman, Ingrid; Graffner, Hans; Krones, Elisabeth; Fickert, Peter; Wahlström, Annika; Ståhlman, Marcus; Paumgartner, Gustav; Marschall, Hanns-Ulrich; Trauner, Michael

    2016-03-01

    Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding. A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory (Tnf-α, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3(-) and biliary phospholipid secretion resulting in an increased HCO3(-)/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid. Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA

  6. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    Directory of Open Access Journals (Sweden)

    Shivendra D. Shukla

    2015-11-01

    Full Text Available Chronic alcoholics who also binge drink (i.e., acute on chronic are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4% for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart. Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9, dually modified phosphoacetylated histone H3 (H3AcK9/PS10, and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10 and H3 ser 28 (H3S28 increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  7. Evaluation of an anti-tumor necrosis factor therapeutic in a mouse model of Niemann-Pick C liver disease.

    Directory of Open Access Journals (Sweden)

    Melanie Vincent

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a lysosomal storage disease characterized by the accumulation of cholesterol and glycosphingolipids. The majority of NPC patients die in their teen years due to progressive neurodegeneration; however, half of NPC patients also suffer from cholestasis, prolonged jaundice, and hepatosplenomegaly. We previously showed that a key mediator of NPC liver disease is tumor necrosis factor (TNF α, which is involved in both proinflammatory and apoptotic signaling cascades. In this study, we tested the hypothesis that blocking TNF action with an anti-TNF monoclonal antibody (CNTO5048 will slow the progression of NPC liver disease.Treatment of wild-type C57BL/6 mice with NPC1-specific antisense oligonucleotides led to knockdown of NPC1 protein expression in the liver. This caused classical symptoms of NPC liver disease, including hepatic cholesterol accumulation, hepatomegaly, elevated serum liver enzymes, and lipid laden macrophage accumulation. In addition, there was a significant increase in the number of apoptotic cells and a proliferation of stellate cells. Concurrent treatment of NPC1 knockdown mice with anti-TNF had no effect on the primary lipid storage or accumulation of lipid-laden macrophages. However, anti-TNF treatment slightly blunted the increase in hepatic apoptosis and stellate cell activation that was seen with NPC1 knockdown.Current therapeutic options for NPC disease are limited. Our results provide proof of principle that pharmacologically blocking the TNF-α inflammatory cascade can slightly reduce certain markers of NPC disease. Small molecule inhibitors of TNF that penetrate tissues and cross the blood-brain barrier may prove even more beneficial.

  8. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.

  9. Alogliptin alleviates hepatic steatosis in a mouse model of nonalcoholic fatty liver disease by promoting CPT1a expression via Thr172 phosphorylation of AMPKα in the liver.

    Science.gov (United States)

    Tobita, Hiroshi; Sato, Shuichi; Yazaki, Tomotaka; Mishiro, Tsuyoshi; Ishimura, Norihisa; Ishihara, Shunnji; Kinoshita, Yoshikazu

    2018-05-01

    Pioglitazone (PIO) has been reported to be effective for nonalcoholic fatty liver disease (NAFLD) and alogliptin (ALO) may have efficacy against NAFLD progression in patients with type 2 diabetes mellitus (T2DM). The present study examined the effectiveness of ALO in a rodent model of NAFLD and diabetes mellitus. KK‑Ay mice were used to produce an NAFLD model via administration of a choline‑deficient (CD) diet. To examine the effects of alogliptin, KK‑Ay mice were provided with a CD diet with 0.03% ALO and/or 0.02% PIO orally for 8 weeks. Biochemical parameters, pathological alterations and hepatic mRNA levels associated with fatty acid metabolism were assessed. Severe hepatic steatosis was observed in KK‑Ay mice fed with a CD diet, which was alleviated by the administration of ALO and/or PIO. ALO administration increased the hepatic carnitine palmitoyltransferase 1a (CPT1a) mRNA expression level and enhanced the Thr172 phosphorylation of AMP‑activated protein kinase α (AMPKα) in the liver. PIO administration tended to decrease the hepatic fatty acid synthase mRNA expression level and increase the serum adiponectin level. Homeostasis model of assessment‑insulin resistance values tended to improve with ALO and PIO administration. ALO and PIO alleviated hepatic steatosis in KK‑Ay mice fed with a CD diet. ALO increased hepatic mRNA expression levels associated with fatty acid oxidation. In addition, the results of the present study suggested that ALO promotes CPT1a expression via Thr172 phosphorylation of AMPKα.

  10. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  11. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Science.gov (United States)

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  12. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  13. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    Science.gov (United States)

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Studies on the metabolism of chlorotrianisene to a reactive intermediate and subsequent covalent binding to microsomal proteins

    International Nuclear Information System (INIS)

    Juedes, M.J.

    1989-01-01

    The studies on chlorotrianisene were conducted to determine whether metabolism of chlorotrianisene occurs via the cytochrome P450 monooxygenase system and whether a reactive intermediate is being formed that is capable of binding covalently to microsomal proteins. [ 3 H]-chlorotrianisene was incubated with liver microsomes supplemented with NADPH. At the termination of the incubation, the protein was trapped on a glass filter and the unbound chlorotrianisene was removed by extensive washing of the protein with organic solvent. A dramatic stimulation of covalent binding was demonstrated in microsomes from rats treated with methylcholanthrene (60 fold increase) versus control or phenobarbital treatment. Verification of covalent binding was achieved by localization of radiolabeled bands following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the macromolecules in the incubation mixture. Further analysis of the radiolabeled macromolecules separated on SDS-PAGE revealed that these macromolecules were degraded by protease degradation indicating that the macromolecules were proteins. Further investigations were done to determine the cause of the dramatic stimulation of covalent binding detected in microsomes from methylcholanthrene treated rats versus control or phenobarbital treated rats. Further evidence for the participation of P-450c was obtained with a reconstituted cytochrome P-450 system. Incubations of chlorotrianisene with reconstituted P-450c and NADPH-cytochrome P-450 reductase exhibited covalent binding characteristics comparable to those seen in microsomal incubations. Investigations into the nature of the binding site and the reactive intermediate are currently being conducted. By analyzing the BSA adduct, the author intends to isolate the specific amino acid binding site(s)

  15. Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis.

    Science.gov (United States)

    Feng, Simin; Gan, Ling; Yang, Chung S; Liu, Anna B; Lu, Wenyun; Shao, Ping; Dai, Zhuqing; Sun, Peilong; Luo, Zisheng

    2018-04-04

    To study the effects of stigmasterol and β-sitosterol on high-fat Western diet (HFWD)-induced nonalcoholic fatty liver disease (NAFLD), lipidomic analyses were conducted in liver samples collected after 33 weeks of the treatment. Principal component analysis showed these phytosterols were effective in protecting against HFWD-induced NAFLD. Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and S-plots showed that triacylglycerols (TGs), phosphatidylcholines, cholesteryl esters, diacylglycerols, and free fatty acids (FFAs) were the major lipid species contributing to these discriminations. The alleviation of NAFLD is mainly associated with decreases in hepatic cholesterol, TGs with polyunsaturated fatty acids, and alterations of free hepatic FFA. In conclusion, phytosterols, at a dose comparable to that suggested for humans by the FDA for the reduction of plasma cholesterol levels, are shown to protect against NAFLD in this long-term (33-week) study.

  16. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver.

    Science.gov (United States)

    Pardo, Michal; Xu, Fanfan; Qiu, Xinghua; Zhu, Tong; Rudich, Yinon

    2018-06-01

    Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM 2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM 2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM 2.5 . HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM 2.5 . While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM 2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.

    Science.gov (United States)

    Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M

    2002-01-01

    B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.

  18. Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling

    Science.gov (United States)

    Urlep, Žiga; Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Matz-Soja, Madlen; Gebhardt, Rolf; Björkhem, Ingemar; Hall, Jason A.; Bonneau, Richard; Littman, Dan R.; Rozman, Damjana

    2017-01-01

    Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51-/-) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51-/- and Rorc-/- expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51-/- females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.

  19. Positional specificity of saturated and unsaturated fatty acids in phosphatidic acid from rat liver

    NARCIS (Netherlands)

    Possmayer, F.; Scherphof, G.L.; Dubbelman, T.M.A.R.; Golde, L.M.G. van; Deenen, L.L.M. van

    1969-01-01

    1. 1. The relative incorporation of a number of radioactive fatty acids into the different glycerolipids of rat liver microsomes has been investigated. 2. 2. Studies on the distribution of the radioactivity incorporated into phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid

  20. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    Directory of Open Access Journals (Sweden)

    Poonamjot Deol

    Full Text Available The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs, has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD. They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36, diabetes (Igfbp1, inflammation (Cd63, mitochondrial function (Pdk4 and cancer (H19 were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  1. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    Science.gov (United States)

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  2. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Directory of Open Access Journals (Sweden)

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  3. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Liu, Weilin; Struik, Dicky; Nies, Vera J M; Jurdzinski, Angelika; Harkema, Liesbeth; de Bruin, Alain; Verkade, Henkjan J; Downes, Michael; Evans, Ronald M; van Zutphen, Tim; Jonker, Johan W

    2016-02-23

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and is strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease, but improvement of insulin resistance using peroxisome proliferator-activated receptor-γ (PPARγ) agonists, such as thiazolidinediones (TZDs), has been shown to reduce steatosis and steatohepatitis effectively and to improve liver function in patients with obesity-related NAFLD. However, this approach is limited by adverse effects of TZDs. Recently, we have identified fibroblast growth factor 1 (FGF1) as a target of nuclear receptor PPARγ in visceral adipose tissue and as a critical factor in adipose remodeling. Because FGF1 is situated downstream of PPARγ, it is likely that therapeutic targeting of the FGF1 pathway will eliminate some of the serious adverse effects associated with TZDs. Here we show that pharmacological administration of recombinant FGF1 (rFGF1) effectively improves hepatic inflammation and damage in leptin-deficient ob/ob mice and in choline-deficient mice, two etiologically different models of NAFLD. Hepatic steatosis was effectively reduced only in ob/ob mice, suggesting that rFGF1 stimulates hepatic lipid catabolism. Potentially adverse effects such as fibrosis or proliferation were not observed in these models. Because the anti-inflammatory effects were observed in both the presence and absence of the antisteatotic effects, our findings further suggest that the anti-inflammatory property of rFGF1 is independent of its effect on lipid catabolism. Our current findings indicate that, in addition to its potent glucose-lowering and insulin-sensitizing effects, rFGF1 could be therapeutically effective in the treatment of NAFLD.

  4. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  5. Influence of sex and developmental stage on acute hepatotoxic and inflammatory responses to liver procarcinogens in the mouse

    International Nuclear Information System (INIS)

    Hanna, Daniel; Riedmaier, Ariane Emami; Sugamori, Kim S.; Grant, Denis M.

    2016-01-01

    The incidence of liver cancer is higher in men than in women. This sex difference is also observed in murine tumor induction models that result in the appearance of liver tumors in adult mice following their exposure on postnatal days 8 and/or 15 to carcinogens such as 4-aminobiphenyl (ABP) or diethylnitrosamine (DEN). Previous studies performed in adult mice showed that acute hepatotoxic and inflammatory responses to high-dose DEN exposure were greater in males than in females, leading to the suggestion that these responses could account for the sex difference in tumor development. We also recently observed that female but not male mice exposed postnatally to ABP had slightly increased expression of the antioxidant defense genes Nqo1 and Ggt1, which are regulated by the oxidative stress response protein nuclear factor erythroid 2-related factor 2 (NRF2), while expression of Hmox1 was increased in both sexes. The goal of the present study was therefore to compare selected acute hepatotoxic, inflammatory and oxidative stress defense responses to ABP, DEN, or the prototype hepatotoxicant carbon tetrachloride (CCl 4 ), in male and female mice exposed to these chemicals either postnatally or as adults. Exposure of adult mice to ABP, DEN or CCl 4 produced a 2-fold greater acute elevation in serum levels of the hepatotoxicity biomarker alanine aminotransferase (ALT) in males than in females, while levels of the inflammatory biomarker interleukin-6 (IL-6) showed no sex difference. However, treatment of immature mice with either ABP or DEN using standard tumor-inducing postnatal exposure protocols produced no increase in serum ALT or IL-6 levels in either males or females, while CCl 4 produced a 40-fold ALT elevation but with no sex difference. Basal expression of the NRF2-responsive gene Nqo1 was higher in adult females than in males, but there was no sex difference in basal expression of Ggt1 or Hmox1. Sexually immature animals showed no sex difference in basal

  6. Hepatic and intestinal glucuronidation of mono(2-ethylhexyl) phthalate, an active metabolite of di(2-ethylhexyl) phthalate, in humans, dogs, rats, and mice: an in vitro analysis using microsomal fractions.

    Science.gov (United States)

    Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto

    2016-07-01

    Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.

  7. Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocytes

    International Nuclear Information System (INIS)

    Liebler, D.C.; Meredith, M.J.; Guengerich, F.P.

    1985-01-01

    Oxidation of the vinyl halide carcinogen and hepatotoxin vinylidene chloride (VDC) by microsomal cytochrome P-450 yields 2,2-dichloroacetaldehyde, 2-chloroacetyl chloride, 2-chloroacetic acid, and 1,1-dichloroethylene oxide. The roles of these metabolites in covalent modification of proteins and reduced glutathione (GSH) were examined. 2-Chloroacetyl chloride reacted with model thiols at least 10(3)-fold faster than did 1,1-dichloroethylene oxide and at least 10(5)-fold faster than did 2,2-dichloroacetaldehyde or 2-chloroacetic acid. Microsomal covalent binding of [ 14 C]VDC was inhibited by GSH but not by lysine, suggesting that protein thiols, rather than amino groups, are major targets. Liver microsomes catalyzed the formation of three GSH:VDC metabolite conjugates, identified as S-(2,2-dichloro-1-hydroxy)ethylglutathione, 2-(S-glutathionyl)acetate, and S-(2-glutathionyl)acetylglutathione, a novel conjugate containing both stable (thioether) and labile (thioester) linkages. The latter two conjugates also were formed in isolated rat hepatocytes and measurable amounts of 2-(S-glutathionyl)acetate were released into the incubation medium. Both 2-(S-glutathionyl)acetate and S-(2-glutathionyl)acetylglutathione were formed with [ 35 S]GSH added to the hepatic medium, indicating that reactive VDC metabolites are capable of crossing the plasma membrane to react with extracellular targets. Unlabeled S-(2-glutathionyl)-acetylglutathione underwent carbonyl substitution with added [ 35 S]GSH, suggesting that this conjugate may participate in modification of protein thiols. This conjugate also underwent hydrolysis with a half-life of approximately 3 hr. GSH:VDC metabolite conjugates may serve as accessible models for labile covalent adducts formed between VDC metabolites and protein thiols

  8. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-10-01

    Full Text Available Wenqin Liu,1,2,* Jian Shi,1,2,* Lijun Zhu,2 Lingna Dong,1 Feifei Luo,2 Min Zhao,2 Ying Wang,2 Ming Hu,2,3 Linlin Lu,2 Zhongqiu Liu1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 3Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA *These authors contributed equally to this work Abstract: Oxymatrine (OMT is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT, and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs and human intestinal microsomes (HIMs and the cytochrome P450 (CYP isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT

  9. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  10. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model.

    Directory of Open Access Journals (Sweden)

    Charlotte E Egan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR or susceptible (BALB/c and C57BL/6 to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6 but not resistant AKR mice. Ccr2(-/- mice were completely protected from hepatitis and Cd44(-/- mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45(+CD44(+ cells bound to hyaluronic acid (HA in diet fed B6 mice but not Cd44(-/- or Ccr2(-/- mice. Ccr2(-/- mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8(+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.

  11. Low folate and selenium in the mouse maternal diet alters liver gene expression patterns in the offspring after weaning.

    Science.gov (United States)

    Barnett, Matthew P G; Bermingham, Emma N; Young, Wayne; Bassett, Shalome A; Hesketh, John E; Maciel-Dominguez, Anabel; McNabb, Warren C; Roy, Nicole C

    2015-05-08

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.

  12. Low Folate and Selenium in the Mouse Maternal Diet Alters Liver Gene Expression Patterns in the Offspring after Weaning

    Directory of Open Access Journals (Sweden)

    Matthew P.G. Barnett

    2015-05-01

    Full Text Available During pregnancy, selenium (Se and folate requirements increase, with deficiencies linked to neural tube defects (folate and DNA oxidation (Se. This study investigated the effect of a high-fat diet either supplemented with (diet H, or marginally deficient in (diet L, Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis, methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.

  13. Magnetic circular dichroism studies on microsomal aryl hydrocarbon hydroxylase: comparison with cytochrome b/sub 5/ and cytochrome P-450/sub cam/

    Energy Technology Data Exchange (ETDEWEB)

    Vickery, L; Salmon, A; Sauer, K

    1975-01-01

    Magnetic circular dichroism spectra are reported for the visible and near ultraviolet spectral regions of liver microsomes from dimethylbenzanthracene-treated rats. The sequential addition of NADH, dithionite, and carbon monoxide enables us to determine contributions to the magnetic circular dichroism by cytochromes b/sub 5/ and P-450, which dominate the spectra. The magnetic circular dichroism of the microsomal preparation is compared with that of purified oxidized and reduced cytochrome b/sub 5/ from pig liver and with the camphor-complexed and camphor-free oxidized, reduced, and reduced carbonmonoxy cytochrome P-450/sub cam/ from Pseudomonas putida. The magnetic circular dichroism spectra of the membrane bound cytochrome b/sub 5/ are similar to those of the purified protein, indicating that little or no alteration in the environment of the heme occurs during the isolation procedure. The soluble bacterial cytochrome P-450/sub cam/ also appears to be a suitable model for microsomal P-450, although differences in the magnetic circular dichroism intensity are observed for the two enzymes. No effect of dimethylbenzanthracene on the magnetic circular dichroism spectra of induced compared to control rat microsomes could be observed.

  14. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x10 6 molecules per cells of benzo[a]pyrene and 1x10 7 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  15. Identification of di- and tri-substituted hydroxy and ketone metabolites of delta1-tetrahydrocannabinol in mouse liver.

    Science.gov (United States)

    Harvey, D J; Martin, B R; Paton, W D

    1977-08-01

    In vivo liver metabolites of delta1-tetrahydrocannabinol (delta1-THC) were examined with a gas chromatograph--mass spectrometer--computer system as trimethylsilyl (TMS), [2H9]TMS and methyloxime-TMS derivatives. In addition to the reported monohydroxy, acid, and hydroxyacid metabolites, the following multiply substituted metabolites were identified: 2'',7-, 3'', 7-, and 6beta,7-dihydroxy-delta1-THC; 2'',6alpha,7-, and 3'',6alpha,7-trihydroxy-delta1-THC; 2''-, 3''-, and 7-hydroxy-6-oxo-delta1-THC, and 2'',7- and 3'',7-dihydroxy-6-oxo-delta1-THC. The ketones and hydroxyacids were reduced to common alcohols with lithium aluminium deuteride and the number of deuterium atoms in the product was used to distinguish the metabolic alcohols from those produced by reduction.

  16. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  17. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  18. Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1–6 cells

    Directory of Open Access Journals (Sweden)

    Jeng KS

    2013-08-01

    Full Text Available Kuo-Shyang Jeng,1 I-Shyan Sheen,2 Wen-Juei Jeng,2 Ming-Che Yu,3 Hsin-I Hsiau,3 Fang-Yu Chang,3 Hsin-Hua Tsai31Department of Surgery, Far Eastern Memorial Hospital, Taipei, 2Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, 3Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan, Republic of ChinaBackground: The important role of cancer stem cells in carcinogenesis has been emphasized in research. CD133+ cells have been mentioned as liver cancer stem cells in hepatocellular carcinoma (HCC. Some researchers have proposed that the sonic hedgehog (Shh pathway contributes to hepatocarcinogenesis and that the pathway activation occurs mainly in cancer stem cells. We investigated whether the activation of the Shh pathway occurs in CD133+ cells from liver cancer.Materials and methods: We used magnetic sorting to isolate CD133+ cells from mouse cancer Hepa 1–6 cells. To examine the clonogenicity, cell culture and soft agar colony formation assay were performed between CD133+ and CD133- cells. To study the activation of the Shh pathway, we examined the mRNA expressions of Shh, patched homolog 1 (Ptch-1, glioma-associated oncogene homolog 1 (Gli-1, and smoothened homolog (Smoh by real-time polymerase chain reaction of both CD133+ and CD133- cells.Results: The number (mean ± standard deviation of colonies of CD133+ cells and CD133- cells was 1,031.0 ± 104.7 and 119.7 ± 17.6 respectively. This difference was statistically significant (P < 0.001. Their clonogenicity was 13.7% ± 1.4% and 1.6% ± 0.2% respectively with a statistically significant difference found (P < 0.001. CD133+ cells and CD133– cells were found to have statistically significant differences in Shh mRNA and Smoh mRNA (P = 0.005 and P = 0.043 respectively.Conclusion: CD133+ Hepa 1–6 cells have a significantly higher colony proliferation and clonogenicity. The Shh pathway is activated in these

  19. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    OpenAIRE

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thi...

  20. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.

    Science.gov (United States)

    Engelholm, Lars H; Riaz, Anjum; Serra, Denise; Dagnæs-Hansen, Frederik; Johansen, Jens V; Santoni-Rugiu, Eric; Hansen, Steen H; Niola, Francesco; Frödin, Morten

    2017-12-01

    Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by

  1. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  3. Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver.

    Directory of Open Access Journals (Sweden)

    Rebecca M Heidker

    Full Text Available Bile acid (BA sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY. Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7α-hydroxylase (Cyp7a1, compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and

  4. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation

    Directory of Open Access Journals (Sweden)

    Yang Tian

    2016-10-01

    Full Text Available Abstract Background Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. Methods In this study, we established