WorldWideScience

Sample records for mouse fetal brain

  1. Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.

    Science.gov (United States)

    Pedroni, Silvia M A; Gonzalez, Juan M; Wade, Jean; Jansen, Maurits A; Serio, Andrea; Marshall, Ian; Lennen, Ross J; Girardi, Guillermina

    2014-01-01

    Premature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. Disruption of cortical dendritic and axonal cytoarchitecture was observed in PTB-mice. Fetuses deficient in C5aR (-/-) did not show cortical brain damage. Treatment with antibody anti-C5, that prevents generation of C5a, also prevented cortical fetal brain injury in PTB-mice. C5a also showed a detrimental effect on fetal cortical neuron development and survival in vitro. Increased glutamate release was observed in cortical neurons in culture exposed to C5a. Blockade of C5aR prevented glutamate increase and restored neurons dendritic and axonal growth and survival. Similarly, increased glutamate levels - measured by (1)HMRS - were observed in vivo in PTB-fetuses compared to age-matched controls. The blockade of glutamate receptors prevented C5a-induced abnormal growth and increased cell death in isolated fetal cortical neurons. Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth. © 2013.

  2. Effect of Maternal ±Citalopram Exposure on P11 Expression and Neurogenesis in the Mouse Fetal Brain.

    Science.gov (United States)

    King, Jennifer R; Velasquez, Juan C; Torii, Masaaki; Bonnin, Alexandre

    2017-01-13

    Fetal exposure to selective serotonin reuptake inhibitors (SSRI) has been associated with increased risk of adverse neurodevelopmental outcomes. In the adult brain, SSRI therapy regulates p11 (s100a10) expression and alters neurogenesis. The protein p11 indirectly regulates 5-HT signaling through 5-HT1B/D receptors. In the fetal brain, signaling through these receptors modulates axonal circuit formation. We determined whether p11 is expressed in the fetal mouse brain, and whether maternal SSRI exposure affects fetal p11 expression and neurogenesis. The SSRI ± citalopram was administered to pregnant mice from gestational day 8 to 17. Results show that p11 is expressed in fetal thalamic neurons and thalamocortical axons. Furthermore, p11 protein expression is significantly decreased in the fetal thalamus after in utero ±citalopram exposure compared to untreated controls, and neurogenesis is significantly decreased in specific fetal brain regions. These findings reveal differential regulation of p11 expression and altered neurogenesis in the fetal brain as a result of maternal SSRI exposure.

  3. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects.

    Directory of Open Access Journals (Sweden)

    Kerri M Luzzo

    Full Text Available BACKGROUND: Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment. METHODOLOGY/PRINCIPAL FINDINGS: We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage. CONCLUSIONS/SIGNIFICANCE: Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes.

  4. Acute Effects of Viral Exposure on P-Glycoprotein Function in the Mouse Fetal Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    2017-02-01

    Full Text Available Background/Aims: Viral infection during pregnancy is known to affect the fetal brain. The toll-like receptor (TLR-3 is a pattern recognition receptor activated by viruses known to elicit adverse fetal neurological outcomes. The P-glycoprotein (P-gp efflux transporter protects the developing fetus by limiting the transfer of substrates across both the placenta and the fetal blood-brain barrier (BBB. As such, inhibition of P-gp at these blood-barrier sites may result in increased exposure of the developing fetus to environmental toxins and xenobiotics present in the maternal circulation. We hypothesized that viral exposure during pregnancy would impair P-gp function in the placenta and in the developing BBB. Here we investigated whether the TLR-3 ligand, polyinosinic:polycytidylic acid (PolyI:C, increased accumulation of one P-gp substrate in the fetus and in the developing fetal brain. Methods: Pregnant C57BL/6 mice (GD15.5 were injected (i.p. with PolyI:C (5 mg/kg or 10 mg/kg or vehicle (saline. [3H]digoxin (P-gp substrate was injected (i.v. 3 or 23h post-treatment and animals were euthanized 1h later. Maternal plasma, ‘fetal-units’ (fetal membranes, amniotic fluid and whole fetus, and fetal brains were collected. Results: PolyI:C exposure (4h significantly elevated maternal plasma IL-6 (P<0.001 and increased [3H]digoxin accumulation in the fetal brain (P<0.05. In contrast, 24h after PolyI:C exposure, no effect on IL-6 or fetal brain accumulation of P-gp substrate was observed. Conclusion: Viral infection modeled by PolyI:C causes acute increases in fetal brain accumulation of P-gp substrates and by doing so, may increase fetal brain exposure to xenobiotics and environmental toxins present in the maternal circulation.

  5. Males are from Mars, and females are from Venus: sex-specific fetal brain gene expression signatures in a mouse model of maternal diet-induced obesity.

    Science.gov (United States)

    Edlow, Andrea G; Guedj, Faycal; Pennings, Jeroen L A; Sverdlov, Deanna; Neri, Caterina; Bianchi, Diana W

    2016-05-01

    Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated

  6. MRI of the Fetal Brain.

    Science.gov (United States)

    Weisstanner, C; Kasprian, G; Gruber, G M; Brugger, P C; Prayer, D

    2015-10-01

    The purpose of this article is to provide an overview of the possibilities for fetal magnetic resonance imaging (MRI) in the evaluation of the fetal brain. For brain pathologies, fetal MRI is usually performed when an abnormality is detected by previous prenatal ultrasound, and is, therefore, an important adjunct to ultrasound. The most commonly suspected brain pathologies referred to fetal MRI for further evaluation are ventriculomegaly, missing corpus callosum, and abnormalities of the posterior fossa. We will briefly discuss the most common indications for fetal brain MRI, as well as recent advances.

  7. Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model.

    Directory of Open Access Journals (Sweden)

    Alissa R Carver

    Full Text Available Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention.For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra "experimental group" or water (sFlt-1 "positive control" until weaning. The mFc group ("negative control" received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI. MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis.Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes.Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.

  8. Adoptive transfer of T regulatory cells inhibits lipopolysaccharide-induced inflammation in fetal brain tissue in a late-pregnancy preterm birth mouse model.

    Science.gov (United States)

    Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li

    2017-02-01

    To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation. © 2016 International Federation for Cell Biology.

  9. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  10. Developmental Profile and Sexually Dimorphic Expression of Kiss1 and Kiss1r in the Fetal Mouse Brain

    Directory of Open Access Journals (Sweden)

    John Gabriel Knoll

    2013-10-01

    Full Text Available The hypothalamic-pituitary-gonadal axis (HPG is a complex neuroendocrine circuit involving multiple levels of regulation. Kisspeptin neurons play essential roles in controlling the HPG axis from the perspectives of puberty onset, oscillations of gonadotropin releasing hormone (GnRH neuron activity and the pre-ovulatory LH surge. The current studies focus on the expression of kisspeptin during murine fetal development using in situ hybridization (ISH, quantitative reverse transcription real-time PCR (QPCR and immunocytochemistry. Expression of mRNA coding for kisspeptin (KISS1 and its receptor KISS1R was observed at embryonic (E day 13 by ISH. At E13 and other later ages examined, Kiss1 signal in individual cells within the arcuate nucleus (ARC appeared stronger in females than males. ISH examination of agonadal steroidogenic factor-1 (Sf1 knockout mice revealed that E17 XY knockouts resembled wild-type XX females. These findings raise the possibility that gonadal hormones modulate the expression of Kiss1 in the ARC prior to birth. The sex and genotype differences were tested quantitatively by QPCR experiments in dissected hypothalami from mice at E17 and adulthood. Females had significantly more Kiss1 than males at both ages, even though the number of cells detected by ISH was similar. In addition, QPCR revealed a significant difference in the amount of Kiss1 mRNA in Sf1 mice with wild-type (WT XY mice expressing less than XY knockouts (KO and XX mice of both genotypes. The detection of immunoreactive KISS1 in perikarya of the ARC at E17 indicates that early mRNA is translated to peptide. The functional significance of this early expression of Kiss1 awaits elucidation.

  11. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  12. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  13. MRI of fetal acquired brain lesions.

    Science.gov (United States)

    Prayer, Daniela; Brugger, Peter C; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-02-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  14. [Advanced MRI techniques of the fetal brain].

    Science.gov (United States)

    Schöpf, V; Dittrich, E; Berger-Kulemann, V; Kasprian, G; Kollndorfer, K; Prayer, D

    2013-02-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities.

  15. TET1 contributes to neurogenesis onset time during fetal brain development in mice.

    Science.gov (United States)

    Kim, Hyerim; Jang, Woo Young; Kang, Min-Cheol; Jeong, Jain; Choi, Minjee; Sung, Yonghun; Park, Song; Kwon, Wookbong; Jang, Soyoung; Kim, Myoung Ok; Kim, Sung Hyun; Ryoo, Zae Young

    2016-03-18

    Epigenetic mechanisms are relevant to development and contribute to fetal neurogenesis. DNA methylation and demethylation contribute to neural gene expression during mouse brain development. Ten-eleven translocation 1 (TET1) regulates DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). TET1 specifically regulates 5hmC in the central nervous system (CNS), including during neurogenesis in the adult brain. However little is known about its function in fetal neurogenesis. In order to evaluate the role of TET1 in fetal brain development, we generated TET1-overexpressing transgenic (TG) mice. TET1 overexpression was confirmed in the brains of fetal mice, and we detected 5hmC overexpression in the TG brains compared to that in the wild type (WT) brains, using a dot-blot assay. In order to observe the role of TET1 in fetal brain development, we examined fetal brain samples at varied time points by using real-time PCR, Western blotting, and Immunofluorescence (IF). We confirmed that TET1 contributes to neurogenesis by upregulating the protein expressions of neuronal markers in the TG mouse brains, as determined by Western blotting. However the cortex structure or brain mass between WT and TG mice showed no significant difference by IF. In conclusion, TET1 makes the start time of neurogenesis earlier in the TG brains compared to that in the WT brains during fetal brain development.

  16. Diagnostic pitfalls in fetal brain MRI.

    Science.gov (United States)

    Al-Mukhtar, Ali; Kasprian, Gregor; Schmook, Maria T; Brugger, Peter C; Prayer, Daniela

    2009-08-01

    Recent technological advances in fetal magnetic resonance imaging (MRI) and increased reliability of MRI in depicting abnormalities and lesions, especially in the central nervous system, are increasingly bringing up challenging issues with regard to accurate diagnosis. There are also pitfalls not only attributable to image acquisition but also in clinical interpretation. The misinterpretation of findings because of insufficient knowledge about fetal brain development as visualized by MRI may also be regarded as an important limitation of fetal MRI. We provide an overview of the most common pitfalls experienced in fetal MRI in routine practice, demonstrate how to identify some of the factors that lead to imaging misinterpretation, and suggest ways to tackle these problems, with an emphasis on MR techniques and image calibration.

  17. MRI of normal fetal brain development.

    Science.gov (United States)

    Prayer, Daniela; Kasprian, Gregor; Krampl, Elisabeth; Ulm, Barbara; Witzani, Linde; Prayer, Lucas; Brugger, Peter C

    2006-02-01

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  18. MRI of normal fetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria)]. E-mail: Daniela.prayer@meduniwien.ac.at; Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Krampl, Elisabeth [Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna (Austria); Ulm, Barbara [Department of Prenatal Diagnosis, Medical University of Vienna, Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna, Vienna (Austria); Prayer, Lucas [Diagnosezentrum Urania, Vienna (Austria); Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna (Austria)

    2006-02-15

    Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.

  19. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  20. Potent protection of Danshensu(β-3,4-dihydroxyphenyl-lactic acid)against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain

    Institute of Scientific and Technical Information of China (English)

    Jingen Shen; Lijian Yu; Rundi Ma; Yongping Zhang; Xiaoyu Zhang; Juanzhi Fang; Tingxi Yu

    2010-01-01

    Recent studies have demonstrated that ferulic acid[3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid]and sodium ferulate produce protective effects against glutamate-induced neurotoxicity in adult mice.Danshensu(β-3,4-dihydroxyphenyl-lactic acid)has a similar molecular structure and pharmacological action to caffeic acid.This study aimed to validate the protection conferred by Danshensu against excitotoxic effects of maternal intragastric administration of monosodium glutamate at late stages of pregnancy in the developing mouse fetal brain.Behavioral tests,as well as histopathological and immunohistochemical examination of hippocampi were performed in filial mice.Results revealed that maternal intragastric administration of excessive monosodium glutamate(1.0,2.0,4.0 g/kg body weight)at a late stage of pregnancy resulted in a series of behavioral disorders(hyperactivity,lesions of learning and memory,and disturbance in cooperation of movement ability under high-altitude stress),histopathological impairment(neuronal edema,degeneration,necrosis,and hyperplasia)and molecular cellular biological changes(upregulated expression of N-methyI-D-aspartate receptor type 1 and neuropeptide Y in the hippocampal region of the brain of the filial mice from mothers treated with monosodium glutamate).Simultaneous administration of sodium Danshensu partially reversed the effects of monosodium glutamate on the above mentioned phenomena.These findings indicate that sodium Danshensu exhibits obvious protective effects on the excitotoxicity of monosodium glutamate.

  1. Watching the fetal brain at 'rest'.

    Science.gov (United States)

    Schöpf, V; Kasprian, G; Brugger, P C; Prayer, D

    2012-02-01

    Functional magnetic resonance imaging (fMRI) has allowed insights into the spatiotemporal distribution of human brain networks. According to the neurophysiological property of the fetal brain to generate spontaneous activity, we aimed to determine the feasibility of investigating the maturation of intrinsic networks, beginning at gestational week 20 in healthy human fetuses by combining resting-state fMRI and an analytical approach, independent component analysis (ICA). In this study, functional images of 16 fetuses with morphologically normal brain development, from 20 to 36 gestational weeks of age, were acquired on a 1.5T unit (Philips Medical Systems, Best, The Netherlands) using single-shot, gradient-recalled echo-planar imaging. After preprocessing (motion correction, brain extraction), images were analyzed using single-subject ICA. We visualized a bilateral occipital network and medial and lateral prefrontal activity pattern that involved the future Brodmann areas 9-11. Furthermore, there was one either predominantly right (3/7 cases) or left (4/7 cases) hemispheric lateralized network that involved the superior temporal cortical regions (Brodmann areas 22 and 39). Frequency oscillations were in the range of 0.01-0.06Hz for all networks. This study shows that resting-state networks (RSNs) are shaped and are detectable in utero. Further investigations of resting-state measurements in the fetus may therefore allow developmental brain activity monitoring and may provide insights into early brain function. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Zika Virus Can Damage Fetal Brain Late in Pregnancy: Study

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_161451.html Zika Virus Can Damage Fetal Brain Late in Pregnancy: Study ... WEDNESDAY, Oct. 12, 2016 (HealthDay News) -- The Zika virus may harm a baby's brain even if the ...

  3. Maternal immune activation by poly(I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain

    Directory of Open Access Journals (Sweden)

    Arrode-Brusés Géraldine

    2012-04-01

    Full Text Available Abstract Background Maternal viral infection during pregnancy is associated with an increase in the incidence of psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The enhanced risk for developing mental illness appears to be caused by deleterious effects of innate immune response-associated factors on the development of the central nervous system, which predispose the offspring to pathological behaviors in adolescence and adulthood. To identify the immune response-associated soluble factors that may affect central nervous system development, we examined the effect of innate immune response activation by polyriboinosinic-polyribocytidylic acid (poly(I:C, a synthetic analogue of viral double-stranded RNA, on the expression levels of pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors in fetal and postnatal mouse brain 6 h and 24 h after treatment. Methods C57BL/6J pregnant mice (gestational day 16 or newborn mice (postnatal day 4 received a single intraperitoneal injection of the synthetic analogue of viral double-stranded RNA poly(I:C (20 mg/kg. Thirty-two immune response-associated soluble factors, including pro- and anti-inflammatory cytokines, chemokines and colony stimulating factors, were assayed 6 h and 24 h after poly(I:C injection using multiplexed bead-based immunoassay (Milliplex Map and processed in a Luminex 100 IS instrument. Results Maternal exposure to poly(I:C at gestational day 16 induced a significant increase in cytokines interleukin (IL-1β, IL-7 and IL-13; chemokines monocyte chemoattractant protein 1 (MCP-1, macrophage inflammatory protein (MIP-1α, interferon gamma-induced protein (IP-10 and monokine induced by IFN-gamma (MIG; and in the colony stimulating factor vascular endothelial growth factor (VEGF in the fetal brain. IL-1β showed the highest concentration levels in fetal brains and was the only cytokine

  4. Atlas learning in fetal brain development.

    Science.gov (United States)

    Dittrich, Eva; Kasprian, Gregor; Prayer, Daniela; Langs, Georg

    2011-06-01

    Magnetic resonance imaging has become an important noninvasive technique to gain insight into fetal brain development. Its capabilities go beyond ultrasound when diagnosing high-risk pregnancies. To summarize observations across a population in magnetic resonance imaging studies, reference systems such as atlases that establish correspondences across a cohort are key. In this article, we review the evolution of atlas-building methods in light of their relevance, limitations, and benefits for the modeling of human brain development. Starting with single anatomical templates to which brain scans where mapped to such as Talairach and Montreal Neurological Institute space, we explore the uses of atlases as a means to establish correspondences across a cohort and as a model that captures the population characteristics of the cases the atlas is built from. We discuss methods that capture features of increasingly heterogeneous populations and approaches that are able to generalize with only minimal annotation. The main focus of this review are methods that explicitly model the variability in the population with regard to time, such as in the modeling of disease progression and brain development. We highlight the applicability and limitations of state-of-the art approaches, how insights from the study of disease progression are helpful in developmental studies, and point to the directions of future research that is still necessary.

  5. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  6. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain

    Directory of Open Access Journals (Sweden)

    Chongyuan Luo

    2016-12-01

    Full Text Available Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of the human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. Demethylated regions (74% of 35,627 identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development.

  7. A Review of Brain Extraction Techniques in Fetal MRI

    Directory of Open Access Journals (Sweden)

    Morteza Pishghadam

    2016-03-01

    Full Text Available Sonography, Maternal Serum Screening, amniocentesis, and sampling are among the techniques utilized to examine a developing fetus and diagnose fetal abnormalities in the uterus. Despite the fact that Sonography is the main technique used for imaging and monitoring, the use of Magnetic Resonance Imaging (MRI to evaluate the fetus is growing. Moreover, MRI is used for further examinations in case of abnormalities diagnosed in the ultrasound scan. MRI, in comparison with other imaging techniques, provides the advantage of fetal brain study with higher precision and quality. The first step to study the fetal brain is its extraction from the MRI of the fetal brain. Since the maternal tissue is also present in the MRI of the fetal brain tissue, and due to the differences in the adult and fetus signals of brain tissue, it is not possible to use the adult brain extraction techniques for fetus. Given that semi-automatic segmentation is a time-consuming and tedious task, the need for automatic segmentation is highlighted. This is while the development of the stages of automatic segmentation of brain structures is still a challenge to overcome. In the present paper, we review the techniques for automatic segmentation or brain extraction of fetal MRI.

  8. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth.

    Science.gov (United States)

    Elovitz, Michal A; Mrinalini, Conjeevaram; Sammel, Mary D

    2006-01-01

    Adverse neurologic outcome, including cerebral palsy, is a significant contributor to long-term morbidity in preterm neonates. However, the mechanisms leading to brain injury in the setting of a preterm birth are poorly understood. In the last decade, there has been a growing body of evidence correlating infection or inflammation with preterm birth. The presence of intrauterine inflammation significantly increases the risk for adverse neurologic outcome in the neonate. These studies were performed to elucidate the early signal transduction pathways activated in the fetal brain that may result in long-term neurologic injury. Using our mouse model of localized intrauterine inflammation, the activation of TH1/TH2 pathways in the placenta, fetus corpus, fetal liver, and fetal brain was investigated. Additional studies determined whether activation of TH1/TH2 pathways could promote cell death and alter glial development. Real-time PCR studies demonstrated that a robust TH1/TH2 response occurs rapidly in the fetal brain after exposure to intrauterine inflammation. The cytokine response in the fetus and placenta was not significantly correlated with the response in the fetal brain. Along with an immune response, cell death pathways were activated early in the fetal brain in response to intrauterine LPS. Implicating TH1/TH2 and cell death pathways in permanent brain injury are our findings of an increase in GFAP mRNA and protein as well as a loss of pro-oligodendrocytes. With increased understanding of the mechanisms by which inflammation promotes brain injury in the preterm neonate, identification of potential targets to limit adverse neonatal outcomes becomes possible.

  9. Is there a relationship between fetal brain function and the fetal behavioral state? A fetal MEG-study.

    Science.gov (United States)

    Kiefer-Schmidt, Isabelle; Raufer, Julia; Brändle, Johanna; Münßinger, Jana; Abele, Harald; Wallwiener, Diethelm; Eswaran, Hari; Preissl, Hubert

    2013-09-01

    Fetal magnetography enables the recording of biomagnetic fetal signals, including fetal heart and fetal brain signals. These signals allow the determination of fetal behavioral states and functional brain signals with auditory evoked responses (AER). In the current study, we investigated how the behavioral state influences the AER and how stimulation affects fetal state. One hundred and four fetuses in three age groups (28-31 weeks, 32-35 weeks and 36-41 weeks) were recorded with and without auditory stimulation. Both sessions were scored for fetal states. The AER latency was determined for each state separately. Forty-five additional subjects were recorded with two sessions of 10 min without stimulation to investigate a possible time effect on state changes. The state distribution was significantly different between stimulation and no stimulation conditions. The AER latencies were significantly shorter in active sleep (P=0.013) and active wakefulness (P=0.004) compared to quiet sleep. Auditory stimulation has an effect on fetal states. The state information should be taken into account for the analysis of AER latencies.

  10. Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol.

    Science.gov (United States)

    Hashimoto-Torii, Kazue; Kawasawa, Yuka Imamura; Kuhn, Alexandre; Rakic, Pasko

    2011-03-08

    Fetal exposure to environmental insults increases the susceptibility to late-onset neuropsychiatric disorders. Alcohol is listed as one of such prenatal environmental risk factors and known to exert devastating teratogenetic effects on the developing brain, leading to complex neurological and psychiatric symptoms observed in fetal alcohol spectrum disorder (FASD). Here, we performed a coordinated transcriptome analysis of human and mouse fetal cerebral cortices exposed to ethanol in vitro and in vivo, respectively. Up- and down-regulated genes conserved in the human and mouse models and the biological annotation of their expression profiles included many genes/terms related to neural development, such as cell proliferation, neuronal migration and differentiation, providing a reliable connection between the two species. Our data indicate that use of the combined rodent and human model systems provides an effective strategy to reveal and analyze gene expression changes inflicted by various physical and chemical environmental exposures during prenatal development. It also can potentially provide insight into the pathogenesis of environmentally caused brain disorders in humans.

  11. Fetal brain hypometabolism during prolonged hypoxaemia in the llama.

    Science.gov (United States)

    Ebensperger, Germán; Ebensperger, Renato; Herrera, Emilio A; Riquelme, Raquel A; Sanhueza, Emilia M; Lesage, Florian; Marengo, Juan J; Tejo, Rodrigo I; Llanos, Aníbal J; Reyes, Roberto V

    2005-09-15

    In this study we looked for additional evidence to support the hypothesis that fetal llama reacts to hypoxaemia with adaptive brain hypometabolism. We determined fetal llama brain temperature, Na(+) and K(+) channel density and Na(+)-K(+)-ATPase activity. Additionally, we looked to see whether there were signs of cell death in the brain cortex of llama fetuses submitted to prolonged hypoxaemia. Ten fetal llamas were instrumented under general anaesthesia to measure pH, arterial blood gases, mean arterial pressure, heart rate, and brain and core temperatures. Measurements were made 1 h before and every hour during 24 h of hypoxaemia (n = 5), which was imposed by reducing maternal inspired oxygen fraction to reach a fetal arterial partial pressure of oxygen (P(a,O(2))) of about 12 mmHg. A normoxaemic group was the control (n = 5). After 24 h of hypoxaemia, we determined brain cortex Na(+)-K(+)-ATPase activity, ouabain binding, and the expression of NaV1.1, NaV1.2, NaV1.3, NaV1.6, TREK1, TRAAK and K(ATP) channels. The lack of brain cortex damage was assessed as poly ADP-ribose polymerase (PARP) proteolysis. We found a mean decrease of 0.56 degrees C in brain cortex temperature during prolonged hypoxaemia, which was accompanied by a 51% decrease in brain cortex Na(+)-K(+)-ATPase activity, and by a 44% decrease in protein content of NaV1.1, a voltage-gated Na(+) channel. These changes occurred in absence of changes in PARP protein degradation, suggesting that the cell death of the brain was not enhanced in the fetal llama during hypoxaemia. Taken together, these results provide further evidence to support the hypothesis that the fetal llama responds to prolonged hypoxaemia with adaptive brain hypometabolism, partly mediated by decreases in Na(+)-K(+)-ATPase activity and expression of NaV channels.

  12. CNTF inhibits high voltage activated Ca2+ currents in fetal mouse cortical neurones

    DEFF Research Database (Denmark)

    Holm, Ninna R; Christophersen, Palle; Hounsgaard, Jørn;

    2002-01-01

    Neurotrophic factors yield neuroprotection by mechanisms that may be related to their effects as inhibitors of apoptosis as well as their effects on ion channels. The effect of ciliary neurotrophic factor (CNTF) on high-threshold voltage-activated Ca channels in cultured fetal mouse brain cortical...... neurones was investigated. Addition of CNTF into serum-free growth medium resulted in delayed reduction of the Ca2+ currents. The currents decreased to 50% after 4 h and stabilized at this level during incubation with CNTF for 48 h. Following removal of CNTF the inhibition was completely reversed after 18...

  13. Are there fetal stem cells in the maternal brain?

    Institute of Scientific and Technical Information of China (English)

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  14. Alcohol-induced neuroapoptosis in the fetal macaque brain.

    Science.gov (United States)

    Farber, Nuri B; Creeley, Catherine E; Olney, John W

    2010-10-01

    The ability of brief exposure to alcohol to cause widespread neuroapoptosis in the developing rodent brain and subsequent long-term neurocognitive deficits has been proposed as a mechanism underlying the neurobehavioral deficits seen in fetal alcohol spectrum disorder (FASD). It is unknown whether brief exposure to alcohol causes apoptosis in the fetal primate brain. Pregnant fascicularis macaques at various stages of gestation (G105 to G155) were exposed to alcohol for 8h, then the fetuses were delivered by caesarean section and their brains perfused with fixative and evaluated for apoptosis. Compared to saline control brains, the ethanol-exposed brains displayed a pattern of neuroapoptosis that was widespread and similar to that caused by alcohol in infant rodent brain. The observed increase in apoptosis was on the order of 60-fold. We propose that the apoptogenic action of alcohol could explain many of the neuropathological changes and long-term neuropsychiatric disturbances associated with human FASD.

  15. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...... evidence that cocaine use by a pregnant mother will also affect the function of the fetal brain. We are also unique in showing that cocaine's effects in brain glucose metabolism differed in pregnant (increased) and nonpregnant (decreased) animals, which suggests that the psychoactive effects of cocaine...

  16. Fetal inflammatory response and brain injury in the preterm newborn.

    Science.gov (United States)

    Malaeb, Shadi; Dammann, Olaf

    2009-09-01

    Preterm birth can be caused by intrauterine infection and maternal/fetal inflammatory responses. Maternal inflammation (chorioamnionitis) is often followed by a systemic fetal inflammatory response characterized by elevated levels of proinflammatory cytokines in the fetal circulation. The inflammation signal is likely transmitted across the blood-brain barrier and initiates a neuroinflammatory response. Microglial activation has a central role in this process and triggers excitotoxic, inflammatory, and oxidative damage in the developing brain. Neuroinflammation can persist over a period of time and sensitize the brain to subinjurious insults in early and chronic phases but may offer relative tolerance in the intermediate period through activation of endogenous anti-inflammatory, protective, and repair mechanisms. Neuroinflammatory injury not only destroys what exists but also changes what develops.

  17. [Prenatal imaging of the fetal brain--indications and developmental implications of fetal MRI].

    Science.gov (United States)

    Ben Sira, Liat; Garel, Catherine; Leitner, Yael; Gross-Tsur, Varda

    2008-01-01

    Cerebral anomalies at birth account for approximately 9% of all isolated anomalies and are present in 15.9% of babies with multiple malformations and, thereby, warrant concern in antenatal diagnosis. Ultrasonography is the basic screening examination for the pregnant woman due to its efficiency, availability, low cost and real time capability. Many of the major anomalies can be diagnosed by ultrasound during the first trimester of pregnancy. However subtle abnormalities can be missed by ultrasonography or detected only in later stages of pregnancy. Fetal MRI has proved itself to be an effective adjuvant imaging tool and is indicated whenever there is a diagnostic query on ultrasound or a need to define a suspected brain anomaly. The information obtained from fetal MRI has significant implications for parental counseling regarding both the type of malformation as well as the neurological and developmental prognosis. Current indications for fetal MRI, focusing on various common fetal cerebral pathologies, will be addressed in this review.

  18. Cocaine is pharmacologically active in the nonhuman primate fetal brain

    DEFF Research Database (Denmark)

    Benveniste, Helene; Fowler, Joanna S; Rooney, William D

    2010-01-01

    Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester ......Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third......-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (approximately 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide...

  19. Spatiotemporal patterns of gene expression during fetal monkey brain development.

    Science.gov (United States)

    Redmond, D Eugene; Zhao, Ji-Liang; Randall, Jeffry D; Eklund, Aron C; Eusebi, Leonard O V; Roth, Robert H; Gullans, Steven R; Jensen, Roderick V

    2003-12-19

    Human DNA microarrays are used to study the spatiotemporal patterns of gene expression during the course of fetal monkey brain development. The 444 most dynamically expressed genes in four major brain areas are reported at five different fetal ages. The spatiotemporal profiles of gene expression show both regional specificity as well as waves of gene expression across the developing brain. These patterns of expression are used to identify statistically significant clusters of co-regulated genes. This study demonstrates for the first time in the primate the relevance, timing, and spatial locations of expression for many developmental genes identified in other animals and provides clues to the functions of many unknowns. Two different microarray platforms are used to provide high-throughput cross validation of the most important gene expression changes. These results may lead to new understanding of brain development and new strategies for treating and repairing disorders of brain function.

  20. The effects of MRI on mouse embryos during fetal stage

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Sakazaki, Takahiko; Itokawa, Yuka [Suzuka University of Medical Science, Koriyama (Japan)] (and others)

    2006-06-15

    The effects of Magnetic Resonance Imaging (MRI) on mouse embryos at the early stage of organogenesis were investigated. Pregnant ICR mice were exposed on day 8 of gestation to MRI at 0.5 T for 0.5 hour to 3 hours. The mortality rates of embryos or fetuses, the incidence of external malformations, fetal body weight and sex ratio were observed at day 18 of gestation. A significant increase in embryonic mortality was observed after exposure to either 0.5 T MRI for 0.5 hour or 2 hours. However, the exposure to MRI for 1 hour or 3 hours did not induce any significant increase in embryonic mortality when compared with control. External malformations such as exencephaly, cleft palate and anomalies of tail were observed in all experimental groups exposed to each MRI. A statistically significant increase of external malformations was observed in all groups treated with 0.5 T MRI for 0.5 hour and 3 hours. The incidence of external malformations in the mice group exposed to 0.5 T MRI for 0.5-hour was found to be higher than those of mice group exposed to 0.5 T MRI for 2 hours. The effects of MRI on the external malformations might not to be dose-dependent. There was no statistically significant difference in fetal body weight and sex ratio among each MRI exposure groups.

  1. File list: NoD.Neu.10.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Fetal_brain hg19 No description Neural Fetal brain SRX142786,SRX05...6802,SRX031451,SRX031387,SRX142793,SRX031404,SRX031421 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.10.AllAg.Fetal_brain.bed ...

  2. File list: His.Neu.05.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Fetal_brain hg19 Histone Neural Fetal brain SRX860887,SRX860886,SR...X860885,SRX860881,SRX860879,SRX860888,SRX860880,SRX860883,SRX860884,SRX860882 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Fetal_brain.bed ...

  3. File list: NoD.Neu.05.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Fetal_brain hg19 No description Neural Fetal brain SRX056802,SRX14...2786,SRX142793,SRX031387,SRX031451,SRX031404,SRX031421 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Fetal_brain.bed ...

  4. File list: ALL.Neu.05.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_brain hg19 All antigens Neural Fetal brain SRX056802,SRX1427...60882 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_brain.bed ...

  5. File list: DNS.Neu.50.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_brain.bed ...

  6. File list: DNS.Neu.20.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_brain.bed ...

  7. File list: His.Neu.20.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Fetal_brain hg19 Histone Neural Fetal brain SRX860887,SRX860879,SR...X860886,SRX860883,SRX860881,SRX860885,SRX860884,SRX860880,SRX860888,SRX860882 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Fetal_brain.bed ...

  8. File list: ALL.Neu.20.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Fetal_brain hg19 All antigens Neural Fetal brain SRX142786,SRX2096...60882 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Fetal_brain.bed ...

  9. File list: ALL.Neu.50.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_brain hg19 All antigens Neural Fetal brain SRX142786,SRX2096...60880 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_brain.bed ...

  10. File list: NoD.Neu.50.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Fetal_brain hg19 No description Neural Fetal brain SRX142786,SRX03...1421,SRX142793,SRX056802,SRX031451,SRX031404,SRX031387 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Fetal_brain.bed ...

  11. File list: His.Neu.10.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Fetal_brain hg19 Histone Neural Fetal brain SRX860887,SRX860886,SR...X860879,SRX860888,SRX860880,SRX860881,SRX860885,SRX860883,SRX860884,SRX860882 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Fetal_brain.bed ...

  12. File list: DNS.Neu.05.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Fetal_brain hg19 DNase-seq Neural Fetal brain SRX040380,SRX040395,...6,SRX121278 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Fetal_brain.bed ...

  13. File list: His.Neu.50.AllAg.Fetal_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Fetal_brain hg19 Histone Neural Fetal brain SRX860887,SRX860879,SR...X860883,SRX860885,SRX860884,SRX860881,SRX860886,SRX860888,SRX860882,SRX860880 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Fetal_brain.bed ...

  14. Decreased relative brain tissue levels of inositol in fetal hydrocephalus.

    NARCIS (Netherlands)

    Kok, R.D.; Steegers-Theunissen, R.P.M.; Eskes, T.K.A.B.; Heerschap, A.; Berg, P.P. van den

    2003-01-01

    OBJECTIVE: Inositol seems to play a role in the development of the central nervous system. In this study, the brain tissue level of inositol in fetal hydrocephalus was compared with that of healthy control subjects. STUDY DESIGN: Proton magnetic resonance spectroscopy was used to examine the inosito

  15. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection.

    Science.gov (United States)

    Yockey, Laura J; Varela, Luis; Rakib, Tasfia; Khoury-Hanold, William; Fink, Susan L; Stutz, Bernardo; Szigeti-Buck, Klara; Van den Pol, Anthony; Lindenbach, Brett D; Horvath, Tamas L; Iwasaki, Akiko

    2016-08-25

    Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.

  16. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine.

    Science.gov (United States)

    Liao, Michael Z; Gao, Chunying; Shireman, Laura M; Phillips, Brian; Risler, Linda J; Neradugomma, Naveen K; Choudhari, Prachi; Prasad, Bhagwat; Shen, Danny D; Mao, Qingcheng

    2017-01-19

    Norbuprenorphine is the major active metabolite of buprenorphine which is commonly used to treat opiate addiction during pregnancy. Norbuprenorphine produces marked respiratory depression and was 10 times more potent than buprenorphine. Therefore, it is important to understand the mechanism that controls fetal exposure to norbuprenorphine, as exposure to this compound may pose a significant risk to the developing fetus. P-gp/ABCB1 and BCRP/ABCG2 are two major efflux transporters regulating tissue distribution of drugs. Previous studies have shown that norbuprenorphine, but not buprenorphine, is a P-gp substrate. In this study, we systematically examined and compared the roles of P-gp and BCRP in determining maternal brain and fetal distribution of norbuprenorphine using transporter knockout mouse models. We administered 1mg/kg norbuprenorphine by retro-orbital injection to pregnant FVB wild-type, Abcb1a(-/-)/1b(-/-), and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice on gestation day 15. The fetal AUC of norbuprenorphine was ∼64% of the maternal plasma AUC in wild-type mice, suggesting substantial fetal exposure to norbuprenorphine. The maternal plasma AUCs of norbuprenorphine in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were ∼2 times greater than that in wild-type mice. Fetal AUCs in Abcb1a(-/-)/1b(-/-) and Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice were also increased compared to wild-type mice; however, the fetal-to-maternal plasma AUC ratio remained relatively unchanged by the knockout of Abcb1a/1b or Abcb1a/1b/Abcg2. In contrast, the maternal brain-to-maternal plasma AUC ratio in Abcb1a(-/-)/1b(-/-) or Abcb1a(-/-)/1b(-/-)/Abcg2(-/-) mice was increased ∼30-fold compared to wild-type mice. Protein quantification by LC-MS/MS proteomics revealed significantly higher amounts of P-gp protein in the wild-type mice brain than that in the placenta. These results indicate that fetal exposure to norbuprenorphine is substantial and that P-gp has a minor impact on

  17. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  18. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  19. Sildenafil citrate increases fetal weight in a mouse model of fetal growth restriction with a normal vascular phenotype.

    Directory of Open Access Journals (Sweden)

    Mark Robert Dilworth

    Full Text Available Fetal growth restriction (FGR is defined as the inability of a fetus to achieve its genetic growth potential and is associated with a significantly increased risk of morbidity and mortality. Clinically, FGR is diagnosed as a fetus falling below the 5(th centile of customised growth charts. Sildenafil citrate (SC, Viagra™, a potent and selective phosphodiesterase-5 inhibitor, corrects ex vivo placental vascular dysfunction in FGR, demonstrating potential as a therapy for this condition. However, many FGR cases present without an abnormal vascular phenotype, as assessed by Doppler measures of uterine/umbilical artery blood flow velocity. Thus, we hypothesized that SC would not increase fetal growth in a mouse model of FGR, the placental-specific Igf2 knockout mouse, which has altered placental exchange capacity but normal placental blood flow. Fetal weights were increased (by 8% in P0 mice following maternal SC treatment (0.4 mg/ml via drinking water. There was also a trend towards increased placental weight in treated P0 mice (P = 0.056. Additionally, 75% of the P0 fetal weights were below the 5(th centile, the criterion used to define human FGR, of the non-treated WT fetal weights; this was reduced to 51% when dams were treated with SC. Umbilical artery and vein blood flow velocity measures confirmed the lack of an abnormal vascular phenotype in the P0 mouse; and were unaffected by SC treatment. (14C-methylaminoisobutyric acid transfer (measured to assess effects on placental nutrient transporter activity per g placenta was unaffected by SC, versus untreated, though total transfer was increased, commensurate with the trend towards larger placentas in this group. These data suggest that SC may improve fetal growth even in the absence of an abnormal placental blood flow, potentially affording use in multiple sub-populations of individuals presenting with FGR.

  20. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  1. The vasculome of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Shuzhen Guo

    Full Text Available The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties - actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons, cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer's disease, Parkinson's disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly

  2. Volumetric MRI study of the intrauterine growth restriction fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. [Tel Aviv University, Sackler School of Medicine, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer (Israel)

    2017-05-15

    Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions - supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum - were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. (orig.)

  3. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes......The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...

  4. [Normal and pathological ultrasonography of the fetal brain].

    Science.gov (United States)

    Alvarez, H; Levi, S

    1984-01-01

    Advanced ultrasonic technology enabled the bidimensional imaging of fetal brain throughout pregnancy. The number of visible structures increases with gestational age. In order to certify the described items they were compared to similar anatomical sections available from brain specimens or an atlas of anatomy. Real-time as well as automatic compound scanning machines were used to obtain echographic images of fetal brain anatomy in utero. Many different scans were collected along three orthogonal directions: every 2 mm, with the automated compound scan and as close from each other as possible with the linear array real-time scanner. The material included 59 normal fetuses between the 15th and 40th week of gestation. Eight typical sections are made but the only structures identified are those being visible on every section obtained at the same level. Brain structures such as grey and white matter, nuclei, vessels and ventricles have different sonic properties. They are subsequently distinguishable on the ultrasonic image if the equipment is capable of detecting and showing such differences. Grey matter is more echogenic than white, choroid plexuses are very reflective as are vessel walls which also pulsate. Four horizontal sections are described in detail (Figs. 2-7). The coronal planes are demonstrated at three different levels (Figs. 8-12) and the sagittal plane is represented by Fig. 13. Thirty five structures were identified (Table 2). In the second section some brain and skull anomalies are briefly described. The principal signs of the abnormalities and possible encountered variations are listed such as cranial defects in anencephaly, acrania, encephalocele, iniencephaly; the anomaly of size and shape of head and ventricle, as in hydrocephaly and microcephaly, cystic-like- and solid-tumor lesions and Dandy Walker syndrome and hydranencephaly. Attention is drawn to possible artifacts and pitfalls in the differential diagnosis between similar looking pictures

  5. Interaction of caffeine and diets on fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Yazdani, M.

    1986-03-01

    Growing human fetuses were frequently exposed to caffeine (C). The object was to determine the C effects on growing fetal rats and how protein malnutrition can modify these potential effects. Timed pregnant rats were divided into 4 groups (G) on day 10 of gestation. G1 received a 20% protein diet (P) ad libitum: G2 was pair-fed with G1 with 20% P + C (2 mg/100 g BW): G3 received an 8% P ad libitum and G4 was pair-fed with G3 and a 6% P + C. At day 22, /sup 3/H-thymidine was injected into randomly selected dams to study DNA synthesis of brain. Fetuses from other dams were also removed to study DNA, RNA and protein contents of brain. Body weight of the 20% P + C was lower than the non-C, whereas no difference in weight was shown in 8% P between C and non-C, percent reduction was greater in 8% P than 20% P. Protein contents of C in both groups were greater than the non-C, but percent increase was less than non + C, but that of the 8% P + C was greater than non + C. It is concluded that C supplemented to the maternal diet during pregnancy produces differential effects on fetal brain depending on dietary protein content.

  6. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  7. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    OpenAIRE

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is know...

  8. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus.

    Science.gov (United States)

    Kim, Dong Won; Glendining, Kelly A; Grattan, David R; Jasoni, Christine L

    2016-10-01

    Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Effect of ethanol (EtOH) and dietary histidine (His) on fetal brain histamine (Hm)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, G.W.J.; Liying Jin (Rutgers-the State Univ., Piscataway, NJ (United States))

    1991-03-15

    The authors have previously shown that gestational EtOH consumption decreased free His in fetal tissues, including the brain. His is the precursor of Hm, a neurotransmitter, and since central nervous system (CNS) dysfunction is frequently observed in the offspring of alcoholic women, experiments were conducted to examine the effects of gestational EtOH consumption on fetal brain Hm. Pregnant Sprague-Dawley rats were fed 35% EtOH-calorie liquid diets with three levels of His from gestation day (GD) 7 to 21. Control rats (LHC, MHC and HHC) were pair-fed with isocaloric sucrose substituted for EtOH. ON GD-21, fetal and maternal tissue were analyzed for His and H. In all tissues examined (fetal brain, plasma and liver, and maternal plasma and liver), His was increased with the increase of dietary His. Hm was also increased in fetal brain and liver in 0.8% dietary His groups. EtOH feeding decreased His in all fetal tissues but increased Hm in fetal brain and liver. The values of fetal brain Hm were: 805 {plus minus} 89 vs 574 {plus minus}47 (LHE vs LHC), 690 {plus minus} 29 vs 446 {plus minus} 32 (MHE vs MHC) and 1,335 {plus minus} 165 vs 938 {plus minus} 72 (HHE vs HHC), an increase of 40-50% by EtOH. Alteration in fetal brain Hm may contribute to the CNS dysfunction.

  10. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  11. 褪黑素对脂多糖引起胎鼠脑细胞钙超载损伤的神经保护作用%The neuroprotective effect of melatonin on calcium overload-associated injury of fetal mouse brain cells after injection of lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    贾玉芳; 钱志红; 柴月荣; 崔玉

    2011-01-01

    目的 探讨褪黑素(MT)对脑损伤的保护作用.方法 72只妊娠第19天SD孕鼠随机均分为三组:A组,腹腔注射细菌脂多糖(LPS)500 μg/kg;B组,腹腔注射LPS 500μg/kg+MT 10 mg/kg;C组,腹腔注射等容积生理盐水.分别于给药后1、6、12、24、48、72 h剖腹取出胎鼠,急性分离脑组织,新型荧光探针Fluo-3/AM负载胎鼠脑细胞,流式细胞术检测胎鼠细胞内游离钙的平均荧光强度.结果 注药后,A、B组脑细胞钙离子荧光值于6 h开始明显上升,12 h达高峰,各观测时点的钙离子荧光值均明显高于C组(P<0.01).除72 h外,B组其他各观测时点的钙离子荧光值均明显低于A组(P<0.01或P<0.05).结论 LPS可诱导胎鼠脑细胞内钙离子超载,导致脑损伤.MT通过抑制细胞内钙超载对脑细胞损伤有保护作用.%Objective To investigate the neuroprotective effect of melatonin on calcium overload-associated injury of fetal mouse brain cells after injection of lipopolysaccharide (LPS).Methods A total of 72 SD rats with 19 days of pregnancy was equally randomized into three groups of A(treated with intraperitoneal injectio of LPS 500μg/kg), B(treated with intraperitoneal injection of LPS 500μg/kg plus MT 10 mg/kg ) and C(injected normal saline as blank control). The fetuses were taken out at the 1st ,6th, 12th ,24th ,48th ,or 72nd h after injection, respectively, for detecting the fluorescence intensity of intracellular calcium of fetal brain tissues by flow cytometry after novel fluorescent probe Fluo-3AM loading. Results Compared to before,the calcium fluorescence values of brain cells were significantly increased on th 6th h and peaked on th 12th h after drug injection (P<0. 01). The calcium fluorescence values of brain cells were all significantly higher in groups of A and B than thoae in group C at all time points after injection(P<0. 01),which were lower in group B than those in group A at all time points except for the 72nd h (P<0. 01 or P <0

  12. Three-dimensional sonographic measurement of normal fetal brain volume during the second half of pregnancy

    NARCIS (Netherlands)

    N.M. Roelfsema; W.C.J. Hop (Wim); S.M. Boito; J.W. Wladimiroff (Juriy)

    2004-01-01

    textabstractObjectives: This study was undertaken to develop a three-dimensional (3D) ultrasound method of measuring fetal brain volume. Study design: Serial 3D sonographic measurements of fetal brain volume were made in 68 normal singleton pregnancies at 18 to 34 weeks of gestation. A comparison

  13. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells.

    Science.gov (United States)

    Nayak, Pritha S; Wang, Yulian; Najrana, Tanbir; Priolo, Lauren M; Rios, Mayra; Shaw, Sunil K; Sanchez-Esteban, Juan

    2015-05-27

    Mechanical ventilation plays a central role in the injury of premature lungs. However, the mechanisms by which mechanical signals trigger an inflammatory cascade to promote lung injury are not well-characterized. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable mechanoreceptor channel has been shown to be a major determinant of ventilator-induced acute lung injury in adult models. However, the role of these channels as modulators of inflammation in immature lungs is unknown. In this study, we tested the hypothesis that TRPV4 channels are important mechanotransducers in fetal lung injury. Expression of TRPV4 in the mouse fetal lung was investigated by immunohistochemistry, Western blot and qRT-PCR. Isolated fetal epithelial cells were exposed to mechanical stimulation using the Flexcell Strain Unit and inflammation and differentiation were analyzed by ELISA and SP-C mRNA, respectively. TRPV4 is developmentally regulated in the fetal mouse lung; it is expressed in the lung epithelium and increases with advanced gestation. In contrast, in isolated epithelial cells, TRPV4 expression is maximal at E17-E18 of gestation. Mechanical stretch increases TRPV4 in isolated fetal epithelial cells only during the canalicular stage of lung development. Using the TRPV4 agonist GSK1016790A, the antagonist HC-067047, and the cytokine IL-6 as a marker of inflammation, we observed that TRPV4 regulates release of IL-6 via p38 and ERK pathways. Interestingly, stretch-induced differentiation of fetal epithelial cells was also modulated by TRPV4. These studies demonstrate that TRPV4 may play an important role in the transduction of mechanical signals in the fetal lung epithelium by modulating not only inflammation but also the differentiation of fetal epithelial cells.

  14. Opioid dependence and pregnancy: minimizing stress on the fetal brain.

    Science.gov (United States)

    McCarthy, John J; Leamon, Martin H; Finnegan, Loretta P; Fassbender, Catherine

    2017-03-01

    Increase in the number of opioid-dependent pregnant women delivering babies at risk for neonatal abstinence syndrome prompted a US Government Accountability Office report documenting deficits in research and provider knowledge about care of the maternal/fetal unit and the neonate. There are 3 general sources of dependence: untreated opioid use disorder, pain management, and medication-assisted treatment with methadone or buprenorphine. A survey of methadone patients' experiences when telling a physician of their pregnancy and opioid dependence demonstrated physician confusion about proper care, frequent negative interactions with the mother, and failures to provide appropriate referral. Patients in pain management were discharged without referral when the physician was told of the pregnancy. Methadone and buprenorphine were frequently seen negatively because they "caused" neonatal abstinence syndrome. Most mothers surveyed had to find opioid treatment on their own. How dependence is managed medically is a critical determinant of the level of stress on both mother and fetus, and therefore another determinant of neonatal health. The effects of both opioid withdrawal stress and maternal emotional stress on neonatal and developmental outcomes are reviewed. Currently, there have been efforts to criminalize maternal opioid dependence and to encourage or coerce pregnant women to undergo withdrawal. This practice poses both acute risks of fetal hypoxia and long-term risks of adverse epigenetic programming related to catecholamine and corticosteroid surges during withdrawal. Contemporary studies of the effects of withdrawal stress on the developing fetal brain are urgently needed to elucidate and quantify the risks of such practices. At birth, inconsistencies in the hospital management of neonates at risk for neonatal abstinence syndrome have been observed. Neglect of the critical role of maternal comforting in neonatal abstinence syndrome management is an iatrogenic and

  15. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    Science.gov (United States)

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Background Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is known concerning the regulation of fetal liver hematopoietic stem cells. In particular, the role of cytokines such as interleukin-1 in the regulation of hematopoietic stem cells in the embryo has been largely unexplored. Recently, we observed that the adult pro-inflammatory cytokine interleukin-1 is involved in regulating aorta-gonad-mesonephros hematopoietic progenitor and hematopoietic stem cell activity. Therefore, we set out to investigate whether interleukin-1 also plays a role in regulating fetal liver progenitor cells and hematopoietic stem cells. Design and Methods We examined the interleukin-1 ligand and receptor expression pattern in the fetal liver. The effects of interleukin-1 on hematopoietic progenitor cells and hematopoietic stem cells were studied by FACS and transplantation analyses of fetal liver explants, and in vivo effects on hematopoietic stem cell and progenitors were studied in Il1r1−/− embryos. Results We show that fetal liver hematopoietic progenitor cells express the IL-1RI and that interleukin-1 increases fetal liver hematopoiesis, progenitor cell activity and promotes hematopoietic cell survival. Moreover, we show that in Il1r1−/− embryos, hematopoietic stem cell activity is impaired and myeloid progenitor activity is increased. Conclusions The IL-1 ligand and receptor are expressed in the midgestation liver and act in the physiological regulation of fetal liver hematopoietic progenitor cells and hematopoietic stem cells. PMID

  16. Early- versus Late-Onset Fetal Growth Restriction Differentially Affects the Development of the Fetal Sheep Brain.

    Science.gov (United States)

    Alves de Alencar Rocha, Anna Karynna; Allison, Beth J; Yawno, Tamara; Polglase, Graeme R; Sutherland, Amy E; Malhotra, Atul; Jenkin, Graham; Castillo-Melendez, Margie; Miller, Suzanne L

    2017-01-01

    Fetal growth restriction (FGR) is a common complication of pregnancy, principally caused by suboptimal placental function, and is associated with high rates of perinatal mortality and morbidity. Clinical studies suggest that the time of onset of placental insufficiency is an important contributor towards the neurodevelopmental impairments that are evident in children who had FGR. It is however currently unknown how early-onset and late-onset FGR differentially affect brain development. The aim of this study was to examine neuropathology in early-onset and late-onset FGR fetal sheep and to determine whether they differentially alter brain development. We induced placental insufficiency and FGR via single umbilical artery ligation at either 88 days (early-onset) or 105 days (late-onset) of fetal sheep gestation (term is approx. 147 days), reflecting a period of rapid white matter brain development. Fetal blood samples were collected for the first 10 days after surgery, and all fetuses were sacrificed at 125 days' gestation for brain collection and subsequent histopathology. Our results show that early-onset FGR fetuses became progressively hypoxic over the first 10 days after onset of placental insufficiency, whereas late-onset FGR fetuses were significantly hypoxic compared to controls from day 1 after onset of placental insufficiency (SaO2 46.7 ± 7.4 vs. 65.7 ± 3.9%, respectively, p = 0.03). Compared to control brains, early-onset FGR brains showed widespread white matter injury, with a reduction in both CNPase-positive and MBP-positive density of staining in the periventricular white matter (PVWM), subcortical white matter, intragyral white matter (IGWM), subventricular zone (SVZ), and external capsule (p development that principally mediates altered brain development associated with FGR. © 2017 S. Karger AG, Basel.

  17. Is fetal brain monoamine oxidase inhibition the missing link between maternal smoking and conduct disorders?

    Science.gov (United States)

    Baler, Ruben D; Volkow, Nora D; Fowler, Joanna S; Benveniste, Helene

    2008-05-01

    Smoking is the leading cause of preventable illness in the world today. Prenatal cigarette smoke exposure (PCSE) is a particularly insidious form because so many of its associated health effects befall the unborn child and produce behavioural outcomes that manifest themselves only years later. Among these are the associations between PCSE and conduct disorders, which have been mostly ascribed to the deleterious effects of nicotine on the fetal brain. Here we hypothesize that inhibition of brain monoamine oxidase (MAO) during fetal brain development, secondary to maternal cigarette smoking and in addition to nicotine, is a likely contributor to this association. MAOs play a central role in monoaminergic balance in the brain, and their inhibition during fetal development - but not during adult life - is known to result in an aggressive phenotype in laboratory animals. This paper provides theoretical and experimental support for the notion that cigarette smoke-induced inhibition of MAO in the fetal brain, particularly when it occurs in combination with polymorphisms in the MAOA gene that lead to lower enzyme concentration in the brain, may result in brain morphologic and functional changes that enhance the risk of irritability, poor self-control and aggression in the offspring. It also encourages research to evaluate whether the interaction of smoking exposure during fetal development and MAOA genotype increases the risk for conduct disorder over that incurred by mere fetal exposure to tobacco smoke.

  18. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols

    Science.gov (United States)

    Tint, G. S.; Yu, Hongwei; Shang, Quan; Xu, Guorong; Patel, Shailendra B.

    2006-01-01

    Mice with a targeted mutation of 3β-hydroxysterol Δ7-reductase (Dhcr7) that cannot convert 7-dehydrocholesterol to cholesterol were used to identify the origin of fetal sterols. Because their heterozygous mothers synthesize cholesterol normally, virtually all sterols found in a Dhcr7 knockout fetus having a Δ7 or a Δ8 double bond must have been synthesized by the fetus itself but any cholesterol had to have come from the mother. Early in gestation, most fetal sterols were of maternal origin, but at approximately E13–14, in situ synthesis became increasingly important, and by birth, 55–60% of liver and lung sterols had been made by the fetus. In contrast, at E10–11, upon formation of the blood-brain barrier, the brain rapidly became the source of almost all of its own sterols (90% at birth). New, rapid, de novo sterol synthesis in brain was confirmed by the observation that concentrations of C24,25-unsaturated sterols were low in the brains of all very young fetuses but increased rapidly beginning at approximately E11–12. Reduced activity of sterol C24,25-reductase (Dhcr24) in brain, suggested by the abundance of C24,25-unsaturated compounds, seems to be the result of suppressed Dhcr24 expression. The early fetal brain also appears to conserve cholesterol by keeping cholesterol 24-hydroxylase expression low until approximately E18. PMID:16651660

  19. Rosiglitazone induces mitochondrial biogenesis in mouse brain.

    Science.gov (United States)

    Strum, Jay C; Shehee, Ron; Virley, David; Richardson, Jill; Mattie, Michael; Selley, Paula; Ghosh, Sujoy; Nock, Christina; Saunders, Ann; Roses, Allen

    2007-03-01

    Rosiglitazone was found to simulate mitochondrial biogenesis in mouse brain in an apolipoprotein (Apo) E isozyme-independent manner. Rosiglitazone induced both mitochondrial DNA (mtDNA) and estrogen-stimulated related receptor alpha (ESRRA) mRNA, a key regulator of mitochondrial biogenesis. Transcriptomics and proteomics analysis suggested the mitochondria produced in the presence of human ApoE3 and E4 were not as metabolically efficient as those in the wild type or ApoE knockout mice. Thus, we propose that PPARgamma agonism induces neuronal mitochondrial biogenesis and improves glucose utilization leading to improved cellular function and provides mechanistic support for the improvement in cognition observed in treatment of Alzheimer's patients with rosiglitazone.

  20. Treatment with neuropeptides attenuates c-fos expression in a mouse model of fetal alcohol syndrome.

    Science.gov (United States)

    Incerti, Maddalena; Vink, Joy; Roberson, Robin; Abebe, Daniel; Spong, Catherine Y

    2010-10-01

    Fetal alcohol syndrome (FAS) is the most common nongenetic cause of mental retardation and is characterized by neurodevelopmental anomalies. C-FOS is a cellular marker of transcriptional activity in the stress-signal pathway. Previously, we showed the treatment with NAP (NAPVSIPQ) + SAL (SALLRSIPA) reversed the learning deficit after prenatal alcohol exposure in FAS. Our objective was to evaluate if the mechanism of actions of NAP + SAL involves the stress-signal pathway differentiating C-FOS expression in mouse brains after prenatal alcohol exposure. C57Bl6/J mice were treated with alcohol (0.03 mL/g) or placebo on gestational day 8. On postnatal day 40, in utero alcohol-exposed males were treated via gavage with 40 μg D-NAP and 40 μg D-SAL ( N = 6) or placebo ( N = 4); controls were gavaged with placebo daily ( N = 12). After learning evaluation, hippocampus, cerebellum, and cortex were isolated. Calibrator-normalized relative real-time polymerase chain reaction and Western blot analysis were performed. Statistics included analysis of variance and post hoc Fisher analysis. Adult treatment with NAP + SAL restored the down-regulation of C-FOS in the hippocampus after prenatal alcohol exposure ( P < 0.05), but not in the cerebellum. There was no difference in C-FOS expression in the cortex. Adult treatment with NAP + SAL restored the down-regulation of C-FOS expression in hippocampus attenuating the alcohol-induced alteration of the stress-signal pathway.

  1. Fetal guinea pig brain 15-hydroxyprostaglandin dehydrogenase: Ontogeny and effect of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Treissman, D.; Brien, J.F. (Department of Pharmacology and Toxicology, Faculty of Medicine, Queen' s University, Kingston, Ontario (Canada))

    1991-03-01

    The objectives of this study were to determine the ontogeny of 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) activity in the brain of the fetal guinea pig and to test the hypothesis that acute in vitro ethanol exposure produces concentration-dependent inhibition of fetal brain 15-OH-PGDH activity. Enzyme activity was determined in vitro by measuring the rate of oxidation of PGE2 to 15-keto-PGE2 using an optimized radiometric procedure. The study was conducted utilizing the whole brain of the fetal guinea pig at mean gestational ages of 34, 43 and 62 days (term, about 66 days) and the brain stem (pons and medulla) of the fetal guinea pig at mean gestational ages of 43 and 62 days. The direct effect of acute in vitro exposure to ethanol was assessed by incubating 15-OH-PGDH with ethanol in the concentration range of 10 to 80 mM. 15-OH-PGDH was measurable in the whole brain and brain stem, and the enzyme activity was similar for the gestational ages examined. There was no significant ethanol-induced inhibition of 15-OH-PGDH activity in the whole brain or brain stem. The data demonstrate that the whole brain and brain stem of the fetal guinea pig have the capacity to metabolize PGE2 to 15-keto-PGE2, an inactive metabolite, during the second half of gestation. The data apparently are not consistent with the hypothesis that acute in vitro exposure to ethanol directly inhibits 15-OH-PGDH activity in fetal brain.

  2. Development of the blood-brain barrier within the paraventricular nucleus of the hypothalamus: influence of fetal glucocorticoid excess.

    Science.gov (United States)

    Frahm, Krystle A; Tobet, Stuart A

    2015-07-01

    The blood-brain barrier (BBB) is a critical contributor to brain function. To understand its development and potential function in different brain regions, the postnatal (P) BBB was investigated in the mouse cortex (CTX), lateral hypothalamus, and paraventricular nucleus of the hypothalamus (PVN). Brains were examined on postnatal days (P)12, P22 and P52 for BBB competency and for pericytes as key cellular components of the BBB demarcated by immunoreactive desmin. Glucocorticoid influences (excess dexamethasone; dex) during prenatal development were also assessed for their impact on the blood vessels within these regions postnatally. At P12, there was significantly more extravascular leakage of a low molecular weight dye (fluorescein isothiocyanate) in the CTX than within hypothalamic regions. For pericytes, there were low levels of desmin immunoreactivity at P12 that increased with age for all regions. There was more desmin immunoreactivity present in the PVN at each age examined. Fetal dex exposure resulted in decreased blood vessel density within the PVN at P20. In the CTX, dex exposure increased BBB competency, in contrast to the PVN where there was a decrease in BBB competency and increased pericyte presence. Overall, unique alterations in the functioning of the BBB within the PVN may provide a novel mechanism for fetal antecedent programming that may influence adult disorders.

  3. The effects of betamethasone on allopregnanolone concentrations and brain development in preterm fetal sheep.

    Science.gov (United States)

    Yawno, Tamara; Mortale, Monique; Sutherland, Amy E; Jenkin, Graham; Wallace, Euan M; Walker, David W; Miller, Suzanne L

    2014-10-01

    The risk of preterm delivery often means that the fetus will be exposed to exogenous synthetic glucocorticoids to accelerate fetal lung maturation, but effects on other organs, particularly the brain, are not understood. The neurosteroid allopregnanolone (AP) is a GABAA receptor agonist that influences fetal brain development and has neuroprotective properties. In this study we determined the impact of maternal glucocorticoid (betamethasone) administration on brain development and AP synthesis in preterm fetal sheep. Pregnant ewes underwent surgery at 105 days gestation for implantation of fetal catheters. Ewes received either betamethasone (BM; 11.4 mg; n=10) or vehicle (saline; n=5) by i.m injection on days five (BM1) and six (BM2) following surgery. Five fetuses of the BM treated ewes received an infusion of alfaxalone (20 mg) over 48 h commencing 30 min prior to BM1. All animals were euthanased on day 7, and the fetal brains collected to determine AP concentrations and histopathology. BM significantly reduced AP levels in the fetal brain and placental cotyledons, and also in fetal plasma without altering progesterone concentrations. There was a significant decrease in the number of myelinating cells in subcortical white matter, but no change to total oligodendrocyte number. Co-administration of the AP analogue analog alfaxalone with BM prevented this change in MBP expression. BM, given at a dose clinically prescribed to accelerate lung maturation, adversely affects neurosteroid levels in the preterm fetal brain, and affects the maturational profile of white matter development; these effects were mitigated by the co-administration of alfaxolone.

  4. RSPO1/beta-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    NARCIS (Netherlands)

    Chassot, A.A.; Gregoire, E.P.; Lavery, R.; Taketo, M.M.; de Rooij, D.G.; Adams, I.R.; Chaboissier, M.C.

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog

  5. Construction of human and mouse brain cDNA libraries and isolation of full-length cDNAs

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    cDNA libraries from aborted human 3-month fetal brain,adult rat and mouse brain were constructed by using a yZAP express cDNA library construction kin.Low molecular weight fragments of the second strand cDNASA were removed by flowing through the Sepharose CL-4B column and the frractionated long,Middle,Short fragments and the combined fragments weire respectively inserted into clone vectors to construct the cDNA libraries of the brain of human 3-month fetus.The 5'ends of 1200 clones from each of human fetal brain cDNA libraries were sequenced.A total of 894 ESTs were obtained and some full-length clones were squenced.By andalyaing the se-quences,12 novel full-length cDNAs were obtained.

  6. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep

    NARCIS (Netherlands)

    E. Kuypers (Elke); R.K. Jellema (Reint); D.R.M.G. Ophelders (Daan); J. Dudink (Jeroen); M. Nikiforou (Maria); T.G.A.M. Wolfs (Tim); I. Nitsos (Ilias); J.J. Pillow (Jane); G.R. Polglase (Graeme); M.W. Kemp (Matthew); M. Saito (Masatoshi); J.P. Newnham (John); A.H. Jobe (Alan); S.G. Kallapur (Suhas); B.W. Kramer (Boris)

    2013-01-01

    textabstractRationale: Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are

  7. Adapting Parcellation Schemes to Study Fetal Brain Connectivity in Serial Imaging Studies

    DEFF Research Database (Denmark)

    Cheng, Xi; Wilm, Jakob; Seshamani, Sharmishtaa

    2013-01-01

    of the developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results......A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies...

  8. Distribution of cytoglobin in the mouse brain

    Directory of Open Access Journals (Sweden)

    Stefan eReuss

    2016-04-01

    Full Text Available Cytoglobin (Cygb is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex, in the olfactory bulb (in particular periglomerular cells, in the hippocampal formation (strongly stained pyramidal cells with long processes, basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum, and in the amygdala (neurons with unlabeled processes were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei, epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus. The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide-synthase in neurons, which supports a functional association.

  9. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  10. Echocardiographic Assessment of Embryonic and Fetal Mouse Heart Development: A Focus on Haemodynamics and Morphology

    Directory of Open Access Journals (Sweden)

    Nathan D. Hahurij

    2014-01-01

    Full Text Available Background. Heart development is a complex process, and abnormal development may result in congenital heart disease (CHD. Currently, studies on animal models mainly focus on cardiac morphology and the availability of hemodynamic data, especially of the right heart half, is limited. Here we aimed to assess the morphological and hemodynamic parameters of normal developing mouse embryos/fetuses by using a high-frequency ultrasound system. Methods. A timed breeding program was initiated with a WT mouse line (Swiss/129Sv background. All recordings were performed transabdominally, in isoflurane sedated pregnant mice, in hearts of sequential developmental stages: 12.5, 14.5, and 17.5 days after conception (n=105. Results. Along development the heart rate increased significantly from 125 ± 9.5 to 219 ± 8.3 beats per minute. Reliable flow measurements could be performed across the developing mitral and tricuspid valves and outflow tract. M-mode measurements could be obtained of all cardiac compartments. An overall increase of cardiac systolic and diastolic function with embryonic/fetal development was observed. Conclusion. High-frequency echocardiography is a promising and useful imaging modality for structural and hemodynamic analysis of embryonic/fetal mouse hearts.

  11. THE FETAL ORIGINS OF MEMORY: THE ROLE OF DIETARY CHOLINE IN OPTIMAL BRAIN DEVELOPMENT

    OpenAIRE

    Steven H Zeisel

    2006-01-01

    Fetal nutrition sets the stage for organ function in later life. In this review we discuss the fetal and neonatal origins of brain function. Numerous research observations point to the importance of choline for the developing fetus and neonate. This essential nutrient is involved in 1-carbon metabolism and is the precursor for many important compounds, including phospholipids, acetylcholine, and the methyl donor betaine. Dietary intake of choline by the pregnant mother and later by the infant...

  12. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  13. Infection-related perinatal brain injury: the pathogenic role of impaired fetal cardiovascular control.

    Science.gov (United States)

    Garnier, Yves; Coumans, Audrey B C; Jensen, Arne; Hasaart, Tom H M; Berger, Richard

    2003-12-01

    There is a growing body of evidence from clinical and epidemiologic studies that in utero exposure to infection plays an important role in the genesis of fetal or neonatal injury leading to cerebral palsy and chronic lung disease. Thus, after chorioamnionitis the incidence of immature neonates with periventricular white matter damage and periventricular or intraventricular hemorrhage is significantly elevated. Recent clinical and experimental data support the hypothesis that a fetal inflammatory response links antenatal infection with brain white matter damage and subsequent motor handicap. A variety of studies support the view that cytokines released during intrauterine infection directly cause injury to the immature brain. In this review, we provide evidence that in utero exposure to bacterial infection can severely alter fetal cardiovascular function, resulting in dysregulation of cerebral blood flow and subsequent hypoxic-ischemic brain injury.

  14. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  15. Localisation of the brain in fetal MRI using bundled SIFT features.

    Science.gov (United States)

    Keraudren, Kevin; Kyriakopoulou, Vanessa; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel

    2013-01-01

    Fetal MRI is a rapidly emerging diagnostic imaging tool. Its main focus is currently on brain imaging, but there is a huge potential for whole body studies. We propose a method for accurate and robust localisation of the fetal brain in MRI when the image data is acquired as a stack of 2D slices misaligned due to fetal motion. We first detect possible brain locations in 2D images with a Bag-of-Words model using SIFT features aggregated within Maximally Stable Extremal Regions (called bundled SIFT), followed by a robust fitting of an axis-aligned 3D box to the selected regions. We rely on prior knowledge of the fetal brain development to define size and shape constraints. In a cross-validation experiment, we obtained a median error distance of 5.7mm from the ground truth and no missed detection on a database of 59 fetuses. This 2D approach thus allows a robust detection even in the presence of substantial fetal motion.

  16. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  17. Identification of Lgr5-Independent Spheroid-Generating Progenitors of the Mouse Fetal Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Roxana C. Mustata

    2013-10-01

    Full Text Available Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.

  18. Fetal Magnetoencephalography--Achievements and Challenges in the Study of Prenatal and Early Postnatal Brain Responses: A Review

    Science.gov (United States)

    Sheridan, Carolin J.; Matuz, Tamara; Draganova, Rossitza; Eswaran, Hari; Preissl, Hubert

    2010-01-01

    Fetal magnetoencephalography (fMEG) is the only non-invasive method for investigating evoked brain responses and spontaneous brain activity generated by the fetus "in utero". Fetal auditory as well as visual-evoked fields have been successfully recorded in basic stimulus-response studies. Moreover, paradigms investigating precursors for cognitive…

  19. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2.

    Science.gov (United States)

    Ji, Peng; Jayapal, Senthil Raja; Lodish, Harvey F

    2008-03-01

    Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.

  20. Follicles were reconstituted from dissociated mouse fetal ovarian cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Early folliculogenesis involved in the interaction of germ cellsand somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in the functional units of follicles. Thus there will be great significance in basal research and practices to evaluate the possibility of ovarian cells to reconstitute into follicles in vitro. In the present research, 12—16 dpc (days post coitum) mouse fetal ovarian cells were respectively isolated using collagenase digestion and cultured in droplets in vitro. The results revealed that the fetal ovarian cells of 12—16 dpc appeared to form multiple cell aggregates and tissue-like pieces in vitro. However, 12—13 dpc ovarian cells failed to form the follicles. 14—15 dpc ovarian cells were competent to form a few follicle-like complexes. Furthermore many small typical follicles were reconstituted from 16 dpc ovarian cells in vitro. The results showed for the first time that mouse embryonic ovarian cells were able to form the follicles in vitro. It was a gradual progression for the female germ cells to achieve the ability to induce somatic cells differentiation and reconstitution into follicles, which may directly lead to the success in reorganization and transplantation of genetically modified ovary in vitro.

  1. Effect of Zinc on Bone Metabolism in Fetal Mouse Limb Culture

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To determine the effects of zinc-deficiency and zinc-excess on bone metabolism. Methods We developed the culture model of fetal mouse limbs (16th day) cultivated in self-made rotator with continuing flow of mixed gas for six days in vitro. The cultured limbs were examined by the techniques of 45Ca tracer and X-roentgenography. Results The right limbs cultivated had longer bone length, higher bone density than the left limbs uncultivated from the same embryo; and histologically, the right limbs had active bone cell differentiation, proliferation, increased bone trabecula, clearly calcified cartilage matrix, and osteogenic tissue. Compared with the control group,the zinc-deficient group and zinc-excess (Zn2+120 μmol/L) group contained less osteocalcin (BGP) and 45Ca content, and lower AKP activity; whereas zinc-normal (Zn2+45 μmol/L and Zn2+70 μmol/L)groups contained more BGP and 45Ca contents, and higher AKP (alkaline phosphatase) activity.Conclusion Both zinc-deficiency and zinc-excess can alter bone growth and normal metabolism.The results indicate that the culture model of fetal mouse limbs (16th day) in vitro can be used as a research model of bone growth and development.

  2. Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue.

    Science.gov (United States)

    Li, Fang; Teng, Hui-Yun; Liu, Jing; Wang, Hua-Wei; Zeng, Li; Zhao, Li-Fang

    2014-09-01

    This study aimed to determine the influence of antenatal taurine supplementation on taurine content in the brains of fetal rats with intrauterine growth restriction (IUGR). Experiments were performed at the Central Laboratory of Bayi Children's Hospital Affiliated to Beijing Military General Hospital in China from January to June 2013. Fifteen pregnant rats were randomly divided into three groups: normal controls, an IUGR group and an IUGR + antenatal taurine supplement group (Taurine group) (n = 5). The IUGR model was induced using a low-protein diet throughout gestation. Rats in the taurine group were fed a diet supplemented with 300 mg/kg/day taurine for 12 days after conception until natural delivery. Two fetal rats were randomly selected in every litter, and taurine levels in the brains of rats were detected using high-performance liquid chromatography-mass spectrometry. Results showed that (1) the mean body weight of the fetal rats in the normal control, IUGR and IUGR + antenatal taurine supplement groups was 6.619 ± 0.4132, 4.509 ± 0.454, and 5.176 ± 0.436 g (F = 429.818, P taurine levels in the brains of the fetal rats in the normal control, IUGR and taurine groups were (2.399 ± 0.134) × 10(5), (1.881 ± 0.166) × 10(5) and (2.170 ± 0.191) × 10(5) μg/g (F = 24.828, P taurine levels in IUGR fetal rat brains were lower than in the control animals, and that antenatal taurine supplementation could significantly increase taurine levels in the brains of fetal rats with IUGR.

  3. Decreased glucose transporter 1 gene expression and glucose uptake in fetal brain exposed to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pullen, G.L.; Srivenugopal, K.S.; Yuan Xiaohua; Snyder, A.K. (Veterans Affairs Medical Center, North Chicago, IL (United States) Chicago Medical School, North Chicago, IL (United States))

    1992-01-01

    Using pregnant rats fed equicaloric liquid diets (AF, ad libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), the authors have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, they have examined (I) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (II) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight and a 54.8% reduction in 2-DG uptake into brain cells were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake. Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. They conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion.

  4. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, J; Liu, L; Chen, H

    2011-05-05

    Changes in brain ultrastructure of fetal rats with intrauterine growth restriction (IUGR) were explored and the effects of antenatal taurine supplementation on their brain ultrastructure were determined. Fifteen pregnant rats were randomly divided into three groups: control group, IUGR model group and IUGR group given antenatal taurine supplements. Taurine was added to the diet of the taurine group at a dose of 300 mg/kg/d from 12 days after conception until natural delivery. Transmission electron microscopy was used to observe ultrastructural changes in the brains of the newborn rats. At the same time, brain cellular apoptosis was detected using TUNEL, and the changes in protein expression of neuron specific enolase and glial fibrillary acidic protein were analyzed using immunohistochemistry. The results showed that: 1) The average body weight and cerebral weight were significantly lower in the IUGR group than in the control group (ptaurine was supplemented (ptaurine supplementation. 3) The results of TUNEL showed that the counts of apoptotic brain cells in IUGR groups were significantly increased from those in control groups and that taurine could significantly decrease brain cell apoptosis (ptaurine-supplementation could significantly increase the counts of neuron specific enolase and glial fibrillary acidic protein immunoreactive cells in fetal rats with IUGR (ptaurine can significantly improve the IUGR fetal brain development.

  5. Protective effects of arginine on fetal brain under maternal immobilization stress

    Directory of Open Access Journals (Sweden)

    E Enanat

    2015-10-01

    Full Text Available Background & aim: Arginine by regulating the biological activity of the brain plays an important role in reducing stress. Today's, stress is one of the century disease that created many problem.  This study conducted to determine the protective effect of arginine on nitric oxide levels in maternal fetal brain tissue under stress. Methods: Twenty pregnant Wistar rats (200-250 gr were randomly divided into four groups. With and without stress groups received arginine (200 mg/kg intraperitoneal from 5 – 20 days of pregnancies. Control with and sham without stress received 2 ml of normal saline. The pregnant rats were anesthetized by ketamine (100 mg/kg on the day 20 then the fetuses removed and weighed. Twenty five brain of fetal brain rat from each group were chosen for measuring of forebrain thickness and brain volume. Another 25 brain were chosen for measuring of nitric oxide. Data were analyzed by one way ANOVA. Results: Nitric oxide Levels reduced in stress rats treated with arginine compared to control group (P<0.05. The mean thickness of forebrain and hippicampal formation decreased in stress rats versus unstressed, but was not significant. The mean weight decreased significantly in stress group compared to the unstressed group (P<0.05. Conclusions: Arginine could protect the brain tissue and fetal weight by reducing the level of oxidative stress in the pregnant rats.

  6. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    NARCIS (Netherlands)

    K.G. Akers (Katherine); S.A. Kushner (Steven); A.T. Leslie (Ana); L. Clarke (Laura); D. van der Kooy (Derek); J.P. Lerch (Jason); P.W. Frankland (Paul)

    2011-01-01

    textabstractBackground: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific

  7. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    NARCIS (Netherlands)

    K.G. Akers (Katherine); S.A. Kushner (Steven); A.T. Leslie (Ana); L. Clarke (Laura); D. van der Kooy (Derek); J.P. Lerch (Jason); P.W. Frankland (Paul)

    2011-01-01

    textabstractBackground: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavior

  8. General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Tomoharu Tanaka

    Full Text Available BACKGROUND: Erythropoietin (EPO, originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS. EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10-1.0%. Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.

  9. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    Energy Technology Data Exchange (ETDEWEB)

    Muczynski, V. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); Cravedi, J.P. [INRA, INP, Université de Toulouse, UMR1331 TOXALIM, F-31027, Toulouse (France); Lehraiki, A.; Levacher, C.; Moison, D.; Lecureuil, C.; Messiaen, S. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); Perdu, E. [INRA, INP, Université de Toulouse, UMR1331 TOXALIM, F-31027, Toulouse (France); Frydman, R. [Service de Gynécologie-Obstétrique, Hôpital A. Béclère, Université Paris Sud F-92141 Clamart (France); Habert, R. [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, BP 6, 92265 Fontenay-aux-Roses (France); CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses (France); INSERM, Unité 967, F-92265, Fontenay aux Roses (France); and others

    2012-05-15

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation and cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.

  10. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  11. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Directory of Open Access Journals (Sweden)

    Seyfried Thomas N

    2005-08-01

    Full Text Available Abstract Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.

  12. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  13. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome

    DEFF Research Database (Denmark)

    Larsen, K.B.; Laursen, H.; Graem, N.

    2008-01-01

    Mental retardation is seen in all individuals with Down syndrome (DS) and different brain abnormalities are reported. The aim of this study was to investigate if mental retardation at least in part is a result of a lower cell number in the neocortical part of the human fetal forebrain. We therefore...

  14. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Chen [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Sheba Medical Center, Diagnostic Imaging, 52621, Tel Hashomer (Israel); Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad [Tel Aviv University, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Yaniv, Gal; Bergman, Dafi [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2014-07-15

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  15. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency.

    Science.gov (United States)

    Fahrion, Jennifer K; Komuro, Yutaro; Li, Ying; Ohno, Nobuhiko; Littner, Yoav; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-03-27

    In the brains of patients with fetal Minamata disease (FMD), which is caused by exposure to methylmercury (MeHg) during development, many neurons are hypoplastic, ectopic, and disoriented, indicating disrupted migration, maturation, and growth. MeHg affects a myriad of signaling molecules, but little is known about which signals are primary targets for MeHg-induced deficits in neuronal development. In this study, using a mouse model of FMD, we examined how MeHg affects the migration of cerebellar granule cells during early postnatal development. The cerebellum is one of the most susceptible brain regions to MeHg exposure, and profound loss of cerebellar granule cells is detected in the brains of patients with FMD. We show that MeHg inhibits granule cell migration by reducing the frequency of somal Ca(2+) spikes through alterations in Ca(2+), cAMP, and insulin-like growth factor 1 (IGF1) signaling. First, MeHg slows the speed of granule cell migration in a dose-dependent manner, independent of the mode of migration. Second, MeHg reduces the frequency of spontaneous Ca(2+) spikes in granule cell somata in a dose-dependent manner. Third, a unique in vivo live-imaging system for cell migration reveals that reducing the inhibitory effects of MeHg on somal Ca(2+) spike frequency by stimulating internal Ca(2+) release and Ca(2+) influxes, inhibiting cAMP activity, or activating IGF1 receptors ameliorates the inhibitory effects of MeHg on granule cell migration. These results suggest that alteration of Ca(2+) spike frequency and Ca(2+), cAMP, and IGF1 signaling could be potential therapeutic targets for infants with MeHg intoxication.

  16. Combined effects of caffeine and zinc in the maternal diet on fetal brains

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Gottschalk, S.B.; Yazdani, M.; Joseph, F. Jr. (Louisiana State Univ., New Orleans (United States))

    1991-03-15

    The authors have reported that caffeine (C) intake during the lactational period by dams decreases the Zn content of the brain in their offspring. The objective of the present study is to determine how C plus Zn supplementation to the maternal diet during gestation affects the fetal brains. Timed-pregnant rats at day 3 of gestation were randomly divided into 4 groups (G). G1 was fed a 20% protein diet as a control, G2 was fed a diet supplemented with Zn, G3 was fed a diet with C and G4 was fed a diet with C and Zn. At day 22 of gestation, fetuses were taken out surgically. Fetal brains were removed. Their weights, DNA, Zn, protein, cholesterol, caffeine concentration, and alkaline phosphatase activity were determined. Body and brain weights and cholesterol contents in G4 were greater than in G1, whereas Zn concentration and alkaline phosphatase activity were less. Zn concentration and Zn/DNA in G2 were greater than in G1. Cholesterol content in G4 was higher than in G3. Although mean caffeine concentration in brain and plasma in G4 was greater than in G3, there was no statistical significance between the G due to the wide fluctuation among the pups. It is concluded that supplementation of C and Zn in the maternal diet during gestation could influence fetal brain composition differently than C supplementation alone. Supplementation of Zn alone showed minor effects.

  17. T2 and T2* measurements of fetal brain oxygenation during hypoxia with MRI at 3T: correlation with fetal arterial blood oxygen saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike; Adam, Gerhard [Universitaetsklinikum Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Kooijman, Hendrik [Philips Medical Systems, Best (Netherlands); Andreas, Thomas; Beindorff, Nicola; Hecher, Kurt [University Hospital Hamburg-Eppendorf, Department of Obstetrics and Prenatal Medicine, Hamburg (Germany)

    2010-01-15

    The purpose of this prospective study was to determine the oxygen saturation of blood in the fetal brain based on T2 and T2* measurements in a fetal sheep model. Five sheep fetuses were investigated during normoxia and hypoxia by 3T MRI. Multi-echo gradient-echo and turbo-spin-echo sequences were performed on the fetal brain. MR-determined oxygen saturation (MR-sO{sub 2}) of blood in the fetal brain was calculated based on T2 and T2* values. Fetal arterial blood oxygen saturation (blood-sO{sub 2}) was measured during the two experimental phases. The slope of MR-sO{sub 2} as a function of blood-sO{sub 2} was estimated and tested for compatibility using the one-sample t-test. During normoxia, mean values for carotid blood oxygen saturation were 67%, 83 ms for T2*, 202 ms for T2 and 96% for MR-sO{sub 2}. During hypoxia, arterial blood oxygen saturation, T2* and calculated MR-sO{sub 2} decreased to 22%, 64 ms, and 68% respectively. The one-sample t-test revealed the slope to be significantly different from 0(T=5.023, df=4, P=0.007). It is feasible to perform quantitative T2 and T2* measurements in the fetal brain. MR-sO{sub 2} and fetal arterial blood oxygen saturation correlated significantly. However, based on these data a reliable quantification of fetal brain tissue oxygenation is not possible. (orig.)

  18. Electrochemical Detection of Alkaline Phosphatase in BALB/c Mouse Fetal Liver Stromal Cells with Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xue Mei SUN; Dong LI; Zeng Liang BAI; Wen Rui JIN

    2004-01-01

    A method for determination of alkaline phosphatase (ALP) in BALB/c mouse fetal liver stromal cells has been described based on the catalytic reaction. After the cell extract is incubated with the substrate disodium phenyl phosphate, the reaction product phenol generated by ALP is determined by capillary electrophoresis with electrochemical detection.

  19. Metabolomics Reveals Metabolic Alterations by Intrauterine Growth Restriction in the Fetal Rabbit Brain

    Science.gov (United States)

    van Vliet, Erwin; Eixarch, Elisenda; Illa, Miriam; Arbat-Plana, Ariadna; González-Tendero, Anna; Hogberg, Helena T.; Zhao, Liang; Hartung, Thomas; Gratacos, Eduard

    2013-01-01

    Background Intrauterine Growth Restriction (IUGR) due to placental insufficiency occurs in 5–10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. Methodology/Principal Findings At gestation day 25, IUGR was induced in two New Zealand rabbits by 40–50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. Conclusions IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino acid levels, fatty

  20. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain.

    Directory of Open Access Journals (Sweden)

    Erwin van Vliet

    Full Text Available BACKGROUND: Intrauterine Growth Restriction (IUGR due to placental insufficiency occurs in 5-10% of pregnancies and is a major risk factor for abnormal neurodevelopment. The perinatal diagnosis of IUGR related abnormal neurodevelopment represents a major challenge in fetal medicine. The development of clinical biomarkers is considered a promising approach, but requires the identification of biochemical/molecular alterations by IUGR in the fetal brain. This targeted metabolomics study in a rabbit IUGR model aimed to obtain mechanistic insight into the effects of IUGR on the fetal brain and identify metabolite candidates for biomarker development. METHODOLOGY/PRINCIPAL FINDINGS: At gestation day 25, IUGR was induced in two New Zealand rabbits by 40-50% uteroplacental vessel ligation in one horn and the contralateral horn was used as control. At day 30, fetuses were delivered by Cesarian section, weighed and brains collected for metabolomics analysis. Results showed that IUGR fetuses had a significantly lower birth and brain weight compared to controls. Metabolomics analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS and database matching identified 78 metabolites. Comparison of metabolite intensities using a t-test demonstrated that 18 metabolites were significantly different between control and IUGR brain tissue, including neurotransmitters/peptides, amino acids, fatty acids, energy metabolism intermediates and oxidative stress metabolites. Principle component and hierarchical cluster analysis showed cluster formations that clearly separated control from IUGR brain tissue samples, revealing the potential to develop predictive biomarkers. Moreover birth weight and metabolite intensity correlations indicated that the extent of alterations was dependent on the severity of IUGR. CONCLUSIONS: IUGR leads to metabolic alterations in the fetal rabbit brain, involving neuronal viability, energy metabolism, amino

  1. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    Science.gov (United States)

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  2. Impact of Maternal Thyroperoxidase Status on Fetal Body and Brain Size

    Directory of Open Access Journals (Sweden)

    Roneé E. Wilson

    2014-01-01

    Full Text Available The obstetric consequences of abnormal thyroid function during pregnancy have been established. Less understood is the influence of maternal thyroid autoantibodies on infant outcomes. The objective of this study was to examine the influence of maternal thyroperoxidase (TPO status on fetal/infant brain and body growth. Six-hundred thirty-one (631 euthyroid pregnant women were recruited from prenatal clinics in Tampa Bay, Florida, and the surrounding area between November 2007 and December 2010. TPO status was determined during pregnancy and fetal/infant brain and body growth variables were assessed at delivery. Regression analysis revealed maternal that TPO positivity was significantly associated with smaller head circumference, reduced brain weight, and lower brain-to-body ratio among infants born to TPO+ white, non-Hispanic mothers only, distinguishing race/ethnicity as an effect modifier in the relationship. No significant differences were noted in body growth measurements among infants born to TPO positive mothers of any racial/ethnic group. Currently, TPO antibody status is not assessed as part of the standard prenatal care laboratory work-up, but findings from this study suggest that fetal brain growth may be impaired by TPO positivity among certain populations; therefore autoantibody screening among high-risk subgroups may be useful for clinicians to determine whether prenatal thyroid treatment is warranted.

  3. Hemimegalencephaly misdiagnosed as a congenital brain tumor by fetal cerebral ultrasonography.

    Science.gov (United States)

    Nishimaki, Shigeru; Endo, Masaya; Seki, Kazuo; Yokota, Shumpei

    2004-04-01

    To describe a case of hemimegalencephaly misdiagnosed prenatally. We presented a neonate with hemimegalencephaly, who was thought to have a congenital brain tumor by fetal cerebral ultrasonography. Postnatal MRI findings showed hemimegalencephaly characterized by mild enlargement of the affected hemisphere with a predominantly abnormal signal in the frontal lobe. The appearance of an echogenic round-shaped mass may have resulted from predominant hypermyelination and/or dysplastic neural/glial tissue in the frontal white matter. In prenatal diagnosis with fetal cerebral ultrasonography, it is difficult to distinguish between congenital brain tumor and hemimegalencephaly in which enlargement of the hemisphere is mild and the affected area of the brain is localized or predominantly in part of a cerebral hemisphere. Copyright 2004 John Wiley & Sons, Ltd.

  4. Sonographic evaluation of overall and regional vascularization of fetal brain: a preliminary methodological study

    Directory of Open Access Journals (Sweden)

    M. Oberto

    2011-01-01

    Full Text Available The aim of this preliminary study is to develop a methodology to evaluate the vascularization of fetal brain in normal and abnormal canditions by three-dimensional sonography associated to Power Doppler (3DPD, with application of Virtual Organ Computer-aided Analysis (VOCAL that allows to derive vascularization and flow indexes. In this connction, we propose a new method of standardization of the setting and the acquisition mode, choosing in different fetuses and at different gestational ages the same anatomical volumes, corresponding to five spherical regions of interest. In particular, tu study the overall vascularization of the fetal brain, we use a sphere with a diameter corresponding to the bi-parietal distance. To evaluate the regional vascularization, we identify four sampling spherical sites, two in each hemisphere. This standard technical approach according to correct morphological criteria allows to exclude from the analysis vascular territories external to the brain.

  5. Malformation of the fetal brain in thanatophoric dysplasia: US and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Fink, A.M. [The Royal Children' s Hospital, Department of Medical Imaging, Melbourne, Victoria (Australia); The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); The University of Melbourne, Department of Radiology, Melbourne, Victoria (Australia); Hingston, Tania; Sampson, Amanda [The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); Ng, Jessica [The Royal Children' s Hospital, Department of Anatomical Pathology, Melbourne, Victoria (Australia); The Royal Women' s Hospital, Department of Anatomical Pathology, Melbourne, Victoria (Australia); Palma-Dias, Ricardo [The Royal Women' s Hospital, Fetal Management Unit, Melbourne, Victoria (Australia); The University of Melbourne, Department of Obstetrics and Gynaecology, Melbourne (Australia)

    2010-12-15

    We present a case in which the unusual cerebral malformations of thanatophoric dysplasia (TD) were identified on a 21-week fetal US and confirmed by antenatal MRI, postmortem imaging and autopsy. TD is the most common lethal skeletal dysplasia and is characterized by short long bones, which are often bowed (type 1), a small thorax, and skull deformities. There is also a recognised constellation of abnormalities of the brain primarily affecting the temporal lobes that, although well described in the postmortem setting, are not widely recognized in fetal imaging. Familiarity with this appearance will facilitate accurate antenatal diagnosis. (orig.)

  6. Neuroplasticity Changes of Rat Brain by Musical Stimuli during Fetal Period

    Directory of Open Access Journals (Sweden)

    Siamak Sheikhi

    2015-01-01

    Full Text Available Objective: Fetal development of the central nervous system is an important and sensitive stage which is affected by many external and internal stimuli. This study aimed to investigate effect of musical stimuli on fetal rat brain. Materials and Methods: In this experimental study, twelve female Wistar rats were selected and evenly assigned to control and musical groups. The females were mated with a male rat of the same genotype. Musical group was exposed to classic music with 60 dB power for 90 minutes twice per day from 2nd to 20th day of gestation. The control rats were handled similar to the musical group, but were not exposed to music. Before parturition, all the dams were anesthetized, and their blood samples were obtained and used for corticosterone (COS measurement. They were transcardially perfused by electron microscope (EM fixative agent. The fetal brains were extracted intact and used for slice preparation. Horizontal slices were made for electron microscope preparation, and images were taken and analyzed in terms of cell density and morphological changes. Results: EM observation indicated significant morphological difference in cellular and intercellular spaces between the two groups. Music-treated fetuses had significantly higher cell density in parietal cortex and music-treated dams had lower COS level. Conclusion: It was concluded that prenatal music would have a great impact on neuroplasticity of fetal rat brain, at least indirectly. Although the rat fetuses cannot hear until birth, music-induced reduction in COS blood level of dams might be the reason for neuroplasticity of fetal brain.

  7. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pennell, Samuel D.; Wood, Leonie R. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pitt, James J. [Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children' s Hospital, Parkville (Australia); Allen, Katrina J. [Gastro and Food Allergy, Murdoch Childrens Research Institute, Parkville (Australia); Peters, Heidi L. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may

  8. Brain sparing effect: From placental insufficiency to fetal circulatory adaptation

    OpenAIRE

    Juliana Marques Simões Villas-Bôas; Izildinha Maestá; Marcos Consonni

    2008-01-01

    A aplicação e o desenvolvimento da doplervelocimetria obstétrica apresentam base para conhecimento da insuficiência placentária e comprovam o comportamento dinâmico da circulação fetal em regime de hipóxia. Na prática clínica, tornou-se quase rotineira a necessidade de se avaliar a hemodinâmica em três territórios vasculares envolvidos na gestação: artérias uterinas, umbilical e cerebral média. Em linhas gerais, a artéria cerebral expressa o balanço entre a oferta de oxigênio nas uterinas e a...

  9. Mouse fetal antigen 1 (mFA1), the circulating gene product of mdlk, pref-1 and SCP-1: isolation, characterization and biology

    DEFF Research Database (Denmark)

    Bachmann, E; Krogh, T N; Højrup, P

    1996-01-01

    The mouse homologue to human fetal antigen 1 (hFA1) was purified from mouse amniotic fluid by cation exchange chromatography and immunospecific affinity chromatography. Mouse FA1 (mFA1) is a single chain glycoprotein with an M(r) of 42-50 kDa (SDS-PAGE). The N-terminal amino acid sequence (39 res...

  10. Recombinant vascular endothelial growth factor 121 injection for the prevention of fetal growth restriction in a preeclampsia mouse model.

    Science.gov (United States)

    Sulistyowati, Sri; Bachnas, Muhammad Adrianes; Anggraini, Nuri Dyah; Yuliantara, Eric Edwin; Prabowo, Wisnu; Anggraini, Nutria Widya Purna; Pramono, Mochammad Besari Adi; Adityawarman; Dachlan, Erry Gumilar; Andonotopo, Wiku

    2017-02-01

    To discover the potential role of recombinant VEGF121 (rVEGF121) injection for the prevention of fetal growth restriction in a preeclampsia (PE) mouse model (Mus musculus). This is an experimental study of 30 pregnant mice that were randomly divided into three groups: normal, PE, and PE with rVEGF121 injection. The PE mouse model was created by injecting anti Qa-2 10 ng iv, which is deleterious to Qa-2 expression (homologous to HLA-G), from the first to the fourth day of gestation. PE was validated by measuring serum levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor(PIGF) and also by kidney histopathology. Recombinant VEGF121 was given on the ninth day until the 11th day of pregnancy; mice were terminated on the 16th day. Fetal weights were acquired with a Denver analytical balance. Serum levels of sFlt-1 and PlGF were measured using enzyme-linked immunosorbent assay (ELISA). The data were statistically analyzed via analysis of variance (ANOVA). On average, fetal birth weight was 0.7150 g in the normal group, 0.4936 g in the PE group, and 0.6768 g in the PE with rVEGF121 injection group. ANOVA showed significant growth restriction in the PE group (P=0.006), confirming the use of anti Qa-2 as a suitable PE model. Kidney histopathology results, sFlt-1 levels, and PlGF levels also demonstrated that anti Qa-2 consistently conferred hallmarks of PE in mice. Vascular endothelial growth factor (VEGF) injection prevented fetal growth restriction; comparable fetal weights were observed between the PE model with VEGF treatment and the normal group (P=0.610) but differed from the untreated PE group (P=0.021). Injection of rVEGF121 has the potential to prevent fetal growth restriction in a newly proposed PE mouse model.

  11. Blood-brain barrier permeability during dopamine-induced hypertension in fetal sheep.

    Science.gov (United States)

    Harris, A P; Robinson, R; Koehler, R C; Traystman, R J; Gleason, C A

    2001-07-01

    Dopamine is often used as a pressor agent in sick newborn infants, but an increase in arterial blood pressure could disrupt the blood-brain barrier (BBB), especially in the preterm newborn. Using time-dated pregnant sheep, we tested the hypothesis that dopamine-induced hypertension increases fetal BBB permeability and cerebral water content. Barrier permeability was assessed in nine brain regions, including cerebral cortex, caudate, thalamus, brain stem, cerebellum, and spinal cord, by intravenous injection of the small tracer molecule [(14)C]aminoisobutyric acid at 10 min after the start of dopamine or saline infusion. We studied 23 chronically catheterized fetal sheep at 0.6 (93 days, n = 10) and 0.9 (132 days, n = 13) gestation. Intravenous infusion of dopamine increased mean arterial pressure from 38 +/- 3 to 53 +/- 5 mmHg in 93-day fetuses and from 55 +/- 5 to 77 +/- 8 mmHg in 132-day fetuses without a decrease in arterial O(2) content. These 40% increases in arterial pressure are close to the maximum hypertension reported for physiological stresses at these ages in fetal sheep. No significant increases in the brain transfer coefficient of aminoisobutyric acid were detected in any brain region in dopamine-treated fetuses compared with saline controls at 0.6 or 0.9 gestation. There was also no significant increase in cortical water content with dopamine infusion at either age. We conclude that a 40% increase in mean arterial pressure during dopamine infusion in normoxic fetal sheep does not produce substantial BBB disruption or cerebral edema even as early as 0.6 gestation.

  12. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  13. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.

    Science.gov (United States)

    Driggers, Rita W; Ho, Cheng-Ying; Korhonen, Essi M; Kuivanen, Suvi; Jääskeläinen, Anne J; Smura, Teemu; Rosenberg, Avi; Hill, D Ashley; DeBiasi, Roberta L; Vezina, Gilbert; Timofeev, Julia; Rodriguez, Fausto J; Levanov, Lev; Razak, Jennifer; Iyengar, Preetha; Hennenfent, Andrew; Kennedy, Richard; Lanciotti, Robert; du Plessis, Adre; Vapalahti, Olli

    2016-06-02

    The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated.

  14. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    Science.gov (United States)

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero. Published by Elsevier Ltd.

  15. Structural development of human brain white matter from mid-fetal to perinatal stage

    Science.gov (United States)

    Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao

    2015-03-01

    The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.

  16. Periodic properties of the histaminergic system of the mouse brain.

    Science.gov (United States)

    Rozov, Stanislav V; Zant, Janneke C; Karlstedt, Kaj; Porkka-Heiskanen, Tarja; Panula, Pertti

    2014-01-01

    Brain histamine is involved in the regulation of the sleep-wake cycle and alertness. Despite the widespread use of the mouse as an experimental model, the periodic properties of major markers of the mouse histaminergic system have not been comprehensively characterized. We analysed the daily levels of histamine and its first metabolite, 1-methylhistamine, in different brain structures of C57BL/6J and CBA/J mouse strains, and the mRNA level and activity of histidine decarboxylase and histamine-N-methyltransferase in C57BL/6J mice. In the C57BL/6J strain, histamine release, assessed by in vivo microdialysis, underwent prominent periodic changes. The main period was 24 h peaking during the activity period. Additional 8 h periods were also observed. The release was highly positively correlated with active wakefulness, as shown by electroencephalography. In both mouse strains, tissue histamine levels remained steady for 24 h in all structures except for the hypothalamus of CBA/J mice, where 24-h periodicity was observed. Brain tissue 1-methylhistamine levels in both strains reached their maxima in the periods of activity. The mRNA level of histidine decarboxylase in the tuberomamillary nucleus and the activities of histidine decarboxylase and histamine-N-methyltransferase in the striatum and cortex did not show a 24-h rhythm, whereas in the hypothalamus the activities of both enzymes had a 12-h periodicity. These results show that the activities of histamine-metabolizing enzymes are not under simple direct circadian regulation. The complex and non-uniform temporal patterns of the histaminergic system of the mouse brain suggest that histamine is strongly involved in the maintenance of active wakefulness.

  17. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot.

    Science.gov (United States)

    Schellen, Christoph; Ernst, Schwartz; Gruber, Gerlinde M; Mlczoch, Elisabeth; Weber, Michael; Brugger, Peter C; Ulm, Barbara; Langs, Georg; Salzer-Muhar, Ulrike; Prayer, Daniela; Kasprian, Gregor

    2015-09-01

    Prenatal imaging has identified alterations of brain growth in fetuses with congenital heart disease. However, little is known about the timing of altered brain development and its occurrence in specific congenital heart disease subgroups. This magnetic resonance imaging study aimed to identify early (median, 25 gestational weeks [GW]) changes in fetal total brain (TBV), gray matter (GMV), and subcortical brain (SBV) volumes in Tetralogy of Fallot (TOF) cases in utero. Fetal magnetic resonance imaging (1.5 Tesla) was performed in 24 fetuses who were diagnosed with TOF and 24 normal age-matched control fetuses (20-34 GW). TBV, GMV, SBV, intracranial cavity, cerebellar, ventricular, and external cerebrospinal fluid volumes were quantified by manual segmentation based on coronal T2-weighted sequences. Mixed model analyses of variance and t-tests were conducted to compare cases and control fetuses. TBV was significantly lower (P < .001) in early (<25 GW) and late TOF cases. Both GMV (P = .003) and SBV (P = .001) were affected. The GMV-to-SBV ratio declined in fetuses with TOF (P = .026). Compared with normal fetuses, ventricular volume was increased (P = .0048). External cerebrospinal fluid was enlarged in relation to head size (P < .001). Intracranial cavity volume (P = .314) and cerebellar volume (P = .074) were not significantly reduced in fetuses with TOF. TOF is associated with smaller volumes of gray and white matter and enlarged cerebrospinal fluid spaces. These changes are present at ≤25 GW and indicate altered fetal brain growth in this pathophysiologic entity during early stages of human brain development. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns.

    Directory of Open Access Journals (Sweden)

    Dirk Hoyer

    Full Text Available Fetal brain development involves the development of the neuro-vegetative (autonomic control that is mediated by the autonomic nervous system (ANS. Disturbances of the fetal brain development have implications for diseases in later postnatal life. In that context, the fetal functional brain age can be altered. Universal principles of developmental biology applied to patterns of autonomic control may allow a functional age assessment. The work aims at the development of a fetal autonomic brain age score (fABAS based on heart rate patterns. We analysed n = 113 recordings in quiet sleep, n = 286 in active sleep, and n = 29 in active awakeness from normals. We estimated fABAS from magnetocardiographic recordings (21.4-40.3 weeks of gestation preclassified in quiet sleep (n = 113, 63 females and active sleep (n = 286, 145 females state by cross-validated multivariate linear regression models in a cross-sectional study. According to universal system developmental principles, we included indices that address increasing fluctuation range, increasing complexity, and pattern formation (skewness, power spectral ratio VLF/LF, pNN5. The resulting models constituted fABAS. fABAS explained 66/63% (coefficient of determination R(2 of training and validation set of the variance by age in quiet, while 51/50% in active sleep. By means of a logistic regression model using fluctuation range and fetal age, quiet and active sleep were automatically reclassified (94.3/93.1% correct classifications. We did not find relevant gender differences. We conclude that functional brain age can be assessed based on universal developmental indices obtained from autonomic control patterns. fABAS reflect normal complex functional brain maturation. The presented normative data are supplemented by an explorative study of 19 fetuses compromised by intrauterine growth restriction. We observed a shift in the state distribution towards active awakeness. The lower WGA

  19. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain.

    Science.gov (United States)

    Urakubo, A; Jarskog, L F; Lieberman, J A; Gilmore, J H

    2001-01-15

    Prenatal exposure to infection appears to increase the risk of schizophrenia and other neurodevelopmental disorders. We have hypothesized that cytokines, generated in response to maternal infection, play a key mechanistic role in this association. E16 timed pregnancy rats were injected i.p. with Escherichia coli lipopolysaccharide (LPS) to model prenatal exposure to infection. Placenta, amniotic fluid and fetal brains were collected 2 and 8h after LPS exposure. There was a significant treatment effect of low-dose (0.5mg/kg) LPS on placenta cytokine levels, with significant increases of interleukin (IL)-1beta (P<0.0001), IL-6 (P<0.0001), and tumor necrosis factor-alpha (TNF-alpha) (P=0.0001) over the 2 and 8h time course. In amniotic fluid, there was a significant effect of treatment on IL-6 levels (P=0.0006). Two hours after maternal administration of high-dose (2.5mg/kg) LPS, there were significant elevations of placenta IL-6 (P<0.0001), TNF-alpha (P<0.0001), a significant increase of TNF-alpha in amniotic fluid (P=0.008), and a small but significant decrease in TNF-alpha (P=0.035) in fetal brain. Maternal exposure to infection alters pro-inflammatory cytokine levels in the fetal environment, which may have a significant impact on the developing brain.

  20. Advanced MRI techniques of the fetal brain; Zukunftsweisende MRT-Techniken des fetalen Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria)

    2013-02-15

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [German] Evaluierung des gesunden bzw. pathologischen fetalen Gehirns. Die Magnetresonanztomographie. Zukunftsweisende Techniken in der MRT-Bildgebung des fetalen Gehirns. Die Diffusionstensorbildgebung (DTI) befindet sich bereits in der klinischen Anwendung, alle anderen Methoden sind bisher noch als experimentell zu werten. Auf dem Weg zur Etablierung als Standardverfahren. Eine kombinierte Verarbeitung funktioneller und struktureller Daten, modelliert fuer jede Schwangerschaftswoche, wird es zukuenftig ermoeglichen, anhand dieser fusionierten Informationen einen praezisen Einblick in den Entwicklungsprozess des Gehirns zu erlangen. Diese Erkenntnisse und Ergebnisse werden entscheidend zur Klaerung des zeitlichen Verlaufs und des komplexen Aufbaus frueher morphologischer Auffaelligkeiten beitragen sowie deren Einfluss auf kognitive und sensorische Faehigkeiten aufzeigen. (orig.)

  1. The influence of microwave radiation from cellular phone on fetal rat brain.

    Science.gov (United States)

    Jing, Ji; Yuhua, Zhang; Xiao-qian, Yang; Rongping, Jiang; Dong-mei, Guo; Xi, Cui

    2012-03-01

    The increasing use of cellular phones in our society has brought focus on the potential detrimental effects to human health by microwave radiation. The aim of our study was to evaluate the intensity of oxidative stress and the level of neurotransmitters in the brains of fetal rats chronically exposed to cellular phones. The experiment was performed on pregnant rats exposed to different intensities of microwave radiation from cellular phones. Thirty-two pregnant rats were randomly divided into four groups: CG, GL, GM, and GH. CG accepted no microwave radiation, GL group radiated 10 min each time, GM group radiated 30 min, and GH group radiated 60 min. The 3 experimental groups were radiated 3 times a day from the first pregnant day for consecutively 20 days, and on the 21st day, the fetal rats were taken and then the contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), noradrenaline (NE), dopamine (DA), and 5-hydroxyindole acetic acid (5-HT) in the brain were assayed. Compared with CG, there were significant differences (Pcellular phones during pregnancy has certain harm on fetal rat brains.

  2. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  3. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day of ge...... on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  4. Ontogenetic Change in the Regional Distribution of Dehydroepiandrosterone-Synthesizing Enzyme and the Glucocorticoid Receptor in the Brain of the Spiny Mouse (Acomys cahirinus).

    Science.gov (United States)

    Quinn, Tracey A; Ratnayake, Udani; Dickinson, Hayley; Castillo-Melendez, Margie; Walker, David W

    2016-01-01

    The androgen dehydroepiandrosterone (DHEA) has trophic and anti-glucocorticoid actions on brain growth. The adrenal gland of the spiny mouse (Acomys cahirinus) synthesizes DHEA. The aim of this study was to determine whether the brain of this precocial species is also able to produce DHEA de novo during fetal, neonatal and adult life. The expression of P450c17 and cytochrome b5 (Cytb5), the enzyme and accessory protein responsible for the synthesis of DHEA, was determined in fetal, neonatal and adult brains by immunocytochemistry, and P450c17 bioactivity was determined by the conversion of pregnenolone to DHEA. Homogenates of fetal brain produced significantly more DHEA after 48 h in culture (22.46 ± 2.0 ng/mg tissue) than adult brain homogenates (5.04 ± 2.0 ng/mg tissue; p < 0.0001). P450c17 and Cytb5 were co-expressed in fetal neurons but predominantly in oligodendrocytes and white matter tracts in the adult brain. Because DHEA modulates glucocorticoids actions, the expression of the glucocorticoid receptor (GR) was also determined. In the brainstem, medulla, midbrain, and cerebellum, the predominant GR localization changed from neurons in the fetal brain to oligodendrocytes and white matter tracts in the adult brain. The change of expression of P450c17, Cytb5 and GR proteins with cell type, brain region and developmental age indicates that DHEA is an endogenous neurosteroid in this species that may have important trophic and stress-modifying actions during both prenatal and postnatal life.

  5. [GABA, a key transmitter for fetal brain maturation].

    Science.gov (United States)

    Ben-Ari, Yehezkel

    2007-01-01

    GABA, the principal inhibitory transmitter excites immature neurons in all animal species studied. This is due to the higher intracellular concentration of chloride at early developmental stages. Excitatory actions of GABA play an important action in brain maturation. Recent observations also suggest an abrupt shift during delivery that exerts a neuro-protective action contributing to reduce the sequels of trauma and anoxic episodes. These observations have important clinical implications in relation to delivery associated insults but also preterm delivery and more generally consumption of agents during gestation.

  6. Sexually dimorphic gene expression that overlaps maturation of type II pneumonocytes in fetal mouse lungs

    Directory of Open Access Journals (Sweden)

    Provost Pierre R

    2006-05-01

    Full Text Available Abstract Background In human, respiratory distress of the neonates, which occurs in prematurity, is prevalent in male. Late in gestation, maturation of type II pneumonocytes, and consequently the surge of surfactant synthesis are delayed in male fetuses compared with female fetuses. Although the presence of higher levels of androgens in male fetuses is thought to explain this sex difference, the identity of genes involved in lung maturation that are differentially modulated according to fetal sex is unknown. We have studied the sex difference in developing mouse lung by gene profiling during a three-day gestational window preceding and including the emergence of mature PTII cells (the surge of surfactant synthesis in the mouse occurs on GD 17.5. Methods Total RNA was extracted from lungs of male and female fetal mice (gestation days 15.5, 16.5, and 17.5, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays (Affymetrix MOE430A. Analysis of data was performed using MAS5.0, LFCM and Genesis softwares. Results Many genes involved in lung maturation were expressed with no sex difference. Of the approximative 14 000 transcripts covered by the arrays, only 83 genes presented a sex difference at one or more time points between GDs 15.5 and 17.5. They include genes involved in hormone metabolism and regulation (i.e. steroidogenesis pathways, apoptosis, signal transduction, transcriptional regulation, and lipid metabolism with four apolipoprotein genes. Genes involved in immune functions and other metabolisms also displayed a sex difference. Conclusion Among these sexually dimorphic genes, some may be candidates for a role in lung maturation. Indeed, on GD 17.5, the sex difference in surfactant lipids correlates with the sex difference in pulmonary expression of apolipoprotein genes, which are involved in lipid transport. This suggests a role for these genes in the surge of surfactant synthesis. Our results would help to

  7. Differential Effect of Intrauterine Hypoxia on Caspase 3 and DNA Fragmentation in Fetal Guinea Pig Hearts and Brains

    Science.gov (United States)

    Evans, LaShauna C.; Liu, Hongshan; Thompson, Loren P.

    2012-01-01

    The aim of this study is to quantify the effect of intrauterine hypoxia (HPX) and the role of nitric oxide (NO) on the apoptotic enzyme, caspase 3, and DNA fragmentation in fetal heart and brain. Hypoxia and NO are important regulators of apoptosis, although this has been little studied in the fetal organs. We investigated the effect of intrauterine HPX on apoptosis and the role of NO in both fetal hearts and brains. Pregnant guinea pigs were exposed to room temperature (N = 14) or 10.5% O2 (N = 12) for 14 days prior to term (term = 65 days) and administered water or l-N6-(1-iminoethyl)-lysine (LNIL), an inducible nitric oxide synthase (iNOS) inhibitor, for 10 days. Fetal hearts and brains were excised from anesthetized near-term fetuses for study. Chronic HPX decreased pro- and active caspase 3, caspase 3 activity, and DNA fragmentation levels in fetal hearts compared with normoxic controls. l-N6-(1-iminoethyl)-lysine prevented the HPX-induced decrease in caspase 3 activity but did not alter DNA fragmentation levels. In contrast, chronic HPX increased both apoptotic indices in fetal brains, which were inhibited by LNIL. Thus, the effect of HPX on apoptosis differs between fetal organs, and NO may play an important role in modulating these effects. PMID:22383778

  8. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  9. Neural localization of addicsin in mouse brain.

    Science.gov (United States)

    Akiduki, Saori; Ochiishi, Tomoyo; Ikemoto, Mitsushi J

    2007-10-22

    Addicsin is a member of the prenylated Rab acceptor (PRA) 1 domain family and a murine homolog of the rat glutamate-transporter-associated protein 3-18 (GTRAP3-18). This protein is considered to function as a modulator of the neural glutamate transporter excitatory amino acid carrier 1 (EAAC1). However, its molecular functions remain largely unknown. Here, we examined the regional and cellular localization of addicsin in the central nervous system (CNS) by using a newly generated antibody specific for the protein. Distribution analysis by Western blot and immunohistochemistry demonstrated that the protein was widely distributed in various regions of the mature CNS, including the olfactory bulbs, cerebral cortex, amygdala, hippocampus CA1-3 fields, dentate gyrus, and cerebellum. Double immunofluorescence analysis revealed that addicsin was expressed in the somata of principal neurons in the CNS such as the pyramidal cells and gamma-aminobutyric acid (GABA)-ergic interneurons scattered in the hippocampal formation. Furthermore, the protein showed pre-synaptic localization in the stratum lucidum of the CA3 field of the hippocampal formation. Subcellular localization analysis of highly purified synaptic fractions prepared from mouse forebrain supported the cytoplasmic and pre-synaptic distribution of addicsin. These results suggest that addicsin has neural expression and may play crucial roles in the basic physiological functions of the mature CNS.

  10. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation.

    Science.gov (United States)

    Mantha, Katarzyna; Laufer, Benjamin I; Singh, Shiva M

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.

  11. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions.

    Science.gov (United States)

    Martinez, M Elena; Charalambous, Marika; Saferali, Aabida; Fiering, Steven; Naumova, Anna K; St Germain, Donald; Ferguson-Smith, Anne C; Hernandez, Arturo

    2014-11-01

    The Dio3 gene, which encodes for the type 3 deiodinase (D3), controls thyroid hormone (TH) availability. The lack of D3 in mice results in tissue overexposure to TH and a broad neuroendocrine phenotype. Dio3 is an imprinted gene, preferentially expressed from the paternally inherited allele in the mouse fetus. However, heterozygous mice with paternal inheritance of the inactivating Dio3 mutation exhibit an attenuated phenotype when compared with that of Dio3 null mice. To investigate this milder phenotype, the allelic expression of Dio3 was evaluated in different mouse tissues. Preferential allelic expression of Dio3 from the paternal allele was observed in fetal tissues and neonatal brain regions, whereas the biallelic Dio3 expression occurred in the developing eye, testes, and cerebellum and in the postnatal brain neocortex, which expresses a larger Dio3 mRNA transcript. The newborn hypothalamus manifests the highest degree of Dio3 expression from the paternal allele, compared with other brain regions, and preferential allelic expression of Dio3 in the brain relaxed in late neonatal life. A methylation analysis of two regulatory regions of the Dio3 imprinted domain revealed modest but significant differences between tissues, but these did not consistently correlate with the observed patterns of Dio3 allelic expression. Deletion of the Dio3 gene and promoter did not result in significant changes in the tissue-specific patterns of Dio3 allelic expression. These results suggest the existence of unidentified epigenetic determinants of tissue-specific Dio3 imprinting. The resulting variation in the Dio3 allelic expression between tissues likely explains the phenotypic variation that results from paternal Dio3 haploinsufficiency.

  12. Functional brain development in growth-restricted and constitutionally small fetuses: a fetal magnetoencephalography case-control study.

    Science.gov (United States)

    Morin, E C; Schleger, F; Preissl, H; Braendle, J; Eswaran, H; Abele, H; Brucker, S; Kiefer-Schmidt, I

    2015-08-01

    Fetal magnetoencephalography records fetal brain activity non-invasively. Delayed brain responses were reported for fetuses weighing below the tenth percentile. To investigate whether this delay indicates delayed brain maturation resulting from placental insufficiency, this study distinguished two groups of fetuses below the tenth percentile: growth-restricted fetuses with abnormal umbilical artery Doppler velocity (IUGR) and constitutionally small-for-gestational-age fetuses with normal umbilical artery Doppler findings (SGA) were compared with fetuses of adequate weight for gestational age (AGA), matched for age and behavioural state. A case-control study of matched pairs. Fetal magnetoencephalography-Center at the University Hospital of Tuebingen. Fourteen IUGR fetuses and 23 SGA fetuses were matched for gestational age and fetal behavioural state with 37 healthy, normal-sized fetuses. A 156-channel fetal magentoencephalography system was used to record fetal brain activity. Light flashes as visual stimulation were applied to the fetus. The Student's t-test for paired groups was performed. Latency of fetal visual evoked magnetic responses (VER). The IUGR fetuses showed delayed VERs compared with controls (IUGR, 233.1 ms; controls, 184.6 ms; P = 0.032). SGA fetuses had similar evoked response latencies compared with controls (SGA, 216.1 ms; controls, 219.9 ms; P = 0.828). Behavioural states were similarly distributed. Visual evoked responses are delayed in IUGR fetuses, but not in SGA. Fetal behavioural state as an influencing factor of brain response latency was accounted for in the comparison. This reinforces that delayed brain maturation is the result of placental insufficiency. © 2015 Royal College of Obstetricians and Gynaecologists.

  13. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  14. Dynamic reorganization of intrinsic functional networks in the mouse brain.

    Science.gov (United States)

    Grandjean, Joanes; Preti, Maria Giulia; Bolton, Thomas A W; Buerge, Michaela; Seifritz, Erich; Pryce, Christopher R; Van De Ville, Dimitri; Rudin, Markus

    2017-03-14

    Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have assumed stationary interactions between brain regions, without considering the dynamic aspects of network organization. Only recently has the latter received increased attention, predominantly in human studies. Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed to make a major contribution to information integration and processing in the healthy and diseased brain.

  15. Brain Glucose Transporter (Glut3) Haploinsufficiency Does Not Impair Mouse Brain Glucose Uptake

    OpenAIRE

    Stuart, Charles A.; Ross, Ian R.; Howell, Mary E. A.; McCurry, Melanie P.; Wood, Thomas G.; Ceci, Jeffrey D.; Kennel, Stephen J.; Wall, Jonathan

    2011-01-01

    Mouse brain expresses three principle glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3−/− genotype is intrauterine lethal by seven days post-coitis, but the heterozygous (Glut3+/−) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberration...

  16. Learning from redundant but inconsistent reference data: anatomical views and measurements for fetal brain screening

    Science.gov (United States)

    Waechter-Stehle, I.; Klinder, T.; Rouet, J.-M.; Roundhill, D.; Andrews, G.; Cavallaro, A.; Molloholli, M.; Norris, T.; Napolitano, R.; Papageorghiou, A.; Lorenz, C.

    2016-03-01

    In a fetal brain screening examination, a standardized set of anatomical views is inspected and certain biometric measurements are taken in these views. Acquisition of recommended planes requires a certain level of operator expertise. 3D ultrasound has the potential to reduce the manual task to only capture a volume containing the head and to subsequently determine the standard 2D views and measurements automatically. For this purpose, a segmentation model of the fetal brain was created and trained with expert annotations. It was found that the annotations show a considerable intra- and inter-observer variability. To handle the variability, we propose a method to train the model with redundant but inconsistent reference data from many expert users. If the outlier-cleaned average of all reference annotations is considered as ground truth, errors of the automatic view detection are lower than the errors of all individual users and errors of the measurements are in the same range as user error. The resulting functionality allows the completely automated estimation of views and measurements in 3D fetal ultrasound images.

  17. MR imaging of the fetal brain and spine: a maturing technology.

    Science.gov (United States)

    Griffiths, P D; Paley, M N; Whitby, E H

    2003-07-01

    We describe the background and refinements to a 3-year research study designed to evaluate the role of magnetic resonance (MR) imaging in detecting and defining abnormalities of the fetal central nervous system in utero. We describe our experience of using ultra-fast MR imaging methods (specifically single-shot fast spin echo) in 250 fetuses at various gestational ages. All fetuses had known or suspected brain or spine abnormalities based on antenatal ultrasound imaging. We describe the ethical issues raised by this type of work and the differences in diagnostic accuracy between ultrasound and MR imaging. We show that MR imaging can be performed in a clinical environment with a high degree of success: only 2 women out of 250 could not be examined (1 was claustrophobic and the other was too large for our scanner). In the 100 cases of singleton pregnancies, where detailed follow-up is available, there is a > 40% improvement in diagnostic accuracy when MR imaging is included in the fetal assessment compared to ultrasound alone. We conclude that in utero MR imaging is a powerful tool in the assessment of fetal brain and spine abnormalities, and suggest that further work be undertaken to provide a widely available clinical service.

  18. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses?

    Science.gov (United States)

    Hernandez-Andrade, Edgar; Serralde, Jesus Andres Benavides; Cruz-Martinez, Rogelio

    2012-02-01

    Assessment of the fetal cerebral circulation provides important information on the hemodynamic changes associated with chronic hypoxia and intrauterine growth restriction. Despite the incorporation of new US parameters, the landmark for the fetal brain hemodynamic evaluation is still the middle cerebral artery. However, new vascular territories, such as the anterior and posterior cerebral arteries, might provide additional information on the onset of the brain sparing effect. The fractional moving blood volume estimation and three-dimensional power Doppler ultrasound indices are new techniques that seem to be promising in identifying cases at earlier stages of vascular deterioration; still, they are not available for clinical application and more information is needed on the reproducibility and advantages of three-dimensional power Doppler ultrasound blood flow indices. In the past, the brain sparing effect was considered as a protective mechanism; however, recent information challenges this concept. There is growing evidence of an association between brain sparing effect and increased risk of abnormal neurodevelopment after birth. Even in mild late-onset intrauterine growth restriction affected fetuses with normal umbilical artery blood flow, increased cerebral blood perfusion can be associated with a substantial risk of abnormal neuroadaptation and neurodevelopment during childhood.

  19. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions.

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-08-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.

  1. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    Science.gov (United States)

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  2. Functions of Maternally-Derived Taurine in Fetal and Neonatal Brain Development.

    Science.gov (United States)

    Tochitani, Shiro

    2017-01-01

    Taurine (2-aminoethanesulfonic acid) is a sulfur-containing organic acid, which has various physiological functions, including membrane stabilization, cell-volume regulation, mitochondrial protein translocation, anti-oxidative activity, neuroprotection against neurotoxicity and modulation of intracellular calcium levels. Taurine also activates GABAA receptors and glycine receptors. Mammalian fetuses and infants are dependent on taurine delivered from their mothers via either the placenta or their mother's milk. Taurine is a molecule that links mother-fetus or mother-infant bonding.This review describes the functions of taurine and the mechanisms of action of taurine in fetal and brain development. Taurine is involved in regulating the proliferation of neural progenitors, migration of newly-generated neurons, and the synapse formation of neurons after migration during fetal and neonatal development. In this review, we also discuss the environmental factors that might influence the functional roles of taurine in neural development.

  3. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep.

    Directory of Open Access Journals (Sweden)

    Elke Kuypers

    Full Text Available RATIONALE: Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS exposure. METHODS: Time-mated ewes received saline (control, an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d. Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM, periventricular white matter (PVWM and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. RESULTS: LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. CONCLUSION: Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation

  4. Effects of Intra-Amniotic Lipopolysaccharide and Maternal Betamethasone on Brain Inflammation in Fetal Sheep

    Science.gov (United States)

    Ophelders, Daan R. M. G.; Dudink, Jeroen; Nikiforou, Maria; Wolfs, Tim G. A. M.; Nitsos, Ilias; Pillow, J. Jane; Polglase, Graeme R.; Kemp, Matthew W.; Saito, Masatoshi; Newnham, John P.; Jobe, Alan H.; Kallapur, Suhas G.; Kramer, Boris W.

    2013-01-01

    Rationale Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure. Methods Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. Results LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. Conclusion Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal

  5. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI

    Directory of Open Access Journals (Sweden)

    Sureyya Burcu Gorkem

    2016-01-01

    Full Text Available The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p=0.018 and placenta (p=0.005 of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies.

  6. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    Science.gov (United States)

    Brennan, Sarah C; Finney, Brenda A; Lazarou, Maria; Rosser, Anne E; Scherf, Caroline; Adriaensen, Dirk; Kemp, Paul J; Riccardi, Daniela

    2013-01-01

    Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E)11.5-16.5 in mouse) in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+) channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match

  7. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels.

    Directory of Open Access Journals (Sweden)

    Sarah C Brennan

    Full Text Available Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9-17 of human gestation, embryonic days (E11.5-16.5 in mouse in a hypercalcaemic environment (~1.7 in the fetus vs. ~1.1-1.3 mM for an adult. Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca(2+ channels (VGCC, inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3, P/Q type (CaV2.1, N-type (CaV2.2, R-type (CaV2.3, and T-type (CaV3.2 and CaV3.3 VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3, demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to

  8. Data for mitochondrial proteomic alterations in the aging mouse brain

    Directory of Open Access Journals (Sweden)

    Kelly L. Stauch

    2015-09-01

    Full Text Available Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age-associated mitochondrial proteomic changes in the brain, we analyzed mitochondria isolated from the brain of 5-, 12-, and 24-month old mice using quantitative mass spectrometry. We identified changes in the expression of proteins important for biological processes involved in the generation of precursor metabolites and energy through the breakdown of carbohydrates, lipids, and proteins. These results are significant because we identified age-associated proteomic changes suggestive of altered mitochondrial catabolic reactions during brain aging. The proteomic data described here can be found in the PRIDE Archive using the reference number PXD001370. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism” in PROTEOMICS.

  9. Label-free structural photoacoustic tomography of intact mouse brain

    Science.gov (United States)

    Li, Lei; Xia, Jun; Li, Guo; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2015-03-01

    Capitalizing on endogenous hemoglobin contrast, photoacoustic computed tomography (PACT), a deep-tissue highresolution imaging modality, has drawn increasing interest in neuro-imaging. However, most existing studies are limited to functional imaging on the cortical surface, and the deep-brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep-brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can provide high-resolution label-free structural imaging through the entire mouse brain. With 100 μm in-plane resolution, we can clearly identify major structures of the brain, and the image quality is comparable to that of magnetic resonance microscopy. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome and lipid. The feasibility of imaging the structure of the brain in vivo has also been discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.

  10. Neuroprotective peptide ADNF-9 in fetal brain of C57BL/6 mice exposed prenatally to alcohol

    Directory of Open Access Journals (Sweden)

    Karty Jonathan A

    2011-10-01

    Full Text Available Abstract Background A derived peptide from activity-dependent neurotrophic factor (ADNF-9 has been shown to be neuroprotective in the fetal alcohol exposure model. We investigated the neuroprotective effects of ADNF-9 against alcohol-induced apoptosis using TUNEL staining. We further characterize in this study the proteomic architecture underlying the role of ADNF-9 against ethanol teratogenesis during early fetal brain development using liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS. Methods Pregnant C57BL/6 mice were exposed from embryonic days 7-13 (E7-E13 to a 25% ethanol-derived calorie [25% EDC, Alcohol (ALC] diet, a 25% EDC diet simultaneously administered i.p. ADNF-9 (ALC/ADNF-9, or a pair-fed (PF liquid diet. At E13, fetal brains were collected from 5 dams from each group, weighed, and frozen for LC-MS/MS procedure. Other fetal brains were fixed for TUNEL staining. Results Administration of ADNF-9 prevented alcohol-induced reduction in fetal brain weight and alcohol-induced increases in cell death. Moreover, individual fetal brains were analyzed by LC-MS/MS. Statistical differences in the amounts of proteins between the ALC and ALC/ADNF-9 groups resulted in a distinct data-clustering. Significant upregulation of several important proteins involved in brain development were found in the ALC/ADNF-9 group as compared to the ALC group. Conclusion These findings provide information on potential mechanisms underlying the neuroprotective effects of ADNF-9 in the fetal alcohol exposure model.

  11. Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8.

    Science.gov (United States)

    Grijota-Martínez, Carmen; Díez, Diego; Morreale de Escobar, Gabriella; Bernal, Juan; Morte, Beatriz

    2011-04-01

    Mutations of the monocarboxylate transporter 8 gene (MCT8, SLC16A2) cause the Allan-Herndon-Dudley syndrome, an X-linked syndrome of severe intellectual deficit and neurological impairment. Mct8 transports thyroid hormones (T4 and T3), and the Allan-Herndon-Dudley syndrome is likely caused by lack of T3 transport to neurons during critical periods of fetal brain development. To evaluate the role of Mct8 in thyroid hormone action in the fetal brain we administered T4 or T3 to thyroidectomized pregnant dams treated with methyl-mercapto-imidazol to produce maternal and fetal hypothyroidism. Gene expression was then measured in the fetal cerebral cortex. T4 increased Camk4, Sema3c, and Slc7a3 expression, but T3 was without effect. To investigate the cause for the lack of T3 action we analyzed the expression of organic anion transport polypeptide (Oatp14, Slco1c1), a T4 transporter, and Mct8 (Slc16a2), a T4 and T3 transporter, by confocal microscopy. Both proteins were present in the brain capillaries forming the blood-brain barrier and in the epithelial cells of the choroid plexus forming the blood-cerebrospinal fluid barrier. It is concluded that T4 from the maternal compartment influences gene expression in the fetal cerebral cortex, possibly after transport via organic anion transporter polypeptide and/or Mct8, and conversion to T3 in the astrocytes. On the other hand, T3 does not reach the target neurons despite the presence of Mct8. The data indicate that T4, through local deiodination, provides most T3 in the fetal rat brain. The role of Mct8 as a T3 transporter in the fetal rat brain is therefore uncertain.

  12. Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis.

    Science.gov (United States)

    Hua, Jinlian; Zhu, Haijing; Pan, Shaohui; Liu, Chao; Sun, Junwei; Ma, Xiaoling; Dong, Wuzi; Liu, Weishuai; Li, Wei

    2011-04-01

    Male germline stem cells (mGSCs) are stem cells present in male testis responsible for spermatogenesis during their whole life. Studies have shown that mGSCs can be derived in vitro and resemble embryonic stem cells (ESCs) properties both in the mouse and humans. However, little is know about these cells in domestic animals. Here we report the first successful establishment of goat GSCs derived from 2-5-month fetal testis, and developmental potential assay of these cells both in vitro and in vivo. These cells express pluripotent markers such as Oct4, Sox2, C-myc, and Tert when cultured as human ESCs conditions. Embryoid bodies (EBs) formed by goat mGSCs were induced with 2 × 10(-6) M retinoic acid (RA). Immunofluorescence analysis showed that some cells inside of the EBs were positive for meiosis marker-SCP3, STRA8, and germ cell marker-VASA, and haploid marker-FE-J1, PRM1, indicating their germ cell lineage differentiation. Some cells become elongated sperm-like cells after induction. Approximately 34.88% (30/86) embryos showed cleavage and four embryos were cultured on murine fibroblast feeder and formed small embryonic stem like colonies. However, most stalled at four-cell stage after intracytoplasmic sperm injection (ICSI) of these cells. Transplantation of DAPI labeled mGSCs into the seminiferous tubules of busulfan-treated mice, and showed that mGSCs can colonize, self-renew, and differentiate into germ cells. Thus, we have established a goat GSC cell line and these cells could be differentiated into sperm-like cells in vivo and sperms in vitro, providing a promising platform for generation of transgenic goat for production of specific humanized proteins.

  13. Dynamic changes of the phosphoproteome in postmortem mouse brains.

    Directory of Open Access Journals (Sweden)

    Tsutomu Oka

    Full Text Available Protein phosphorylation is deeply involved in the pathological mechanism of various neurodegenerative disorders. However, in human pathological samples, phosphorylation can be modified during preservation by postmortem factors such as time and temperature. Postmortem changes may also differ among proteins. Unfortunately, there is no comprehensive database that could support the analysis of protein phosphorylation in human brain samples from the standpoint of postmortem changes. As a first step toward addressing the issue, we performed phosphoproteome analysis with brain tissue dissected from mouse bodies preserved under different conditions. Quantitative whole proteome mass analysis showed surprisingly diverse postmortem changes in phosphoproteins that were dependent on temperature, time and protein species. Twelve hrs postmortem was a critical time point for preservation at room temperature. At 4°C, after the body was cooled down, most phosphoproteins were stable for 72 hrs. At either temperature, increase greater than 2-fold was exceptional during this interval. We found several standard proteins by which we can calculate the postmortem time at room temperature. The information obtained in this study will be indispensable for evaluating experimental data with human as well as mouse brain samples.

  14. MicroRNAs and fetal brain development: Implications for ethanol teratology during the second trimester period of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Rajesh eMiranda

    2012-05-01

    Full Text Available Maternal ethanol consumption during pregnancy can lead to a stereotypic cluster of fetal craniofacial, cardiovascular, skeletal and neurological deficits that are collectively termed the Fetal Alcohol Spectrum Disorder (FASD. Fetal ethanol exposure is a leading non-genetic cause of mental retardation. Mechanisms underlying the etiology of ethanol teratology are varied and complex. This review will focus on the developing brain as an important and vulnerable ethanol target. Near the end of the first trimester, and during the second trimester, fetal neural stem cells (NSCs produce most of the neurons of the adult brain, and ethanol has been shown to influence NSC renewal and maturation. We will discuss the neural developmental and teratological implications of the biogenesis and function of microRNAs (miRNAs, a class of small non-protein-coding RNAs that control the expression of gene networks by translation repression. A small but growing body of research has identified ethanol-sensitive miRNAs at different stages of NSC and brain maturation. While many microRNAs appear to be vulnerable to ethanol at specific developmental stages, a few, like the miR-9 family, appear to exhibit broad vulnerability to ethanol across multiple stages of NSC differentiation. An assessment of the regulation and function of these miRNAs provides important clues about the mechanisms that underlie fetal vulnerability to alterations in the maternal-fetal environment and yields insights into the genesis of FASD.

  15. Leukocyte population dynamics and detection of IL-9 as a major cytokine at the mouse fetal-maternal interface.

    Directory of Open Access Journals (Sweden)

    Mohamed Habbeddine

    Full Text Available Despite much interest in the mechanisms regulating fetal-maternal interactions, information on leukocyte populations and major cytokines present in uterus and placenta remains fragmentary. This report presents a detailed and quantitative study of leukocyte populations at the mouse fetal-maternal interface, including a comparison between pregnancies from syngeneic and allogeneic crosses. Our results provide evidence for drastic differences not only in the composition of leukocyte populations in the uterus during pregnancy, but also between uterine and placental tissues. Interestingly, we have observed a significant decrease in the number of myeloid Gr1+ cells including monocytes, and myeloid CD11c+ cells including DCs in placenta from an allogeneic pregnancy. In addition, we have compared the expression levels of a panel of cytokines in non-pregnant (NP or pregnant mouse uterus, in placenta, or in their isolated resident leukocytes. Qualitative and quantitative differences have emerged between NP, pregnant uterus and placenta. Unexpectedly, IL-9 was the major cytokine in NP uterus, and was maintained at high levels during pregnancy both in uterus and placenta. Moreover, we have found that pregnancy is associated with an increase in uterine IL-1a and a significant decrease in uterine G-CSF and GM-CSF. Comparing allogeneic versus syngeneic pregnancy, less allogeneic placental pro-inflammatory cytokines CCL2 (MCP-1, CXCL10 (IP-10 and more IL1-α in whole uterus was reproducibly observed. To our knowledge, this is the first report showing a detailed overview of the leukocyte and cytokine repertoire in the uterus of virgin females and at the fetal-maternal interface, including a comparison between syngeneic and allogeneic pregnancy. This is also the first evidence for the presence of IL-9 in NP uterus and at the maternal-fetal interface, suggesting a major role in the regulation of local inflammatory or immune responses potentially detrimental to the

  16. In vivo high-resolution diffusion tensor imaging of the mouse brain.

    Science.gov (United States)

    Wu, Dan; Xu, Jiadi; McMahon, Michael T; van Zijl, Peter C M; Mori, Susumu; Northington, Frances J; Zhang, Jiangyang

    2013-12-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.

  17. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress.

    Science.gov (United States)

    Akhtar, Feroz; Rouse, Christopher A; Catano, Gabriel; Montalvo, Marcus; Ullevig, Sarah L; Asmis, Reto; Kharbanda, Kusum; Maffi, Shivani K

    2017-09-30

    Maternal exposure to environmental stressors poses a risk to fetal development. Oxidative stress (OS), microglia activation, and inflammation are three tightly linked mechanisms that emerge as a causal factor of neurodevelopmental anomalies associated with prenatal ethanol exposure. Antioxidants such as glutathione (GSH) and CuZnSOD are perturbed, and their manipulation provides evidence for neuroprotection. However, the cellular and molecular effects of GSH alteration in utero on fetal microglia activation and inflammation remain elusive. Ethanol (EtOH) (2.5 g/kg) was administered to pregnant mice at gestational days 16-17. One hour prior to ethanol treatment, N-acetylcysteine (NAC) and L-buthionine sulfoximine (BSO) were administered to modulate glutathione (GSH) content in fetal and maternal brain. Twenty-four hours following ethanol exposure, GSH content and OS in brain tissues were analyzed. Cytokines and chemokines were selected based on their association with distinctive microglia phenotype M1-like (IL-1β, IFN γ, IL-6, CCL3, CCL4, CCL-7, CCL9,) or M2-like (TGF-β, IL-4, IL-10, CCL2, CCL22, CXCL10, Arg1, Chi1, CCR2 and CXCR2) and measured in the brain by qRT-PCR and ELISA. In addition, Western blot and confocal microscopy techniques in conjunction with EOC13.31 cells exposed to similar ethanol-induced oxidative stress and redox conditions were used to determine the underlying mechanism of microglia activation associated with the observed phenotypic changes. We show that a single episode of mild to moderate OS in the last trimester of gestation causes GSH depletion, increased protein and lipid peroxidation and inflammatory responses inclined towards a M1-like microglial phenotype (IL-1β, IFN-γ) in fetal brain tissue observed at 6-24 h post exposure. Maternal brain is resistant to many of these marked changes. Using EOC 13.31 cells, we show that GSH homeostasis in microglia is crucial to restore its anti-inflammatory state and modulate inflammation

  18. Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Science.gov (United States)

    Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua

    2011-01-01

    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613

  19. Weak functional connectivity in the human fetal brain prior to preterm birth

    Science.gov (United States)

    Thomason, Moriah E.; Scheinost, Dustin; Manning, Janessa H.; Grove, Lauren E.; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S.; Constable, R. Todd; Ment, Laura R.; Romero, Roberto

    2017-01-01

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero. PMID:28067865

  20. Weak functional connectivity in the human fetal brain prior to preterm birth.

    Science.gov (United States)

    Thomason, Moriah E; Scheinost, Dustin; Manning, Janessa H; Grove, Lauren E; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S; Constable, R Todd; Ment, Laura R; Romero, Roberto

    2017-01-09

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero.

  1. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Mauro Ceccanti

    2013-12-01

    Full Text Available OBJECTIVES: Fetal Alcohol Spectrum Disorders (FASD due to prenatal ethanol consumption may induce long-lasting changes to the newborns affecting also the endocrine system and the nerve growth factor (NGF and brain derived neurotrophic factor (BDNF signaling. Thus the aim of this study was to investigate in the thyroid, testis and adrenal glands of a FASD mouse model the long-lasting effects of ethanol exposure during pregnancy and lactation on NGF and BDNF and their main receptors, TrkA and TrkB, including their phosphorylated patterns. METHODS: We used aged male CD-1 mice early exposed to ethanol solution or red wine at same ethanol concentration (11% vol. RESULTS We found elevations in NGF and BDNF in the thyroid of aged mice exposed to ethanol solution only but not in the red wine group. In the testis NGF resulted to be increased only in the ethanol solution group. In the adrenal glands data showed an elevation in NGF in both the ethanol solution group and red wine. No changes in TrkA, TrkB, phospho-TrkA and phospho-TrkB were revealed in all tissues examined. CONCLUSIONS Early administration of ethanol may induce long-lasting changes in the mouse thyroid, testis and adrenal glands at NGF and BDNF levels.

  2. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly

    Energy Technology Data Exchange (ETDEWEB)

    Yaniv, Gal [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); The Hebrew University of Jerusalem, The Institute for Research in Military Medicine, The Faculty of Medicine, Jerusalem (Israel); Sheba Medical Center, The Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Tel Aviv (Israel); Katorza, Eldad [Sheba Medical Center, Obstetrics and Gynecology Department, Tel Aviv (Israel); Bercovitz, Ronen; Bergman, Dafi; Greenberg, Gahl; Hoffmann, Chen [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2016-03-15

    To evaluate the impact of symmetric and asymmetric isolated mild ventriculomegaly (IMVM, atrial width 10-15 mm) on apparent diffusion coefficient (ADC) values in fetal brain areas. Sixty-seven sequential fetal head magnetic resonance imaging scans (feMRI) of VM cases performed between 2009 and 2014 were compared to 38 normal feMRI scans matched for gestational age (controls). Ultrasound- and MRI-proven IMVM cases were divided into asymmetrical (AVM, ≥2 mm difference in atrial width), symmetrical (SVM, <2 mm difference in atrial width), and asymmetrical IMVM with one normal-sized ventricle (AV1norm). ADC values were significantly elevated in the basal ganglia (BG) of the SVM and AV1norm groups compared to controls (p < 0.004 and p < 0.013, respectively). High diffusivity was constantly detected in the BG ipsilateral to the enlarged atria relative to the normal-sized atria in the AV1norm group (p < 0.03). Frontal lobe ADC values were significantly reduced in the AVM and SVM groups (p < 0.003 and p < 0.003 vs. controls). Temporal lobe ADC values were significantly reduced in the AVM group (p < 0.001 vs. controls). Isolated mild ventriculomegaly is associated with distinct ADC value changes in different brain regions. This phenomenon could reflect the pathophysiology associated with different IMVM patterns. (orig.)

  3. Desenvolvimento do testículo de camundongo da fase fetal até a idade adulta Development of the mouse testis from fetal period to adulthood

    Directory of Open Access Journals (Sweden)

    Rozangela de Lucca Martins Sachetim

    1999-07-01

    Full Text Available O desenvolvimento do testículo de camundongo foi estudado desde o 15º dia de gestação até a idade adulta. As lâminas preparadas para estudo histológico em microscópio óptico foram tratadas pela técnica do ácido periódico - Schiff e pela hematoxilina de Harris (PAS + H. Na fase fetal, os túbulos seminíferos estão constituídos por gonócitos e células de sustentação imaturas. No tecido intersticial, observam-se as células de Leydig. A espermatogênese inicia-se logo após o nascimento. O epitélio seminífero torna-se mais espesso aos 14 dias pós-natal, onde se observam espermatócitos em prófase meiótica. Aos 21 dias pós-natal, o epitélio seminífero contém espermatogônias, espermatócitos e células de Sertoli. As primeiras espermátides são observadas aos 28 dias pós-natal e, aos 42 dias, já ocorrem espermátides maduras. Desde os 49 dias pós-natal, são observados espermatozóides na luz dos túbulos seminíferos. A partir dos 56 dias pós-natal, o epitélio seminífero, bem como o tecido intersticial, apresentam aspecto e características típicos do testículo do camundongo adulto.The development of mouse testis was studied from 15th day of fetal life up to adult age. The prepared slides for histological study in light microscopy were stained by periodic acid - Schiff and Haematoxylin of Harris (PAS + H. The results show that in fetal life the seminiferous tubules are constituted by gonocytes and immature sustentation cells. In the interstitial tissue, Leydig cells are found. Spermatogenesis begins soon after birth. The seminiferous epithelium becomes thicker at day 14 postnatal when spermatocytes in meiotic prophase are observed. At day 21 postnatal the seminiferous epithelium contains spermatogonia, spermatocytes and Sertoli cells. The first spermatids are observed at day 28 postnatal and at day 42 postnatal mature spermatids occur. From day 56 postnatal on the seminiferous epithelium, as well as the

  4. Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8

    OpenAIRE

    Grijota Martínez, María del Carmen; Díez, Diego; Morreale de Escobar, Gabriella; Bernal, Juan; Morte, Beatriz

    2011-01-01

    Mutations of the monocarboxylate transporter 8 gene (MCT8, SLC16A2) cause the Allan-Herndon-Dudley syndrome, an X-linked syndrome of severe intellectual deficit and neurological impairment. Mct8 transports thyroid hormones (T4 and T3), and the Allan-Herndon-Dudley syndrome is likely caused by lack of T3 transport to neurons during critical periods of fetal brain development. To evaluate the role of Mct8 in thyroid hormone action in the fetal brain we administered T4 or T3 to thyroidectomized ...

  5. LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage.

    Science.gov (United States)

    Mirendil, H; Thomas, E A; De Loera, C; Okada, K; Inomata, Y; Chun, J

    2015-04-07

    Genetic, environmental and neurodevelopmental factors are thought to underlie the onset of neuropsychiatric disorders such as schizophrenia. How these risk factors collectively contribute to pathology is unclear. Here, we present a mouse model of prenatal intracerebral hemorrhage--an identified risk factor for schizophrenia--using a serum-exposure paradigm. This model exhibits behavioral, neurochemical and schizophrenia-related gene expression alterations in adult females. Behavioral alterations in amphetamine-induced locomotion, prepulse inhibition, thigmotaxis and social interaction--in addition to increases in tyrosine hydroxylase-positive dopaminergic cells in the substantia nigra and ventral tegmental area and decreases in parvalbumin-positive cells in the prefrontal cortex--were induced upon prenatal serum exposure. Lysophosphatidic acid (LPA), a lipid component of serum, was identified as a key molecular initiator of schizophrenia-like sequelae induced by serum. Prenatal exposure to LPA alone phenocopied many of the schizophrenia-like alterations seen in the serum model, whereas pretreatment with an antagonist against the LPA receptor subtype LPA1 prevented many of the behavioral and neurochemical alterations. In addition, both prenatal serum and LPA exposure altered the expression of many genes and pathways related to schizophrenia, including the expression of Grin2b, Slc17a7 and Grid1. These findings demonstrate that aberrant LPA receptor signaling associated with fetal brain hemorrhage may contribute to the development of some neuropsychiatric disorders.

  6. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  7. Stochastic model of Tsc1 lesions in mouse brain.

    Directory of Open Access Journals (Sweden)

    Shilpa Prabhakar

    Full Text Available Tuberous sclerosis complex (TSC is an autosomal dominant disorder due to mutations in either TSC1 or TSC2 that affects many organs with hamartomas and tumors. TSC-associated brain lesions include subependymal nodules, subependymal giant cell astrocytomas and tubers. Neurologic manifestations in TSC comprise a high frequency of mental retardation and developmental disorders including autism, as well as epilepsy. Here, we describe a new mouse model of TSC brain lesions in which complete loss of Tsc1 is achieved in multiple brain cell types in a stochastic pattern. Injection of an adeno-associated virus vector encoding Cre recombinase into the cerebral ventricles of mice homozygous for a Tsc1 conditional allele on the day of birth led to reduced survival, and pathologic findings of enlarged neurons, cortical heterotopias, subependymal nodules, and hydrocephalus. The severity of clinical and pathologic findings as well as survival was shown to be dependent upon the dose and serotype of Cre virus injected. Although several other models of TSC brain disease exist, this model is unique in that the pathology reflects a variety of TSC-associated lesions involving different numbers and types of cells. This model provides a valuable and unique addition for therapeutic assessment.

  8. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    Science.gov (United States)

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.

  9. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  10. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  11. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  12. Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands.

    Science.gov (United States)

    Mizukoshi, Kenji; Koyama, Noriko; Hayashi, Toru; Zheng, Liguang; Matsuura, Sachiko; Kashimata, Masanori

    2016-04-15

    The hedgehog family includes Sonic hedgehog (Shh), Desert hedgehog, and Indian hedgehog, which are well known as a morphogens that play many important roles during development of numerous organs such as the tongue, pancreas, kidney, cartilage, teeth and salivary glands (SMG). In Shh null mice, abnormal development of the salivary gland is seen after embryonic day 14 (E14). Shh also induced lobule formation and lumen formation in acini-like structures in cultured E14 SMG. In this study, we investigated the relationship between Shh and epidermal growth factor (EGF)/ErbB signaling in developing fetal mouse SMG. Administration of Shh to cultured E13 SMG stimulated branching morphogenesis (BrM) and induced synthesis of mRNAs for EGF ligands and receptors of the ErbB family. Shh also stimulated activation of ErbB signaling system such as ERK1/2. AG1478, a specific inhibitor of ErbB receptors, completely suppressed BrM and activation of EGF/ErbB/ERK1/2 cascade in E13 SMGs cultured with Shh. The expressions of mRNA for Egf in mesenchyme and mRNA for Erbb1, Erbb2 and Erbb3 in epithelium of E13 SMG were specifically induced by administration of Shh. These results show that Shh stimulates BrM of fetal mouse SMG, at least in part, through activation of the EGF/ErbB/ERK1/2 signaling system.

  13. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  14. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  15. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  16. Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound.

    Science.gov (United States)

    Zhou, Yu-Qing; Cahill, Lindsay S; Wong, Michael D; Seed, Mike; Macgowan, Christopher K; Sled, John G

    2014-08-15

    This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies.

  17. Tsc2 Haploinsufficiency Has Limited Effects on Fetal Brain Cytokine Levels during Gestational Immune Activation

    Directory of Open Access Journals (Sweden)

    Dan Ehninger

    2014-01-01

    Full Text Available Dysregulated TSC/mTOR signaling may play a pathogenetic role in forms of syndromic autism, such as autism associated with tuberous sclerosis, a genetic disorder caused by heterozygous TSC1 or TSC2 mutations. Environmental risk factors, such as gestational viral infections, may, in some cases, also contribute to the pathogenesis of autism and related neuropsychiatric disorders. We have recently found that a heterozygous Tsc2 mutation and the poly I:C model of maternal immune activation (MIA interactively perturb fetal development and adult social behavior in mice, suggesting that these factors converge on shared pathways. TSC/mTOR signaling plays an important role in the modulation of immune responses, raising the possibility that the damage caused by MIA was greater in Tsc2+/− than in wildtype fetuses because of an exacerbated immune response in the mutants. Here, cytokine antibody arrays were employed to measure relative cytokine abundances in the fetal brain and the placenta during MIA. Cytokines were induced by gestational poly I:C but there was no obvious modulatory effect of Tsc2 haploinsufficiency. The data indicate that cytokine exposure during MIA is comparable in Tsc2 haploinsufficient and wildtype control fetuses, suggesting that downstream molecular and cellular processes may account for the interactive effects of Tsc2 haploinsufficiency and MIA.

  18. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals.

    Science.gov (United States)

    Landry, Jeremy P; Hawkins, Connor; Lee, Aaron; Coté, Alexandra; Balaban, Evan; Pompeiano, Maria

    2016-01-01

    cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late-gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia-related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2-sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2-sensing. HMOX2-positive and -negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2-positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia-induced activation of lower-brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2-containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2-sensing A1/C1 neurons.

  19. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains.

    Science.gov (United States)

    Miyazaki, Yuta; Song, Jae W; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  20. Quantitative magnetic resonance imaging of the fetal brain in utero: Methods and applications

    Institute of Scientific and Technical Information of China (English)

    Anat; Biegon; Chen; Hoffmann

    2014-01-01

    Application of modern magnetic resonance imaging(MRI) techniques to the live fetus in utero is a relatively recent endeavor. The relative advantages and disadvantages of clinical MRI relative to the widely used and accepted ultrasonographic approach are the subject of a continuing debate; however the focus of this review is on the even younger field of quantitative MRI as applied to non-invasive studies of fetal brain development. The techniques covered under this header include structural MRI when followed by quan-titative(e.g., volumetric) analysis, as well as quantita-tive analyses of diffusion weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI. The majority of the published work re-viewed here reflects information gathered from normal fetuses scanned during the 3rd trimester, with relatively smaller number of studies of pathological samples including common congenital pathologies such as ven-triculomegaly and viral infection.

  1. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    Science.gov (United States)

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  2. Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.

    Science.gov (United States)

    Gholipour, Ali; Akhondi-Asl, Alireza; Estroff, Judy A; Warfield, Simon K

    2012-04-15

    The recent development of motion robust super-resolution fetal brain MRI holds out the potential for dramatic new advances in volumetric and morphometric analysis. Volumetric analysis based on volumetric and morphometric biomarkers of the developing fetal brain must include segmentation. Automatic segmentation of fetal brain MRI is challenging, however, due to the highly variable size and shape of the developing brain; possible structural abnormalities; and the relatively poor resolution of fetal MRI scans. To overcome these limitations, we present a novel, constrained, multi-atlas, multi-shape automatic segmentation method that specifically addresses the challenge of segmenting multiple structures with similar intensity values in subjects with strong anatomic variability. Accordingly, we have applied this method to shape segmentation of normal, dilated, or fused lateral ventricles for quantitative analysis of ventriculomegaly (VM), which is a pivotal finding in the earliest stages of fetal brain development, and warrants further investigation. Utilizing these innovative techniques, we introduce novel volumetric and morphometric biomarkers of VM comparing these values to those that are generated by standard methods of VM analysis, i.e., by measuring the ventricular atrial diameter (AD) on manually selected sections of 2D ultrasound or 2D MRI. To this end, we studied 25 normal and abnormal fetuses in the gestation age (GA) range of 19 to 39 weeks (mean=28.26, stdev=6.56). This heterogeneous dataset was essentially used to 1) validate our segmentation method for normal and abnormal ventricles; and 2) show that the proposed biomarkers may provide improved detection of VM as compared to the AD measurement.

  3. Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons

    Directory of Open Access Journals (Sweden)

    Peter Kochunov

    2010-05-01

    Full Text Available The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17-25 of 26 weeks total gestation. Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of ten primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length axis of cortical sulci was unrelated to the growth along the short (depth axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r=-0.60;p<.10, while the same trend for long axis was positive and not significant (p=0.3;p=0.40. These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.

  4. Gene expression in the mouse brain following early pregnancy exposure to ethanol

    Directory of Open Access Journals (Sweden)

    Christine R. Zhang

    2016-12-01

    Full Text Available Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system [1]. Behavioural and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity [2]. The economic and social costs of these outcomes are substantial and profound [3,4]. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined. All array data are available at the Gene Expression Omnibus (GEO repository under accession number GSE87736.

  5. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice.

    Science.gov (United States)

    Meyer, Urs; Nyffeler, Myriel; Yee, Benjamin K; Knuesel, Irene; Feldon, Joram

    2008-05-01

    Maternal infection during pregnancy increases the risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. This association appears to be critically dependent on the precise prenatal timing. However, the extent to which distinct adult psychopathological and neuropathological traits may be sensitive to the precise times of prenatal immune activation remains to be further characterized. Here, we evaluated in a mouse model of prenatal immune challenge by the viral mimic, polyriboinosinic-polyribocytidilic acid (PolyIC), whether prenatal immune activation in early/middle and late gestation may influence the susceptibility to some of the critical cognitive, pharmacological, and neuroanatomical dysfunctions implicated in schizophrenia and autism. We revealed that PolyIC-induced prenatal immune challenge on gestation day (GD) 9 but not GD17 significantly impaired sensorimotor gating and reduced prefrontal dopamine D1 receptors in adulthood, whereas prenatal immune activation specifically in late gestation impaired working memory, potentiated the locomotor reaction to the NMDA-receptor antagonist dizocilpine, and reduced hippocampal NMDA-receptor subunit 1 expression. On the other hand, potentiation of the locomotor reaction to the dopamine-receptor agonist amphetamine and reduction in Reelin- and Parvalbumin-expressing prefrontal neurons emerged independently of the precise times of prenatal immune challenge. Our findings thus highlight that prenatal immune challenge during early/middle and late fetal development in mice leads to distinct brain and behavioral pathological symptom clusters in adulthood. Further examination and evaluation of in utero immune challenge at different times of gestation may provide important new insight into the neuroimmunological and neuropathological mechanisms underlying the segregation of different symptom clusters in heterogeneous neuropsychiatric disorders such as schizophrenia and autism.

  6. CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development.

    Science.gov (United States)

    Schneider, Eberhard; Dittrich, Marcus; Böck, Julia; Nanda, Indrajit; Müller, Tobias; Seidmann, Larissa; Tralau, Tim; Galetzka, Danuta; El Hajj, Nady; Haaf, Thomas

    2016-10-30

    Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    Science.gov (United States)

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  8. A digital atlas to characterize the mouse brain transcriptome.

    Directory of Open Access Journals (Sweden)

    James P Carson

    2005-09-01

    Full Text Available Massive amounts of data are being generated in an effort to represent for the brain the expression of all genes at cellular resolution. Critical to exploiting this effort is the ability to place these data into a common frame of reference. Here we have developed a computational method for annotating gene expression patterns in the context of a digital atlas to facilitate custom user queries and comparisons of this type of data. This procedure has been applied to 200 genes in the postnatal mouse brain. As an illustration of utility, we identify candidate genes that may be related to Parkinson disease by using the expression of a dopamine transporter in the substantia nigra as a search query pattern. In addition, we discover that transcription factor Rorb is down-regulated in the barrelless mutant relative to control mice by quantitative comparison of expression patterns in layer IV somatosensory cortex. The semi-automated annotation method developed here is applicable to a broad spectrum of complex tissues and data modalities.

  9. An MRI-based atlas and database of the developing mouse brain.

    Science.gov (United States)

    Chuang, Nelson; Mori, Susumu; Yamamoto, Akira; Jiang, Hangyi; Ye, Xin; Xu, Xin; Richards, Linda J; Nathans, Jeremy; Miller, Michael I; Toga, Arthur W; Sidman, Richard L; Zhang, Jiangyang

    2011-01-01

    The advent of mammalian gene engineering and genetically modified mouse models has led to renewed interest in developing resources for referencing and quantitative analysis of mouse brain anatomy. In this study, we used diffusion tensor imaging (DTI) for quantitative characterization of anatomical phenotypes in the developing mouse brain. As an anatomical reference for neuroscience research using mouse models, this paper presents DTI based atlases of ex vivo C57BL/6 mouse brains at several developmental stages. The atlas complements existing histology and MRI-based atlases by providing users access to three-dimensional, high-resolution images of the developing mouse brain, with distinct tissue contrasts and segmentations of major gray matter and white matter structures. The usefulness of the atlas and database was demonstrated by quantitative measurements of the development of major gray matter and white matter structures. Population average images of the mouse brain at several postnatal stages were created using large deformation diffeomorphic metric mapping and their anatomical variations were quantitatively characterized. The atlas and database enhance our ability to examine the neuroanatomy in normal or genetically engineered mouse strains and mouse models of neurological diseases.

  10. An MRI-based Atlas and Database of the Developing Mouse Brain

    Science.gov (United States)

    Chuang, Nelson; Mori, Susumu; Yamamoto, Akira; Jiang, Hangyi; Ye, Xin; Xu, Xin; Richards, Linda J.; Nathans, Jeremy; Miller, Michael I.; W.Toga, Arthur; Sidman, Richard L.; Zhang, Jiangyang

    2010-01-01

    The advent of mammalian gene engineering and genetically modified mouse models has led to renewed interest in developing resources for referencing and quantitative analysis of mouse brain anatomy. In this study, we used diffusion tensor imaging (DTI) for quantitative characterization of anatomical phenotypes in the developing mouse brain. As an anatomical reference for neuroscience research using mouse models, this paper presents DTI based atlases of ex vivo C57BL/6 mouse brains at several developmental stages. The atlas complements existing histology and MRI-based atlases by providing users access to three-dimensional, high-resolution images of the developing mouse brain, with distinct tissue contrasts and segmentations of major gray matter and white matter structures. The usefulness of the atlas and database was demonstrated by quantitative measurements of the development of major gray matter and white matter structures. Population average images of the mouse brain at several postnatal stages were created using large deformation diffeomorphic metric mapping and their anatomical variations were quantitatively characterized. The atlas and database enhance our ability to examine the neuroanatomy in normal or genetically engineered mouse strains and mouse models of neurological diseases. PMID:20656042

  11. LACK OF EXPRESSION OF EGF AND TGF-ALPHA IN THE FETAL MOUSE ALTERS FORMATION OF PROSTATIC EPITHELIAL BUDS AND INFLUENCES THE RESPONSE TO TCDD

    Science.gov (United States)

    Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation. Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,Ralph M. Albrecht, Judi...

  12. EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGFALPHA KO FETAL MOUSE PALATE

    Science.gov (United States)

    EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGF" KO FETAL MOUSE PALATE. Abbott, Barbara D.1; Boyd, Hadiya2; Wood, Carmen1; Held, Gary1. 1.EPA, ORD, NHEERL, RTD, US EPA, Research Triangle Park, NC, USA. 2MARC Program, NCCU, Durham, NC, USA. <...

  13. Intra-Amniotic LPS Induced Region-Specific Changes in Presynaptic Bouton Densities in the Ovine Fetal Brain

    Directory of Open Access Journals (Sweden)

    Eveline Strackx

    2015-01-01

    Full Text Available Rationale. Chorioamnionitis has been associated with increased risk for fetal brain damage. Although, it is now accepted that synaptic dysfunction might be responsible for functional deficits, synaptic densities/numbers after a fetal inflammatory challenge have not been studied in different regions yet. Therefore, we tested in this study the hypothesis that LPS-induced chorioamnionitis caused profound changes in synaptic densities in different regions of the fetal sheep brain. Material and Methods. Chorioamnionitis was induced by a 10 mg intra-amniotic LPS injection at two different exposure intervals. The fetal brain was studied at 125 days of gestation (term = 150 days either 2 (LPS2D group or 14 days (LPS14D group after LPS or saline injection (control group. Synaptophysin immunohistochemistry was used to quantify the presynaptic density in layers 2-3 and 5-6 of the motor cortex, somatosensory cortex, entorhinal cortex, and piriforme cortex, in the nucleus caudatus and putamen and in CA1/2, CA3, and dentate gyrus of the hippocampus. Results. There was a significant reduction in presynaptic bouton densities in layers 2-3 and 5-6 of the motor cortex and in layers 2-3 of the entorhinal and the somatosensory cortex, in the nucleus caudate and putamen and the CA1/2 and CA3 of the hippocampus in the LPS2D compared to control animals. Only in the motor cortex and putamen, the presynaptic density was significantly decreased in the LPS14 D compared to the control group. No changes were found in the dentate gyrus of the hippocampus and the piriforme cortex. Conclusion. We demonstrated that LPS-induced chorioamnionitis caused a decreased density in presynaptic boutons in different areas in the fetal brain. These synaptic changes seemed to be region-specific, with some regions being more affected than others, and seemed to be transient in some regions.

  14. Autologous Adrenal Medullary, Fetal Mesencephalic, and Fetal Adrenal Brain Transplantation in Parkinson's Disease: A Long-Term Postoperative Follow-Up

    Science.gov (United States)

    Madrazo, Ignacio; Franco-Bourland, Rebecca; Aguilera, Maricarmen; Ostrosky-Solis, Feggy; Madrazo, Mario; Cuevas, Carlos; Catrejon, Hugo; Guizar-Zahagun, Gabriel; Magallon, Eduardo

    1991-01-01

    We report on the clinical status of 5 patients with Parkinson's disease (PD) 3 years after autologous adrenal medullary (AM)-to-caudate nucleus (CN) implanfion, and of 2 PD patients, 2 years after fetal ventral mesencephalon (VM)- and fetal adrenal (A)-to-CN homotransplantation. Current clinical evaluation of 4 of the AM grafted patients revealed sustained bilateral amelioration of their PD signs, most notably of rgidity, postural imbalance and gait disturbances, resulting in a substantial improvement in their quality of life. the disease-related dystonia of one of them disappeared only 2 years after surgery. The levodopa requirements of 2 of these patients and the anticholinergic therapy of another have been reduced. In agreement with the satisfactory clinical evaluation of these 4 patients, their neuropsychological and electrophysiological improvements, initially registered 3 months after surgery, have been maintained for 3 years. After 1 year of significant recovery, the 5th patient of this group has almost returned to her preoperative state. The 2 homotransplanted patients also showed sustained bilateral improvement of their PD signs. Two years after surgery, the most improved signs of the fetal VM case were rigidity, bradykinesia, postural imbalance, gait disturbances and facial expression. The fetal A case has only shown amelioration of rigidity and bradykinesia. Neither of them has shown significant neuropsychological changes. Their current levodopa requirements are less than before surgery. The improvements shown here by PD patients after brain tissue grafts go beyond those obtained using any other therapeutic approach, when levodopa fails. Although more studies and the development of these procedures are obviously required, these initial human trials appear to be resisting the test of time. PMID:1782251

  15. Effect of intermittent umbilical cord occlusion on fetal respiratory activity and brain adenosine in late-gestation sheep.

    Science.gov (United States)

    Watson, Carole S; Schaefer, Rachel; White, Susan E; Homan, Jacobus H; Fraher, Laurence; Harding, Richard; Bocking, Alan D

    2002-01-01

    It was hypothesized that intermittent umbilical cord occlusion (UCO) would inhibit ovine fetal breathing movements (FBM) in association with increased cerebral adenosine levels. To test this hypothesis, on two successive days during late gestation (133-134 days; term = 146 days), microdialysis samples were collected from the brains of 10 chronically instrumented fetal sheep during 2-h periods of complete UCO induced every 30 min (Day 1: 2-min UCOs; Day 2: 4-min UCOs). Control fetuses (n = 10) underwent no UCO. Tracheal pressure was measured throughout. This regimen resulted in a decrease in fetal arterial PO2 (PaO2) during each UCO to 7.3 +/- 0.8 mmHg (Pfluid (ECF) adenosine during UCO increased by 219 +/- 215% (Pmechanisms.

  16. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    Science.gov (United States)

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P cells (P fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  17. An immunocytochemical study of the germinal layer vasculature in the developing fetal brain using Ulex europaeus 1 lectin.

    Science.gov (United States)

    Gould, S J; Howard, S

    1988-10-01

    The characteristics of the germinal matrix vasculature were studied in the developing fetal brain using immunocytochemical methods. A preliminary comparative immunocytochemical study was made on six fetal brains to compare endothelial staining by Ulex europaeus I lectin with that of antibody to Factor VIII related antigen. Ulex was found to stain germinal layer vessels better than Factor VIII related antigen. Subsequently, the germinal layers of a further 15 fetal and preterm infant brains ranging from 13 to 35 weeks' gestation were stained with Ulex europaeus I to demonstrate the vasculature. With increasing gestation, there was a gradual increase in vessel density, particularly of capillaries. This was not a uniform process. A plexus of capillaries was prominent immediately beneath the ependyma while the more central parts of the germinal matrix contained fewer, but often larger diameter, vessels. The variation in vessel density which was a feature of the later gestation brains may have implications for local blood flow and may be a factor in haemorrhage at this site.

  18. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  19. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells.

    Science.gov (United States)

    Mu, Xinyi; Wen, Jing; Guo, Meng; Wang, Jianwei; Li, Ge; Wang, Zhengpin; Wang, Yijing; Teng, Zhen; Cui, Yan; Xia, Guoliang

    2013-03-01

    Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.

  20. Maternal and fetal roles in bacterially-induced preterm labor in the mouse

    Science.gov (United States)

    FILIPOVICH, Yana; KLEIN, Jeremy; ZHOU, Ying; HIRSCH, Emmet

    2015-01-01

    BACKGROUND The relative roles of the mother and fetus in signaling for labor remain poorly understood. OBJECTIVE We previously demonstrated using gene-knockout (KO) mice that E. coli-induced preterm delivery is completely dependent upon MyD88, a toll-like receptor adaptor protein. Here, we leveraged this finding to conduct a genetic experiment testing whether the mother, the fetus, or both signal for parturition in bacterially induced labor. STUDY DESIGN Six different maternal/fetal genotype combinations for MyD88 were studied: Wild-type (WT) dams carrying either (1) WT or (2) MyD88 heterozygous (het) fetuses (generated by mating WT females with WT or MyD88-KO males, respectively); (3) WT dams carrying MyD88-KO fetuses (generated by replacing the ovaries of WT females with MyD88-KO ovaries, followed by mating with MyD88-KO males). A similar strategy was used to generate MyD88-KO dams carrying (4) MyD88-KO, (5) MyD88 het or (6) WT fetuses. On day 14.5 of gestation, mice received intrauterine injections of either 1 × 109 killed E. coli or sterile medium. Delivery of ≥1 fetus within 48h was considered preterm. A separate group of similarly treated pregnant mice was euthanized 5 hours after surgery for gene expression and tissue analysis. RESULTS E. coli-induced preterm delivery is dependent upon maternal and not fetal genotype: >95% of WT and fetal genotype (p=0.0001). In contrast, fetal survival in utero is influenced by fetal genotype: in MyD88-KO dams, in which premature birth rarely occurs, only 81% of WT and 86% of MyD88-heterozygous fetuses were alive 48 hours after surgery compared to 100% of MyD88-KO fetuses (p < 0.01). mRNAs for the inflammatory mediators IL-1β, TNF, IL-6 and COX-2 were elevated in uterine tissues only in WT mothers treated with E. coli, and were low or undetectable in the uteri of KO mothers or in animals treated with saline. Serum progesterone levels were lower in KO mothers with WT ovaries than in WT mothers with KO ovaries, but

  1. Maternal and fetal roles in bacterially induced preterm labor in the mouse.

    Science.gov (United States)

    Filipovich, Yana; Klein, Jeremy; Zhou, Ying; Hirsch, Emmet

    2016-03-01

    The relative roles of the mother and fetus in signaling for labor remain poorly understood. We previously demonstrated using gene knockout (KO) mice that Escherichia coli-induced preterm delivery is completely dependent on MyD88, a toll-like receptor adaptor protein. Here we leveraged this finding to conduct a genetic experiment testing whether the mother, the fetus, or both signal for parturition in bacterially induced labor. Six different maternal/fetal genotype combinations for MyD88 were studied: wild-type (WT) dams carrying one of the following: (1) WT or (2) MyD88 heterozygous (het) fetuses (generated by mating WT females with WT or MyD88-knockout [KO] males, respectively); (3) WT dams carrying MyD88-KO fetuses (generated by replacing the ovaries of WT females with MyD88-KO ovaries, followed by mating with MyD88-KO males); a similar strategy was used to generate MyD88-KO dams carrying (4) MyD88-KO, (5) MyD88 het, or (6) WT fetuses. On day 14.5 of gestation, mice received intrauterine injections of either 1 × 10(9) killed E coli or sterile medium. Delivery of ≥ 1 fetus within 48 hours was considered preterm. A separate group of similarly treated pregnant mice was euthanized 5 hours after surgery for gene expression and tissue analysis. E coli-induced preterm delivery is dependent on maternal and not fetal genotype: > 95% of WT and fetal genotype (P = .0001). In contrast, fetal survival in utero is influenced by fetal genotype: in MyD88-KO dams, in which premature birth rarely occurs, only 81% of WT and 86% of MyD88-heterozygous fetuses were alive 48 hours after surgery compared with 100% of MyD88-KO fetuses (P < .01). Messenger ribonucleic acids for the inflammatory mediators interleukin-1β, tumor necrosis factor, interleukin-6, and cyclooxygenase-2 were elevated in uterine tissues only in WT mothers treated with E coli and were low or undetectable in the uteri of KO mothers or in animals treated with saline. Serum progesterone levels were lower in KO

  2. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    Science.gov (United States)

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  3. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissue.

    Science.gov (United States)

    Chinopoulos, Christos; Zhang, Steven F; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A

    2011-01-01

    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subregions, such as ventral midbrain, hippocampus, or striatum, require pooling brain tissue from six to nine animals for a single mitochondrial preparation. Working with pooled tissue significantly decreases the quality of data because of the time required to dissect several brains. It also greatly increases the labor intensity and the cost of experiments as several animals are required per single data point. We describe a method for isolation of brain mitochondria from mouse striata or other 7-12 mg brain samples. The method utilizes a refrigerated table-top microtube centrifuge, and produces research grade quality mitochondria in amounts sufficient for performing multiple enzymatic and functional assays, thereby eliminating the necessity for pooling mouse brain tissue. We also include a method of measuring ADP-ATP exchange rate as a function of mitochondrial membrane potential (ΔΨm) in small amounts of isolated mitochondria, adapted to a plate reader format.

  4. Chronic cadmium exposure during pregnancy in the mouse: influence of exposure levels on fetal and maternal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Webster, W.S.

    1988-01-01

    The uptake and distribution of orally administered cadmium-109 was studied in pregnant mice. Female outbred QS mice were given cadmium (Cd) supplemented drinking water for 1 mo before pregnancy and for the duration of pregnancy. The water contained either 0.0015 ppm Cd, 0.24 ppm Cd, or 40 ppm Cd. For the duration of pregnancy, 1.48 micrograms Cd/l (0.0015 ppm) in each solution was in the form of /sup 109/Cd (1 mCi/l). Control mice were given distilled/deionized water. On the day before term the mice were killed and a variety of adult and fetal tissues were examined in a gamma counter to determine their /sup 109/Cd concentrations. For each group the /sup 109/Cd concentration was highest in the maternal gastrointestinal tract, liver, and kidneys and lowest in the central nervous system (CNS) and blood. In general, the /sup 109/Cd concentrations in each organ were similar for each group of mice and were therefore independent of the overall oral Cd dose. A notable exception was the lower level in the duodenum in the 40 ppm group. In the fetal unit the chorioallantoic placenta contained the highest concentration of /sup 109/Cd. Concentrations in the fetuses were very low, comparable to those in the adult CNS. The /sup 109/Cd levels in the fetuses from group A were about fivefold greater than those of the fetuses from group C. There was no statistically significant evidence of specific localization in the fetal brain, kidney, or liver.

  5. Scavenging of H2O2 by mouse brain mitochondria.

    Science.gov (United States)

    Starkov, Anatoly A; Andreyev, Alexander Yu; Zhang, Steven F; Starkova, Natalia N; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N

    2014-12-01

    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.

  6. Demonstration of Normal and Abnormal Fetal Brains Using 3D Printing from In Utero MR Imaging Data.

    Science.gov (United States)

    Jarvis, D; Griffiths, P D; Majewski, C

    2016-09-01

    3D printing is a new manufacturing technology that produces high-fidelity models of complex structures from 3D computer-aided design data. Radiology has been particularly quick to embrace the new technology because of the wide access to 3D datasets. Models have been used extensively to assist orthopedic, neurosurgical, and maxillofacial surgical planning. In this report, we describe methods used for 3D printing of the fetal brain by using data from in utero MR imaging.

  7. MEK kinase 1 activity is required for definitive erythropoiesis in the mouse fetal liver

    DEFF Research Database (Denmark)

    Bonnesen, Barbara; Ørskov, Cathrine; Rasmussen, Susanne

    2005-01-01

    KD) embryos have normal morphology but are anemic due to failure of definitive erythropoiesis. When Mekk1(DeltaKD) fetal liver cells were transferred to lethally irradiated wild-type hosts, mature red blood cells were generated from the mutant cells, suggesting that MEKK1 functions in a non......-cell-autonomous manner. Based on immunohistochemical and hemoglobin chain transcription analysis, we propose that the failure of definitive erythropoiesis is due to a deficiency in enucleation activity caused by insufficient macrophage-mediated nuclear DNA destruction....

  8. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  9. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    Science.gov (United States)

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against

  10. Interleukin-1 regulates Hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    NARCIS (Netherlands)

    C. Orelio (Claudia); M. Peeters (Marian); E. Haak (Esther); K. van der Horn (Karin); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractBackground Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are

  11. Interleukin-1 regulates Hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    NARCIS (Netherlands)

    C. Orelio (Claudia); M. Peeters (Marian); E. Haak (Esther); K. van der Horn (Karin); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractBackground Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are

  12. Activin A balances Sertoli and germ cell proliferation in the fetal mouse testis.

    Science.gov (United States)

    Mendis, Sirisha H S; Meachem, Sarah J; Sarraj, Mai A; Loveland, Kate L

    2011-02-01

    Activin affects many aspects of cellular development, including those essential for reproductive fitness. This study examined the contribution of activin A to murine fetal testicular development, revealing contrasting outcomes of activin actions on Sertoli cells and gonocytes. Shortly after sex determination, from Embryonic Day 12.5 (E12.5) through to birth (0 dpp), the activin A subunit transcript (Inhba) level rises in testis but not ovary, followed closely by the Inha transcript (encoding the inhibitory inhibin alpha subunit). Activin receptor transcript levels also change, with Acvr1 (encoding ALK2) and Acvr2b (ActRIIB) significantly higher and lower, respectively, at 0 dpp compared with E13.5 and E15.5. Transcripts encoding the signaling mediators Smad1, Smad3, and Smad4 were higher at 0 dpp compared with E13.5 and E15.5, whereas Smad2, Smad5, and Smad7 were lower. Detection of phosphorylated (P-)SMAD2/3 in nearly all testis cell nuclei indicated widespread transforming growth factor beta (TGFB) and/or activin ligand signaling activity. In contrast to wild-type littermates, activin betaA subunit knockout (Inhba(-/-)) mice have significantly smaller testes at birth, attributable to a 50% lower Sertoli cell number and decreased Sertoli cell proliferation from E13.5. Inhba(-/-) testes contained twice the normal gonocyte number at birth, with some appearing to bypass quiescence. Persistence of widespread P-SMAD2/3 in Inhba(-/-) cells indicates other TGFB superfamily ligands are active in fetal testes. Significant differences in Smad and cell cycle regulator transcript levels correlating to Inhba gene dosage correspond to differences in Sertoli and germ cell numbers. In Inhba(-/-) testes, Cdkn1a (encoding p21(cip1)), identified previously in fetal gonocytes, was lower at E13.5, whereas Cdkn1b (encoding p(27kip1) in somatic cells) was lower at birth, and cyclin D2 mRNA and protein were lower at E15.5 and 0 dpp. Thus, activin A dosage contributes to establishing the

  13. The hemodynamic basis for positional- and inter-fetal dependent effects in dual arterial supply of mouse pregnancies.

    Directory of Open Access Journals (Sweden)

    Tal Raz

    Full Text Available In mammalian pregnancy, maternal cardiovascular adaptations must match the requirements of the growing fetus(es, and respond to physiologic and pathologic conditions. Such adaptations are particularly demanding for mammals bearing large-litter pregnancies, with their inherent conflict between the interests of each individual fetus and the welfare of the entire progeny. The mouse is the most common animal model used to study development and genetics, as well as pregnancy-related diseases. Previous studies suggested that in mice, maternal blood flow to the placentas occurs via a single arterial uterine loop generated by arterial-arterial anastomosis of the uterine artery to the uterine branch of the ovarian artery, resulting in counter bi-directional blood flow. However, we provide here experimental evidence that each placenta is actually supplied by two distinct arterial inputs stemming from the uterine artery and from the uterine branch of the ovarian artery, with position-dependent contribution of flow from each source. Moreover, we report significant positional- and inter-fetal dependent alteration of placental perfusion, which were detected by in vivo MRI and fluorescence imaging. Maternal blood flow to the placentas was dependent on litter size and was attenuated for placentas located centrally along the uterine horn. Distinctive apposing, inter-fetal hemodynamic effects of either reduced or elevated maternal blood flow, were measured for placenta of normal fetuses that are positioned adjacent to either pathological, or to hypovascular Akt1-deficient placentas, respectively. The results reported here underscore the critical importance of confounding local and systemic in utero effects on phenotype presentation, in general and in the setting of genetically modified mice. The unique robustness and plasticity of the uterine vasculature architecture, as reported in this study, can explain the ability to accommodate varying litter sizes, sustain

  14. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely

  15. Doublecortin-like knockdown in the adult mouse brain : implications for neurogenesis, neuroplasticity and behaviour

    NARCIS (Netherlands)

    Saaltink, Dirk-Jan

    2014-01-01

    The results in this thesis showed for the first time doublecortin-like (DCL)-specific expression in the adult mouse brain. Besides the expected regions with the capacity to generate new neurons (hippocampus and olfactory forebrain), DCL expression was found in three novel brain areas namely hypothal

  16. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  17. Protocadherin 11X/Y a human-specific gene pair: an immunohistochemical survey of fetal and adult brains.

    Science.gov (United States)

    Priddle, Thomas H; Crow, Tim J

    2013-08-01

    Protocadherins 11X and 11Y are cell adhesion molecules of the δ1-protocadherin family. Pcdh11X is present throughout the mammalian radiation; however, 6 million years ago (MYA), a reduplicative translocation of the Xq21.3 block onto what is now human Yp11 created the Homo sapiens-specific PCDH11Y. Therefore, modern human females express PCDH11X whereas males express both PCDH11X and PCDH11Y. PCDH11X/Y has been subject to accelerated evolution resulting in human-specific changes to both proteins, most notably 2 cysteine substitutions in the PCDH11X ectodomain that may alter binding characteristics. The PCDH11X/Y gene pair is postulated to be critical to aspects of human brain evolution related to the neural correlates of language. Therefore, we raised antibodies to investigate the temporal and spatial expression of PCDH11X/Y in cortical and sub-cortical areas of the human fetal brain between 12 and 34 postconceptional weeks. We then used the antibodies to determine if this expression was consistent in a series of adult brains. PCDH11X/Y immunoreactivity was detectable at all developmental stages. Strong expression was detected in the fetal neocortex, ganglionic eminences, cerebellum, and inferior olive. In the adult brain, the cerebral cortex, hippocampal formation, and cerebellum were strongly immunoreactive, with expression also detectable in the brainstem.

  18. Effects of maternal administration of endoxan, vitamin A and vitamin B12 on the development of the fetal spinal cord of the albino mouse.

    Science.gov (United States)

    Nawar, N N; Sakla, F B; Mahran, Z Y

    1979-01-01

    The effects of maternal administration of endoxan, vitamin A and vitamine B12 were studied on the cervical fetal spinal cord of the albino mouse. Endoxan caused dorsal and ventral herniation of the spinal cord, chromatolysis and degeneration of the neuroblasts together with neuroglial proliferation. Vitamin A and B12 resulted in an increase in the surface areas of both grey and white matter and an increase in the volume of the neuroblasts. The possible mechanisms concerned were discussed.

  19. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  20. Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kanako Miyabayashi

    Full Text Available Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.

  1. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life.

    Science.gov (United States)

    Stachowiak, Ewa K; Srinivasan, Malathi; Stachowiak, Michal K; Patel, Mulchand S

    2013-12-01

    Fetal development in an obese maternal intrauterine environment has been shown to predispose the offspring for a number of metabolic disorders in later life. The observation that a large percentage of women of child-bearing age in the US are overweight/obese during pregnancy is therefore a source of concern. A high fat (HF) diet-induced obesity in female rats has been used as a model for maternal obesity. The objective of this study was to determine cellular development in brains of term fetuses of obese rats fed a HF diet from the time of weaning. Fetal brains were dissected out on gestational day 21 and processed for immunohistochemical analysis in the hypothalamic as well as extra-hypothalamic regions. The major observation of this study is that fetal development in the obese HF female rat induced several alterations in the HF fetal brain. Marked increases were observed in orexigenic signaling and a significant decrease was observed for anorexigenic signaling in the vicinity of the 3rd ventricle in HF brains. Additionally, our results indicated diminished migration and maturation of stem-like cells in the 3rd ventricular region as well as in the brain cortex. The results from the present study indicate developmental alterations in the hypothalamic and extra-hypothalamic regions in the HF fetal brain suggestive of a predisposition for the development of obesity and possibly neurodevelopmental abnormalities in the offspring.

  2. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Seshamani, Sharmishtaa; Kroenke, Christopher

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect...... to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction...... (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired...

  3. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    Directory of Open Access Journals (Sweden)

    Tomonori eFurukawa

    2014-03-01

    Full Text Available γ-Aminobutyric acid (GABA depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of cells labeled to detect GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidinoethanesulfonic acid (GES, and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl oxobutyric acid (DCPIB, as examined through high-performance liquid chromatography (HPLC. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the

  4. Effects of fried potato chip supplementation on mouse pregnancy and fetal development.

    Science.gov (United States)

    El-Sayyad, Hassan I; Abou-Egla, Mohamed H; El-Sayyad, Fawkia I; El-Ghawet, Heba A; Gaur, Rajiv L; Fernando, Augusta; Raj, Madhwa H G; Ouhtit, Allal

    2011-03-01

    Acrylamide (ACR), a proven rodent carcinogen, is present at significantly high quantities in commonly consumed foods such as potato chips, raising a health concern worldwide. The effects of ACR and fried potato chips (FPC) on pregnant mice and their offspring before and after birth were investigated and compared. In the pregnant mice, similar histologic abnormalities were found in various tissues for ACR intoxication and FPC supplementation. Drastic alterations were mainly seen in the liver, kidney, heart muscle, and epiphyseal cartilage of experimental dams. ACR and FPC increased the rate of abortion and neonatal mortality and decreased the total number, body weight, size, and crown-rump length of the offspring before and after birth. Interestingly, however, higher rates of congenital malformations were observed in the FPC-treated group. Although ossification of axial and appendicular bones was markedly retarded during fetal development, some ossified bones were missing in newly born offspring of treated groups. Furthermore, the incidence of missing ossification centers was higher in the FPC-treated than in the ACR-treated neonates. These results suggest that FPC can cause hazardous health effects and warrant a systematic study on the health effects of consumption of FPC and French fries in the general population. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Stephen Mason

    2012-01-01

    Full Text Available Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P<0.01, and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.

  6. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

    Science.gov (United States)

    Zhao, Yunze; Zhou, Jie; Liu, Dan; Dong, Fang; Cheng, Hui; Wang, Weili; Pang, Yakun; Wang, Yajie; Mu, Xiaohuan; Ni, Yanli; Li, Zhuan; Xu, Huiyu; Hao, Sha; Wang, Xiaochen; Ma, Shihui; Wang, Qian-fei; Xiao, Guozhi; Yuan, Weiping; Liu, Bing; Cheng, Tao

    2015-11-19

    The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.

  7. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery.

    Science.gov (United States)

    Tyzio, Roman; Cossart, Rosa; Khalilov, Ilgam; Minlebaev, Marat; Hübner, Christian A; Represa, Alfonso; Ben-Ari, Yehezkel; Khazipov, Rustem

    2006-12-15

    We report a signaling mechanism in rats between mother and fetus aimed at preparing fetal neurons for delivery. In immature neurons, gamma-aminobutyric acid (GABA) is the primary excitatory neurotransmitter. We found that, shortly before delivery, there is a transient reduction in the intracellular chloride concentration and an excitatory-to-inhibitory switch of GABA actions. These events were triggered by oxytocin, an essential maternal hormone for labor. In vivo administration of an oxytocin receptor antagonist before delivery prevented the switch of GABA actions in fetal neurons and aggravated the severity of anoxic episodes. Thus, maternal oxytocin inhibits fetal neurons and increases their resistance to insults during delivery.

  8. An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways.

    Science.gov (United States)

    Jung, Sung Yun; Choi, Jong Min; Rousseaux, Maxime W C; Malovannaya, Anna; Kim, Jean J; Kutzera, Joachim; Wang, Yi; Huang, Yin; Zhu, Weimin; Maity, Suman; Zoghbi, Huda Yahya; Qin, Jun

    2017-04-01

    Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm(3) in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Identification of a set of genes showing regionally enriched expression in the mouse brain

    Directory of Open Access Journals (Sweden)

    Marra Marco A

    2008-07-01

    Full Text Available Abstract Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters ( Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  10. Visual deficits in a mouse model of Fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Crystal L Lantz

    2014-10-01

    Full Text Available Alcohol consumption during pregnancy can lead to a multitude of neurological problems in offspring, varying from subtle behavioral changes to severe mental retardation. These alterations are collectively referred to as Fetal Alcohol Spectrum Disorders (FASD. Early alcohol exposure can strongly affect the visual system and children with FASD can exhibit an amblyopia-like pattern of visual acuity deficits even in the absence of optical and oculormotor disruption.Here we test whether early alcohol exposure can lead to a disruption in visual acuity, using a model of FASD to mimic alcohol consumption in the last months of human gestation. To accomplish this, mice were exposed to ethanol (5g/kg i.p or saline on postnatal days (P 5, 7 and 9. Two to three weeks later we recorded visually evoked potentials (VEPs to assess spatial frequency detection and contrast sensitivity, conducted electroretinography (ERGs to further assess visual function and imaged retinotopy using optical imaging of intrinsic signals. We observed that animals exposed to ethanol displayed spatial frequency acuity curves similar to controls. However, ethanol-treated animals showed a significant deficit in contrast sensitivity. Moreover, ERGs revealed a market decrease in both a- and b- waves amplitudes, and optical imaging suggest that both elevation and azimuth maps in ethanol-treated animals have a 10-20o greater map tilt compared to saline-treated controls. Overall, our findings suggest that binge alcohol drinking restricted to the last months of gestation in humans can lead to marked deficits in visual function.

  11. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    Science.gov (United States)

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  12. Brain iron accumulation in unexplained fetal and infant death victims with smoker mothers-The possible involvement of maternal methemoglobinemia

    Directory of Open Access Journals (Sweden)

    Corna Melissa F

    2011-07-01

    Full Text Available Abstract Background Iron is involved in important vital functions as an essential component of the oxygen-transporting heme mechanism. In this study we aimed to evaluate whether oxidative metabolites from maternal cigarette smoke could affect iron homeostasis in the brain of victims of sudden unexplained fetal and infant death, maybe through the induction of maternal hemoglobin damage, such as in case of methemoglobinemia. Methods Histochemical investigations by Prussian blue reaction were made on brain nonheme ferric iron deposits, gaining detailed data on their localization in the brainstem and cerebellum of victims of sudden death and controls. The Gless and Marsland's modification of Bielschowsky's was used to identify neuronal cell bodies and neurofilaments. Results Our approach highlighted accumulations of blue granulations, indicative of iron positive reactions, in the brainstem and cerebellum of 33% of victims of sudden death and in none of the control group. The modified Bielschowsky's method confirmed that the cells with iron accumulations were neuronal cells. Conclusions We propose that the free iron deposition in the brain of sudden fetal and infant death victims could be a catabolic product of maternal methemoglobinemia, a biomarker of oxidative stress likely due to nicotine absorption.

  13. Behavioural effects of near-term acute fetal hypoxia in a small precocial animal, the spiny mouse (Acomys cahirinus).

    Science.gov (United States)

    Ireland, Zoe; Dickinson, Hayley; Fleiss, Bobbi; Hutton, Lisa C; Walker, David W

    2010-01-01

    We have previously developed a model of near-term intra-uterine hypoxia producing significant neonatal mortality (37%) in a small laboratory animal - the spiny mouse - which has precocial offspring at birth. The aim of the present study was to determine if this insult resulted in the appearance of behavioural abnormalities in those offspring which survived the hypoxic delivery. Behavioural tests assessed gait (using footprint patterns), motor coordination and balance on an accelerating rotarod, and spontaneous locomotion and exploration in an open field. We found that the near-term acute hypoxic episode produced a mild neurological deficit in the early postnatal period. In comparison to vaginally delivered controls, hypoxia pups were able to remain on the accelerating rotarod for significantly shorter durations on postnatal days 1-2, and in the open field they travelled significantly shorter distances, jumped less, and spent a greater percentage of time stationary on postnatal days 5 and 15. No changes were observed in gait. Unlike some rodent models of cerebral hypoxia-ischaemia, macroscopic examination of the brain on postnatal day 5 showed no gross cystic lesions, oedema or infarct. Future studies should be directed at identifying hypoxia-induced alterations in the function of specific brain regions, and assessing if maternal administration of neuroprotective agents can prevent against hypoxia-induced neurological deficits and brain damage that occur at birth.

  14. Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy.

    Science.gov (United States)

    Silvestri, Ludovico; Bria, Alessandro; Costantini, Irene; Sacconi, Leonardo; Peng, Hanchuan; Iannello, Giulio; Pavone, Francesco Saverio

    2013-10-08

    Understanding the architecture of mammalian brain at single-cell resolution is one of the key issues of neuroscience. However, mapping neuronal soma and projections throughout the whole brain is still challenging for imaging and data management technologies. Indeed, macroscopic volumes need to be reconstructed with high resolution and contrast in a reasonable time, producing datasets in the TeraByte range. We recently demonstrated an optical method (confocal light sheet microscopy, CLSM) capable of obtaining micron-scale reconstruction of entire mouse brains labeled with enhanced green fluorescent protein (EGFP). Combining light sheet illumination and confocal detection, CLSM allows deep imaging inside macroscopic cleared specimens with high contrast and speed. Here we describe the complete experimental pipeline to obtain comprehensive and human-readable images of entire mouse brains labeled with fluorescent proteins. The clearing and the mounting procedures are described, together with the steps to perform an optical tomography on its whole volume by acquiring many parallel adjacent stacks. We showed the usage of open-source custom-made software tools enabling stitching of the multiple stacks and multi-resolution data navigation. Finally, we illustrated some example of brain maps: the cerebellum from an L7-GFP transgenic mouse, in which all Purkinje cells are selectively labeled, and the whole brain from a thy1-GFP-M mouse, characterized by a random sparse neuronal labeling.

  15. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    Science.gov (United States)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  16. Genetic mouse models to study blood–brain barrier development and function

    OpenAIRE

    Sohet, Fabien; Daneman, Richard

    2013-01-01

    The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study th...

  17. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  18. High-speed label-free functional photoacoustic microscopy of mouse brain in action.

    Science.gov (United States)

    Yao, Junjie; Wang, Lidai; Yang, Joon-Mo; Maslov, Konstantin I; Wong, Terence T W; Li, Lei; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V

    2015-05-01

    We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.

  19. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  20. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke...... neuronal cell death, edema and inflammation, thereby influencing the survival of endangered neurons in cerebral ischemia....

  1. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.

    Science.gov (United States)

    Feng, Yan-Min; Liang, Gui-Jin; Pan, Bo; Qin, Xun-Si; Zhang, Xi-Feng; Chen, Chun-Lei; Li, Lan; Cheng, Shun-Feng; De Felici, Massimo; Shen, Wei

    2014-01-01

    A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.

  2. Mapping social behavior-induced brain activation at cellular resolution in the mouse.

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J; Rockland, Kathleen S; Seung, H Sebastian; Osten, Pavel

    2015-01-13

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  3. Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse

    Directory of Open Access Journals (Sweden)

    Yongsoo Kim

    2015-01-01

    Full Text Available Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  4. Prolactin transport into mouse brain is independent of prolactin receptor.

    Science.gov (United States)

    Brown, Rosemary S E; Wyatt, Amanda K; Herbison, Ryan E; Knowles, Penelope J; Ladyman, Sharon R; Binart, Nadine; Banks, William A; Grattan, David R

    2016-02-01

    The anterior pituitary hormone prolactin exerts important physiologic actions in the brain. However, the mechanism by which prolactin crosses the blood-brain barrier and enters the brain is not completely understood. On the basis of high expression of the prolactin receptor in the choroid plexus, it has been hypothesized that the receptor may bind to prolactin in the blood and translocate it into the cerebrospinal fluid (CSF). This study aimed to test this hypothesis by investigating transport of (125)I-labeled prolactin ((125)I-prolactin) into the brain of female mice in the presence and absence of the prolactin receptor (PRLR(-/-)). Peripherally administered prolactin rapidly activates brain neurons, as evidenced by prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) in neurons within 30 min of administration. The transport of prolactin into the brain was saturable, with transport effectively blocked only by a very high dose of unlabeled ovine prolactin. Transport was regulated, as in lactating mice with chronically elevated levels of prolactin, the rate of (125)I-prolactin transport into the brain was significantly increased compared to nonlactating controls. There was no change in the rate of (125)I-prolactin transport into the brain in PRLR(-/-) mice lacking functional prolactin receptors compared to control mice, indicating transport is independent of the prolactin receptor. These data suggest that prolactin transport into the brain involves another as yet unidentified transporter molecule. Because CSF levels of (125)I-prolactin were very low, even up to 90 min after administration, the data suggest that CSF is not the major route by which blood prolactin gains access to neurons in the brain.

  5. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain.

    Science.gov (United States)

    Calvo, R; Obregón, M J; Ruiz de Oña, C; Escobar del Rey, F; Morreale de Escobar, G

    1990-09-01

    To study the protective effects of maternal thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in congenital hypothyroidism, we gave pregnant rats methimazole (MMI), an antithyroid drug that crosses the placenta, and infused them with three different doses of T4 or T3. The concentrations of both T4 and T3 were determined in maternal and fetal plasma and tissues (obtained near term) by specific RIAs. Several thyroid hormone-dependent biological end-points were also measured. MMI treatment resulted in marked fetal T4 and T3 deficiency. Infusion of T4 into the mothers increased both these pools in a dose-dependent fashion. There was a preferential increase of T3 in the fetal brain. Thus, with a T4 dose maintaining maternal euthyroidism, fetal brain T3 reached normal values, although fetal plasma T4 was 40% of normal and plasma TSH was high. The infusion of T3 pool into the mothers increased the total fetal extrathyroidal T3 pool in a dose-dependent fashion. The fetal T4 pools were not increased, however, and this deprived the fetal brain (and possibly the pituitary) of local generation of T3 from T4. As a consequence, fetal brain T3 deficiency was not mitigated even when dams were infused with a toxic dose of T3. The results show that (a) there is a preferential protection of the brain of the hypothyroid fetus from T3 deficiency; (b) maternal T4, but not T3, plays a crucial role in this protection, and (c) any condition which lowers maternal T4 (including treatment with T3) is potentially harmful for the brain of a hypothyroid fetus. Recent confirmation of transplacental passage of T4 in women at term suggests that present results are relevant for human fetuses with impairment of thyroid function. Finding signs of hypothyroidism at birth does not necessarily mean that the brain was unprotected in utero, provided maternal T4 is normal. It is crucial to realize that maintainance of maternal "euthyroidism" is not sufficient, as despite hypothyroxinemia, the mothers may be

  6. 胎儿炎症反应与早产儿脑损伤%Fetal inflammatory response and brain injury in preterm newborns

    Institute of Scientific and Technical Information of China (English)

    马江林

    2014-01-01

    宫内感染后胎儿炎症反应在早产及早产儿脑损伤中发挥重要作用.胎儿炎症反应表现为胎儿循环中前炎症细胞因子增加.炎症信号可通过血脑屏障启动胎儿神经炎症反应,导致发育中大脑损伤.全面理解胎儿炎症反应有助于提出干预措施并改善早产儿神经发育结局.该文就胎儿炎症反应与早产儿脑损伤相关问题作一综述.%The fetal inflammatory response to intrauterine infection plays a crucial role in the pathogenesis of preterm birth and preterm brain injury.The fetal inflammatory response is characterized by elevated levels of proinflammatory cytokines in the fetal circulation.The inflammation signal is likely transmitted across the blood-brain barrier and initiates a neuroinflammatory response and triggers damage in the developing brain.A better understanding of the fetal inflammatory response will help design interventions to improve neurodevelopmental outcomes after preterm birth.This review summarizes researches of fetal inflammatory response and brain injury in the preterm newborn.

  7. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  8. A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation.

    Science.gov (United States)

    Dittrich, Eva; Riklin Raviv, Tammy; Kasprian, Gregor; Donner, René; Brugger, Peter C; Prayer, Daniela; Langs, Georg

    2014-01-01

    Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain development, and summarize observations from a representative sample of individuals. Collecting a sufficiently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly developing structures is challenging but necessary for large population studies and clinical application. We propose a method for the semi-supervised learning of a spatio-temporal latent atlas of fetal brain development, and corresponding segmentations of emerging cerebral structures, such as the ventricles or cortex. The atlas is based on the annotation of a few examples, and a large number of imaging data without annotation. It models the morphological and developmental variability across the population. Furthermore, it serves as basis for the estimation of a structures' morphological age, and its deviation from the nominal gestational age during the assessment of pathologies. Experimental results covering the gestational period of 20-30 gestational weeks demonstrate segmentation accuracy achievable with minimal annotation, and precision of morphological age estimation. Age estimation results on fetuses suffering from lissencephaly demonstrate that they detect significant differences in the age offset compared to a control group. Copyright © 2013. Published by Elsevier B.V.

  9. Mature and Precursor Brain-Derived Neurotrophic Factor Have Individual Roles in the Mouse Olfactory Bulb

    OpenAIRE

    Thomas Gerald Mast; Debra Ann Fadool

    2012-01-01

    BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysio...

  10. Connectome and Maturation Profiles of the Developing Mouse Brain Using Diffusion Tensor Imaging.

    Science.gov (United States)

    Ingalhalikar, Madhura; Parker, Drew; Ghanbari, Yasser; Smith, Alex; Hua, Kegang; Mori, Susumu; Abel, Ted; Davatzikos, Christos; Verma, Ragini

    2015-09-01

    This paper presents a comprehensive effort to establish a structural mouse connectome using diffusion tensor magnetic resonance imaging coupled with connectivity analysis tools. This work lays the foundation for imaging-based structural connectomics of the mouse brain, potentially facilitating a whole-brain network analysis to quantify brain changes in connectivity during development, as well as deviations from it related to genetic effects. A connectomic trajectory of maturation during postnatal ages 2-80 days is presented in the C57BL/6J mouse strain, using a whole-brain connectivity analysis, followed by investigations based on local and global network features. The global network measures of density, global efficiency, and modularity demonstrated a nonlinear relationship with age. The regional network metrics, namely degree and local efficiency, displayed a differential change in the major subcortical structures such as the thalamus and hippocampus, and cortical regions such as visual and motor cortex. Finally, the connectomes were used to derive an index of "brain connectivity index," which demonstrated a high correlation (r = 0.95) with the chronological age, indicating that brain connectivity is a good marker of normal age progression, hence valuable in detecting subtle deviations from normality caused by genetic, environmental, or pharmacological manipulations.

  11. Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery.

    Science.gov (United States)

    Aggarwal, M; Zhang, J; Miller, M I; Sidman, R L; Mori, S

    2009-09-15

    Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: postnatal day (P) 7, P14, P21, P28, P63 and in adults (P140-P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.

  12. Magnetic Resonance Imaging and Micro-Computed Tomography Combined Atlas of Developing and Adult Mouse Brains for Stereotaxic Surgery

    Science.gov (United States)

    Aggarwal, Manisha; Zhang, Jiangyang; Miller, Michael I.; Sidman, Richard L.; Mori, Susumu

    2009-01-01

    Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. In this study, three-dimensional stereotaxic atlases of C57BL/6J mouse brains at six postnatal developmental stages: P7, P14, P21, P28, P63 and in adults (P140–P160) were developed, using diffusion tensor imaging (DTI) and micro-computed tomography (CT). At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo MRI adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains. PMID:19490934

  13. Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse.

    Directory of Open Access Journals (Sweden)

    Rui Lan Zhang

    Full Text Available Adult neural stem cells give rise to neurons, oligodendrocytes and astrocytes. Aging reduces neural stem cells. Using an inducible nestin-CreER(T2/R26R-yellow fluorescent protein (YFP mouse, we investigated the effect of Sildenafil, a phosphodiesterase type 5 (PDE5 inhibitor, on nestin lineage neural stem cells and their progeny in the ischemic brain of the middle-aged mouse. We showed that focal cerebral ischemia induced nestin lineage neural stem cells in the subventricular zone (SVZ of the lateral ventricles and nestin expressing NeuN positive neurons and adenomatous polyposis coli (APC positive mature oligodendrocytes in the ischemic striatum and corpus callosum in the aged mouse. Treatment of the ischemic middle-aged mouse with Sildenafil increased nestin expressing neural stem cells, mature neurons, and oligodendrocytes by 33, 75, and 30%, respectively, in the ischemic brain. These data indicate that Sildenafil amplifies nestin expressing neural stem cells and their neuronal and oligodendrocyte progeny in the ischemic brain of the middle-aged mouse.

  14. An ultrahigh resolution SPECT system for I-125 mouse brain imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign (United States)], E-mail: ljmeng@umich.edu; Fu, G. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign (United States); Roy, E.J.; Suppe, B. [Department of Pathology, University of Illinois, Urbana-Champaign (United States); Chen, C.T. [Department of Radiology, University of Chicago (United States)

    2009-03-01

    This paper presents some initial experimental results obtained with a dual-head prototype single photon emission microscope system (SPEM) that is dedicated to mouse brain studies using I-125 labeled radiotracers. In particular, this system will be used for in vivo tacking of radiolabeled T cells in mouse brain. This system is based on the use of the intensified electron multiplying charge-coupled device (I-EMCCD) camera that offers the combination of an excellent intrinsic spatial resolution, a good signal-to-noise ratio, a large active area and a reasonable detection efficiency over an energy range between 27-140 keV. In this study, the dual-head SPEM system was evaluated using both resolution phantoms and a mouse with locally injected T cells labeled with I-125. It was demonstrated that for a relatively concentrated source object, the current dual-head SPEM system is capable of visualizing the tiny amount of radioactivity ({approx}12 nCi) carried by a very small number (<1000) of T cells. The current SPEM system design allows four or six camera heads to be installed in a stationary system configuration that offers a doubled or tripled sensitivity at a spatial resolution similar to that obtained with the dual-head system. This development would provide a powerful tool for in vivo and non-invasive tracking of radiolabeled T cells in mouse brain and potentially for other rodent brain imaging studies.

  15. An ultrahigh resolution SPECT system for I-125 mouse brain imaging studies

    Science.gov (United States)

    Meng, L. J.; Fu, G.; Roy, E. J.; Suppe, B.; Chen, C. T.

    2009-03-01

    This paper presents some initial experimental results obtained with a dual-head prototype single photon emission microscope system (SPEM) that is dedicated to mouse brain studies using I-125 labeled radiotracers. In particular, this system will be used for in vivo tacking of radiolabeled T cells in mouse brain. This system is based on the use of the intensified electron multiplying charge-coupled device (I-EMCCD) camera that offers the combination of an excellent intrinsic spatial resolution, a good signal-to-noise ratio, a large active area and a reasonable detection efficiency over an energy range between 27-140 keV. In this study, the dual-head SPEM system was evaluated using both resolution phantoms and a mouse with locally injected T cells labeled with I-125. It was demonstrated that for a relatively concentrated source object, the current dual-head SPEM system is capable of visualizing the tiny amount of radioactivity (˜12 nCi) carried by a very small number (<1000) of T cells. The current SPEM system design allows four or six camera heads to be installed in a stationary system configuration that offers a doubled or tripled sensitivity at a spatial resolution similar to that obtained with the dual-head system. This development would provide a powerful tool for in vivo and non-invasive tracking of radiolabeled T cells in mouse brain and potentially for other rodent brain imaging studies.

  16. Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.

    Science.gov (United States)

    Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan

    2008-04-01

    We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.

  17. Quantitative analysis of cytokine-induced vascular toxicity and vascular leak in the mouse brain.

    Science.gov (United States)

    Irwan, Yetty Y; Feng, Yi; Gach, H Michael; Symanowski, James T; McGregor, John R; Veni, Gopalkrishna; Schabel, Matthias; Samlowski, Wolfram E

    2009-09-30

    A storm of inflammatory cytokines is released during treatment with pro-inflammatory cytokines, such as interleukin-2 (IL-2), closely approximating changes initially observed during sepsis. These signals induce profound changes in neurologic function and cognition. Little is known about the mechanisms involved. We evaluated a number of experimental methods to quantify changes in brain blood vessel integrity in a well-characterized IL-2 treatment mouse model. Measurement of wet versus dry weight and direct measurement of small molecule accumulation (e.g. [(3)H]-H(2)O, sodium fluorescein) were not sensitive or reliable enough to detect small changes in mouse brain vascular permeability. Estimation of brain water content using proton density magnetic resonance imaging (MRI) measurements using a 7T mouse MRI system was sensitive to 1-2% changes in brain water content, but was difficult to reproduce in replicate experiments. Successful techniques included use of immunohistochemistry using specific endothelial markers to identify vasodilation in carefully matched regions of brain parenchyma and dynamic contrast enhanced (DCE) MRI. Both techniques indicated that IL-2 treatment induced vasodilation of the brain blood vessels. DCE MRI further showed a 2-fold increase in the brain blood vessel permeability to gadolinium in IL-2 treated mice compared to controls. Both immunohistochemistry and DCE MRI data suggested that IL-2 induced toxicity in the brain results from vasodilation of the brain blood vessels and increased microvascular permeability, resulting in perivascular edema. These experimental techniques provide us with the tools to further characterize the mechanism responsible for cytokine-induced neuropsychiatric toxicity.

  18. Imaging of functional connectivity in the mouse brain.

    Science.gov (United States)

    White, Brian R; Bauer, Adam Q; Snyder, Abraham Z; Schlaggar, Bradley L; Lee, Jin-Moo; Culver, Joseph P

    2011-01-20

    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.

  19. Imaging of functional connectivity in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Brian R White

    Full Text Available Functional neuroimaging (e.g., with fMRI has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS. We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.

  20. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  1. Electrophysiological effects of FLFQPQRF amide, an endogenous brain morphine modulating peptide, on cultured mouse spinal-cord neurons.

    Science.gov (United States)

    Guzman, A; Legendre, P; Allard, M; Geoffre, S; Vincent, J D; Simonnet, G

    1989-01-01

    Intracellular recordings were made from dissociated fetal mouse spinal cord neurones in primary culture. Micropressure application of FLFQPQRFamide (10(-5) M in the delivery pipette), an endogenous mammalian brain morphine modulating peptide, onto the surface of spinal cord neurones induced, in a dose dependent manner, a transitory hyperpolarization followed by a long lasting depolarization of the membrane potential (n = 37). In contrast, no response was observed when the peptide was applied on dorsal root ganglia neurones (n = 30). The depolarizing phase of this response was underlied by an increase of the input resistance. Extrapolated reversal potential for the depolarizing phase was close to -80 mV while it was close to -40 mV for the hyperpolarizing phase. Increasing extracellular K+ concentration raised the reversal potential value of depolarizing phases to more positive values. The amplitude of the depolarizing phase was reduced by application of tetraethylammonium (50 mM) while it was enhanced by application of 4-aminopyridine (3 mM). CaCl2 application (3 mM) reversibly blocked the hyperpolarization and decreased the subsequent depolarization. In presence of Ba2+ the extrapollated reversal potential of the hyperpolarizing phase was dramatically shifted to a more positive value. Finally FLFQPQRFamide induced response can be partially mimicked by FMRFamide application. Our observations indicate that FLFQPQRFamide can have multiple effects on membrane conductance of mammalian spinal cord neurones by acting on a single class of receptor. These effects of FLFQPQRFamide were found to be mainly excitatory.

  2. GFAPδ expression in glia of the developmental and adolescent mouse brain.

    Directory of Open Access Journals (Sweden)

    Carlyn Mamber

    Full Text Available Glial fibrillary acidic protein (GFAP is the major intermediate filament (IF protein in astrocytes. In the human brain, GFAP isoforms have unique expression patterns, which indicate that they play distinct functional roles. One isoform, GFAPδ, is expressed by proliferative radial glia in the developing human brain. In the adult human, GFAPδ is a marker for neural stem cells. However, it is unknown whether GFAPδ marks the same population of radial glia and astrocytes in the developing mouse brain as it does in the developing human brain. This study characterizes the expression pattern of GFAPδ throughout mouse embryogenesis and into adolescence. Gfapδ transcripts are expressed from E12, but immunohistochemistry shows GFAPδ staining only from E18. This finding suggests a translational uncoupling. GFAPδ expression increases from E18 to P5 and then decreases until its expression plateaus around P25. During development, GFAPδ is expressed by radial glia, as denoted by the co-expression of markers like vimentin and nestin. GFAPδ is also expressed in other astrocytic populations during development. A similar pattern is observed in the adolescent mouse, where GFAPδ marks both neural stem cells and mature astrocytes. Interestingly, the Gfapδ/Gfapα transcript ratio remains stable throughout development as well as in primary astrocyte and neurosphere cultures. These data suggest that all astroglia cells in the developing and adolescent mouse brain express GFAPδ, regardless of their neurogenic capabilities. GFAPδ may be an integral component of all mouse astrocytes, but it is not a specific neural stem cell marker in mice as it is in humans.

  3. GFAPδ expression in glia of the developmental and adolescent mouse brain.

    Science.gov (United States)

    Mamber, Carlyn; Kamphuis, Willem; Haring, Nina L; Peprah, Nuzrat; Middeldorp, Jinte; Hol, Elly M

    2012-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament (IF) protein in astrocytes. In the human brain, GFAP isoforms have unique expression patterns, which indicate that they play distinct functional roles. One isoform, GFAPδ, is expressed by proliferative radial glia in the developing human brain. In the adult human, GFAPδ is a marker for neural stem cells. However, it is unknown whether GFAPδ marks the same population of radial glia and astrocytes in the developing mouse brain as it does in the developing human brain. This study characterizes the expression pattern of GFAPδ throughout mouse embryogenesis and into adolescence. Gfapδ transcripts are expressed from E12, but immunohistochemistry shows GFAPδ staining only from E18. This finding suggests a translational uncoupling. GFAPδ expression increases from E18 to P5 and then decreases until its expression plateaus around P25. During development, GFAPδ is expressed by radial glia, as denoted by the co-expression of markers like vimentin and nestin. GFAPδ is also expressed in other astrocytic populations during development. A similar pattern is observed in the adolescent mouse, where GFAPδ marks both neural stem cells and mature astrocytes. Interestingly, the Gfapδ/Gfapα transcript ratio remains stable throughout development as well as in primary astrocyte and neurosphere cultures. These data suggest that all astroglia cells in the developing and adolescent mouse brain express GFAPδ, regardless of their neurogenic capabilities. GFAPδ may be an integral component of all mouse astrocytes, but it is not a specific neural stem cell marker in mice as it is in humans.

  4. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    Directory of Open Access Journals (Sweden)

    Yan Xi

    2015-01-01

    Full Text Available Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  5. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  6. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    Science.gov (United States)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  7. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research.

    Science.gov (United States)

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  8. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Directory of Open Access Journals (Sweden)

    Catherine Kielar

    Full Text Available Complexins (Cplxs are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/- have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/- mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/- mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/- and Cplx1(+/+ mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/- mice when compared to Cplx1(+/+ animals. Our study is the first to describe pathological changes in Cplx1(-/- mouse brain. We suggest that the ataxia in Cplx1(-/- mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/- mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  9. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  10. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  11. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    Science.gov (United States)

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.

  12. Automatic macroscopic density artefact removal in a Nissl-stained microscopic atlas of whole mouse brain.

    Science.gov (United States)

    Ding, W; Li, A; Wu, J; Yang, Z; Meng, Y; Wang, S; Gong, H

    2013-08-01

    Acquiring a whole mouse brain at the micrometer scale is a complex, continuous and time-consuming process. Because of defects caused by sample preparation and microscopy, the acquired image data sets suffer from various macroscopic density artefacts that worsen the image quality. We have to develop the available preprocessing methods to improve image quality by removing the artefacts that effect cell segmentation, vascular tracing and visualization. In this study, a set of automatic artefact removal methods is proposed for images obtained by tissue staining and optical microscopy. These methods significantly improve the complicated images that contain various structures, including cells and blood vessels. The whole mouse brain data set with Nissl staining was tested, and the intensity of the processed images was uniformly distributed throughout different brain areas. Furthermore, the processed image data set with its uniform brightness and high quality is now a fundamental atlas for image analysis, including cell segmentation, vascular tracing and visualization.

  13. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    Science.gov (United States)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  14. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  15. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    Directory of Open Access Journals (Sweden)

    Seemann Stefan E

    2012-05-01

    Full Text Available Abstract Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs. Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.

  16. Effect of exercise on mouse liver and brain bioenergetic infrastructures.

    Science.gov (United States)

    E, Lezi; Lu, Jianghua; Burns, Jeffrey M; Swerdlow, Russell H

    2013-01-01

    To assess the effects of exercise on liver and brain bioenergetic infrastructures, we exposed C57BL/6 mice to 6 weeks of moderate-intensity treadmill exercise. During the training period, fasting blood glucose was lower in exercised mice than in sedentary mice, but serum insulin levels were not reduced. At week 6, trained mice showed a paradoxical decrease in plasma lactate during exercise, which was accompanied by an increase in the liver monocarboxylate transporter 2 protein level (∼30%, P Exercise increased liver peroxisomal proliferator-activated receptor-γ coactivator 1α expression (approximately twofold, P brain-derived neurotrophic factor expression (∼40%, P brain parameter observed was a reduction in tumour necrosis factor α expression (∼35%, P exercising muscle modifies the liver bioenergetic infrastructure, and enhanced liver uptake may in turn limit the ability of exercise-generated lactate to modify brain bioenergetics. Also, it appears that, at least in the liver, a dissociated mitochondrial biogenesis, in which some components are strategically enhanced while others are minimized, can occur.

  17. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain.

    Science.gov (United States)

    Ren, Z H; Deng, H D; Deng, Y T; Deng, J L; Zuo, Z C; Yu, S M; Shen, L H; Cui, H M; Xu, Z W; Hu, Y C

    2016-09-01

    The aim of this study was to find effects of Fusarium toxins on brain injury in mice. We evaluated the individual and combined effect of the Fusarium toxins zearalenone and deoxynivalenol on the mouse brain. We examined brain weight, protein, antioxidant indicators, and apoptosis. After 3 and 5days of treatment, increased levels of nitric oxide, total nitric oxide synthase, hydroxyl radical scavenging, and malondialdehyde were observed in the treatment groups. This was accompanied by reduced levels of brain protein, superoxide dismutase (apart from the low-dose zearalenone groups), glutathione, glutathione peroxidase activity, and percentage of apoptotic cells. By day 12, most of these indicators had returned to control group levels. The effects of zearalenone and deoxynivalenol were dose-dependent, and were synergistic in combination. Our results suggest that brain function is affected by zearalenone and deoxynivalenol. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification of the development stage—specific factors in mouse fetal liver binding to the human β—globin gene promoter

    Institute of Scientific and Technical Information of China (English)

    CHENYADI; YULONGHU; 等

    1994-01-01

    In order to elucidate the molecular mechanisms of globin gene expression during embryonic development,the nuclear extracts from mouse hematopoietic tissue at different stages of development have been prepared.By using DNase I footprinting and gel mobility shift assays,the binding of protein factors in these extracts to the human β-globin promoter was analyzed.The differences in the binding patterns of protein factors during development were observed.An erythroid-specific and stage-specific nuclear protein in the nuclear extrace from d 18 mouse fetal liver was identified,which can bind to the sequence(from-66bp to-90bp) of human β-globin promoter.We therefore speculate that the function of this cis-acting element may be similar to stage selector element(SSE) in chicken βA-promoter.

  19. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  20. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    2008-01-01

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  1. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain.

    Science.gov (United States)

    Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H

    2010-05-01

    Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection.

  2. Automatic Measurement of Thalamic Diameter in 2-D Fetal Ultrasound Brain Images Using Shape Prior Constrained Regularized Level Sets.

    Science.gov (United States)

    Sridar, Pradeeba; Kumar, Ashnil; Li, Changyang; Woo, Joyce; Quinton, Ann; Benzie, Ron; Peek, Michael J; Feng, Dagan; Kumar, R Krishna; Nanan, Ralph; Kim, Jinman

    2017-07-01

    We derived an automated algorithm for accurately measuring the thalamic diameter from 2-D fetal ultrasound (US) brain images. The algorithm overcomes the inherent limitations of the US image modality: nonuniform density; missing boundaries; and strong speckle noise. We introduced a "guitar" structure that represents the negative space surrounding the thalamic regions. The guitar acts as a landmark for deriving the widest points of the thalamus even when its boundaries are not identifiable. We augmented a generalized level-set framework with a shape prior and constraints derived from statistical shape models of the guitars; this framework was used to segment US images and measure the thalamic diameter. Our segmentation method achieved a higher mean Dice similarity coefficient, Hausdorff distance, specificity, and reduced contour leakage when compared to other well-established methods. The automatic thalamic diameter measurement had an interobserver variability of -0.56 ± 2.29 mm compared to manual measurement by an expert sonographer. Our method was capable of automatically estimating the thalamic diameter, with the measurement accuracy on par with clinical assessment. Our method can be used as part of computer-assisted screening tools that automatically measure the biometrics of the fetal thalamus; these biometrics are linked to neurodevelopmental outcomes.

  3. Functional networks underlying latent inhibition learning in the mouse brain

    OpenAIRE

    Puga, Frank; Barrett, Douglas W.; Bastida, Christel C.; Gonzalez-Lima, F.

    2007-01-01

    The present study reports the first comprehensive map of brain networks underlying latent inhibition learning and the first application of structural equation modeling to cytochrome oxidase data. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demand to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrom...

  4. Germline Chd8 haploinsufficiency alters brain development in mouse.

    Science.gov (United States)

    Gompers, Andrea L; Su-Feher, Linda; Ellegood, Jacob; Copping, Nycole A; Riyadh, M Asrafuzzaman; Stradleigh, Tyler W; Pride, Michael C; Schaffler, Melanie D; Wade, A Ayanna; Catta-Preta, Rinaldo; Zdilar, Iva; Louis, Shreya; Kaushik, Gaurav; Mannion, Brandon J; Plajzer-Frick, Ingrid; Afzal, Veena; Visel, Axel; Pennacchio, Len A; Dickel, Diane E; Lerch, Jason P; Crawley, Jacqueline N; Zarbalis, Konstantinos S; Silverman, Jill L; Nord, Alex S

    2017-08-01

    The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8(+/del5) mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8(+/del5) mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8(+/del5) mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8(+/del5) mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.

  5. The blood–brain barrier significantly limits eflornithine entry into Trypanosoma brucei brucei infected mouse brain

    National Research Council Canada - National Science Library

    Sanderson, Lisa; Dogruel, Murat; Rodgers, Jean; Bradley, Barbara; Thomas, Sarah Ann

    2008-01-01

    .... New drugs are urgently being sought. Although the existing drug, eflornithine, is assumed to reach the brain in high concentrations, little is known about how it crosses the healthy and infected blood–brain barrier...

  6. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain.

    Science.gov (United States)

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-08-06

    Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.

  7. Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups.

    Directory of Open Access Journals (Sweden)

    Winfried Neuhaus

    Full Text Available Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4. Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.

  8. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zou

    2016-12-01

    Full Text Available Cell penetrating peptides (CPPs are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26lacZ, we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.

  9. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  10. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  11. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    Science.gov (United States)

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  12. Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment

    Science.gov (United States)

    Boehm-Sturm, Philipp; Füchtemeier, Martina; Foddis, Marco; Mueller, Susanne; Trueman, Rebecca C.; Zille, Marietta; Rinnenthal, Jan Leo; Kypraios, Theodore; Shaw, Laurence; Dirnagl, Ulrich

    2017-01-01

    Background and Purpose— Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. Methods— We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Results— Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Conclusions— Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome. PMID:28070001

  13. Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment.

    Science.gov (United States)

    Boehm-Sturm, Philipp; Füchtemeier, Martina; Foddis, Marco; Mueller, Susanne; Trueman, Rebecca C; Zille, Marietta; Rinnenthal, Jan Leo; Kypraios, Theodore; Shaw, Laurence; Dirnagl, Ulrich; Farr, Tracy D

    2017-02-01

    Chronic hypoperfusion in the mouse brain has been suggested to mimic aspects of vascular cognitive impairment, such as white matter damage. Although this model has attracted attention, our group has struggled to generate a reliable cognitive and pathological phenotype. This study aimed to identify neuroimaging biomarkers of brain pathology in aged, more severely hypoperfused mice. We used magnetic resonance imaging to characterize brain degeneration in mice hypoperfused by refining the surgical procedure to use the smallest reported diameter microcoils (160 μm). Acute cerebral blood flow decreases were observed in the hypoperfused group that recovered over 1 month and coincided with arterial remodeling. Increasing hypoperfusion resulted in a reduction in spatial learning abilities in the water maze that has not been previously reported. We were unable to observe severe white matter damage with histology, but a novel approach to analyze diffusion tensor imaging data, graph theory, revealed substantial reorganization of the hypoperfused brain network. A logistic regression model from the data revealed that 3 network parameters were particularly efficient at predicting group membership (global and local efficiency and degrees), and clustering coefficient was correlated with performance in the water maze. Overall, these findings suggest that, despite the autoregulatory abilities of the mouse brain to compensate for a sudden decrease in blood flow, there is evidence of change in the brain networks that can be used as neuroimaging biomarkers to predict outcome. © 2017 The Authors.

  14. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue

    DEFF Research Database (Denmark)

    Avaliani, N.; Andersson, M.; Thomsen, Annika Højrup Runegaard

    2016-01-01

    Epilepsy is a neurological disorder with a prevalence of ≈1% of general population. Available antiepileptic drugs (AEDs) have multiple side effects and are ineffective in 30% of patients. Therefore, development of effective treatment strategies is highly needed, requiring drug-screening models...... in mouse OHSCs. As we also found that STIB in mouse OHSCs is resistant to common AED, valproic acid, collectively our findings suggest that DREADD-based strategy may be effective in suppressing epileptiform activity in a pharamcoresitant epileptic brain tissue....

  15. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain

    Directory of Open Access Journals (Sweden)

    Shoichi Takikita

    2015-09-01

    Full Text Available Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A. In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes. This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  16. Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain.

    Science.gov (United States)

    Takikita, Shoichi; Takano, Tomoyuki; Narita, Tsutomu; Maruo, Yoshihiro

    2015-09-01

    Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type ATPase gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or O4 (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.

  17. Three-dimensional atlas system for mouse and rat brain imaging data

    Directory of Open Access Journals (Sweden)

    Trine Hjornevik

    2007-11-01

    Full Text Available Tomographic neuroimaging techniques allow visualization of functionally and structurally specific signals in the mouse and rat brain. The interpretation of the image data relies on accurate determination of anatomical location, which is frequently obstructed by the lack of structural information in the data sets. Positron emission tomography (PET generally yields images with low spatial resolution and little structural contrast, and many experimental magnetic resonance imaging (MRI paradigms give specific signal enhancements but often limited anatomical information. Side-by-side comparison of image data with conventional atlas diagram is hampered by the 2-D format of the atlases, and by the lack of an analytical environment for accumulation of data and integrative analyses. We here present a method for reconstructing 3-D atlases from digital 2-D atlas diagrams, and exemplify 3-D atlas-based analysis of PET and MRI data. The reconstruction procedure is based on two seminal mouse and brain atlases, but is applicable to any stereotaxic atlas. Currently, 30 mouse brain structures and 60 rat brain structures have been reconstructed. To exploit the 3-D atlas models, we have developed a multi-platform atlas tool (available via The Rodent Workbench, http://rbwb.org which allows combined visualization of experimental image data within the 3-D atlas space together with 3-D viewing and user-defined slicing of selected atlas structures. The tool presented facilitates assignment of location and comparative analysis of signal location in tomographic images with low structural contrast.

  18. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  19. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro.

    Directory of Open Access Journals (Sweden)

    Hiroki Saito

    Full Text Available Islets of Langerhans are a pancreatic endocrine compartment consisting of insulin-producing β cells together with several other hormone-producing cells. While some insulin-producing cells or immature pancreatic cells have been generated in vitro from ES and iPS cells, islets with proper functions and a three-dimensional (3D structure have never been successfully produced. To test whether islets can be formed in vitro, we first examined the potential of mouse fetal pancreatic cells. We found that E16.5 pancreatic cells, just before forming islets, were able to develop cell aggregates consisting of β cells surrounded by glucagon-producing α cells, a structure similar to murine adult islets. Moreover, the transplantation of these cells improved blood glucose levels in hyperglycemic mice. These results indicate that functional islets are formed in vitro from fetal pancreatic cells at a specific developmental stage. By adopting these culture conditions to the differentiation of mouse iPS cells, we developed a two-step system to generate islets, i.e. immature pancreatic cells were first produced from iPS cells, and then transferred to culture conditions that allowed the formation of islets from fetal pancreatic cells. The islets exhibited distinct 3D structural features similar to adult pancreatic islets and secreted insulin in response to glucose concentrations. Transplantation of the islets improved blood glucose levels in hyperglycemic mice. In conclusion, the two-step culture system allows the generation of functional islets with a 3D structure from iPS cells.

  20. A mouse model of human repetitive mild traumatic brain injury

    OpenAIRE

    Kane, Michael J; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an imp...

  1. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Choi

    Full Text Available Endoglin (ENG is a causative gene of type 1 hereditary hemorrhagic telangiectasia (HHT1. HHT1 patients have a higher prevalence of brain arteriovenous malformation (AVM than the general population and patients with other HHT subtypes. The pathogenesis of brain AVM in HHT1 patients is currently unknown and no specific medical therapy is available to treat patients. Proper animal models are crucial for identifying the underlying mechanisms for brain AVM development and for testing new therapies. However, creating HHT1 brain AVM models has been quite challenging because of difficulties related to deleting Eng-floxed sequence in Eng(2fl/2fl mice. To create an HHT1 brain AVM mouse model, we used several Cre transgenic mouse lines to delete Eng in different cell-types in Eng(2fl/2fl mice: R26CreER (all cell types after tamoxifen treatment, SM22α-Cre (smooth muscle and endothelial cell and LysM-Cre (lysozyme M-positive macrophage. An adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF was injected into the brain to induce focal angiogenesis. We found that SM22α-Cre-mediated Eng deletion in the embryo caused AVMs in the postnatal brain, spinal cord, and intestines. Induction of Eng deletion in adult mice using R26CreER plus local VEGF stimulation induced the brain AVM phenotype. In both models, Eng-null endothelial cells were detected in the brain AVM lesions, and formed mosaicism with wildtype endothelial cells. However, LysM-Cre-mediated Eng deletion in the embryo did not cause AVM in the postnatal brain even after VEGF stimulation. In this study, we report two novel HHT1 brain AVM models that mimic many phenotypes of human brain AVM and can thus be used for studying brain AVM pathogenesis and testing new therapies. Further, our data indicate that macrophage Eng deletion is insufficient and that endothelial Eng homozygous deletion is required for HHT1 brain AVM development.

  2. Role of adhesion molecules and inflammation in Venezuelan equine encephalitis virus infected mouse brain

    Directory of Open Access Journals (Sweden)

    Honnold Shelley P

    2011-04-01

    Full Text Available Abstract Background Neuroinvasion of Venezuelan equine encephalitis virus (VEEV and subsequent initiation of inflammation in the brain plays a crucial role in the outcome of VEEV infection in mice. Adhesion molecules expressed on microvascular endothelial cells in the brain have been implicated in the modulation of the blood brain barrier (BBB and inflammation in brain but their role in VEEV pathogenesis is not very well understood. In this study, we evaluated the expression of extracellular matrix and adhesion molecules genes in the brain of VEEV infected mice. Findings Several cell to cell adhesion molecules and extracellular matrix protein genes such as ICAM-1, VCAM-1, CD44, Cadherins, integrins, MMPs and Timp1 were differentially regulated post-VEEV infection. ICAM-1 knock-out (IKO mice infected with VEEV had markedly reduced inflammation in the brain and demonstrated a delay in the onset of clinical symptoms of disease. A differential regulation of inflammatory genes was observed in the IKO mice brain compared to their WT counterparts. Conclusions These results improve our present understanding of VEEV induced inflammation in mouse brain.

  3. Transplanted neuronal precursors migrate and differentiate in the developing mouse brain

    Institute of Scientific and Technical Information of China (English)

    WEI; MIN; PENG

    2002-01-01

    The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronalprecursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursorsin adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricleof the mouse brain in different development stages. The preliminary results indicated that the graftedcells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the thirdventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amountof survival cells in different brain regions was correlated with the development stage of the recipient brain.Immunohistochemical studies showed that most of the grafted cells migrating into the specific target couldexpress neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZstill retained immortality and ability of proliferation, which is likely to be induced by some environmentalfactors.

  4. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  5. Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders.

    Science.gov (United States)

    Hashimoto-Torii, Kazue; Torii, Masaaki; Fujimoto, Mitsuaki; Nakai, Akira; El Fatimy, Rachid; Mezger, Valerie; Ju, Min J; Ishii, Seiji; Chao, Shih-Hui; Brennand, Kristen J; Gage, Fred H; Rakic, Pasko

    2014-05-07

    Prenatal exposure of the developing brain to various environmental challenges increases susceptibility to late onset of neuropsychiatric dysfunction; still, the underlying mechanisms remain obscure. Here we show that exposure of embryos to a variety of environmental factors such as alcohol, methylmercury, and maternal seizure activates HSF1 in cerebral cortical cells. Furthermore, Hsf1 deficiency in the mouse cortex exposed in utero to subthreshold levels of these challenges causes structural abnormalities and increases seizure susceptibility after birth. In addition, we found that human neural progenitor cells differentiated from induced pluripotent stem cells derived from schizophrenia patients show higher variability in the levels of HSF1 activation induced by environmental challenges compared to controls. We propose that HSF1 plays a crucial role in the response of brain cells to prenatal environmental insults and may be a key component in the pathogenesis of late-onset neuropsychiatric disorders.

  6. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    Science.gov (United States)

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  7. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Isabella Manni

    2016-12-01

    Full Text Available Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood–brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.

  8. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  9. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging.

    Science.gov (United States)

    Manni, Isabella; Di Rocco, Giuliana; Fusco, Salvatore; Leone, Lucia; Barbati, Saviana Antonella; Carapella, Carmine Maria; Grassi, Claudio; Piaggio, Giulia; Toietta, Gabriele

    2016-12-28

    Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood-brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.

  10. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain.

    Science.gov (United States)

    Wu, Tong; Grandjean, Joanes; Bosshard, Simone C; Rudin, Markus; Reutens, David; Jiang, Tianzi

    2017-02-01

    Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs

  11. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes

    Directory of Open Access Journals (Sweden)

    Susan M. Motch Perrine

    2017-07-01

    Full Text Available The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative

  12. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex.

    Science.gov (United States)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-09-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

  13. Effect of microgravity on gene expression in mouse brain.

    Science.gov (United States)

    Frigeri, Antonio; Iacobas, Dumitru A; Iacobas, Sanda; Nicchia, Grazia Paola; Desaphy, Jean Francois; Camerino, Diana Conte; Svelto, Maria; Spray, David C

    2008-11-01

    Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.

  14. The MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels

    OpenAIRE

    Oien, Derek B.; Osterhaus, Greg L.; Latif, Shaheen A.; Pinkston, Jonathan W.; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C.; Moskovitz, Jackob

    2008-01-01

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA−/−) mouse. Here we show that MsrA−/− mice have compromised complex task lear...

  15. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  16. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain.

    Science.gov (United States)

    Parthsarathy, Vadivel; Hölscher, Christian

    2013-01-30

    Chronic inflammation in the brain is found in a range of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. We have recently shown that analogues of the glucagon-like polypeptide 1 (GLP-1) such as liraglutide have potent neuroprotective properties in a mouse model of Alzheimer's disease. We also found a reduction of activated microglia in the brain. This finding suggests that GLP-1 analogues such as liraglutide have anti-inflammatory properties. To further characterise this property, we tested the effects of liraglutide on the chronic inflammation response induced by exposure of the brain to 6 Gy (X-ray). Animals were injected i.p. with 25 nmol/kg once daily for 30 days. Brains were analysed for cytokine levels, activated microglia and astrocyte levels, and nitrite levels as a measure for nitric oxide production and protein expression of iNOS. Exposure of the brain to 6 Gy induced a pronounced chronic inflammation response in the brain. The activated microglia load in the cortex and dentate gyrus region of hippocampus (Pbrains of animals treated with liraglutide. The results demonstrate that liraglutide is effective in reducing a number of parameters linked to the chronic inflammation response. Liraglutide or similar GLP-1 analogues may be a suitable treatment for reducing the chronic inflammatory response in the brain found in several neurodegenerative conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    Science.gov (United States)

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.

  18. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  19. Investigation of the effects of acrylamide applied during pregnancy on fetal brain development in rats and protective role of the vitamin E.

    Science.gov (United States)

    Erdemli, M E; Turkoz, Y; Altinoz, E; Elibol, E; Dogan, Z

    2016-12-01

    A liberal amount of acrylamide (AA) is produced as a result of frying or baking foods in high temperatures, and individuals take certain amounts of AA everyday by consuming these food items. Pregnant women are also exposed to AA originating from food during pregnancy and their fetus are probably affected. The rats were divided into five different groups: control (C), corn oil (CO), vitamin E (Vit E), AA, and Vit E + AA, with eight pregnant rats in each group. On the 20th day of pregnancy, fetuses were removed and brain tissues of fetuses were examined for biochemical and histological changes. AA caused degeneration in neuron structures in fetal brain tissue and caused hemorrhagic damages; dramatically decreased brain-derived neurotrophic factor levels; increased malondialdehyde, total oxidant capacity levels; and decreased reduced glutathione and total antioxidant capacity levels (p E, a neuroprotectant and a powerful antioxidant, suppressed the effects of AA on fetal development and fetal brain tissue damage for the above-mentioned parameters (p E as a protection to minimize the toxic effects of food-oriented AA on fetus development due to the widespread nature of fast-food culture in today's life and the impossibility of protection from AA toxicity.

  20. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains.

    Science.gov (United States)

    Rizzo, Giuseppe; Capponi, Alessandra; Persico, Nicola; Ghi, Tullio; Nazzaro, Giovanni; Boito, Simona; Pietrolucci, Maria Elena; Arduini, Domenico

    2016-10-01

    The purpose of this study was to test new 5D CNS+ software (Samsung Medison Co, Ltd, Seoul, Korea), which is designed to image axial, sagittal, and coronal planes of the fetal brain from volumes obtained by 3-dimensional sonography. The study consisted of 2 different steps. First in a prospective study, 3-dimensional fetal brain volumes were acquired in 183 normal consecutive singleton pregnancies undergoing routine sonographic examinations at 18 to 24 weeks' gestation. The 5D CNS+ software was applied, and the percentage of adequate visualization of brain diagnostic planes was evaluated by 2 independent observers. In the second step, the software was also tested in 22 fetuses with cerebral anomalies. In 180 of 183 fetuses (98.4%), 5D CNS+ successfully reconstructed all of the diagnostic planes. Using the software on healthy fetuses, the observers acknowledged the presence of diagnostic images with visualization rates ranging from 97.7% to 99.4% for axial planes, 94.4% to 97.7% for sagittal planes, and 92.2% to 97.2% for coronal planes. The Cohen κ coefficient was analyzed to evaluate the agreement rates between the observers and resulted in values of 0.96 or greater for axial planes, 0.90 or greater for sagittal planes, and 0.89 or greater for coronal planes. All 22 fetuses with brain anomalies were identified among a series that also included healthy fetuses, and in 21 of the 22 cases, a correct diagnosis was made. 5D CNS+ was efficient in successfully imaging standard axial, sagittal, and coronal planes of the fetal brain. This approach may simplify the examination of the fetal central nervous system and reduce operator dependency.

  1. Screening for fetal spina bifida at the 11-13-week scan using three anatomical features of the posterior brain.

    Science.gov (United States)

    Mangione, R; Dhombres, F; Lelong, N; Amat, S; Atoub, F; Friszer, S; Khoshnood, B; Jouannic, J-M

    2013-10-01

    To evaluate the contribution of examination of specific anatomical features of the fetal posterior brain on mid-sagittal first-trimester ultrasound examination to the early detection of open spina bifida. Four independent observers reviewed a series of 260 mid-sagittal first-trimester ultrasound images from 52 cases of open spina bifida and 208 normal fetuses. The following analysis was performed by each reviewer for each image: Herman score calculation, intracranial translucency score (CFEF-IT) calculation and determination of presence or absence of three anatomical criteria: intracranial translucency (IT), caudal displacement of the brainstem and cisterna magna. The sensitivity and the false-positive rate for spina bifida detection were calculated for each of the latter three criteria. A secondary analysis was performed on the subset of images achieving a Herman score ≥ 7. The highest detection rate for spina bifida was achieved by non-visualization of the cisterna magna, with associated sensitivity of 50-73% and 39-76%, respectively, for all images and for the subset of images achieving a Herman score ≥ 7. Posterior shift of the brainstem achieved the highest detection rate (86%), but for a single reviewer only. The level of variation in performance between observers was also greatest for this sign. Absence of IT was associated with a lower detection rate for all observers. Overall, an abnormal posterior brain presenting at least one of these three criteria was associated with a detection rate ranging from 50 to 90%. In the detection of spina bifida, non-visualization of the cisterna magna achieved the best screening performance. Both non-visualization of the IT and posterior shift of the brainstem were associated with acceptable but lower detection rates. A prospective evaluation of changes in the posterior brain is needed to allow assessment of the most pertinent criteria for first-trimester screening for spina bifida. Copyright © 2013 ISUOG. Published by

  2. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    Science.gov (United States)

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  3. High resolution functional photoacoustic computed tomography of the mouse brain during electrical stimulation

    Science.gov (United States)

    Avanaki, Mohammad R. N.; Xia, Jun; Wang, Lihong V.

    2013-03-01

    Photoacoustic computed tomography (PACT) is an emerging imaging technique which is based on the acoustic detection of optical absorption from tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin. An important application of PACT is functional brain imaging of small animals. The conversion of light to acoustic waves allows PACT to provide high resolution images of cortical vasculatures through the intact scalp. Here, PACT was utilized to study the activated areas of the mouse brain during forepaw and hindpaw stimulations. Temporal PACT images were acquired enabling computation of hemodynamic changes during stimulation. The stimulations were performed by trains of pulses at different stimulation currents (between 0.1 to 2 mA) and pulse repetition rates (between 0.05 Hz to 0.01Hz). The response at somatosensory cortex-forelimb, and somatosensory cortex-hindlimb, were investigated. The Paxinos mouse brain atlas was used to confirm the activated regions. The study shows that PACT is a promising new technology that can be used to study brain functionality with high spatial resolution.

  4. Monoclonal antibody-glial-derived neurotrophic factor fusion protein penetrates the blood-brain barrier in the mouse.

    Science.gov (United States)

    Zhou, Qing-Hui; Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric Ka-Wai; Pardridge, William M

    2010-04-01

    Glial-derived neurotrophic factor (GDNF) is a potent neuroprotective agent for multiple brain disorders, including Parkinson's disease. However, GDNF drug development is difficult because GDNF does not cross the blood-brain barrier (BBB). To enable future drug development of GDNF in mouse models, the neurotrophin was re-engineered as an IgG fusion protein to enable penetration through the BBB after intravenous administration. The 134-amino acid GDNF was fused to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR) designated the cTfRMAb. This antibody undergoes receptor-mediated transport across the BBB and acts as a molecular Trojan horse to ferry the GDNF into mouse brain. The cTfRMAb-GDNF fusion protein was expressed by stably transfected Chinese hamster ovary cells, affinity-purified, and the biochemical identity was confirmed by mouse IgG and GDNF Western blotting. The cTfRMAb-GDNF fusion protein was bifunctional and bound with high affinity to both the GDNF receptor alpha1, ED(50) = 1.7 +/- 0.2 nM, and the mouse TfR, ED(50) = 3.2 +/- 0.3 nM. The cTfRMAb-GDNF fusion protein was rapidly taken up by brain, and the brain uptake was 3.1 +/- 0.2% injected dose/g brain at 60 min after intravenous injection of a 1-mg/kg dose of the fusion protein. Brain capillary depletion analysis showed the majority of the fusion protein was transcytosed across the BBB with penetration into brain parenchyma. The brain uptake results indicate it is possible to achieve therapeutic elevations of GDNF in mouse brain with intravenous administration of the cTfRMAb-GDNF fusion protein.

  5. Epigenetics and brain evolution.

    Science.gov (United States)

    Keverne, Eric B

    2011-04-01

    Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.

  6. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    Science.gov (United States)

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored

  7. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Directory of Open Access Journals (Sweden)

    Piltz Sandra

    2011-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5 mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.

  8. Soy peptide ingestion augments the synthesis and metabolism of noradrenaline in the mouse brain.

    Science.gov (United States)

    Imai, Haruka; Moriyasu, Kazuki; Nakahata, Akane; Maebuchi, Motohiro; Ichinose, Takashi; Furuya, Shigeki

    2017-05-01

    To examine whether edible peptide intake affects neurotransmitter metabolism in the brain, we evaluated the effect of peptides derived from soy proteins or fish collagen on free amino acids and monoamines in the mouse brain. Ingestion of soy peptides led to markedly higher levels of tyrosine, a catecholamine precursor, in the serum, and cerebral cortex compared to those following ingestion of vehicle alone or collagen peptides. Soy peptide ingestion also effectively increased 3-methoxy-4-hydroxyphenylethyleneglycol and normetanephrine, the principal metabolites of noradrenaline, in the cerebral cortex, hippocampus, and brainstem, whereas collagen peptides did not exert such effects. Further, soy peptide ingestion led to a significant increase in noradrenaline itself in the brainstem, where noradrenergic neurons are present. Noradrenergic turnover was also markedly stimulated in these regions after soy peptide ingestion. These in vivo observations suggest that soy peptide ingestion can maintain and promote the synthesis and metabolism of noradrenaline in the brain.

  9. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence.

    Science.gov (United States)

    Higgins, Joseph J; Tal, Adit L; Sun, Xiaowei; Hauck, Stefanie C R; Hao, Jin; Kosofosky, Barry E; Rajadhyaksha, Anjali M

    2010-03-01

    A mild form of autosomal recessive, nonsyndromal intellectual disability (ARNSID) in humans is caused by a homozygous nonsense mutation in the cereblon gene (mutCRBN). Rodent crbn protein binds to the intracellular C-terminus of the large conductance Ca(2+)-activated K(+)channel (BK(Ca)). An mRNA variant (human SITE 2 INSERT or mouse strex) of the BK(Ca) gene (KCNMA1) that is normally expressed during embryonic development is aberrantly expressed in mutCRBN human lymphoblastoid cell lines (LCLs) as compared to wild-type (wt) LCLs. The present study analyzes the temporal and spatial distribution of crbn and kcnma1 mRNAs in the mouse brain by the quantitative real-time reverse transcriptase-polymerase chain reaction (qPCR). The spatial expression pattern of endogenous and exogenous crbn proteins is characterized by immunostaining. The results show that neocortical (CTX) crbn and kcnma1 mRNA expression increases from embryonic stages to adulthood. The strex mRNA variant is >3.5-fold higher in embryos and decreases rapidly postnatally. Mouse crbn mRNA is abundant in the cerebellum (CRBM), with less expression in the CTX, hippocampus (HC), and striatum (Str) in adult mice. The intracytoplasmic distribution of endogenous crbn protein in the mouse CRBM, CTX, HC, and Str is similar to the immunostaining pattern described previously for the BK(Ca) channel. Exogenous hemagglutinin (HA) epitope-tagged human wt- and mutCRBN proteins using cDNA transfection in HEK293T cell lines showed the same intracellular expression distribution as endogenous mouse crbn protein. The results suggest that mutCRBN may cause ARNSID by disrupting the developmental regulation of BK(Ca) in brain regions that are critical for memory and learning.

  10. Detection of γH2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy.

    Science.gov (United States)

    Kondo, Natsuko; Michiue, Hiroyuki; Sakurai, Yoshinori; Tanaka, Hiroki; Nakagawa, Yosuke; Watanabe, Tsubasa; Narabayashi, Masaru; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji

    2016-01-01

    In this study, we investigated γH2AX foci as markers of DSBs in normal brain and brain tumor tissue in mouse after BNCT. Boron neutron capture therapy (BNCT) is a particle radiation therapy in combination of thermal neutron irradiation and boron compound that specifically accumulates in the tumor. (10)B captures neutrons and produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of extremely high linear energy transfer (LET) radiation and therefore have marked biological effects. High LET radiation causes severe DNA damage, DNA DSBs. As the high LET radiation induces complex DNA double strand breaks (DSBs), large proportions of DSBs are considered to remain unrepaired in comparison with exposure to sparsely ionizing radiation. We analyzed the number of γH2AX foci by immunohistochemistry 30 min or 24 h after neutron irradiation. In both normal brain and brain tumor, γH2AX foci induced by (10)B(n,α)(7)Li reaction remained 24 h after neutron beam irradiation. In contrast, γH2AX foci produced by γ-ray irradiation at contaminated dose in BNCT disappeared 24 h after irradiation in these tissues. DSBs produced by (10)B(n,α)(7)Li reaction are supposed to be too complex to repair for cells in normal brain and brain tumor tissue within 24 h. These DSBs would be more difficult to repair than those by γ-ray. Excellent anti-tumor effect of BNCT may result from these unrepaired DSBs induced by (10)B(n,α)(7)Li reaction.

  11. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  12. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse.

    Science.gov (United States)

    Feng, Yun; Lu, Yingwei; Lin, Xin; Gao, Yanfeng; Zhao, Qianyu; Li, Wei; Wang, Rui

    2008-03-26

    The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.

  13. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    Science.gov (United States)

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  14. The heterozygous disproportionate micromelia (dmm) mouse: morphological changes in fetal cartilage precede postnatal dwarfism and compared with lethal homozygotes can explain the mild phenotype.

    Science.gov (United States)

    Seegmiller, Robert E; Bomsta, Brandon D; Bridgewater, Laura C; Niederhauser, Cindy M; Montaño, Carolina; Sudweeks, Sterling; Eyre, David R; Fernandes, Russell J

    2008-11-01

    The disproportionate micromelia (Dmm) mouse has a mutation in the C-propeptide coding region of the Col2a1 gene that causes lethal dwarfism when homozygous (Dmm/Dmm) but causes only mild dwarfism observable approximately 1-week postpartum when heterozygous (Dmm/+). The purpose of this study was 2-fold: first, to analyze and quantify morphological changes that precede the expression of mild dwarfism in Dmm/+ animals, and second, to compare morphological alterations between Dmm/+ and Dmm/Dmm fetal cartilage that may correlate with the marked skeletal differences between mild and lethal dwarfism. Light and electron transmission microscopy were used to visualize structure of chondrocytes and extracellular matrix (ECM) of fetal rib cartilage. Both Dmm/+ and Dmm/Dmm fetal rib cartilage had significantly larger chondrocytes, greater cell density, and less ECM per unit area than +/+ littermates. Quantitative RT-PCR showed a decrease in aggrecan mRNA in Dmm/+ vs +/+ cartilage. Furthermore, the cytoplasm of chondrocytes in Dmm/+ and Dmm/Dmm cartilage was occupied by significantly more distended rough endoplasmic reticulum (RER) compared with wild-type chondrocytes. Fibril diameters and packing densities of +/+ and Dmm/+ cartilage were similar, but Dmm/Dmm cartilage showed thinner, sparsely distributed fibrils. These findings support the prevailing hypothesis that a C-propeptide mutation could interrupt the normal assembly and secretion of Type II procollagen trimers, resulting in a buildup of proalpha1(II) chains in the RER and a reduced rate of matrix synthesis. Thus, intracellular entrapment of proalpha1(II) seems to be primarily responsible for the dominant-negative effect of the Dmm mutation in the expression of dwarfism.

  15. Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis.

    Science.gov (United States)

    Daane, Jacob M; Downs, Karen M

    2011-09-01

    Although many fetal birth defects, particularly those of the body wall and gut, are associated with abnormalities of the umbilical cord, the developmental relationship between these structures is largely obscure. Recently, genetic analysis of mid-gestation mouse embryos revealed that defects in Hedgehog signaling led to omphalocoele, or failure of the body wall to close at the umbilical ring (Matsumaru et al. [ 2011] PLos One 6:e16260). However, systematic spatiotemporal localization of Hedgehog signaling in the allantois, or umbilical precursor tissue, and the surrounding regions has not been documented. Here, a combination of reagents, including the Ptc1:lacZ and Runx1:lacZ reporter mice, immunohistochemistry for Smoothened (Smo), Sonic Hedgehog (Shh), and Indian hedgehog (Ihh), and detailed PECAM-1/Flk-1/Runx-1 analysis, revealed robust Hedgehog signaling in previously undocumented posterior sites over an extended period of time (∼7.0-9.75 dpc). These included the recently described proximal walls of the allantois (Ventral and Dorsal Cuboidal Mesothelia; VCM and DCM, respectively); the ventral embryonic surface continuous with them; hemogenic arterial endothelia; hematopoietic cells; the hindgut; ventral ectodermal ridge (VER); chorionic ectoderm; and the intraplacental yolk sac (IPY), which appeared to be a site of placental hematopoiesis. This map of Hedgehog signaling in the posterior region of the mouse conceptus will provide a valuable foundation upon which to elucidate the origin of many posterior midline abnormalities, especially those of the umbilical cord and associated fetal defects. Developmental Dynamics 240:2175-2193, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  16. Endocan immunoreactivity in the mouse brain: method for identifying nonfunctional blood vessels

    Science.gov (United States)

    Frahm, Krystle A.; Nash, Connor P.; Tobet, Stuart A.

    2013-01-01

    Endocan is a secreted proteoglycan that has been shown to indicate angiogenic activity: remodeling in several tumor types in humans and mice. Serum endocan levels also indicate prognosis and has been proposed as a biomarker for certain cancers. Recently, monoclonal antibodies directed against mouse endocan have been developed allowing for further characterization of endocan function and potentially as a marker for angiogenesis through immunoreactivity in endothelial tip cells. The results of the current study show that endocan immunoreactivity in the mouse brain is present in blood vascular networks including but not limited to the cortex, hippocampus and paraventricular nucleus of the hypothalamus in C57BL/6J and FVB/N mice. Endocan immunoreactivity did not vary during postnatal development or by sex. Interestingly, after vascular perfusion with fluorescein isothiocyanate (FITC), endothelial cells positive for FITC were immunonegative for endocan suggesting FITC interference with the immunohistochemistry. A small number of FITC-negative blood vessels were endocan immunoreactive suggesting the identification of new blood vessels that are not yet functional. The current study shows that endocan is normally present in the mouse brain and prior vascular perfusion with FITC may provide a useful tool for identify newly forming blood vessels. PMID:24055127

  17. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Science.gov (United States)

    Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck

    2011-01-01

    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895

  18. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Directory of Open Access Journals (Sweden)

    Ji Ryang Chung

    2011-11-01

    Full Text Available Connectomics is the study of the full connection matrix of the brain.Recent advances in high-throughput, high-resolution 3D microscopy methodshave enabled the imaging of whole small animal brains at a sub-micrometerresolution, potentially opening the road to full-blown connectomicsresearch. One of the first such instruments to achieve whole-brain-scaleimaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope(KESM. KESM whole-brain data sets now include Golgi (neuronal circuits,Nissl (soma distribution, and India ink (vascular networks. KESM data cancontribute greatly to connectomics research, since they fill the gap betweenlower resolution, large volume imaging methods (such as diffusion MRI andhigher resolution, small volume methods (e.g., serial sectioning electronmicroscopy. Furthermore, KESM data are by their nature multiscale, ranging fromthe subcellular to the whole organ scale. Due to this, visualization alone is ahuge challenge, before we even start worrying about connectivity analysis. Tosolve this issue, we developed a web-based neuroinformatics framework for efficientvisualization and analysis of the multiscale KESM data sets. In this paper,we will first provide an overview of KESM, then discuss in detail the KESMdata sets and the web-based neuroinformatics framework, which is called theKESM Brain Atlas (KESMBA. Finally, we will discuss the relevance of the KESMBAto connectomics research, and identify challenges and future directions.

  19. Stages of restricted HIV-1 infection in astrocyte cultures derived from human fetal brain tissue.

    Science.gov (United States)

    Messam, C A; Major, E O

    2000-05-01

    The predominant cell types infected by HIV-1 in AIDS associated encephalopathy are cells of the macrophage/microglial lineage. There has been consistent evidence, however, that astrocytes also become infected although not at the same frequency or level of multiplication as microglial cells. HIV-1 antigens and/or nucleic acid have been identified in astrocytes in brain autopsy tissue from both adult and pediatric AIDS cases. In cell cultures, HIV-1 infection of astrocytes results in an initial productive but non-cytopathogenic infection that diminishes to a viral persistence or latent state. Understanding the nature of HIV-1 infection of astrocytes, which represents the largest population of cells in the brain, will contribute to the understanding of AIDS encephalopathy and the dementia that occurs in nearly one-quarter of all AIDS patients.

  20. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries.

    Science.gov (United States)

    Bowles, Josephine; Feng, Chun-Wei; Miles, Kim; Ineson, Jessica; Spiller, Cassy; Koopman, Peter

    2016-02-19

    Substantial evidence exists that during fetal ovarian development in mammals, retinoic acid (RA) induces germ cells to express the pre-meiotic marker Stra8 and enter meiosis, and that these effects are prevented in the fetal testis by the RA-degrading P450 enzyme CYP26B1. Nonetheless, the role of RA has been disputed principally because germ cells in embryos lacking two major RA-synthesizing enzymes, ALDH1A2 and ALDH1A3, remain able to enter meiosis. Here we show that a third RA-synthesizing enzyme, ALDH1A1, is expressed in fetal ovaries, providing a likely source of RA in the absence of ALDH1A2 and ALDH1A3. In ovaries lacking ALDH1A1, the onset of germ cell meiosis is delayed. Our data resolve the conundrum posed by conflicting published data sets and reconfirm the model that meiosis is triggered by endogenous RA in the developing ovary.

  1. Is Placental Mitochondrial Function a Regulator that Matches Fetal and Placental Growth to Maternal Nutrient Intake in the Mouse?

    Directory of Open Access Journals (Sweden)

    Marcos R Chiaratti

    Full Text Available Effective fetal growth requires adequate maternal nutrition coupled to active transport of nutrients across the placenta, which, in turn requires ATP. Epidemiological and experimental evidence has shown that impaired maternal nutrition in utero results in an adverse postnatal phenotype for the offspring. Placental mitochondrial function might link maternal food intake to fetal growth since impaired placental ATP production, in response to poor maternal nutrition, could be a pathway linking maternal food intake to reduced fetal growth.We assessed the effects of maternal diet on placental water content, ATP levels and mitochondrial DNA (mtDNA content in mice at embryonic (E day 18 (E18. Females maintained on either low- (LPD or normal- (NPD protein diets were mated with NPD males.To investigate the possibility of an underlying mitochondrial stress response, we studied cultured human trophoblast cells (BeWos. High throughput imaging showed that amino acid starvation induces changes in mitochondrial morphology that suggest stress-induced mitochondrial hyperfusion. This is a defensive response, believed to increase mitochondrial efficiency, that could underlie the increase in ATP observed in placenta.These findings reinforce the pathophysiological links between maternal diet and conceptus mitochondria, potentially contributing to metabolic programming. The quiet embryo hypothesis proposes that pre-implantation embryo survival is best served by a relatively low level of metabolism. This may extend to post-implantation trophoblast responses to nutrition.

  2. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable mor...

  3. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Andras eJakab; Ernst eSchwartz; Gregor eKasprian; Gerlinde Maria Gruber; Daniela ePrayer; Veronika eSchöpf; Georg eLangs

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphologi...

  4. A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain

    Directory of Open Access Journals (Sweden)

    Jie Peng

    2017-07-01

    Full Text Available Corticotropin-releasing hormone (CRH, with widespread expression in the brain, plays a key role in modulating a series of behaviors, including anxiety, arousal, motor function, learning and memory. Previous studies have focused on some brain regions with densely distributed CRH neurons such as paraventricular hypothalamic nucleus (PVH and bed nuclei of the stria terminalis (BST and revealed some basic structural and functional knowledge of CRH neurons. However, there is no systematic analysis of brain-wide distribution of CRH neurons. Here, we performed a comprehensive study of CRH neurons in CRH-IRES-Cre;Ai3 mice via automatic imaging and stereoscopic cell counting in a whole mouse brain. We acquired four datasets of the CRH distributions with co-localized cytoarchitecture at a voxel resolution of 0.32 μm × 0.32 μm × 2 μm using brain-wide positioning system (BPS. Next, we precisely located and counted the EYFP-labeled neurons in different regions according to propidium iodide counterstained anatomical reference using Neuronal Global Position System. In particular, dense EYFP expression was found in piriform area, BST, central amygdalar nucleus, PVH, Barrington’s nucleus, and inferior olivary complex. Considerable CRH neurons were also found in main olfactory bulb, medial preoptic nucleus, pontine gray, tegmental reticular nucleus, external cuneate nucleus, and midline thalamus. We reconstructed and compared the soma morphology of CRH neurons in 11 brain regions. The results demonstrated that CRH neurons had regional diversities of both cell distribution and soma morphology. This anatomical knowledge enhances the current understanding of the functions of CRH neurons. These results also demonstrated the ability of our platform to accurately orient, reconstruct and count neuronal somas in three-dimension for type-specific neurons in the whole brain, making it feasible to answer the fundamental neuroscience question of exact numbers of

  5. A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain.

    Science.gov (United States)

    Peng, Jie; Long, Ben; Yuan, Jing; Peng, Xue; Ni, Hong; Li, Xiangning; Gong, Hui; Luo, Qingming; Li, Anan

    2017-01-01

    Corticotropin-releasing hormone (CRH), with widespread expression in the brain, plays a key role in modulating a series of behaviors, including anxiety, arousal, motor function, learning and memory. Previous studies have focused on some brain regions with densely distributed CRH neurons such as paraventricular hypothalamic nucleus (PVH) and bed nuclei of the stria terminalis (BST) and revealed some basic structural and functional knowledge of CRH neurons. However, there is no systematic analysis of brain-wide distribution of CRH neurons. Here, we performed a comprehensive study of CRH neurons in CRH-IRES-Cre;Ai3 mice via automatic imaging and stereoscopic cell counting in a whole mouse brain. We acquired four datasets of the CRH distributions with co-localized cytoarchitecture at a voxel resolution of 0.32 μm × 0.32 μm × 2 μm using brain-wide positioning system (BPS). Next, we precisely located and counted the EYFP-labeled neurons in different regions according to propidium iodide counterstained anatomical reference using Neuronal Global Position System. In particular, dense EYFP expression was found in piriform area, BST, central amygdalar nucleus, PVH, Barrington's nucleus, and inferior olivary complex. Considerable CRH neurons were also found in main olfactory bulb, medial preoptic nucleus, pontine gray, tegmental reticular nucleus, external cuneate nucleus, and midline thalamus. We reconstructed and compared the soma morphology of CRH neurons in 11 brain regions. The results demonstrated that CRH neurons had regional diversities of both cell distribution and soma morphology. This anatomical knowledge enhances the current understanding of the functions of CRH neurons. These results also demonstrated the ability of our platform to accurately orient, reconstruct and count neuronal somas in three-dimension for type-specific neurons in the whole brain, making it feasible to answer the fundamental neuroscience question of exact numbers of various neurons in the

  6. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    Science.gov (United States)

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.

  7. Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

    Science.gov (United States)

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  8. Brain immune cell composition and functional outcome after cerebral ischemia: Comparison of two mouse strains

    Directory of Open Access Journals (Sweden)

    Hyun Ah eKim

    2014-11-01

    Full Text Available Inflammatory cells may contribute to secondary brain injury following cerebral ischemia. The C57Bl/6 mouse strain is known to exhibit a T helper 1-prone, pro-inflammatory type response to injury, whereas the FVB strain is relatively T helper 2-prone, or anti-inflammatory, in its immune response. We tested whether stroke outcome is more severe in C57Bl/6 than FVB mice. Male mice of each strain underwent sham surgery or 1 h occlusion of the middle cerebral artery followed by 23 h of reperfusion. Despite no difference in infarct size, C57Bl/6 mice displayed markedly greater functional deficits than FVB mice after stroke, as assessed by neurological scoring and hanging wire test. Total numbers of CD45+ leukocytes tended to be larger in the brains of C57Bl/6 than FVB mice after stroke, but there were marked differences in leukocyte composition between the two mouse strains. The inflammatory response in C57Bl/6 mice primarily involved T and B lymphocytes, whereas neutrophils, monocytes and macrophages were more prominent in FVB mice. Our data are consistent with the concept that functional outcome after stroke is dependent on the immune cell composition which develops following ischemic brain injury.

  9. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    Directory of Open Access Journals (Sweden)

    Béringue Vincent

    2010-07-01

    Full Text Available Abstract Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated.

  10. Terminal Continuation (TC RNA Amplification Enables Expression Profiling Using Minute RNA Input Obtained from Mouse Brain

    Directory of Open Access Journals (Sweden)

    Stephen D. Ginsberg

    2008-10-01

    Full Text Available A novel methodology named terminal continuation (TC RNA amplification has been developed to amplify RNA from minute amounts of starting material. Utility of the TC RNA amplification method is demonstrated with two new modifications including obviating the need for second strand synthesis, and purifying the amplification template using column filtration prior to in vitro transcription (IVT. Using four low concentrations of RNA extracted from mouse brain (1, 10, 25 and 50 ng, one round TC RNA amplification was compared to one round amplified antisense RNA (aRNA in conjunction with column filtration and drop dialysis purification. The TC RNA amplification without second strand synthesis performed extremely well on customdesigned cDNA array platforms, and column filtration was found to provide higher positive detection of individual clones when hybridization signal intensity was subtracted from corresponding negative control hybridization signal levels. Results indicate that TC RNA amplification without second strand synthesis, in conjunction with column filtration, is an excellent method for RNA amplification from extremely small amounts of input RNA from mouse brain and postmortem human brain, and is compatible with microaspiration strategies and subsequent microarray analysis.

  11. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  12. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain.

    Science.gov (United States)

    Gong, Yu; Chai, Yi; Ding, Jian-Hua; Sun, Xiu-Lan; Hu, Gang

    2011-01-13

    Increasing evidence implicates mitochondrial failure as a crucial factor in the pathogenesis of mental disorders, such as depression. The aim of the present study was to investigate the effects of exposure to chronic mild stress (CMS), a paradigm developed in the late 1980s as an animal model of depression, on the mitochondrial function and mitochondrial ultrastructure in the mouse brain. The results showed that the CMS regime induced depressive-like symptoms in mice characterized by reduced sucrose preference and body weight. Moreover, CMS exposure was associated with a significant increase in immobility time in the tail suspension test. Exposure to the CMS paradigm inhibited mitochondrial respiration rates and dissipated mitochondrial membrane potential in hippocampus, cortex and hypothalamus of mice. In addition, we found a damaged mitochondrial ultrastructure in brains of mice exposed to CMS. These findings provide evidence for brain mitochondrial dysfunction and ultrastructural damage in a mouse model of depression. Moreover, these findings suggest that mitochondrial malfunction-induced oxidative injury could play a role in stress-related disorders such as depression.

  13. Effects of heavy ion to the primary culture of mouse brain cells

    Science.gov (United States)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  14. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  15. Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol spectrum disorders.

    Science.gov (United States)

    Treit, Sarah; Lebel, Catherine; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Beaulieu, Christian

    2013-06-12

    Diffusion tensor imaging (DTI) of brain development in fetal alcohol spectrum disorders (FASD) has revealed structural abnormalities, but studies have been limited by the use of cross-sectional designs. Longitudinal scans can provide key insights into trajectories of neurodevelopment within individuals with this common developmental disorder. Here we evaluate serial DTI and T1-weighted volumetric MRI in a human sample of 17 participants with FASD and 27 controls aged 5-15 years who underwent 2-3 scans each, ∼2-4 years apart (92 scans total). Increases of fractional anisotropy and decreases of mean diffusivity (MD) were observed between scans for both groups, in keeping with changes expected of typical development, but mixed-models analysis revealed significant age-by-group interactions for three major white matter tracts: superior longitudinal fasciculus and superior and inferior fronto-occipital fasciculus. These findings indicate altered developmental progression in these frontal-association tracts, with the FASD group notably showing greater reduction of MD between scans. ΔMD is shown to correlate with reading and receptive vocabulary in the FASD group, with steeper decreases of MD in the superior fronto-occipital fasciculus and superior longitudinal fasciculus between scans correlating with greater improvement in language scores. Volumetric analysis revealed reduced total brain, white, cortical gray, and deep gray matter volumes and fewer significant age-related volume increases in the FASD group, although age-by-group interactions were not significant. Longitudinal DTI indicates delayed white matter development during childhood and adolescence in FASD, which may underlie persistent or worsening behavioral and cognitive deficits during this critical period.

  16. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  17. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  18. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV.

    Science.gov (United States)

    Grishchuk, Yulia; Peña, Karina A; Coblentz, Jessica; King, Victoria E; Humphrey, Daniel M; Wang, Shirley L; Kiselyov, Kirill I; Slaugenhaupt, Susan A

    2015-12-01

    Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1). MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1(-/-) mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1(-/-) mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1(-/-) brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1(-/-) and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development.

  19. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Alessia Stell

    2008-11-01

    Full Text Available Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  20. Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain.

    Science.gov (United States)

    Shertzer, Howard G; Krishan, Mansi; Genter, Mary Beth

    2013-08-26

    In humans and experimental animals, protein-enriched diets are beneficial for weight management, muscle development, managing early stage insulin resistance and overall health. Previous studies have shown that in mice consuming a high fat diet, whey protein isolate (WPI) reduced hepatosteatosis and insulin resistance due in part to an increase in basal metabolic rate. In the current study, we examined the ability of WPI to increase energy metabolism in mouse brain. Female C57BL/6J mice were fed a normal AIN-93M diet for 12 weeks, with (WPI group) or without (Control group) 100g WPI/L drinking water. In WPI mice compared to controls, the oxidative stress biomarkers malondialdehyde and 4-hydroxyalkenals were 40% lower in brain homogenates, and the production of hydrogen peroxide and superoxide were 25-35% less in brain mitochondria. Brain mitochondria from WPI mice remained coupled, and exhibited higher rates of respiration with proportionately greater levels of cytochromes a+a3 and c+c1. These results suggested that WPI treatment increased the number or improved the function of brain mitochondria. qRT-PCR revealed that the gene encoding a master regulator of mitochondrial activity and biogenesis, Pgc-1alpha (peroxisome proliferator-activated receptor-gamma coactivator-1alpha) was elevated 2.2-fold, as were the PGC-1alpha downstream genes, Tfam (mitochondrial transcription factor A), Gabpa/Nrf-2a (GA-binding protein alpha/nuclear respiratory factor-2a), and Cox-6a1 (cytochrome oxidase-6a1). Each of these genes had twice the levels of transcript in brain tissue from WPI mice, relative to controls. There was no change in the expression of the housekeeping gene B2mg (beta-2 microglobulin). We conclude that dietary whey protein decreases oxidative stress and increases mitochondrial activity in mouse brain. Dietary supplementation with WPI may be a useful clinical intervention to treat conditions associated with oxidative stress or diminished mitochondrial activity in the

  1. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  2. Effect of mouse nerve growth factor on brain development in premature infants

    Institute of Scientific and Technical Information of China (English)

    Yi Ban; Zhong-He Wan

    2016-01-01

    Objective:To analyze the effect of application of mouse nerve growth factor in neonatal period on brain development in premature infants.Methods:A total of 37 cases of premature infants given birth in our hospital from 1st January, 2015 to 30th December, 2015 were selected as research subjects and divided into observation group (n=18) and control group (n=19) according to different ways of intervention. Control group didn’t receive exogenous drugs, observation group received mouse nerve growth factor (NGF) treatment in neonatal period, and then differences in results of brain magnetic resonance imaging, electroencephalogram, brainstem auditory evoked potential, scores of Gesell developmental scale, levels of NSE, S-100β, 8-OHdG and 8-I-PGF2α and levels of TLR-4, TNF-α, IL-18 and so on of two groups after intervention were compared.Results:Proportions of normal MRI, EEG and BAEP of observation group were higher than those of control group, and proportions of severely abnormal were significantly lower than those of control group; scores of Gesell developmental scale motor, adaptive behavior, language and social skills of observation group in 3 months and 6 months of corrected gestational age were higher than those of control group; serum NSE, S-100β, 8-OHdG and 8-I-PGF2α levels of observation group after 3 months and 6 months of corrected gestational age were lower than those of control group ; serum TLR-4, TNF-α, IL-18, NF-κB and MMP-9 levels of observation group after 6 months of corrected gestational age were lower than those of control group, and levels of EGF and SOD were higher than those of control group.Conclusion: Application of mouse nerve growth factor in neonatal period of premature infants helps to promote nerve cell growth and development and optimize brain function of premature infants, and it has active clinical significance.

  3. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

    Science.gov (United States)

    Diez-Alarcia, Rebeca; Ibarra-Lecue, Inés; Lopez-Cardona, Ángela P.; Meana, Javier; Gutierrez-Adán, Alfonso; Callado, Luis F.; Agirregoitia, Ekaitz; Urigüen, Leyre

    2016-01-01

    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. PMID:27867358

  4. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain

    Science.gov (United States)

    Yan, Sen; Wang, Chuan-En; Wei, Wenjie; Gaertig, Marta A.; Lai, Liangxue; Li, Shihua; Li, Xiao-Jiang

    2014-01-01

    Mutations in TAR DNA-binding protein 43 (TDP-43) are associated with familial forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although recent studies have revealed that mutant TDP-43 in neuronal and glial cells is toxic, how mutant TDP-43 causes primarily neuronal degeneration in an age-dependent manner remains unclear. Using adeno-associated virus (AAV) that expresses mutant TDP-43 (M337V) ubiquitously, we found that mutant TDP-43 accumulates preferentially in neuronal cells in the postnatal mouse brain. We then ubiquitously or selectively expressed mutant TDP-43 in neuronal and glial cells in the striatum of adult mouse brains via stereotaxic injection of AAV vectors and found that it also preferentially accumulates in neuronal cells. Expression of mutant TDP-43 in neurons in the striatum causes more severe degeneration, earlier death and more robust symptoms in mice than expression of mutant TDP-43 in glial cells; however, aging increases the expression of mutant TDP-43 in glial cells, and expression of mutant TDP-43 in older mice caused earlier onset of phenotypes and more severe neuropathology than that in younger mice. Although expression of mutant TDP-43 in glial cells via stereotaxic injection does not lead to robust neurological phenotypes, systemic inhibition of the proteasome activity via MG132 in postnatal mice could exacerbate glial TDP-43-mediated toxicity and cause mice to die earlier. Consistently, this inhibition increases the expression of mutant TDP-43 in glial cells in mouse brains. Thus, the differential accumulation of mutant TDP-43 in neuronal versus glial cells contributes to the preferential toxicity of mutant TDP-43 in neuronal cells and age-dependent pathology. PMID:24381309

  5. ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke.

    Science.gov (United States)

    Gladbach, Amadeus; van Eersel, Janet; Bi, Mian; Ke, Yazi D; Ittner, Lars M

    2014-05-01

    Ischemic stroke is a leading cause of death. It has previously been shown that blocking activation of extracellular signal-regulated kinase (ERK) with the MEK inhibitor U0126 mitigates brain damage in rodent models of ischemic stroke. Here we show that the newer MEK inhibitor PD184161 reduces cell death and altered gene expression in cultured neurons and mice undergoing excitotoxicity, and has similar protective effects in a mouse model of stroke. This further supports ERK inhibition as a potential treatment for stroke.

  6. Topography of arterial circle of the brain in Egyptian spiny mouse (Acomys cahirinus, Desmarest).

    Science.gov (United States)

    Szczurkowski, A; Kuchinka, J; Nowak, E; Kuder, T

    2007-04-01

    Using stained acryl latex-injected techniques, the arterial circle of the brain in Acomys cahirinus Desmarest was studied. Results revealed an important individual variability of investigated structure. Three morphological variants were found: (1) the lack of typical arterial circle--opened in front and the back side, (2) partial opened at the back side, (3) completely closed arterial circle. This finding is opposed to many species of mammals, including rodents, and especially laboratory mouse. In our point of view, it seems to be a specific character.

  7. Brain distribution and bioavailability of elacridar after different routes of administration in the mouse.

    Science.gov (United States)

    Sane, Ramola; Agarwal, Sagar; Elmquist, William F

    2012-08-01

    The objective of this study was to determine the bioavailability and disposition of elacridar (GF120918; N-(4-(2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl)phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide) in plasma and brain after various routes of administration in the mouse. Elacridar is a potent inhibitor of P-glycoprotein and breast cancer resistance protein and has been used to examine the influence of these efflux transporters on drug distribution to brain. Friend leukemia virus strain B mice were administered 100 mg/kg elacridar either orally or intraperitoneally. The absolute bioavailability of elacridar after oral or intraperitoneal dosing was determined with respect to an intravenous dose of 2.5 mg/kg. At these doses, the absolute bioavailability was 0.22 for oral administration and 0.01 for intraperitoneal administration. The terminal half-life of elacridar was approximately 4 h after intraperitoneal and intravenous administration and nearly 20 h after oral dosing. The brain-to-plasma partition coefficient (Kp,brain) of elacridar increased as plasma exposure increased, suggesting saturation of the efflux transporters at the blood-brain barrier. The Kp,brain after intravenous, intraperitoneal, and oral dosing was 0.82, 0.43, and 4.31, respectively. The low aqueous solubility and high lipophilicity of elacridar result in poor oral absorption, most likely dissolution-rate-limited. These results illustrate the importance of the route of administration and the resultant plasma exposure in achieving effective plasma and brain concentrations of elacridar and can be used as a guide for future studies involving elacridar administration and in developing formulation strategies to overcome the poor absorption.

  8. Role of microglia in a mouse model of paediatric traumatic brain injury.

    Science.gov (United States)

    Chhor, Vibol; Moretti, Raffaella; Le Charpentier, Tifenn; Sigaut, Stephanie; Lebon, Sophie; Schwendimann, Leslie; Oré, Marie-Virginie; Zuiani, Chiara; Milan, Valentina; Josserand, Julien; Vontell, Regina; Pansiot, Julien; Degos, Vincent; Ikonomidou, Chrysanthy; Titomanlio, Luigi; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2016-11-04

    The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.

  9. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    Full Text Available BACKGROUND: Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05. CONCLUSIONS/SIGNIFICANCE: These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  10. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  11. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  12. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  13. Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse.

    Science.gov (United States)

    Kono, Junko; Konno, Kohtarou; Talukder, Ashraf Hossain; Fuse, Toshimitsu; Abe, Manabu; Uchida, Katsuya; Horio, Shuhei; Sakimura, Kenji; Watanabe, Masahiko; Itoi, Keiichi

    2017-05-01

    We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.

  14. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... along the RMS with magnetic resonance imaging (MRI) in adult healthy mice. We evaluated various in situ (in vivo) labeling approaches using micron-sized iron oxide particles (MPIOs) on their efficiency to label endogenous NPCs. In situ labeling and visualization of migrating NPCs were analyzed...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  15. Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain

    Directory of Open Access Journals (Sweden)

    Julia F Alterman

    2015-01-01

    Full Text Available Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.

  16. Optical properties of mouse brain tissue after optical clearing with FocusClear™

    Science.gov (United States)

    Moy, Austin J.; Capulong, Bernard V.; Saager, Rolf B.; Wiersma, Matthew P.; Lo, Patrick C.; Durkin, Anthony J.; Choi, Bernard

    2015-09-01

    Fluorescence microscopy is commonly used to investigate disease progression in biological tissues. Biological tissues, however, are strongly scattering in the visible wavelengths, limiting the application of fluorescence microscopy to superficial (brain after optical clearing with FocusClear™. Light transmittance and reflectance of 1-mm mouse brain sections were measured using an integrating sphere before and after optical clearing and the inverse adding doubling algorithm used to determine tissue optical scattering. The degree of optical clearing was quantified by calculating the optical clearing potential (OCP), and the effects of differing OCP were demonstrated using the optical histology method, which combines tissue optical clearing with optical imaging to visualize the microvasculature. We observed increased tissue transparency with longer optical clearing time and an analogous increase in OCP. Furthermore, OCP did not vary substantially between 400 and 1000 nm for increasing optical clearing durations, suggesting that optical histology can improve ex vivo visualization of several fluorescent probes.

  17. Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain

    DEFF Research Database (Denmark)

    Liu, Xiaobin; Zeng, Joanne; Zhou, Anni

    2011-01-01

    Neuropeptide S (NPS) has been associated with a number of complex brain functions, including anxiety-like behaviors, arousal, sleep-wakefulness regulation, drug-seeking behaviors, and learning and memory. In order to better understand how NPS influences these functions in a neuronal network context....../EGFP-transgenic mice show anatomically correct and overlapping expression of both NPS and EGFP. A total number of ~500 NPS/EGFP-positive neurons are present in the mouse brain, located in the pericoerulear region and the Kölliker-Fuse nucleus. NPS and transgene expression is first detectable around E14, indicating...... network of orexin/hypocretin neuronal projections contacting pericoerulear NPS-producing neurons was observed by immunostaining. Expression of a distinct repertoire of metabotropic and ionotropic receptor genes was identified in both NPS neuronal clusters that will allow for detailed investigations...

  18. Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain

    DEFF Research Database (Denmark)

    Liu, Xiaobin; Zeng, Joanne; Zhou, Anni

    2011-01-01

    Neuropeptide S (NPS) has been associated with a number of complex brain functions, including anxiety-like behaviors, arousal, sleep-wakefulness regulation, drug-seeking behaviors, and learning and memory. In order to better understand how NPS influences these functions in a neuronal network context....../EGFP-transgenic mice show anatomically correct and overlapping expression of both NPS and EGFP. A total number of ∼500 NPS/EGFP-positive neurons are present in the mouse brain, located in the pericoerulear region and the Kölliker-Fuse nucleus. NPS and transgene expression is first detectable around E14, indicating...... network of orexin/hypocretin neuronal projections contacting pericoerulear NPS-producing neurons was observed by immunostaining. Expression of a distinct repertoire of metabotropic and ionotropic receptor genes was identified in both NPS neuronal clusters that will allow for detailed investigations...

  19. Sexual differentiation in the developing mouse brain: contributions of sex chromosome genes.

    Science.gov (United States)

    Wolstenholme, J T; Rissman, E F; Bekiranov, S

    2013-03-01

    Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X-chromosome and a unique second sex chromosome creating the following genotypes: XY(*x) , XX, XY(*) , XX(Y) (*) . This Y(*) mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X-chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X-chromosomes. We present data showing, in addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y(*) model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.

  20. Dehydroepiandrosterone formation is independent of cytochrome P450 17alpha-hydroxylase/17, 20 lyase activity in the mouse brain.

    Science.gov (United States)

    Liu, Ying; Pocivavsek, Ana; Papadopoulos, Vassilios

    2009-07-01

    Cytochrome P450 17alpha-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17alpha-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe(2+)-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO(4). Fe(2+) caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe(2+)-sensitive CYP17-independent pathway.

  1. Injury of Mouse Brain Mitochondria Induced by Cigarette Smoke Extract and Effect of Vitamin C on It in vitro

    Institute of Scientific and Technical Information of China (English)

    YU-MEI YANG; GENG-TAO LIU

    2003-01-01

    To investigate the toxicity of cigarette smoke extract (CSE) and nicotine on mouse brain mitochondria as well as the protective effect of vitamin C in vitro. Method Mouse brain mitochondria in vitro was incubated with CSE or nicotine in the absence or presence of vitamin C for 60 minutes, and the changes of mitochondrial function and structure were measured. Results CSE inhibited mitochondrial ATPase and cytochrome C oxidase activities in a dose-dependent manner.However, no significant changes in the peroxidation indices were observed when mitochondrial respiratory enzymes activity was inhibited, and protection of mitochondria from CSE-induced injury by vitamin C was not displayed in vitro. The effect of CSE on mouse brain mitochondria swelling response to calcium stimulation was dependent on calcium concentrations. CSE inhibited swelling of mitochondria at 6.5 μmol/L Ca2+, but promoted swelling response at 250 μmol/L Ca2+. Nicotine, the major component of cigarette smoke, showed no significant damage in mouse brain mitochondria in vitro. The CSE treatment induced mitochondrial inner membrane damage and vacuolization of the matrix, whereas the outer mitochondrial membrane appeared to be preserved. Conclusion The toxic effect of CSE on brain mitochondria may be due to its direct action on enzymatic activity rather than through oxygen free radical injury. Nicotine is not the responsible component for the toxicity of CSE to brain mitochondria.

  2. Emulation of computer mouse control with a noninvasive brain computer interface

    Science.gov (United States)

    McFarland, Dennis J.; Krusienski, Dean J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2008-06-01

    Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

  3. Fetal Circulation

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Fetal Circulation Updated:Oct 18,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  4. Apoptotic effects of the 'designer drug' methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain.

    Science.gov (United States)

    Adám, Agota; Gerecsei, László István; Lepesi, Nikolett; Csillag, András

    2014-09-01

    The designer drug of cathinone family, methylenedioxypyrovalerone (MDPV), is a cheap and frequently used psychoactive drug of abuse. However, its mechanism of action, particularly its potential detrimental effect on the developing brain, is largely unknown, despite the fact that pregnant females may occur among the users. The objective of our study was to identify the brain areas sensitive for a possible apoptotic effect of the widely abused MDPV on the developing brain. To this end, we used a mouse model which can be compared with the human fetus of third trimester, considering the developmental stage of the brain. Litters of 7-day-old C57BL/6J mice were treated either with i.p. injection of 10mg/kg b.wt.of MDPV or vehicle (saline), and sacrificed after 24h. Similar dose of MDPV enhanced locomotor activity of pups. The brains were processed for anti-caspase 3 (Casp3) immunohistochemistry and the apoptotic cells were identified and counted. We found prominent increase in the number of apoptotic cells in the piriform cortex, retrosplenial area, hippocampus CA1 and nucleus accumbens, whereas the overall density of cells did not change significantly in these regions. The neurons of the nucleus accumbens appeared to be especially sensitive to MDPV: Casp3-immunoreactive cells marked out the core and shell regions of the accumbens. Highest percentage of apoptotic cells as compared to total cell density was also found in the nucleus accumbens. However, we did not observe the same effect on the brain of adult mice. Thus, MDPV did not seem to increase apoptosis in the mature nervous system. The results are in agreement with the assumption that cathinones (in particular MDPV) may adversely affect neural integrity in the developing CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Jacqueline A. Hubbard

    2015-10-01

    Full Text Available Aquaporin-4 (AQP4 is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  6. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Science.gov (United States)

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  7. Aging-dependent changes in the cellular composition of the mouse brain and spinal cord.

    Science.gov (United States)

    Fu, Y; Yu, Y; Paxinos, G; Watson, C; Rusznák, Z

    2015-04-02

    Although the impact of aging on the function of the central nervous system is known, only a limited amount of information is available about accompanying changes affecting the cellular composition of the brain and spinal cord. In the present work we used the isotropic fractionator method to reveal aging-associated changes in the numbers of neuronal and non-neuronal cells harbored by the brain and spinal cord. The experiments were performed on 15-week, 7-month, 13-month, and 25-month-old female mice. The major parts of the brain were studied separately, including the isocortex, hippocampus, cerebellum, olfactory bulb, and the remaining part (i.e., 'rest of brain'). The proliferative capacity of each structure was assessed by counting the number of Ki-67-positive cells. We found no aging-dependent change when the cellular composition of the isocortex was studied. In contrast, the neuronal and non-neuronal cell numbers of the hippocampus decreased in the 7-25-month period. The neuronal cell number of the olfactory bulb showed positive age-dependence between 15 weeks and 13 months of age and presented a significant decrease thereafter. The cerebellum was characterized by an age-dependent decrease of its neuronal cell number and density. In the rest of brain, the non-neuronal cell number increased with age. The neuronal and non-neuronal cell numbers of the spinal cord increased, whereas its neuronal and non-neuronal densities decreased with age. The number of proliferating cells showed a marked age-dependent decrease in the hippocampus, olfactory bulb, and rest of the brain. In contrast, the number of Ki-67-positive cells increased with age in both the cerebellum and spinal cord. In conclusion, aging-dependent changes affecting the cellular composition of the mouse central nervous system are present but they are diverse and region-specific.

  8. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    Science.gov (United States)

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.

  9. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    Science.gov (United States)

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  10. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study.

    Science.gov (United States)

    Gould, S J; Howard, S

    1988-01-01

    The germinal layer in preterm infants is a common site of intracerebral hemorrhage that is associated with increased mortality and morbidity in survivors. This matrix is composed of a mass of immature cells containing many thin-walled blood vessels. A major factor in the occurrence of hemorrhage at this site is the absence of a network of fibers to support these vessels. This immunocytochemical study has examined glial differentiation within the germinal layer of brains from fetuses and preterm infants of gestational ages 18 to 35 weeks. Progressive glial differentiation with gestation is described. This process is not uniform and the more posterior germinal layer, lying over the body of the caudate nucleus, demonstrates more rapid maturation than that lying anteriorly near the head of the caudate nucleus. Anteriorly, even at 35 weeks of gestation, a central core of germinal layer cells remains immature with little evidence of glial differentiation. These changes may be related to the occurrence and distribution of germinal layer hemorrhages in preterm infants of varying gestations.

  11. Projections from the brain to the spinal cord in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2011-01-01

    The cells that project from the brain to the spinal cord have previously been mapped in a wide range of mammalian species, but have not been comprehensively studied in the mouse. We have mapped these cells in the mouse using retrograde tracing after large unilateral Fluoro-Gold (FG) and horseradish peroxidase (HRP) injections in the C1 and C2 spinal cord segments. We have identified over 30 cell groups that project to the spinal cord, and have confirmed that the pattern of major projections from the cortex, diencephalon, midbrain, and hindbrain in the mouse is typically mammalian, and very similar to that found in the rat. However, we report two novel findings: we found labeled neurons in the precuneiform area (an area which has been associated with the midbrain locomotor center in other species), and the epirubrospinal nucleus. We also found labeled cells in the medial division of central nucleus of the amygdala in a small number of cases. Our findings should be of value to researchers engaged in evaluating the impact of spinal cord injury and other spinal cord pathologies on the centers which give rise to descending pathways.

  12. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    Science.gov (United States)

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  13. Survival benefit and phenotypic improvement by hamartin gene therapy in a tuberous sclerosis mouse brain model.

    Science.gov (United States)

    Prabhakar, Shilpa; Zhang, Xuan; Goto, June; Han, Sangyeul; Lai, Charles; Bronson, Roderick; Sena-Esteves, Miguel; Ramesh, Vijaya; Stemmer-Rachamimov, Anat; Kwiatkowski, David J; Breakefield, Xandra O

    2015-10-01

    We examined the potential benefit of gene therapy in a mouse model of tuberous sclerosis complex (TSC) in which there is embryonic loss of Tsc1 (hamartin) in brain neurons. An adeno-associated virus (AAV) vector (serotype rh8) expressing a tagged form of hamartin was injected into the cerebral ventricles of newborn pups with the genotype Tsc1(cc) (homozygous for a conditional floxed Tsc1 allele) SynI-cre(+), in which Tsc1 is lost selectively in neurons starting at embryonic day 12. Vector-treated Tsc1(cc)SynIcre(+) mice showed a marked improvement in survival from a mean of 22 days in non-injected mice to 52 days in AAV hamartin vector-injected mice, with improved weight gain and motor behavior in the latter. Pathologic studies showed normalization of neuron size and a decrease in markers of mTOR activation in treated as compared to untreated mutant littermates. Hence, we show that gene replacement in the brain is an effective therapeutic approach in this mouse model of TSC1. Our strategy for gene therapy has the advantages that therapy can be achieved from a single application, as compared to repeated treatment with drugs, and that AAV vectors have been found to have minimal to no toxicity in clinical trials for other neurologic conditions. Although there are many additional issues to be addressed, our studies support gene therapy as a useful approach in TSC patients.

  14. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  15. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    Science.gov (United States)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  16. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    OpenAIRE

    Hiroaki Tsukano; Masao Horie; Ryuichi Hishida; Kuniyuki Takahashi; Hirohide Takebayashi; Katsuei Shibuki

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory ...

  17. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE. Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon, in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35% or xenon (35% were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be

  18. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy.

    Science.gov (United States)

    Nunes, Andreia M; Wuebbles, Ryan D; Sarathy, Apurva; Fontelonga, Tatiana M; Deries, Marianne; Burkin, Dean J; Thorsteinsdóttir, Sólveig

    2017-06-01

    Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7β1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7β1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain.

    Science.gov (United States)

    Ceni, Claire; Pochon, Nathalie; Villaz, Michel; Muller-Steffner, Hélène; Schuber, Francis; Baratier, Julie; De Waard, Michel; Ronjat, Michel; Moutin, Marie-Jo

    2006-04-15

    cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.

  20. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells.

    Science.gov (United States)

    Braun, Doreen; Kinne, Anita; Bräuer, Anja U; Sapin, Remy; Klein, Marc O; Köhrle, Josef; Wirth, Eva K; Schweizer, Ulrich

    2011-03-01

    Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 μM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.

  1. Histamine H3A receptor-mediated inhibition of noradrenaline release in the mouse brain cortex.

    Science.gov (United States)

    Schlicker, E; Behling, A; Lümmen, G; Göthert, M

    1992-04-01

    Mouse brain cortex slices preincubated with 3H-noradrenaline were superfused with physiological salt solution containing desipramine plus a drug with alpha 2-adrenoceptor antagonist properties, and the effects of histamine receptor ligands on the electrically (0.3 Hz) evoked tritium overflow were studied. The evoked overflow (from slices superfused with phentolamine) was inhibited by histamine (pIC35 6.53), the H3 receptor agonist R-(-)-alpha-methylhistamine (7.47) and its S-(+)-enantiomer (5.82) but not influenced by the H1 receptor agonist 2-(2-thiazolyl)-ethylamine 3.2 mumol/l and the H2 receptor agonist dimaprit 10 mumol/l. The inhibitory effect of histamine was not affected by the H1 receptor antagonist dimetindene 1 mumol/l and the H2 receptor antagonist ranitidine 10 mumol/l. The concentration-response curve of histamine (determined in the presence of rauwolscine) was shifted to the right by the H3 receptor antagonists thioperamide (apparent pA2 8.67), impromidine (7.30) and burimamide (6.82) as well as by dimaprit (6.16). The pA2 values of the four drugs were compared with their affinities for H3A and H3B binding sites in rat brain membranes (West et al. 1990 Mol Pharmacol 38:610); a significant correlation was obtained for the H3A, but not for the H3B sites. The results suggest that noradrenaline release in the mouse brain cortex is inhibited by histamine via H3A receptors and that dimaprit is an H3 receptor antagonist of moderate potency.

  2. Expression pattern of thyroid hormone transporters in the postnatal mouse brain

    Directory of Open Access Journals (Sweden)

    Julia eMüller

    2014-06-01

    Full Text Available For a comprehensive description of the tissue-specific thyroidal state under normal as well as under pathophysiological conditions it is of utmost importance to include thyroid hormone (TH transporters in the analysis as well. The current knowledge of the cell-specific repertoire of TH transporters, however, is still rather limited, although several TH transporting proteins have been identified. Here, we describe the temporal and spatial distribution pattern of the most prominent TH transporters in the postnatal mouse brain. For that purpose, we performed radioactive in situ hybridization studies in order to analyze the cellular mRNA expression pattern of the monocarboxylate transporters Mct8 and Mct10, the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting peptide Oatp1c1 at different postnatal time points. Highest TH transporter expression levels in the CNS were observed at postnatal day 6 and 12, while hybridization signal intensities visibly declined after the second postnatal week. The only exception was Mct10 for which the strongest signals could be observed in white matter regions at postnatal day 21 indicating that this transporter is preferentially expressed in mature oligodendrocytes. Whereas Mct8 and Lat2 showed an overlapping neuronal mRNA expression pattern in the cerebral cortex, hippocampus and in the hypothalamus, Oatp1c1 and Lat1 specific signals were most prominent in capillary endothelial cells throughout the CNS. In the choroid plexus, expression of three transporters (Mct8, Lat2 and Oatp1c1 could be detected, whereas in other brain areas (e.g. striatum, thalamus, brain stem nuclei only one of the transporter candidates appeared to be present. Overall, our study revealed a distinct mRNA distribution pattern for each of the TH transporter candidates. Further studies will reveal to which extent these transporters contribute to the cell-specific TH uptake and efflux in the mouse CNS.

  3. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  4. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaoyu [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Perez-Torres, Carlos J. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Thotala, Dinesh [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Engelbach, John A. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Yuan, Liya [Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Cates, Jeremy [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Gao, Feng [Division of Biostatistics, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Drzymala, Robert E.; Rich, Keith M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Schmidt, Robert E. [Department of Neuropathology, Washington University, St. Louis, Missouri (United States); Ackerman, Joseph J.H. [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Department of Radiology, Washington University, St. Louis, Missouri (United States); Department of Internal Medicine, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Hallahan, Dennis E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Garbow, Joel R., E-mail: garbow@wustl.edu [Department of Radiology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States)

    2014-07-15

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.

  5. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  6. Different coexpressions of arthritis-relevant genes between different body organs and different brain regions in the normal mouse population.

    Science.gov (United States)

    Cao, Yanhong; Huang, Yue; Wang, Lishi; Zhu, Jiaqian; Gu, Weikuan

    2013-02-25

    Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.

  7. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain.

    Science.gov (United States)

    Ishikawa, Chihiro; Li, Haiyan; Ogura, Rin; Yoshimura, Yuko; Kudo, Takashi; Shirakawa, Masaki; Shiba, Dai; Takahashi, Satoru; Morita, Hironobu; Shiga, Takashi

    2017-01-01

    Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.

  8. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord.

    Science.gov (United States)

    Fu, YuHong; Rusznák, Zoltán; Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-09-01

    The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, 'rest of the brain', and spinal cord) and the pituitary gland in 4-40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4-15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the 'rest of the brain' and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS.

  9. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. (Ewha Women' s Univ., Seoul (Korea) Univ. of California, Irvine (United States))

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  10. Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV

    Directory of Open Access Journals (Sweden)

    Yulia Grishchuk

    2015-12-01

    Full Text Available Mucolipidosis type IV (MLIV is a lysosomal storage disease caused by mutations in the MCOLN1 gene, which encodes the lysosomal transient receptor potential ion channel mucolipin-1 (TRPML1. MLIV causes impaired motor and cognitive development, progressive loss of vision and gastric achlorhydria. How loss of TRPML1 leads to severe psychomotor retardation is currently unknown, and there is no therapy for MLIV. White matter abnormalities and a hypoplastic corpus callosum are the major hallmarks of MLIV brain pathology. Here, we report that loss of TRPML1 in mice results in developmental aberrations of brain myelination as a result of deficient maturation and loss of oligodendrocytes. Defective myelination is evident in Mcoln1−/− mice at postnatal day 10, an active stage of postnatal myelination in the mouse brain. Expression of mature oligodendrocyte markers is reduced in Mcoln1−/− mice at postnatal day 10 and remains lower throughout the course of the disease. We observed reduced Perls' staining in Mcoln1−/− brain, indicating lower levels of ferric iron. Total iron content in unperfused brain is not significantly different between Mcoln1−/− and wild-type littermate mice, suggesting that the observed maturation delay or loss of oligodendrocytes might be caused by impaired iron handling, rather than by global iron deficiency. Overall, these data emphasize a developmental rather than a degenerative disease course in MLIV, and suggest that there should be a stronger focus on oligodendrocyte maturation and survival to better understand MLIV pathogenesis and aid treatment development.

  11. Evaluation of anesthesia effects on [{sup 18}F]FDG uptake in mouse brain and heart using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi E-mail: htoyama@fujita-hu.ac.jp; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B

    2004-02-01

    This study evaluates effects of anesthesia on {sup 18}F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used.

  12. Growth Factors Released from Gelatin Hydrogel Microspheres Increase New Neurons in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kanako Nakaguchi

    2012-01-01

    Full Text Available Recent studies have shown that new neurons are continuously generated by endogenous neural stem cells in the subventricular zone (SVZ of the adult mammalian brain. Some of these new neurons migrate to injured brain tissues and differentiate into mature neurons, suggesting that such new neurons may be able to replace neurons lost to degenerative disease or injury and improve or repair neurological deficits. Here, we tested whether delivering growth factors via gelatin hydrogel microspheres would support neurogenesis in the SVZ. Insulin-like growth factor-1 (IGF-1-containing microspheres increased the number of new neurons in the SVZ. Hepatocyte growth factor (HGF-containing microspheres increased the number of new neurons migrating from the SVZ towards the injured striatum in a stroke model in mouse. These results suggest that the strategy of using gelatin hydrogel microspheres to achieve the sustained release of growth factors holds promise for the clinical regeneration of damaged brain tissues from endogenous neural stem cells in the adult SVZ.

  13. Detection of mouse endogenous type B astrocytes migrating towards brain lesions

    Directory of Open Access Journals (Sweden)

    Gema Elvira

    2015-01-01

    Full Text Available Neuroblasts represent the predominant migrating cell type in the adult mouse brain. There are, however, increasing evidences of migration of other neural precursors. This work aims at identifying in vivo endogenous early neural precursors, different from neuroblasts, able to migrate in response to brain injuries. The monoclonal antibody Nilo1, which unequivocally identifies type B astrocytes and embryonic radial glia, was coupled to magnetic glyconanoparticles (mGNPs. Here we show that Nilo1–mGNPs in combination with magnetic resonance imaging in living mice allowed the in vivo identification of endogenous type B astrocytes at their niche, as well as their migration to the lesion site in response to glioblastoma, demyelination, cryolesion or mechanical injuries. In addition, Nilo1+ adult radial glia-like structures were identified at the lesion site a few hours after damage. For all damage models used, type B astrocyte migration was fast and orderly. Identification of Nilo1+ cells surrounding an induced glioblastoma was also possible after intraperitoneal injection of the antibody. This opens up the possibility of an early identification of the initial damage site(s after brain insults, by the migration of type B astrocytes.

  14. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Thomas Gerald Mast

    Full Text Available BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF; here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysiology in a whole-cell configuration, brain-derived neurotrophic factor (BDNF, but not proBDNF, increased mitral cell excitability. BDNF increased mitral cell action potential firing frequency and decreased interspike interval in response to current injection. In a separate set of experiments, intranasal delivery of neurotrophic factors to awake, adult mice was performed to induce sustained interneuron neurochemical changes. ProBDNF, but not BDNF, increased activated-caspase 3 and reduced tyrosine hydroxylase immunoreactivity in OB glomerular interneurons. In a parallel set of experiments, short-term sensory deprivation produced by unilateral naris occlusion generated an identical phenotype. CONCLUSIONS: Our results indicate that only mature BDNF increases mitral cell excitability whereas proBDNF remains ineffective. Our demonstration that proBDNF activates an apoptotic marker in vivo is the first for any proneurotrophin and establishes a role for proBDNF in a model of neuronal plasticity.

  15. MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels.

    Science.gov (United States)

    Oien, Derek B; Osterhaus, Greg L; Latif, Shaheen A; Pinkston, Jonathan W; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C; Moskovitz, Jackob

    2008-07-15

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA(-/-)) mouse. Here we show that MsrA(-/-) mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA(-/-) mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA(-/-) mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA(-/-) brains contained significantly higher levels of dopamine up to 12 months of age, while lower levels of dopamine were observed at 16 months of age. Moreover, striatal regions of MsrA(-/-) mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathways are impaired in MsrA(-/-) mice, which may contribute to their abnormal behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress.

  16. The MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels

    Science.gov (United States)

    Oien, Derek B.; Osterhaus, Greg L.; Latif, Shaheen A.; Pinkston, Jonathan W.; Fulks, Jenny; Johnson, Michael; Fowler, Stephen C.; Moskovitz, Jackob

    2008-01-01

    Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA−/−) mouse. Here we show that MsrA−/− mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA−/− mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA−/− mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA−/− brains contained significantly higher levels of dopamine up to 12 months of age, while lower level of dopamine was observed at 16 months of age. Moreover, striatal regions of MsrA−/− mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathway are impaired in MsrA−/− mice, which may contribute to their abnormal bio-behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress. PMID:18466776

  17. Heteromerization of ciliary G protein-coupled receptors in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jill A Green

    Full Text Available Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1 and somatostatin receptor 3 (Sstr3 colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.

  18. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    Science.gov (United States)

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  19. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain

    Science.gov (United States)

    Bovetti, Serena; Moretti, Claudio; Zucca, Stefano; Dal Maschio, Marco; Bonifazi, Paolo; Fellin, Tommaso

    2017-01-01

    Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain. PMID:28053310

  20. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    Science.gov (United States)

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration.

  1. Primo Vascular System in the Subarachnoid Space of a Mouse Brain

    Directory of Open Access Journals (Sweden)

    Sang-Ho Moon

    2013-01-01

    Full Text Available Objective. Recently, a novel circulatory system, the primo vascular system (PVS, was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4',6-diamidino-2-phenylindole (DAPI and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work.

  2. Simultaneous high-speed imaging and optogenetic inhibition in the intact mouse brain

    Science.gov (United States)

    Bovetti, Serena; Moretti, Claudio; Zucca, Stefano; Dal Maschio, Marco; Bonifazi, Paolo; Fellin, Tommaso

    2017-01-01

    Genetically encoded calcium indicators and optogenetic actuators can report and manipulate the activity of specific neuronal populations. However, applying imaging and optogenetics simultaneously has been difficult to establish in the mammalian brain, even though combining the techniques would provide a powerful approach to reveal the functional organization of neural circuits. Here, we developed a technique based on patterned two-photon illumination to allow fast scanless imaging of GCaMP6 signals in the intact mouse brain at the same time as single-photon optogenetic inhibition with Archaerhodopsin. Using combined imaging and electrophysiological recording, we demonstrate that single and short bursts of action potentials in pyramidal neurons can be detected in the scanless modality at acquisition frequencies up to 1 kHz. Moreover, we demonstrate that our system strongly reduces the artifacts in the fluorescence detection that are induced by single-photon optogenetic illumination. Finally, we validated our technique investigating the role of parvalbumin-positive (PV) interneurons in the control of spontaneous cortical dynamics. Monitoring the activity of cellular populations on a precise spatiotemporal scale while manipulating neuronal activity with optogenetics provides a powerful tool to causally elucidate the cellular mechanisms underlying circuit function in the intact mammalian brain.

  3. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    Science.gov (United States)

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.

  4. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells

    Institute of Scientific and Technical Information of China (English)

    Ko Saito; Masahide Yoshikawa; Yukiteru Ouji; Kei Moriya; Mariko Nishiofuku; Shigehiko Ueda; Noriko Hayashi; Shigeaki Ishizaka; Hiroshi Fukui

    2006-01-01

    AIM:To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.METHODS:Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLCassisted differentiation, spontaneous differentiation,and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4,hepatocyte growth factor (HGF), oncostatin M (OSM),and dexamethasone.RESULTS:The mRNA expression of α-fetoprotein,albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes,was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Tmmunocytochemical analysis revealed an increased ratio of ALS-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.CONCLUSION:MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.

  5. Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Vincenz, Daniel; Stöber, Franziska; Oelschlegel, Anja M.; Goldschmidt, Jürgen; Salditt, Tim

    2017-02-01

    Studies of brain cytoarchitecture in mammals are routinely performed by serial sectioning of the specimen and staining of the sections. The procedure is labor-intensive and the 3D architecture can only be determined after aligning individual 2D sections, leading to a reconstructed volume with non-isotropic resolution. Propagation-based x-ray phase-contrast tomography offers a unique potential for high-resolution 3D imaging of intact biological specimen due to the high penetration depth and potential resolution. We here show that even compact laboratory CT at an optimized liquid-metal jet microfocus source combined with suitable phase-retrieval algorithms and a novel tissue preparation can provide cellular and subcellular resolution in millimeter sized samples of mouse brain. We removed water and lipids from entire mouse brains and measured the remaining dry tissue matrix in air, lowering absorption but increasing phase contrast. We present single-cell resolution images of mouse brain cytoarchitecture and show that axons can be revealed in myelinated fiber bundles. In contrast to optical 3D techniques our approach does neither require staining of cells nor tissue clearing, procedures that are increasingly difficult to apply with increasing sample and brain sizes. The approach thus opens a novel route for high-resolution high-throughput studies of brain architecture in mammals.

  6. Purification and Identification of Microglia in Fetal Rat Brain%胎大鼠脑内小胶质细胞的分离纯化和鉴定

    Institute of Scientific and Technical Information of China (English)

    马怡然; 马英桓; 颜永红

    2011-01-01

    目的 分离纯化和鉴定胎大鼠脑内小胶质细胞,为小胶质细胞的研究奠定基础.方法 盐酸利多卡因注射液联合机械振摇纯化分离胎大鼠脑内小胶质细胞.免疫荧光技术和流式细胞技术鉴定小胶质细胞的纯度.结果 通过盐酸利多卡因注射液联合机械振摇纯化分离法,得到纯度>98%的小胶质细胞.结论 盐酸利多卡因注射液联合机械振摇纯化分离法是一种能获得较高纯度胎大鼠脑内小胶质细胞的方法.%Objective To explore a method to isolate, purify and identify the microglia in fetal rat brain. Methods Fetal rat microglia cells in brain were isolated and purified by adding lidocaine hydrochloride with shock culturing,and the identification of microglia was completed by immunofluorescence and flow cytometry. Results 98% of microglia cells were successfully collected by the method of adding lidocaine hydrochloride with shock culturing. Conclusion The method of lidocaine hydrochloride with shock culturing can collect microglia with high purity in fetal rat brain.

  7. Fetal Research

    Science.gov (United States)

    Hansen, John T.; Sladek, John R.

    1989-11-01

    This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.

  8. A novel unbiased counting method for the quantification of synapses in the mouse brain.

    Science.gov (United States)

    Reichmann, Florian; Painsipp, Evelin; Holzer, Peter; Kummer, D