WorldWideScience

Sample records for mouse aged kidney

  1. Experimental investigation of mouse kidney aging with SR PCI technology

    Science.gov (United States)

    Yifeng, P.; Zehua, Z.; Guohao, D.; Tiqiao, X.; Hongjie, X.; Peiping, Z.

    2013-08-01

    Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.

  2. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age

    Science.gov (United States)

    Roeder, Sebastian S.; Stefanska, Ania; Eng, Diana G.; Kaverina, Natalya; Sunseri, Maria W.; McNicholas, Bairbre A.; Rabinovitch, Peter; Engel, Felix B.; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W.

    2015-01-01

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. PMID:26017974

  3. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age.

    Science.gov (United States)

    Roeder, Sebastian S; Stefanska, Ania; Eng, Diana G; Kaverina, Natalya; Sunseri, Maria W; McNicholas, Bairbre A; Rabinovitch, Peter; Engel, Felix B; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W; Shankland, Stuart J

    2015-07-15

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. Copyright © 2015 the American Physiological Society.

  4. Protective Effects of Hydrogen Sulfide in the Ageing Kidney.

    Science.gov (United States)

    Hou, Cui-Lan; Wang, Ming-Jie; Sun, Chen; Huang, Yong; Jin, Sheng; Mu, Xue-Pan; Chen, Ying; Zhu, Yi-Chun

    2016-01-01

    Aims . The study aimed to examine whether hydrogen sulfide (H 2 S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results . H 2 S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H 2 S-producing enzymes in kidney, cystathionine γ -lyase (CSE) and cystathionine- β -synthase (CBS), decreased significantly during ageing. Chronic H 2 S donor (NaHS, 50  μ mol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H 2 S-producing enzymes changed with exogenous H 2 S administration and contributed to elevated H 2 S levels in the ageing kidney. Conclusions . Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H 2 S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.

  5. Aging changes in the kidneys and bladder

    Science.gov (United States)

    ... affect kidney function. COMMON PROBLEMS Aging increases the risk of kidney and bladder problems such as: Bladder control issues, such as leakage or urinary incontinence (not being able to hold your urine), or ...

  6. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  7. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  8. The Aging Kidney: Increased Susceptibility to Nephrotoxicity

    Science.gov (United States)

    Wang, Xinhui; Bonventre, Joseph V.; Parrish, Alan R.

    2014-01-01

    Three decades have passed since a series of studies indicated that the aging kidney was characterized by increased susceptibility to nephrotoxic injury. Data from these experimental models is strengthened by clinical data demonstrating that the aging population has an increased incidence and severity of acute kidney injury (AKI). Since then a number of studies have focused on age-dependent alterations in pathways that predispose the kidney to acute insult. This review will focus on the mechanisms that are altered by aging in the kidney that may increase susceptibility to injury, including hemodynamics, oxidative stress, apoptosis, autophagy, inflammation and decreased repair. PMID:25257519

  9. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    Science.gov (United States)

    Lindström, Nils O; McMahon, Jill A; Guo, Jinjin; Tran, Tracy; Guo, Qiuyu; Rutledge, Elisabeth; Parvez, Riana K; Saribekyan, Gohar; Schuler, Robert E; Liao, Christopher; Kim, Albert D; Abdelhalim, Ahmed; Ruffins, Seth W; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; Kesselman, Carl; McMahon, Andrew P

    2018-03-01

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species. Copyright © 2018 by the American Society of Nephrology.

  10. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    International Nuclear Information System (INIS)

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-01-01

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development

  11. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis.

    Science.gov (United States)

    Davisson, Muriel T; Cook, Susan A; Akeson, Ellen C; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather; Murray, Stephen A

    2015-06-15

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. Copyright © 2015 the American Physiological Society.

  12. Optical Coherence Tomography of the Aging Kidney.

    Science.gov (United States)

    Andrews, Peter M; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Falola, Reuben; Chen, Yu

    2016-12-01

    The aging kidney exhibits a progressive decline in renal function with characteristic histopathologic changes and is a risk factor for renal transplant. However, the degree to which the kidney exhibits this decline depends on several factors that vary from one individual to the next. Optical coherence tomography is an evolving noninvasive imaging technology that has recently been used to evaluate acute tubular necrosis of living-human donor kidneys before their transplant. With the increasing use of kidneys from older individuals, it is important to determine whether optical coherence tomography also can distinguish the histopathology associated with aging. In this investigation, we used Munich-Wistar rats to evaluate the ability of optical coherence tomography to detect histopathologic changes associated with aging. Optical coherence tomography observations were correlated with renal function and conventional light microscopic evaluation of these same kidneys. With the onset of severe proteinuria at 10 to 12 months of age, optical coherence tomography revealed tubular necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis. With a further deterioration in kidney function at 16 to 18 months of age (as indicated by rising creatinine levels), optical coherence tomography revealed more extensive interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst formation and more sclerotic glomeruli. The foregoing observations suggest that optical coherence tomography can be used to detect the histopathology of progressive nephropathy associated with aging.

  13. The aging kidney revisited: a systematic review.

    Science.gov (United States)

    Bolignano, Davide; Mattace-Raso, Francesco; Sijbrands, Eric J G; Zoccali, Carmine

    2014-03-01

    As for the whole human body, the kidney undergoes age-related changes which translate in an inexorable and progressive decline in renal function. Renal aging is a multifactorial process where gender, race and genetic background and several key-mediators such as chronic inflammation, oxidative stress, the renin-angiotensin-aldosterone (RAAS) system, impairment in kidney repair capacities and background cardiovascular disease play a significant role. Features of the aging kidney include macroscopic and microscopic changes and important functional adaptations, none of which is pathognomonic of aging. The assessment of renal function in the framework of aging is problematic and the question whether renal aging should be considered as a physiological or pathological process remains a much debated issue. Although promising dietary and pharmacological approaches have been tested to retard aging processes or renal function decline in the elderly, proper lifestyle modifications, as those applicable to the general population, currently represent the most plausible approach to maintain kidney health. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  15. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  16. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  17. The renin-angiotensin system and aging in the kidney

    OpenAIRE

    Yoon, Hye Eun; Choi, Bum Soon

    2014-01-01

    Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and function...

  18. Kidney disease and aging: A reciprocal relation.

    Science.gov (United States)

    Kooman, Jeroen P; van der Sande, Frank M; Leunissen, Karel M L

    2017-01-01

    Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are overrepresented in elderly patients. This provides specific challenges for the treatment, as the start of dialysis in vulnerable elderly patients may be associated with a rapid decline in functional performance. However, prognosis in elderly patients with ESRD is quite variable and related to the presence of comorbidity and geriatric impairments. The decision to start dialysis in elderly patients should always be based on shared decision making, which may be aided by the use of prediction models which should however not be used to withhold dialysis treatment. The treatment of ESRD in elderly patients should be based on a multidimensional treatment plan with a role for active rehabilitation. Moreover, there also appears to be a reciprocal relationship between aging and CKD, as the presence of geriatric complications is also high in younger patients with ESRD. This has led to the hypothesis of a premature aging process associated with CKD, resulting in different phenotypes such as premature vascular aging, muscle wasting, bone disease, cognitive dysfunction and frailty. Prevention and treatment of this phenotype is based on optimal treatment of CKD, associated comorbidities, and lifestyle factors by established treatments. For the future, interventions, which are developed to combat the aging process in general, might also have relevance for the treatment of patients with CKD, but their role should always be investigated in adequately powered clinical trials, as results obtained in experimental trials may not be directly translatable to the clinical situation of elderly patients. In the meantime, physical exercise is a very important intervention, by improving both physical capacity and functional performance, as well as by a direct effect on the aging process. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A transcriptional profile of aging in the human kidney.

    Directory of Open Access Journals (Sweden)

    Graham E J Rodwell

    2004-12-01

    Full Text Available In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  20. The renin-angiotensin system and aging in the kidney.

    Science.gov (United States)

    Yoon, Hye Eun; Choi, Bum Soon

    2014-05-01

    Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and functional changes in the aging kidney and age-related renal injury, and describes the underlying mechanisms of RAS-related renal aging. An improved understanding of the renal aging process may lead to better individualized care of the elderly and improved renal survival in age-related diseases.

  1. Emerging role of autophagy in kidney function, diseases and aging

    Science.gov (United States)

    Huber, Tobias B.; Edelstein, Charles L.; Hartleben, Björn; Inoki, Ken; Jiang, Man; Koya, Daisuke; Kume, Shinji; Lieberthal, Wilfred; Pallet, Nicolas; Quiroga, Alejandro; Ravichandran, Kameswaran; Susztak, Katalin; Yoshida, Sei; Dong, Zheng

    2012-01-01

    Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy. PMID:22692002

  2. Thioacetamide-induced changes in the body weight, kidney weight and the total nucleic acids content of kidney of mouse

    International Nuclear Information System (INIS)

    Shakoori, Abdul Rauf; Ashraf, Fauzia.

    1976-01-01

    Effects of thioacetamide (TAA) on the body weight, kidney weight and the total nucleic acids content of kidney of mouse were studied. TAA 1% and 2% solutions were injected intraperitoneally, twice with an interval of 24 hours in two different batches of male mice. In this way one batch received a total dose of 100 mg TAA/Kg body wt. while the other got a total dose of 200 mg TAA/Kg. Both the body as well as kidney weights decrease after TAA treatment. A total dose of 200 mg/Kg is a stronger inhibitor of growth as compared with that of 100 mg/Kg. The nucleic acids content show an increase after the drug treatment. The ribonucleic acid content of kidney increased from an average value of 4.30+0.14 mg/g kidney to 4.60+-0.22 mg/g kidney after 1% TAA treatment. The increase in 2% TAA treated mice is slightly more prominent. The deoxyribonucleic acid (DNA) content of kidney are likewise affected. After an initial increase in 1% TAA-treated animals, the DNA content gradually fall down to normal control values. Administration of 2% TAA solution causes an average increase of 21% i.e. from 1.93+-0.19 mg/g kidney wt to 2.26+-0.23 mg/g kidney wt. The size of cell, nucleus and nucleolus also increased after drug treatment, which mainly occurred during the first 24 hours of the post-treatment period

  3. Gender-dependent effects of aging on the kidney

    Directory of Open Access Journals (Sweden)

    A.L. Gava

    2011-09-01

    Full Text Available It is well known that the kidney plays an important role in the development of cardiovascular diseases such as hypertension. The normal aging process leads to changes in kidney morphology, hemodynamics and function, which increase the incidence of cardiovascular events in the elderly population. These disturbances are influenced by several factors, including gender. In general, females are protected by the effects of estrogens on the cardiorenal system. Several studies have demonstrated the beneficial effects of estrogens on renal function in the elderly; however, the relationships between androgens and kidney health during one’s lifetime are not well understood. Sex steroids have many complex actions, and the decline in their levels during aging clearly influences kidney function, decreases the renal reserve and facilitates the development of cardiovascular disorders. Therefore, in this review, we discuss the cellular, biochemical, and molecular mechanisms by which sex hormones may influence renal function during the aging process.

  4. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  5. The Kidney in Aging: Physiological Changes and Pathological Implications.

    Science.gov (United States)

    Sobamowo, H; Prabhakar, S S

    2017-01-01

    Aging is associated with progressive decline in renal function along with concurrent morphological changes that ultimately lead to glomerulosclerosis. The mechanisms leading to such changes in the kidney with age as well as the basis of controversies that surround the physiological basis vs pathological nature of aging kidney are the focus of this in-depth review. In addition, the renal functional defects of acid-base homeostasis and electrolyte disturbances in elderly and the physiological basis of such disorders are also discussed. © 2017 Elsevier Inc. All rights reserved.

  6. Proteomic study on gender differences in aging kidney of mice

    Directory of Open Access Journals (Sweden)

    Cristobal Susana

    2009-04-01

    Full Text Available Abstract Background This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS. Results This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. Conclusion Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.

  7. The Expression Changes of Inflammasomes in the Aging Rat Kidneys.

    Science.gov (United States)

    Song, Fei; Ma, Yuxiang; Bai, Xue-Yuan; Chen, Xiangmei

    2016-06-01

    The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Inflammasomes are important components of innate immune system in the body. However, the function of inflammasomes and their underlying mechanisms in renal aging remain unclear. In this study, for the first time, we systematically investigated the role of the inflammasomes and the inflammatory responses activated by inflammasomes during kidney aging. We found that during kidney aging, the expression levels of the molecules associated with the activation of inflammasomes, including toll-like receptor-4 and interleukin-1 receptor (IL-1R), were significantly increased; their downstream signaling pathway molecule interleukin-1 receptor-associated kinase-4 (IRAK4) was markedly activated (Phospho-IRAK4 was obviously increased); the nuclear factor-κB (NF-κB) signaling pathway was activated (the activated NF-κB pathway molecules Phospho-IKKβ, Phospho-IκBα, and Phospho-NF-κBp65 were significantly elevated); the levels of the inflammasome components NOD-like receptor P3 (NLRP3), NLRC4, and pro-caspase-1 were prominently upregulated; and the proinflammatory cytokines IL-1β and IL-18 were notably increased in the kidneys of 24-month-old (elderly group) rats. These results showed that inflammasomes are markedly activated during the renal aging process and might induce inflamm-aging by promoting the maturation and secretion of the proinflammatory cytokines IL-1β and IL-18. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  9. Structural and Functional Changes in Human Kidneys with Healthy Aging.

    Science.gov (United States)

    Hommos, Musab S; Glassock, Richard J; Rule, Andrew D

    2017-10-01

    Aging is associated with significant changes in structure and function of the kidney, even in the absence of age-related comorbidities. On the macrostructural level, kidney cortical volume decreases, surface roughness increases, and the number and size of simple renal cysts increase with age. On the microstructural level, the histologic signs of nephrosclerosis (arteriosclerosis/arteriolosclerosis, global glomerulosclerosis, interstitial fibrosis, and tubular atrophy) all increase with age. The decline of nephron number is accompanied by a comparable reduction in measured whole-kidney GFR. However, single-nephron GFR remains relatively constant with healthy aging as does glomerular volume. Only when glomerulosclerosis and arteriosclerosis exceed that expected for age is there an increase in single-nephron GFR. In the absence of albuminuria, age-related reduction in GFR with the corresponding increase in CKD (defined by an eGFRage-standardized mortality risk or ESRD. These findings raise the question of whether disease labeling of an age-related decline in GFR is appropriate. These findings also emphasize the need for a different management approach for many elderly individuals considered to have CKD by current criteria. Copyright © 2017 by the American Society of Nephrology.

  10. Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease.

    Science.gov (United States)

    Glassock, Richard J; Rule, Andrew D

    2016-01-01

    The varied functions of the kidneys are influenced by the complex process of aging. The glomerular filtration rate (GFR) steadily declines with normal aging, and the progress of this process can be influenced by superimposed diseases. Microscopically, nephron numbers decrease as global glomerulosclerosis becomes more evident. The precise mechanisms underlying nephron loss with aging are not well understood, but derangements in podocyte biology appear to be involved. Classifications of chronic kidney disease (CKD) incorporate GFR values and attendant risk of adverse events. Arbitrary and fixed thresholds of GFR for defining CKD have led to an overdiagnosis of CKD in the elderly. An age-sensitive definition of CKD could offer a solution to this problem and more meaningfully capture the prognostic implications of CKD. © 2016 S. Karger AG, Basel.

  11. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys.

    Science.gov (United States)

    Cui, Jing; Shi, Suozhu; Sun, Xuefeng; Cai, Guangyan; Cui, Shaoyuan; Hong, Quan; Chen, Xiangmei; Bai, Xue-Yuan

    2013-01-01

    A high-calorie (HC) diet induces renal injury and promotes aging, and calorie restriction (CR) may ameliorate these responses. However, the effects of long-term HC and CR on renal damage and aging have been not fully determined. Autophagy plays a crucial role in removing protein aggregates and damaged organelles to maintain intracellular homeostasis and function. The role of autophagy in HC-induced renal damage is unknown. We evaluated the expression of LC3/Atg8 as a marker of the autophagosome; p62/SQSTM1; polyubiquitin aggregates as markers of autophagy flux; Ambra1, PINK1, Parkin and Bnip3 as markers of mitophagy; 8-hydroxydeoxyguanosine (8-OHdG) as a marker of DNA oxidative damage; and p16 as a marker of organ aging by western blot and immunohistochemical staining in the kidneys of 24-month-old Fischer 344 rats. We also observed mitochondrial structure and autolysosomes by transmission electron microscopy. Expression of the autophagosome formation marker LC3/Atg8 and markers of mitochondrial autophagy (mitophagy) were markedly decreased in the kidneys of the HC group, and markedly increased in CR kidneys. p62/SQSTM1 and polyubiquitin aggregates increased in HC kidneys, and decreased in CR kidneys. Transmission electron microscopy demonstrated that HC kidneys showed severe abnormal mitochondrial morphology with fewer autolysosomes, while CR kidneys exhibited normal mitochondrial morphology with numerous autolysosomes. The level of 8-hydroxydeoxyguanosine was increased in HC kidneys and decreased in CR kidneys. Markers of aging, such as p16 and senescence-associated-galactosidase, were increased significantly in the HC group and decreased significantly in the CR group. The study firstly suggests that HC diet inhibits renal autophagy and aggravates renal oxidative damage and aging, while CR enhances renal autophagy and ameliorates oxidative damage and aging in the kidneys.

  12. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedersen, Lea Hougaard; Wogensen, Lise; Marcussen, N.

    2015-01-01

    . The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition...... of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol...... treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function....

  13. Molecular events in matrix protein metabolism in the aging kidney

    Science.gov (United States)

    Sataranatarajan, Kavithalakshmi; Feliers, Denis; Mariappan, Meenalakshmi M.; Lee, Hak Joo; Lee, Myung Ja; Day, Robert T.; Yalamanchili, Hima Bindu; Choudhury, Goutam G.; Barnes, Jeffrey L.; Van Remmen, Holly; Richardson, Arlan; Kasinath, Balakuntalam S.

    2018-01-01

    Summary We explored molecular events associated with aging-induced matrix changes in the kidney. C57BL6 mice were studied in youth, middle age, and old age. Albuminuria and serum cystatin C level (an index of glomerular filtration) increased with aging. Renal hypertrophy was evident in middle-aged and old mice and was associated with glomerulomegaly and increase in mesangial fraction occupied by extracellular matrix. Content of collagen types I and III and fibronectin was increased with aging; increment in their mRNA varied with the phase of aging. The content of ZEB1 and ZEB2, collagen type I transcription inhibitors, and their binding to the collagen type Iα2 promoter by ChIP assay also showed age-phase-specific changes. Lack of increase in mRNA and data from polysome assay suggested decreased degradation as a potential mechanism for kidney collagen type I accumulation in the middle-aged mice. These changes occurred with increment in TGFβ mRNA and protein and activation of its SMAD3 pathway; SMAD3 binding to the collagen type Iα2 promoter was also increased. TGFβ-regulated microRNAs (miRs) exhibited selective regulation. The renal cortical content of miR-21 and miR-200c, but not miR-192, miR-200a, or miR-200b, was increased with aging. Increased miR-21 and miR-200c contents were associated with reduced expression of their targets, Sprouty-1 and ZEB2, respectively. These data show that aging is associated with complex molecular events in the kidney that are already evident in the middle age and progress to old age. Agephase-specific regulation of matrix protein synthesis occurs and involves matrix protein-specific transcriptional and post-transcriptional mechanisms. PMID:23020145

  14. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  15. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  16. [Is there an age limit for cadaveric kidney donors currently?].

    Science.gov (United States)

    Cofán Pujol, F; Oppenheimer Salinas, F; Talbot-Wright, R; Carretero González, P

    1996-12-01

    The insufficient number of kidney transplants has gradually raised the age limit to the cadaver kidney donor. The use of grafts harvested from older donors has been debated due to the existing structural and functional changes that might influence renal function and long-term graft survival. The foregoing aspects are discussed herein. The anatomical, histological and functional changes in the kidney associated with ageing are analyzed. The clinical experience with renal grafts from older donors before and after cyclosporine became available are reviewed. The ethical issues on whether grafts from very old donors should be used and who should receive these grafts are discussed. The use of grafts from donors over 60 years old had no significant short and medium term differences in comparison with younger donors in terms of graft survival, although a higher incidence of acute tubular necrosis and poor renal function have been observed. There are no conclusive studies on the long-term effects on graft survival when kidneys from donors aged over 65 are utilized. In our experience, the results achieved with grafts from donors over 70 has been unsatisfactory. The guidelines utilized in the selection of grafts derived from older donors are presented. Grafts from donors aged 60 to 70 may be utilized in renal transplantation following precise selection criteria. Graft survival has been satisfactory, although a higher incidence of acute tubular necrosis and higher creatinine levels have been observed. We do not advocate the use of grafts from donors over 70, except in very exceptional cases. Long-term multicenter studies on grafts from very old donors and trials using alternative immunosuppressor modalities that might permit optimal use of these grafts are warranted.

  17. Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney.

    Science.gov (United States)

    Ge, Yan; Si, Jin; Tian, Li; Zhuang, Shougang; Dworkin, Lance D; Gong, Rujun

    2011-01-01

    Glycogen synthase kinase (GSK)3 is a ubiquitously expressed serine/threonine kinase existing in two isoforms, namely GSK3α and GSK3β. Aside from the long-recognized role in insulin signal transduction and glycogen biosynthesis, GSK3β has been recently coined as a master control molecule in nuclear factor-κB activation and inflammatory kidney injury. Nevertheless, previous studies are less conclusive because they relied greatly on small molecule inhibitors, which lack selectivity and barely distinguish between the GSK3 isoforms. In addition, early embryonic lethality after global knockout of GSK3β precludes interrogation of the biological role of GSK3β in the adult kidney. To circumvent these issues, the Cre/loxP system was used to generate a conditional knockout mouse model in which the GSK3β gene was specifically deleted in kidney cortical tubules at postnatal mature stage. Kidney-specific ablation of GSK3β resulted in a phenotype no different from control littermates. Knockout mice (KO) were viable and exhibited normal development and normal kidney physiology in terms of kidney function, urine albumin excretion, and urine-concentrating ability. It is noteworthy that apart from normal glomerular and tubulointerstitial morphology, the kidneys from KO demonstrated more glycogen accumulation in the renal cortical tubules as assessed by both periodic acid-Schiff staining for light microscopy and direct biochemical assay, consistent with an elevated glycogen synthetic activity as evidenced by diminished inhibitory phosphorylation of glycogen synthase that occurred subsequent to GSK3β ablation. This finding was further validated by electron microscopic observations of increased deposition of glycogen particles in the renal tubules of KO, suggesting that GSK3α could not fully compensate for the loss of GSK3β in regulating glycogen metabolism in the kidney. Collectively, our study suggests that kidney-specific ablation of GSK3β barely affects kidney function

  18. Cux1 promotes cell proliferation and polycystic kidney disease progression in an ADPKD mouse model.

    Science.gov (United States)

    Porath, Binu; Livingston, Safia; Andres, Erica L; Petrie, Alexandra M; Wright, Joshua C; Woo, Anna E; Carlton, Carol G; Baybutt, Richard; Vanden Heuvel, Gregory B

    2017-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1 CD ;Cux1 tm2Ejn ). While kidneys isolated from newborn Pkd1 CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice did not show any cysts. Because Cux1 tm2Ejn-/- are perinatal lethal, we evaluated Pkd1 CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice, newborn Pkd1 CD ;Cux1 tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1 CD and Pkd1 CD ;Cux1 tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1 CD ;Cux1 tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27. Copyright © 2017 the American Physiological Society.

  19. Graft function assessment in mouse models of single- and dual- kidney transplantation.

    Science.gov (United States)

    Wang, Lei; Wang, Ximing; Jiang, Shan; Wei, Jin; Buggs, Jacentha; Fu, Liying; Zhang, Jie; Liu, Ruisheng

    2018-05-23

    Animal models of kidney transplantation (KTX) are widely used in studying immune response of hosts to implanted grafts. Additionally, KTX can be used in generating kidney-specific knockout animal models by transplantation of kidneys from donors with global knockout of a gene to wild type recipients or vise verse. Dual kidney transplantation (DKT) provides a more physiological environment for recipients than single kidney transplantation (SKT). However, DKT in mice is rare due to technical challenges. In this study, we successfully performed DKT in mice and compared the hemodynamic response and graft function with SKT. The surgical time, complications and survival rate of DKT were not significantly different from SKT, where survival rates were above 85%. Mice with DKT showed less injury and quicker recovery with lower plasma creatinine (Pcr) and higher GFR than SKT mice (Pcr = 0.34 and 0.17 mg/dl in DKT vs. 0.50 and 0.36 mg/dl in SKT at 1 and 3 days, respectively; GFR = 215 and 131 µl/min for DKT and SKT, respectively). In addition, the DKT exhibited better renal functional reserve and long-term outcome of renal graft function than SKT based on the response to acute volume expansion. In conclusion, we have successfully generated a mouse DKT model. The hemodynamic responses of DKT better mimic physiological situations with less kidney injury and better recovery than SKT because of reduced confounding factors such as single nephron hyperfiltration. We anticipate DKT in mice will provide an additional tool for evaluation of renal significance in physiology and disease.

  20. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  1. Increased susceptibility to structural acute kidney injury in a mouse model of presymptomatic cardiomyopathy.

    Science.gov (United States)

    Pleasant, LaTawnya; Ma, Qing; Devarajan, Mahima; Parameswaran, Priyanka; Drake, Keri; Siroky, Brian; Shay-Winkler, Kritton; Robbins, Jeffrey; Devarajan, Prasad

    2017-09-01

    The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury. Copyright © 2017 the American Physiological Society.

  2. Anatomic and physiologic changes of the aging kidney.

    Science.gov (United States)

    Karam, Zeina; Tuazon, Jennifer

    2013-08-01

    Aging is associated with structural and functional changes in the kidney. Structural changes include glomerulosclerosis, thickening of the basement membrane, increase in mesangial matrix, tubulointerstitial fibrosis and arteriosclerosis. Glomerular filtration rate is maintained until the fourth decade of life, after which it declines. Parallel reductions in renal blood flow occur with redistribution of blood flow from the cortex to the medulla. Other functional changes include an increase in glomerular basement permeability and decreased ability to dilute or concentrate urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Antonio Micali

    2018-01-01

    Full Text Available Background. Cadmium (Cd, a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods. C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p. alone, Cd chloride (CdCl2 (2 mg/kg/day i.p. alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p. for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results. Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions. A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.

  4. Age-dependent radiosensitivity of mouse oocytes

    International Nuclear Information System (INIS)

    Koehler, C.

    1976-01-01

    It has been shown that there are three distinct phases of radiosensitivity in oocytes of prepubertal mice: a period of rapidly increasing sensitivity between 0 and 4 days of age; a period of consistent, high sensitivity between 5 and 18 days of age; and a period of decreasing sensitivity from 19 to at least 21 days of age. Two distinct phases have been demonstrated for the rate of population decline of the oocytes of primary follicles: an initial period of rapid loss from 0 to 4 days of age; and a period of much slower loss from 5 through 23 days of age. Correlations have been drawn between the first two phases of radiosensitivity and morphological changes in the oocyte, and between the third phase of radiosensitivity and endocrinological changes in the maturing animal. The reaction of oocytes to radiation has been separated into two categories: immediate death (within 24 hours); and delayed death (over the entire lifespan of the animal)

  5. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    Science.gov (United States)

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  6. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.; Franks, L.M.

    1980-01-01

    Cell kinetic parameters in the descending colon of unirradiated mice, 3-30-months-old were compared with those in mice irradiated repeatedly from the age of 6 or 24 months. The latter animals were given 1250 rad local X-irradiation to the colon every 6 weeks. Dose-survival curves showed the colon crypts of 6 and 24-months-old mice were similarly radiosensitive. In unirradiated mice the number of crypts per colon section decreased significantly at 30 months, but no significant age-related changes were seen in crypt size or labelling index (LI). Cell proliferation returned to control levels within 6 weeks of each X-ray dose and remained at this level for 20 weeks after the final dose. Later, cell proliferation in the irradiated colon fell significantly below control. A total of 6 or 7 doses each of 1250 rad produced only 1 colon carcinoma amongst 50 mice kept until they died. (author)

  7. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease.

    Science.gov (United States)

    Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J

    2014-07-17

    Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.

  8. The ageing kidney: biochemical and morphological study after irradiation

    International Nuclear Information System (INIS)

    Franciolini, F.; Becciolini, A.; Torcini, G.; Lanini, A.

    1982-01-01

    The behaviour of some activities of the kidney was studied both in young-adult and in adult rats exposed to an 8-Gy dose of γ-rays and killed at various intervals after irradiation (both in the morning and in the evening). Brush border and lysosomal enzymes did not show marked differences among control rats of the same age even if adult animals showed levels of maltase, alkaline phosphatase and LAP activities higher than the young-adult group. Moreover, irradiation did not induce typical modifications of the same enzyme activities in young-adult and adult rats. Adult animals showed a reduction in the brush border enzyme activities at 120 hours after irradiation while, at the same interval, lysosomal activities underwent an increase both in young and in adult animals. (orig.) [de

  9. The use of urinary and kidney SILAM proteomics to monitor kidney response to high dose morpholino oligonucleotides in the mdx mouse

    Directory of Open Access Journals (Sweden)

    Aiping Zhang

    2015-01-01

    Full Text Available Phosphorodiamidate morpholino oligonucleotides (PMO are used as a promising exon-skipping gene therapy for Duchenne muscular dystrophy (DMD. One potential complication of high dose PMO therapy is its transient accumulation in the kidneys. Therefore new urinary biomarkers are needed to monitor this treatment. Here, we carried out a pilot proteomic profiling study using stable isotope labeling in mammals (SILAM strategy to identify new biomarkers to monitor the effect of PMO on the kidneys of the dystrophin deficient mouse model for DMD (mdx-23. We first assessed the baseline renal status of the mdx-23 mouse compared to the wild type (C57BL10 mouse, and then followed the renal outcome of mdx-23 mouse treated with a single high dose intravenous PMO injection (800 mg/kg. Surprisingly, untreated mdx-23 mice showed evidence of renal injury at baseline, which was manifested by albuminuria, increased urine output, and changes in established urinary biomarker of acute kidney injury (AKI. The PMO treatment induced further transient renal injury, which peaked at 7 days, and returned to almost the baseline status at 30 days post-treatment. In the kidney, the SILAM approach followed by western blot validation identified changes in Meprin A subunit alpha at day 2, then returned to normal levels at days 7 and 30 after PMO injection. In the urine, SILAM approach identified an increase in Clusterin and γ-glutamyl transpeptidase 1 as potential candidates to monitor the transient renal accumulation of PMO. These results, which were confirmed by Western blots or ELISA, demonstrate the value of the SILAM approach to identify new candidate biomarkers of renal injury in mdx-23 mice treated with high dose PMO.

  10. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.

    1978-01-01

    The descending colon of 4 month and 2 year old mice was exposed to 1250 rad X-rays. This killed most of the epithelial cells. The surviving cells formed new crypts and surface epithelium in animals of both ages. Not all of the crypts were replaced. The irradiated area contained not more than 80% of the control number of crypts per section for at least 6 weeks after irradiation. In the young mice new crypts were much larger and the labelling index (LI) was much higher than in unirradiated animals during the first week after irradiation. In the old mice the overshoot in LI and crypt size began later and continued longer than in young animals. This may be because the control of cell proliferation was much less precise in old than in young mice. The irradiation was repeated, in attempt to age prematurely the epithelial cells by increasing the number of divisions they underwent. The overshoot in LI and cells per crypt was smaller after a second dose than after the first in both young and old mice. There was almost no overshoot after a third dose was given to young mice. Increasing the number of divisions undergone by the surviving epithelial cells did not change the timing of repopulation in young mice compared to that found in old mice. Little evidence was found for the presence of a limited proliferative lifespan in colon epithelial cells. (author)

  11. A study on the ultrastructure of the mouse kidney tissues affected by lead (Pb)

    International Nuclear Information System (INIS)

    Yoo, Chang Kyu; Choe, Rim Soon

    1986-01-01

    This study was made to investigate the ultrastructural changes of the male mouse(ICR strain) kidney tissue affected by lead(Pb). Pb, as a form of Pb(CH 3 COO) 2 was injected within the peritoneal cavity at the time interval of 24 hrs, 48 hrs and 72 hrs from injection time. In the meantime, electron microscopy was used to investigate the histologic changes occured in control animals, experimental animals. In kidney cells of experimental animals, changes of the nuclear chromatin were little, but cristae of mitochondria presented in cytoplasm was impaired, vacuolation was risen, thoseby many vacuole was formed. Especially, in the case of 5 mg/kg and 10 mg/kg Pb concentration, mitochondrial presented in cytoplasm was considerably deformed. While, with 20 mg/kg of Pb(CH 3 C00) 2 , it was observed that normal structure was presented in the nucleus electrodensity in cytoplasm was decreased mostly, but mitochondrial deform was slightly decreased. (Author)

  12. Analysed cap mesenchyme track data from live imaging of mouse kidney development

    Directory of Open Access Journals (Sweden)

    James G. Lefevre

    2016-12-01

    Full Text Available This article provides detailed information on manually tracked cap mesenchyme cells from timelapse imaging of multiple ex vivo embryonic mouse kidneys. Cells were imaged for up to 18 h at 15 or 20 min intervals, and multiple cell divisions were tracked. Positional data is supplemented with a range of information including the relative location of the closest ureteric tip and a correction for drift due to bulk movement and tip growth. A subset of tracks were annotated to indicate the presence of processes attached to the ureteric epithelium. The calculations used for drift correction are described, as are the main methods used in the analysis of this data for the purpose of describing cap cell motility. The outcomes of this analysis are discussed in “Cap mesenchyme cell swarming during kidney development is influenced by attraction, repulsion, and adhesion to the ureteric tip” (A.N. Combes, J.G. Lefevre, S. Wilson, N.A. Hamilton, M.H. Little, 2016 [1].

  13. Inflammation and premature aging in advanced chronic kidney disease.

    Science.gov (United States)

    Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-10-01

    Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.

  14. How age affects pointing with mouse and touchpad

    DEFF Research Database (Denmark)

    Hertzum, Morten; Hornbæk, Kasper

    2010-01-01

    pointing with mouse and touchpad. The goal is to provide an integrated analysis of (a) how these three age groups differ in pointing performance, (b) how these differences are affected by the two pointing devices, and (c) how the submovement structure of cursor trajectories may explain performance...... neither more nor less errors than young and adult participants. All three age groups were slower and made more errors with the touchpad than the mouse, but the touchpad slowed down elderly participants more than young participants, who in turn were slowed down more than adult participants. Adult......Effects of age on pointing performance have become increasingly important as computers have become extensively used by still larger parts of the population. This study empirically investigates young (12-14 years), adult (25-33 years), and elderly (61-69 years) participants' performance when...

  15. Kidney growth in 717 healthy children aged 0-18 months

    DEFF Research Database (Denmark)

    Schmidt, Ida M; Main, Katharina M; Damgaard, Ida N

    2004-01-01

    Kidney size is an important parameter in the evaluation of children with renal disease. However, reference materials for kidney size in healthy children have been limited beyond the neonatal period. We performed a longitudinal cohort study of 717 healthy children born at term with normal birth...... weight. Kidney size and shape were determined by ultrasonography and related to gender, age, and body size (weight, length, body surface area, skinfold thickness) at 0, 3, and 18 months of age. Gender-differentiated reference charts were established. Boys had significantly larger kidney volumes than...... girls ( Page. The best single predictor of gender-differentiated kidney volume was weight. Relative kidney volume changed with increasing age and height in a two-phase pattern: an initial...

  16. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    Science.gov (United States)

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  17. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    Science.gov (United States)

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.

  18. Kidney Problems

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... kidney (renal) diseases are called nephrologists . What are Kidney Diseases? For about one-third of older people, ...

  19. Influence of age, irradiation and humanization on NSG mouse phenotypes

    Directory of Open Access Journals (Sweden)

    Jaclyn S. Knibbe-Hollinger

    2015-10-01

    Full Text Available Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.

  20. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Directory of Open Access Journals (Sweden)

    Mitchell S Turker

    Full Text Available Exposure to a small number of high-energy heavy charged particles (HZE ions, as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  2. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  3. Mouse models of ageing and their relevance to disease.

    Science.gov (United States)

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Magnolia Extract (BL153 Ameliorates Kidney Damage in a High Fat Diet-Induced Obesity Mouse Model

    Directory of Open Access Journals (Sweden)

    Wenpeng Cui

    2013-01-01

    Full Text Available Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract (BL153 for treating obesity-associated kidney damage in a high fat diet- (HFD- induced mouse model. The results showed that inflammation markers (tumor necrosis factor-α and plasminogen activator inhibitor-1 and oxidative stress markers (3-nitrotyrosine and 4-hydroxy-2-nonenal were all significantly increased in the kidney of HFD-fed mice compared to mice fed with a low fat diet (LFD. Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α and hexokinase II (HK II expression in the kidney. The present study indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and anti-oxidative stress most likely via upregulation of PGC-1α and HK II signal in the kidney.

  5. Altered myogenic vasoconstriction and regulation of whole kidney blood flow in the ASIC2 knockout mouse.

    Science.gov (United States)

    Gannon, Kimberly P; McKey, Susan E; Stec, David E; Drummond, Heather A

    2015-02-15

    Previous studies from our laboratory have suggested that degenerin proteins contribute to myogenic constriction, a mechanism of blood flow regulation and protection against pressure-dependent organ injury, in renal vessels. The goal of the present study was to determine the importance of one family member, acid-sensing ion channel 2 (ASIC2), in myogenic constriction of renal interlobar arteries, myogenic regulation of whole kidney blood flow, renal injury, and blood pressure using ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice. Myogenic constriction in renal interlobar arteries was impaired in ASIC2(+/-) and ASIC2(-/-) mice, whereas constriction to KCl/phenylephrine was unchanged. Correction of whole kidney renal vascular resistance (RVR) during the first 5 s after a 10- to 20-mmHg step increase in perfusion pressure, a timeframe associated with myogenic-mediated correction of RVR, was slowed (4.2 ± 0.9, 0.3 ± 0.7, and 2.4 ± 0.3 resistance units/s in ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice). Although modest reductions in function were observed in ASIC2(-/-) mice, greater reductions were observed in ASIC2(+/-) mice, which may be explained by protein-protein interactions of ASIC2 with other degenerins. Isolated glomeruli from ASIC2(+/-) and ASIC2(-/-) mice had modest alterations in the expression of inflammation and injury markers (transforming growth factor-β, mouse anti-target of antiproliferative antibody-1, and nephrin), whereas ASIC2(+/-) mice had an increase in the remodeling marker collagen type III. Consistent with a more severe loss of function, mean arterial pressure was increased in ASIC2(+/-) mice (131 ± 3 mmHg) but not in ASIC2(-/-) mice (122 ± 3 vs. 117 ± 2 mmHg in ASIC2(+/+) mice). These results suggest that ASIC2 contributes to transduction of the renal myogenic response and are consistent with the protective role of myogenic constriction against renal injury and hypertension. Copyright © 2015 the American Physiological Society.

  6. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    Indira Pokkunuri

    2016-01-01

    Full Text Available We examined the effects and mechanism of grape powder- (GP- mediated improvement, if any, on aging kidney function. Adult (3-month and aged (21-month Fischer 344 rats were treated without (controls and with GP (1.5% in drinking water and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1, which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions.

  7. Aging and physiological changes of the kidneys including changes in glomerular filtration rate.

    Science.gov (United States)

    Musso, Carlos G; Oreopoulos, Dimitrios G

    2011-01-01

    In addition to the structural changes in the kidney associated with aging, physiological changes in renal function are also found in older adults, such as decreased glomerular filtration rate, vascular dysautonomia, altered tubular handling of creatinine, reduction in sodium reabsorption and potassium secretion, and diminished renal reserve. These alterations make aged individuals susceptible to the development of clinical conditions in response to usual stimuli that would otherwise be compensated for in younger individuals, including acute kidney injury, volume depletion and overload, disorders of serum sodium and potassium concentration, and toxic reactions to water-soluble drugs excreted by the kidneys. Additionally, the preservation with aging of a normal urinalysis, normal serum urea and creatinine values, erythropoietin synthesis, and normal phosphorus, calcium and magnesium tubular handling distinguishes decreased GFR due to normal aging from that due to chronic kidney disease. Copyright © 2011 S. Karger AG, Basel.

  8. Tick-Tock Chimes the Kidney Clock – from Biology of Renal Ageing to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Joshua Rowland

    2018-01-01

    Full Text Available Ageing of the kidney is a multi-dimensional process that occurs simultaneously at the molecular, cellular, histological, anatomical and physiological level. Nephron number and renal cortical volume decline, renal tubules become atrophic and glomeruli become sclerotic with age. These structural changes are accompanied by a decline in glomerular filtration rate, decreased sodium reabsorption and potassium excretion, reduced urinary concentrating capacity and alterations in the endocrine activity of the kidney. However, the pace of progression of these changes is not identical in everyone - individuals of the same age and seemingly similar clinical profile often exhibit stark differences in the age-related decline in renal health. Thus, chronological age poorly reflects the time-dependent changes that occur in the kidney. An ideal measure of renal vitality is biological kidney age – a measure of the age-related changes in physiological function. Replacing chronological age with biological age could provide numerous clinical benefits including improved prognostic accuracy in renal transplantation, better stratification of risk and identification of those who are on a fast trajectory to an age-related drop in kidney health.

  9. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes.

    Directory of Open Access Journals (Sweden)

    Hyuck Jun Mok

    Full Text Available The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2, a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA, phosphatidylinositol (PI, phosphatidylserine (PS, and lysophosphatidylserine (LPS significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes.

  10. Urinary metabonomics elucidate the therapeutic mechanism of Orthosiphon stamineus in mouse crystal-induced kidney injury.

    Science.gov (United States)

    Gao, Songyan; Chen, Wei; Peng, Zhongjiang; Li, Na; Su, Li; Lv, Diya; Li, Ling; Lin, Qishan; Dong, Xin; Guo, Zhiyong; Lou, Ziyang

    2015-05-26

    Orthosiphon stamineus (OS), a traditional Chinese herb, is often used for promoting urination and treating nephrolithiasis. Urolithiasis is a major worldwide public health burden due to its high incidence of recurrence and damage to renal function. However, the etiology for urolithiasis is not well understood. Metabonomics, the systematic study of small molecule metabolites present in biological samples, has become a valid and powerful tool for understanding disease phenotypes. In this study, a urinary metabolic profiling analysis was performed in a mouse model of renal calcium oxalate crystal deposition to identify potential biomarkers for crystal-induced renal damage and the anti-crystal mechanism of OS. Thirty six mice were randomly divided into six groups including Saline, Crystal, Cystone and OS at dosages of 0.5g/kg, 1g/kg, and 2g/kg. A metabonomics approach using ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was developed to perform the urinary metabolic profiling analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify differences between the metabolic profiles of mice in the saline control group and crystal group. Using partial least squares-discriminant analysis, 30 metabolites were identified as potential biomarkers of crystal-induced renal damage. Most of them were primarily involved in amino acid metabolism, taurine and hypotaurine metabolism, purine metabolism, and the citrate cycle (TCA). After the treatment with OS, the levels of 20 biomarkers had returned to the levels of the control samples. Our results suggest that OS has a protective effect for mice with crystal-induced kidney injury via the regulation of multiple metabolic pathways primarily involving amino acid, energy and choline metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Fast glomerular quantification of whole ex vivo mouse kidneys using Magnetic Resonance Imaging at 9.4 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Caldera, Jorge; Kraemer, Philipp; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Geraci, Stefania; Gretz, Norbert [Heidelberg Univ., Mannheim (Germany). Medical Research Centre; Cullen-McEwen, Luise; Bertram, John F. [Monash Univ., Melbourne, VIC (Australia). Development and Stem Cells Program and Dept. of Anatomy and Developmental Biology

    2016-05-01

    A method to measure total glomerular number (N{sub glom}) in whole mouse kidneys using MRI is presented. The method relies on efficient acquisition times. A 9.4 T preclinical MRI system with a surface cryogenic coil and a 3D gradient echo sequence were used to image nine whole ex vivo BALB/c mouse kidneys labelled with cationized-ferritin (CF). A novel method to segment the glomeruli was developed. The quantification of glomeruli was achieved by identifying and fitting the probability distribution of glomeruli thus reducing variations due to noise. For validation, N{sub glom} of the same kidneys were also obtained using the gold standard: design-based stereology. Excellent agreement was found between the MRI and stereological measurements of N{sub glom}, with values differing by less than 4%: (mean ± SD) MRI = 15 606 ± 1 178; stereology = 16 273 ± 1 523. Using a robust segmentation method and a reliable quantification method, it was possible to acquire N{sub glom} with a scanning time of 33 minutes and 20 seconds. This was more than 8 times faster than previously presented MRI-based methods. Thus, an efficient approach to measure N{sub glom} ex vivo in health and disease is provided.

  12. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice

    OpenAIRE

    Oroojan, A. A.; Ahangarpour, A.; Khorsandi, L.; Najimi, S. A.

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr leve...

  13. Acute response of mouse kidney clonogens to fractionated irradiation in situ and then assayed in primary culture

    International Nuclear Information System (INIS)

    Yeemin Jen; Hendry, J.H.

    1991-01-01

    The radiosensitivity of mouse kidney cells after in situ single-dose, 2, 8, and 16 fraction X-irradiations was measured in primary culture using a clonogenic assay. The assay was made 12 h after single doses or 12 h after the last dose of the multifraction regimens. When analysed using the linear-quadratic model, as predicted the individual α components for all the different fractionation schedules were not significantly different, and the changes in the β values were consistent with those expected on the basis of the reciprocal fraction numbers. When all four data sets were integrated to derive a common α/β ratio, the result was 4.4±1.3 (1SE) Gy, or 2.8±0.9 Gy (a better fit) if the single-dose data set was excluded. These values fall into the range reported for kidney using assays of tissue function at long times after irradiation. (author)

  14. Echotomographic characteristics of kidney in different age groups of our population

    Directory of Open Access Journals (Sweden)

    Gašić Miloš

    2015-01-01

    Full Text Available Introduction: Aging is a continuous process, which leaves its mark on all tissues, organs and organ systems. The aging process causes a number of functional and morphological and structural changes in the kidneys. Objective: The aim of our study was to analyze echotomographic changes in the size of the renal parenchyma and renal sinus during the aging process. Method: The study was conducted on 62 subjects in the service of the radiological diagnostics of CHC Dr Dragisa Mišović in Belgrade. All subjects included in this study were neither anamnestically nor echotomographically positive for any of kidney diseases. Subjects were assorted in three age groups. Group I (20-39 years - 21 subjects, group II (40-59 years - 21 subjects, and group III (60-79 years - 20 subjects. Results: During aging process dimensions of the renal parenchyma decrease. Dimensions of the renal parenchyma exhibit statistically significant difference (p<0.05 between the first and third age group for both kidneys, but difference between the first and second age group is significant only for the right kidney (p<0,05. Dimensions (length and width, of the renal sinuses tend to increase during the aging process, with difference between the first and third age group that is statistically significant for both kidneys (p<0.05. Difference in width of the sinuses for both kidneys is statistically significant only between the second and third age group. Conclusion: During aging process size of the renal sinus increases at the expense of renal parenchyma, and parenchyma-pyelon index decreases.

  15. Young for young! Mandatory age-matched exchange of paediatric kidneys.

    Science.gov (United States)

    Pape, Lars; Ehrich, Jochen H H; Offner, Gisela

    2007-04-01

    Some allocation systems include a mandatory donation of paediatric kidneys to children, others do not. Both approaches have medical and organisational advantages and disadvantages for adults and children. This article discusses why "young for young" is the best allocation system for children. Primary age-matched kidney allocation to children is one important factor leading to: (1) higher long-term glomerular filtration rates (GFRs) and graft survival and, thereby, to lesser need for dialysis; (2) better psychosocial rehabilitation, growth and development of children and, last but not least, (3) likely increase of the donor pool. As a consequence, health care costs will be reduced for children with end-stage renal failure. The chance of adults receiving an adequate kidney would be only minimally reduced by this policy. Therefore, we recommend an age-matched allocation programme giving children with end- stage kidney diseases a better prognosis.

  16. A low molecular weight urinary proteome profile of human kidney aging

    OpenAIRE

    Zürbig, Petra; Decramer, Stéphane; Dakna, Mohammed; Jantos, Justyna; Good, David M.; Coon, Joshua J.; Bandin, Flavio; Mischak, Harald; Bascands, Jean-Loup; Schanstra, Joost P

    2009-01-01

    Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on renal aging in humans. We observed age-related modification of secretion of 325 out of 5000 urinary peptides. The majority of these changes was associated with renal development before and during puberty, while 49 peptides were related to aging in adults. Of these 49 peptides, the majority were ...

  17. Evaluation of the Normal Fetal Kidney Length and Its Correlation with Gestational Age

    OpenAIRE

    Farrokh Seilanian Toosi; Hossein Rezaie-Delui

    2013-01-01

    A true estimation of gestational age (GA) plays an important role in quality maternity care and scheduling the labor date. This study aimed to evaluate the normal fetal kidney length (KL) and its correlation with GA. A cross-sectional study on 92 pregnant women between 8th and 10th week of gestation with normal singleton pregnancy underwent standard ultrasound fetal biometry and kidney length measurement. univariate and multivariate linear regression analysis was used to create a predictive e...

  18. Pathogenic sequence for dissecting aneurysm formation in a hypomorphic polycystic kidney disease 1 mouse model

    NARCIS (Netherlands)

    Hassane, S.; Claij, N.; Lantinga-van Leeuwen, I.S.; Munsteren, J.C. van; Lent, N. van; Hanemaaijer, R.; Breuning, M.H.; Peters, D.J.M.; Ruiter, M.C. de

    2007-01-01

    OBJECTIVE - Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a multi-system disorder characterized by progressive cyst formation in the kidneys. Serious complications of ADPKD are intracranial and aortic aneurysms. The condition is mainly caused by mutations in the PKD1 or PKD2 gene. We have

  19. Sexual dimorphism in development of kidney damage in aging Fischer-344 rats.

    Science.gov (United States)

    Sasser, Jennifer M; Akinsiku, Oladele; Moningka, Natasha C; Jerzewski, Katie; Baylis, Chris; LeBlanc, Amanda J; Kang, Lori S; Sindler, Amy L; Muller-Delp, Judy M

    2012-08-01

    Aging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide. Our purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys. We compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress. There was no difference in age-dependent glomerular damage between young or old intact male and female F344 rats, and neither ovariectomy nor estrogen replacement affected renal injury; however, tubulointerstitial injury was greater in old males than in old females. These data suggest that ovarian hormones do not influence these aspects of kidney aging in F344 rats and that the greater tubulointerstitial injury is caused by male sex. Old males had greater kidney cortex NOS3 abundance than females, and NOS1 abundance (alpha and beta isoforms) was increased in old males compared with both young males and old females. NOS abundance was preserved with age in intact females, ovariectomy did not reduce NOS1 or NOS3 protein abundance, and estrogen replacement did not uniformly elevate NOS proteins, suggesting that estrogens are not primary regulators of renal NOS abundance in this strain. Nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production and nitrotyrosine immunoreactivity were increased in aging male rat kidneys compared with females, which could compromise renal nitric oxide production and/or bioavailability. The kidney damage expressed in aging F344 rats is fairly mild and is not related to loss of renal cortex NOS3

  20. Antitumour and Antioxidant Activities of Activin in Kidney Tissue of Mouse Bearing Murine Mammary Adenocarcinoma and Exposed to Gamma Radiation

    International Nuclear Information System (INIS)

    EI-Tahawy, N.A.; Hanafi, N.; Said, U.Z.

    2009-01-01

    Activin (a grape seed-derived proanthocyanidins extract) possess a broad spectrum of biological, pharmacological and therapeutic activities. The present study performed to investigate the preventive and modulating effects of dietary activin in radiation or murine mammary adenocarcinoma (MMA) induced damage in kidneys of albino mice throughout in vitro and in vivo studies. Activin was orally administered to mice for 5 consecutive days (100 mg/ kg body wt) before and 10 days post tumour inoculation. In irradiated group, animals were exposed to 6 Gy whole body gamma-radiations on the fifth day of tumour inoculation. Biochemical and histopathological studies were investigated. In vitro studies using MMA cells revealed that activin increase non viable tumour cell counts. In vivo studies, either MMA or gamma-irradiation resulted in biochemical, and histopathological changes leading to kidney damage. Biochemical studies revealed that activin treatment significantly restored the elevated activity of lactate dehydrogenase (LDH), ameliorated kidney functions profile, and depressed the levels of tumour markers, also enhanced glutathione content (GSH) and activities of superoxide dismutase (SOD) and catalase (CAT). It also reduced kidney lipid peroxides and improves serum total protein level. Histopathological changes in the kidney tissues were attenuated by activin treatment either in MMA-bearing mice group or irradiation group. Exposure of MMA-bearing mouse to gamma- radiations slightly improves the above mentioned damage. While dual treatment of MMA-bearing mice with activin and subsequence with gamma-radiation exposure was more effective. It could be concluded that activin through its antioxidant properties might attenuate radiation or MMA induced renal damage suggesting that activin may have a potential benefit in enhancing radiotherapy

  1. Kidney development in the first year of life in small-for-gestational-age preterm infants

    International Nuclear Information System (INIS)

    Hotoura, Efthalia; Giapros, Vasilios; Drougia, Aikaterini; Argyropoulou, Maria; Papadopoulou, Frederica; Nikolopoulos, Panayiotis; Andronikou, Styliani

    2005-01-01

    Small-for-gestational-age (SGA) infants have been reported to have a significantly reduced number of nephrons that could be a risk factor for development of hypertension later in life. To evaluate kidney size prospectively in relation to other anthropometric parameters during the first year of life in SGA babies. The babies in the study were 31-36 weeks' gestational age (GA) at birth and were matched with control preterm infants of similar GA, but appropriate for gestational age (AGA). The SGA infants were further classified as symmetrical and asymmetrical according to the anthropometric parameters. The total number of measurements in symmetrical SGA preterm infants was 324, in asymmetrical SGA preterm infants 295, and in AGA infants 536. In symmetrical SGA preterm infants (31-36 weeks' GA) mean kidney length (± SD) of 56±4 mm was significantly different from the controls (58.9±4.6 mm) up to 6 months' chronological age (P < 0.05). In the asymmetrical SGA preterm infants, mean kidney length (45.3±4.0 mm) was significantly different from the controls (48.2±4.4 mm) up to 40 weeks' corrected age. At 1 year chronological age, all preterm infants (symmetrical and asymmetrical SGA and AGA) had similar mean kidney length (61.6±4.6, 62.8±4.3, and 62.3±4.0 mm, respectively). The ratio of kidney length to crown-to-heel length was similar in all preterm groups. Kidney length in preterm SGA infants (symmetrical and asymmetrical) follows closely the other auxological parameters during the first year of life. (orig.)

  2. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney.

    Science.gov (United States)

    Lin, Chi Hua Sarah; Chen, Jun; Zhang, Zhongtao; Johnson, Gail V W; Cooper, Arthur J L; Feola, Julianne; Bank, Alexander; Shein, Jonathan; Ruotsalainen, Heli J; Pihlajaniemi, Taina A; Goligorsky, Michael S

    2016-06-01

    Endostatin (EST), an antiangiogenic factor, is enriched in aging kidneys. EST is also an interactive partner of transglutaminase 2 (TG2), an enzyme that cross-links extracellular matrix proteins. Here we tested whether EST and TG2 play a role in the fibrosis of aging. In wild-type mice, aging kidneys exhibited a 2- to 4-fold increase in TG2 paralleled by increased cross-linked extracellular matrix proteins and fibrosis. Mice transgenic to express EST showed renal fibrosis at a young age. One-month delivery of EST via minipumps to young mice showed increased renal fibrosis that became more robust when superimposed on folic acid-induced nephropathy. Upregulated TG2 and impaired renal function were apparent with EST delivery combined with folic acid-induced nephropathy. Subcapsular injection of TG2 and/or EST into kidneys of young mice not only induced interstitial fibrosis, but also increased the proportion of senescent cells. Thus, kidney fibrosis in aging may represent a natural outcome of upregulated EST and TG2, but more likely it appears to be a result of cumulative stresses occurring on the background of synergistically acting geronic (aging) proteins, EST and TG2. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney

    Science.gov (United States)

    Lin, Chi Hua Sarah; Chen, Jun; Zhang, Zhongtao; Johnson, Gail; Cooper, Arthur JL; Feola, Julianne; Bank, Alexander; Shein, Jonathan; Ruotsalainen, Heli; Pihlajaniemi, Taina; Goligorsky, Michael S

    2016-01-01

    Endostatin (EST), an anti-angiogenic factor, is enriched in aging kidneys. EST is also an interactive partner of transglutaminase 2 (TG2), an enzyme that cross-links extracellular matrix proteins. Here we tested whether EST and TG2 play a role in the fibrosis of aging. In wild type mice, aging kidneys exhibited a 2–4 fold increase in TG2 paralleled by increased cross-linked extracellular matrix proteins and fibrosis. Mice transgenic to express EST showed renal fibrosis at a young age. One month delivery of EST via minipumps to young mice showed increased renal fibrosis that became more robust when superimposed on folic acid-induced nephropathy. Upregulated TG2 and impaired renal function were apparent with EST delivery combined with folic acid-induced nephropathy. Subcapsular injection of TG2 and/or EST into kidneys of young mice not only induced interstitial fibrosis, but also increased the proportion of senescent cells. Thus, kidney fibrosis in aging may represent a natural outcome of upregulated EST and TG2, but more likely it appears to be a result of cumulative stresses occurring on the background of synergistically acting geronic (aging) proteins, EST and TG2. PMID:27165830

  4. CXC chemokine receptor 7 (CXCR7 regulates CXCR4 protein expression and capillary tuft development in mouse kidney.

    Directory of Open Access Journals (Sweden)

    Sammy Haege

    Full Text Available BACKGROUND: The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. METHODOLOGY/PRINCIPAL FINDINGS: We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. CONCLUSIONS/SIGNIFICANCE: We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.

  5. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    Science.gov (United States)

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  6. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice.

    Science.gov (United States)

    Chuang, Peter Y; Cai, Weijing; Li, Xuezhu; Fang, Lu; Xu, Jin; Yacoub, Rabi; He, John Cijiang; Lee, Kyung

    2017-09-01

    Both the incidence and prevalence of chronic kidney disease are increasing in the elderly population. Although aging is known to induce kidney injury, the underlying molecular mechanisms remain unclear. Sirtuin 1 (Sirt1), a longevity gene, is known to protect kidney cell injury from various cellular stresses. In previous studies, we showed that the podocyte-specific loss of Sirt1 aggravates diabetic kidney injury. However, the role of Sirt1 in aging-induced podocyte injury is not known. Therefore, in this study we sought to determine the effects of podocyte-specific reduction of Sirt1 in age-induced kidney injury. We employed the inducible podocyte-specific Sirt1 knockdown mice that express shRNA against Sirt1 (Pod-Sirt1 RNAi ) and control mice that express shRNA for luciferase (Pod-Luci RNAi ). We found that reduction of podocyte Sirt1 led to aggravated aging-induced glomerulosclerosis and albuminuria. In addition, urinary level of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative stress, was markedly increased in aged Pod-Sirt1 RNAi mice compared with aged Pod-Luci RNAi mice. Although podocyte-specific markers decreased in aged mice compared with the young controls, the decrease was further exacerbated in aged Pod-Sirt1 RNAi compared with Pod-Luci RNAi mice. Interestingly, expression of cellular senescence markers was significantly higher in the glomeruli of Pod-Sirt1 RNAi mice than Pod-Luci RNAi mice, suggesting that cellular senescence may contribute to podocyte loss in aging kidneys. Finally, we confirmed that Pod-Sirt1 RNAi glomeruli were associated with reduced activation of the transcription factors peroxisome proliferator-activated receptor (PPAR)-α coactivador-1 (PGC1α)/PPARγ, forkhead box O (FOXO)3, FOXO4, and p65 NF-κB, through SIRT1-mediated deacetylation. Together, our data suggest that SIRT1 may be a potential therapeutic target to treat patients with aging-related kidney disease.

  7. Time- and dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney tissue

    International Nuclear Information System (INIS)

    Schüler, Emil; Rudqvist, Nils; Parris, Toshima Z.; Langen, Britta; Spetz, Johan; Helou, Khalil; Forssell-Aronsson, Eva

    2014-01-01

    Introduction: The kidneys are the dose-limiting organs in some radionuclide therapy regimens. However, the biological impact of internal exposure from radionuclides is still not fully understood. The aim of this study was to examine the effects of dose rate and time after i.v. injection of 177 LuCl 3 on changes in transcriptional patterns in mouse kidney tissue. Methods: To investigate the effect of dose rate, female Balb/c nude mice were i.v. injected with 11, 5.6, 1.6, 0.8, 0.30, and 0 MBq of 177 LuCl 3 , and killed at 3, 6, 24, 48, 168, and 24 hours after injection, respectively. Furthermore, the effect of time after onset of exposure was analysed using mice injected with 0.26, 2.4, and 8.2 MBq of 177 LuCl 3 , and killed at 45, 90, and 140 days after injection. Global transcription patterns of irradiated kidney cortex and medulla were assessed and enriched biological processes were determined from the regulated gene sets using Gene Ontology terms. Results: The average dose rates investigated were 1.6, 0.84, 0.23, 0.11 and 0.028 mGy/min, with an absorbed dose of 0.3 Gy. At 45, 90 and 140 days, the absorbed doses were estimated to 0.3, 3, and 10 Gy. In general, the number of differentially regulated transcripts increased with time after injection, and decreased with absorbed dose for both kidney cortex and medulla. Differentially regulated transcripts were predominantly involved in metabolic and stress response-related processes dependent on dose rate, as well as transcripts associated with metabolic and cellular integrity at later time points. Conclusion: The observed transcriptional response in kidney tissue was diverse due to difference in absorbed dose, dose rate and time after exposure. Nevertheless, several transcripts were significantly regulated in all groups despite differences in exposure parameters, which may indicate potential biomarkers for exposure of kidney tissue

  8. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse

    Directory of Open Access Journals (Sweden)

    Qianying Liu

    2018-05-01

    Full Text Available Mequindox (MEQ, belonging to quinoxaline-di-N-oxides (QdNOs, is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.

  9. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF on Mouse Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Berna Tezcan

    2017-12-01

    Full Text Available Objective: Brainderived neurotrophic factor (BDNF promotes the development and differentiation of neurons and synapses, as well as neuronal survival, by acting on specific neuronal groups in the central and peripheral nervous systems. However, the direct effect of BDNF on apoptosis in peripheral tissues is not known. The aim of this study was to investigate the relationship between BDNF and apoptosis, and the density and distribution of BDNF receptors in liver and kidney tissues by histological and immunehistochemical methods. Methods: Seven wild-type and 7 BDNF heterozygous (reduced BDNF levels male mice were used in the study. Caspase-3 and TUNEL immunehistochemical stainings were performed in order to investigate the presence of apoptosis in the liver and kidney tissues of the studied groups. Apoptosis-entering cells were counted and the groups were compared. Concentration and distribution of BDNF receptors, tropomyosin-related kinase B (TrkB and nerve growth factor receptor p75 (NGFR p75, in liver and kidney tissues were also examined by immunehistochemical analyzes. Results: As a result of Caspase-3 and TUNEL immune histochemical staining, more cells were counted to enter the apoptotic process in sections of BDNF heterozygous group compared to control group (p<0.0001. In both groups TrkB and NGFR p75 receptors in liver and kidney tissues were determined in trace amounts, but there was no difference in intensity and distribution between the studied groups. Conclusion: According to our histological and immune histochemical stainings and statistical analysis of cell count between groups, it was found that BDNF is protect ive against apoptosis in liver and kidney. The lack of difference between the studied groups in terms of intensity and distribution of BDNF receptors, suggests that BDNF receptor distribution in the liver and kidney tissues may be different from the nervous system or that BDNF may differ in affinity for these receptors.

  10. Correlation and clinical significance between glomerular filtration rate and age in living-related kidney donors

    International Nuclear Information System (INIS)

    Zhao Xiuyi; Shao Yahui; Wang Yanming; Zhang Aimin; Hao Junwen; Tian Jun; Sun Ben; Han Jiankui

    2010-01-01

    Objective: To quantitatively investigate the effect of age on the glomerular filtration rate (GFR) in living-related kidney donors. to analyze the clinical value and the dependence of GFR on age and to provide an objective basis for the selection of the living kidney donor. Methods: One hundred and sixty-one living-related kidney donors were divided into four age groups, namely 20-29 years (n=52), 30-39 years (n=44), 40-49 years (n=38) and ≥50 years (n=27). On the other hand, the total donors were divided into the groups older than 55 years (n=24) and younger than 55 years (n=137). To quantify GFR in all the subjects using the 99 Tc m -diethylenetriamine pentaacetic acid ( 99 Tc m -DTPA) renography according to standard procedure and to evaluate the effects of age on renal function. Results: The total GFR in living-related kidney donors was calculated as (89.55±12.87) ml·min -1 ·(1.73 m 2 ) -1 . The GFR in the first to the four age groups were (88.27±12.29) ml·min -1 ·(1.73 m 2 ) -1 , (91.85±14.51) ml·min -1 ·(1.73 m 2 ) -1 , (98.25±11.26) ml·min -1 ·(1.73 m 2 ) -1 and (88.24±13.20) ml·min -1 ·(1.73 m 2 ) -1 . The difference of GFR were not significant between the four age groups (F=2.09, P=0.10). The GFR in the donors older than 55 years and younger than 55 years were (88.57±13.14) ml·min -1 ·(1.73 m 2 ) -1 and (89.44±10.34) ml·min -1 ·(1.73 m 2 ) -1 , there no significant difference in GFR between the two groups (F=1.31, P=0.25). When relating GFR to age in all the living-related kidney donors, there was no significant correlation (r=-0.033, P=0.69). No serious complications occurred after living kidney transplantation, serum creatinine values and blood urea nitrogen recovered to the normal levels in a short period, hepatic and renal functions were normal. Conclusion: This study indicated that the GFR values were not correlated with the change of age in living-related kidney donors, and the results were helpful for the selection of living

  11. Acute Exercise Stimulates Carnitine Biosynthesis and OCTN2 Expression in Mouse Kidney

    Directory of Open Access Journals (Sweden)

    Tom L. Broderick

    2017-06-01

    Full Text Available Background/Aims: Carnitine is essential for the transport of long-chain FAs (FA into the mitochondria for energy production. During acute exercise, the increased demand for FAs results in a state of free carnitine deficiency in plasma. The role of kidney in carnitine homeostasis after exercise is not known. Methods: Swiss Webster mice were sacrificed immediately after a 1-hour moderate intensity treadmill run, and at 4-hours and 8-hours into recovery. Non-exercising mice served as controls. Plasma was analyzed for carnitine using acetyltransferase and [14C] acetyl-CoA. Kidney was removed for gene and protein expression of butyrobetaine hydroxylase (γ-BBH, organic cation transporter (OCTN2, and peroxisome proliferator-activated receptor (PPARα, a regulator of fatty acid oxidation activated by FAs. Results: Acute exercise caused a decrease in plasma free carnitine levels. Rapid return of free carnitine to control levels during recovery was associated with increased γ-BBH expression. Both mRNA and protein levels of OCTN2 were detected in kidney after exercise and during recovery, suggesting renal transport mechanisms were stimulated. These changes were accompanied with a reciprocal increase in PPARα protein expression. Conclusions: Our results show that the decrease in free carnitine after exercise rapidly activates carnitine biosynthesis and renal transport mechanism in kidney to establish carnitine homeostasis.

  12. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    Science.gov (United States)

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2017-09-01

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  14. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    Science.gov (United States)

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  15. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  16. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    OpenAIRE

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2008-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expressio...

  17. Effects of hydro-alcoholic extract of Vitex agnus-castus fruit on kidney of D-galactose-induced aging model in female mice.

    Science.gov (United States)

    Oroojan, A A; Ahangarpour, A; Khorsandi, L; Najimi, S A

    2016-01-01

    The aim of the present study was to evaluate the effect of a hydro-alcoholic extract of Vitex agnus-castus (VAC) fruit on blood urea nitrogen (BUN), creatinine (Cr) and, kidney histology of a female mouse model of D-galactose induced aging. In this experimental study, 72 NMRI mice were divided into 6 groups: control, VAC, D-galactose, D-galactose+VAC, aging, and aging+VAC. D-galactose was injected for 45 days and, VAC extract administered in the last 7 days, twice a day. Serum BUN and Cr levels were not significantly changed in the D-galactose and natural aged animals in comparison to control group. Histological changes such as nuclear pyknosis, proximal cell swelling, infiltration of inflammatory cells, tubular dilatation and, vasodilatation were observed in both D-galactose and natural aged mice. Further, glomerules diameter was decreased in them. Administration of VAC could attenuate the histological alterations. These results indicate that VAC may have beneficial effects on aging and aging related kidney disease.

  18. Treatment of D-galactose induced mouse aging with Lycium ...

    African Journals Online (AJOL)

    Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the ...

  19. Kidney transplantation fails to provide adequate growth in children with chronic kidney disease born small for gestational age.

    Science.gov (United States)

    Franke, Doris; Steffens, Rena; Thomas, Lena; Pavičić, Leo; Ahlenstiel, Thurid; Pape, Lars; Gellermann, Jutta; Müller, Dominik; Querfeld, Uwe; Haffner, Dieter; Živičnjak, Miroslav

    2017-03-01

    Children with chronic kidney disease are frequently born small for gestational age (SGA) and prone to disproportionately short stature. It is unclear how SGA affects growth after kidney transplantation (KTx). Linear growth (height, sitting height, and leg length) was prospectively investigated in a cohort of 322 pediatric KTx recipients, with a mean follow-up of 4.9 years. Sitting height index (ratio of sitting height to total body height) was used to assess body proportions. Predictors of growth outcome in KTx patients with (n = 94) and without (n = 228) an SGA history were evaluated by the use of linear mixed-effects models. Mean z-scores for all linear body dimensions were lower in SGA compared with non-SGA patients (p deficit and degree of body disproportion (p growth during childhood. Pubertal trunk growth was diminished in SGA patients, and the pubertal growth spurt of legs was delayed in both groups, resulting in further impairment of adult height, which was more frequently reduced in SGA than in non-SGA patients (50 % vs 18 %, p growth hormone treatment in the pre-transplant period, preemptive KTx, transplant function, and control of metabolic acidosis were the only potentially modifiable correlates of post-transplant growth in SGA groups. By contrast, living related KTx, steroid exposure, and degree of anemia proved to be correlates in non-SGA only. In children born SGA, growth outcome after KTx is significantly more impaired and affected by different clinical parameters compared with non-SGA patients.

  20. Age-related changes of MAO-A and -B distribution in human and mouse brain.

    Science.gov (United States)

    Mahy, N; Andrés, N; Andrade, C; Saura, J

    2000-01-01

    Age-related changes of MAO-A and -B were studied in human and BL/C57 mouse brain areas (substantia nigra, putamen and cerebellum). [3H]Ro41-1049 and [3H]lazabemide were used as selective radioligands to image and quantify MAO-A and MAO-B respectively by enzyme autoradiography. MAO-A binding was higher in mouse, whereas MAO-B binding was higher in human. With aging, mouse MAO-A was significantly reduced between 4 and 8 weeks and remained unchanged until 19 months followed by a slight increase between 19 and 25 months. In contrast, no clear variation was observed in humans between the age of 17-93 years. In most of the structures studied a clear age-related increase in MAO-B was observed beginning in mouse brain at 4 weeks, whereas in human tissue this increase started at the age of 50-60 years. These results show marked differences in the levels and variations of mouse and human MAO-A and -B associated with aging and should be taken into account when extrapolating experimental data from mouse to human.

  1. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    International Nuclear Information System (INIS)

    Van Beneden, Katrien; Geers, Caroline; Pauwels, Marina; Mannaerts, Inge; Wissing, Karl M.; Van den Branden, Christiane; Grunsven, Leo A. van

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation

  2. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Van Beneden, Katrien, E-mail: kvbenede@vub.ac.be [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Geers, Caroline [Department of Pathology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Pauwels, Marina [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Mannaerts, Inge [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Wissing, Karl M. [Department of Nephrology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Van den Branden, Christiane [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Grunsven, Leo A. van, E-mail: lvgrunsv@vub.ac.be [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  3. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    Science.gov (United States)

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  4. Evaluation of the normal fetal kidney length and its correlation with gestational age.

    Science.gov (United States)

    Seilanian Toosi, Farrokh; Rezaie-Delui, Hossein

    2013-05-30

    A true estimation of gestational age (GA) plays an important role in quality maternity care and scheduling the labor date. This study aimed to evaluate the normal fetal kidney length (KL) and its correlation with GA. A cross-sectional study on 92 pregnant women between 8th and 10th week of gestation with normal singleton pregnancy underwent standard ultrasound fetal biometry and kidney length measurement. univariate and multivariate linear regression analysis was used to create a predictive equation to estimate GA on the KL and fetobiometry parameters. A significant correlation was found between GA and KL (r=0.83, P<0.002). The best GA predictor was obtained by combining head circumference, fetal biparietal diameter, femur length and KL with a standard error (SE) about 14.2 days. Our findings showed that KL measurements combination with other fetal biometric parameters could predict age of pregnancy with a better precision.

  5. Evaluation of the Normal Fetal Kidney Length and Its Correlation with Gestational Age

    Directory of Open Access Journals (Sweden)

    Farrokh Seilanian Toosi

    2013-05-01

    Full Text Available A true estimation of gestational age (GA plays an important role in quality maternity care and scheduling the labor date. This study aimed to evaluate the normal fetal kidney length (KL and its correlation with GA. A cross-sectional study on 92 pregnant women between 8th and 10th week of gestation with normal singleton pregnancy underwent standard ultrasound fetal biometry and kidney length measurement. univariate and multivariate linear regression analysis was used to create a predictive equation to estimate GA on the KL and fetobiometry parameters. A significant correlation was found between GA and KL (r=0.83, P<0.002. The best GA predictor was obtained by combining head circumference, fetal biparietal diameter, femur length and KL with a standard error (SE about 14.2 days. Our findings showed that KL measurements combination with other fetal biometric parameters could predict age of pregnancy with a better precision.

  6. Jumping Stand Apparatus Reveals Rapidly Specific Age-Related Cognitive Impairments in Mouse Lemur Primates.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Picq

    Full Text Available The mouse lemur (Microcebus murinus is a promising primate model for investigating normal and pathological cerebral aging. The locomotor behavior of this arboreal primate is characterized by jumps to and from trunks and branches. Many reports indicate insufficient adaptation of the mouse lemur to experimental devices used to evaluate its cognition, which is an impediment to the efficient use of this animal in research. In order to develop cognitive testing methods appropriate to the behavioral and biological traits of this species, we adapted the Lashley jumping stand apparatus, initially designed for rats, to the mouse lemur. We used this jumping stand apparatus to compare performances of young (n = 12 and aged (n = 8 adults in acquisition and long-term retention of visual discriminations. All mouse lemurs completed the tasks and only 25 trials, on average, were needed to master the first discrimination problem with no age-related differences. A month later, all mouse lemurs made progress for acquiring the second discrimination problem but only the young group reached immediately the criterion in the retention test of the first discrimination problem. This study shows that the jumping stand apparatus allows rapid and efficient evaluation of cognition in mouse lemurs and demonstrates that about half of the old mouse lemurs display a specific deficit in long-term retention but not in acquisition of visual discrimination.

  7. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Bisher Abuyassin

    Full Text Available Epidemiological studies demonstrate an association between obstructive sleep apnea (OSA and accelerated loss of kidney function. It is unclear whether the decline in function is due to OSA per se or to other confounding factors such as obesity. In addition, the structural kidney abnormalities associated with OSA are unclear. The objective of this study was to determine whether intermittent hypoxia (IH, a key pathological feature of OSA, induces renal histopathological damage using a mouse model. Ten 8-week old wild-type male CB57BL/6 mice were randomly assigned to receive either IH or intermittent air (IA for 60 days. After euthanasia, one kidney per animal was paraformaldehyde-fixed and then sectioned for histopathological and immunohistochemical analysis. Measurements of glomerular hypertrophy and mesangial matrix expansion were made in periodic acid-Schiff stained kidney sections, while glomerular transforming growth factor-β1 (TGF-β1, connective tissue growth factor (CTGF and vascular endothelial growth factor-A (VEGF-A proteins were semi-quantified by immunohistochemistry. The antigen-antibody reaction was detected by 3,3'-diaminobenzidine chromogen where the color intensity semi-quantified glomerular protein expression. To enhance the accuracy of protein semi-quantification, the percentage of only highly-positive staining was used for analysis. Levels of TGF-β, CTGF and VEGF-A proteins in the kidney cortex were further quantified by western blotting. Cellular apoptosis was also investigated by measuring cortical antiapoptotic B-cell lymphoma 2 (Bcl-2 and apoptotic Bcl-2-associated X (Bax proteins by western blotting. Further investigation of cellular apoptosis was carried out by fluorometric terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL staining. Finally, the levels of serum creatinine and 24-hour urinary albumin were measured as a general index of renal function. Our results indicate that mice exposed to IH

  8. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea.

    Science.gov (United States)

    Abuyassin, Bisher; Badran, Mohammad; Ayas, Najib T; Laher, Ismail

    2018-01-01

    Epidemiological studies demonstrate an association between obstructive sleep apnea (OSA) and accelerated loss of kidney function. It is unclear whether the decline in function is due to OSA per se or to other confounding factors such as obesity. In addition, the structural kidney abnormalities associated with OSA are unclear. The objective of this study was to determine whether intermittent hypoxia (IH), a key pathological feature of OSA, induces renal histopathological damage using a mouse model. Ten 8-week old wild-type male CB57BL/6 mice were randomly assigned to receive either IH or intermittent air (IA) for 60 days. After euthanasia, one kidney per animal was paraformaldehyde-fixed and then sectioned for histopathological and immunohistochemical analysis. Measurements of glomerular hypertrophy and mesangial matrix expansion were made in periodic acid-Schiff stained kidney sections, while glomerular transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and vascular endothelial growth factor-A (VEGF-A) proteins were semi-quantified by immunohistochemistry. The antigen-antibody reaction was detected by 3,3'-diaminobenzidine chromogen where the color intensity semi-quantified glomerular protein expression. To enhance the accuracy of protein semi-quantification, the percentage of only highly-positive staining was used for analysis. Levels of TGF-β, CTGF and VEGF-A proteins in the kidney cortex were further quantified by western blotting. Cellular apoptosis was also investigated by measuring cortical antiapoptotic B-cell lymphoma 2 (Bcl-2) and apoptotic Bcl-2-associated X (Bax) proteins by western blotting. Further investigation of cellular apoptosis was carried out by fluorometric terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. Finally, the levels of serum creatinine and 24-hour urinary albumin were measured as a general index of renal function. Our results indicate that mice exposed to IH have an

  9. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.

    Science.gov (United States)

    Motoya, Tomoyuki; Ogawa, Noriko; Nitta, Tetsuya; Rafiq, Ashiq Mahmood; Jahan, Esrat; Furuya, Motohide; Matsumoto, Akihiro; Udagawa, Jun; Otani, Hiroki

    2016-05-01

    Interkinetic nuclear migration (INM) is a phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium, which is characterized by the presence of apical primary cilia, in synchrony with the cell cycle in a manner of apical mitosis. INM is suggested to regulate not only stem/progenitor cell proliferation/differentiation but also organ size and shape. INM has been reported in epithelia of both ectoderm and endoderm origin. We examined whether INM exists in the mesoderm-derived ureteric epithelium. At embryonic day (E) 11.5, E12.5 and E13.5, C57BL/6J mouse dams were injected with 5-bromo-2'-deoxyuridine (BrdU) and embryos were killed 1, 2, 4, 6, 8, 10 and 12 h later. We immunostained transverse sections of the ureter for BrdU, and measured the position of BrdU (+) nuclei in the ureteric epithelia along the apico-basal axis at each time point. We analyzed the distribution patterns of BrdU (+) nuclei in histograms using the multidimensional scaling. Changes in the nucleus distribution patterns suggested nucleus movement characteristic of INM in the ureteric epithelia, and the mode of INM varied throughout the ureter development. While apical primary cilia are related with INM by providing a centrosome for the apical mitosis, congenital anomalies of the kidney and urinary tract (CAKUT) include syndromes linked to primary ciliary dysfunction affecting epithelial tubular organs such as kidney, ureter, and brain. The present study showed that INM exists in the ureteric epithelium and suggests that INM may be related with the CAKUT etiology via primary ciliary protein function. © 2015 Japanese Teratology Society.

  10. Mercury localization in mouse kidney over time: autoradiography versus silver staining

    International Nuclear Information System (INIS)

    Rodier, P.M.; Kates, B.; Simons, R.

    1988-01-01

    Several methods of silver staining have been employed to localize mercury in tissue, under the assumption that the techniques represent total Hg, but recent reports have suggested that these stains are specific for a limited fraction of the Hg present in some samples. Magos et al. hypothesized that the stains actually vary with inorganic mercury content. The purpose of the present study was to compare localization by radiolabeling to localization by one silver stain, the photoemulsion histochemical technique, in tissues prepared to contain a range of levels of total Hg and a range of levels of inorganic Hg. Mice dosed with 8 mg Hg/kg as MeHg were killed 24 hr, 1 week, or 2 weeks after exposure, to allow a decrease in total Hg and an increase in the proportion of demethylated Hg over time. Mice dosed with 4 mg Hg/kg as HgCl 2 provided samples in which all the Hg present was in the inorganic form. Atomic absorption of kidneys of mice dosed with MeHg showed that total Hg fell from 55 micrograms/g to 39 to 25 over 2 weeks, while the inorganic fraction climbed from about 2 to 27 to 35%. Grain counts from autoradiographs of 203 Hg-labeled sections correlated with total Hg content at +0.88, but silver staining was correlated with inorganic Hg content, appearing only at late termination times in MeHg-exposed animals, but soon after dosing in mice exposed to inorganic Hg. The photoemulsion histochemical technique revealed a substance strictly localized in the proximal tubules, while autoradiographs and grain counts showed total Hg to be present throughout the kidney tissue. These results support the contention that silver stains are selective for inorganic Hg

  11. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    Science.gov (United States)

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  12. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model.

    Science.gov (United States)

    Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I

    Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.

  13. Short-term high dose of quercetin and resveratrol alters aging markers in human kidney cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Abharzanjani

    2017-01-01

    Full Text Available Background: Hyperglycemia-mediated oxidative stress implicates in etiology of kidney cell aging and diabetic nephropathy. We evaluated the effects of different doses of resveratrol and quercetin and their combination therapy on aging marker in human kidney cell culture under hyperglycemia condition. Methods: Human embryonic kidney cell (HEK-293 was cultured in Dulbecco's Modified Eagle Medium (DMEM containing 100 mM (18 mg/L for 24 h. The cells were treated with resveratrol (2.5, 5, 10 μm, quercetin (3, 6, 12 μm, and combination of these (R 2.5 μm, Q 3 μm and (R 5 μm, Q 6 μm and (R 10 μm, Q 12 μm for 48 h, and then, cells were lysed to access RNA and lysate. Results: The analysis of data showed that beta-galactosidase enzyme gene expression as an aging marker in all treatment groups has reduced in a dose-dependent manner. Gene expression of Sirtuin1 and thioredoxin (Trx in all treated groups in comparison to control group increased in a dose-dependent fashion. Trx interacting protein (TXNIP gene expression decreased in a dose-dependent manner in all treated groups, especially in resveratrol and combination therapy. Conclusions: According to the results of this research, quercetin, resveratrol, and especially combination treatments with increased expression levels of antioxidants, can reduce aging markers in HEK cell line in hyperglycemia conditions. These results lead us to use flavonoids such as resveratrol for anti-aging potential.

  14. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  15. Does the Age of Donor Kidneys Affect Nocturnal Polyuria in Patients With Successful Real Transplantation?

    Science.gov (United States)

    Mitsui, T; Morita, K; Iwami, D; Kitta, T; Kanno, Y; Moriya, K; Takeda, M; Shinohara, N

    We investigated whether the age of donor kidneys influences the incidence of nocturnal polyuria in patients with successful renal transplantation (RTX). Eighty-five patients (45 men and 40 women) undergoing RTX (median age, 47 years) were included in this study. Twenty-four-hour bladder diaries were kept for 3 days, and nocturnal polyuria was defined as a nocturnal polyuria index (nocturnal urine volume/24-hour urine volume) of >0.33. Risk factors for nocturnal polyuria were analyzed in patients with RTX by means of the Mann-Whitney U test, χ 2 test, and a logistic regression analysis. End-stage renal disease (ESRD) developed from diabetes mellitus in 16 patients (19%). Sixty-five patients (76%) received pre-transplant dialysis, with a median duration of 5 years. The median serum creatinine level and body mass index at the most recent visit were 1.2 mg/dL and 21.2 kg/m 2 , respectively. On the basis of the 24-hour bladder diaries, nocturnal polyuria was identified in 48 patients (56%). A logistic regression analysis revealed that diabetes mellitus as the original disease for ESRD was the only risk factor for nocturnal polyuria (odds ratio, 8.95; 95% confidence interval, 2.01-65.3; P = .0028). The age of donor kidneys at examination did not affect the incidence of nocturnal polyuria (P = .9402). Nocturnal polyuria was not uncommon in patients with successful RTX. Diabetes mellitus as the original disease for ESRD was the only risk factor for nocturnal polyuria, whereas the age of donor kidneys at examination did not affect the incidence of nocturnal polyuria. Thus, nocturnal polyuria is caused by recipient factors but not donor factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Growth and radiation reaction of a spontaneous transplantable kidney carcinoma of the NMRI mouse

    International Nuclear Information System (INIS)

    Merinsky, G.

    1984-01-01

    Transplantability, growth parameters and radiation sensitivity were studied in situ on a spontaneous renal carcinoma of a NMRI mouse of the Neuherberg line. The tumour was histologically similar to the human hypernephroid adenocarcinoma. After irradiation with subcurative single doses, the growth graphs showed a moderate or delayed shrinkage tendency of the tumour, but a latency period which clearly increased with the dose up to progressive recidivational growth. The dose dependence of growth retardation derived from this fact resulted in a monophase dose-effect curve for anoxic irradiation conditions and in a steeper biphase curve for ambient conditions. A relatively small fraction of naturally hypoxic cells in the tumour may be assumed on the basis of the 'sharp-bend dose' (30 Gy) and the position of the two graphs relative to each other. An oxygen concentration factor of c. 1.7 was deduced from the comparison of iso-effective doses for the en-oxic initial part of the ambient graph. Following irradiation with curative single doses, the median curative doses (TCD50) were 65.6 Gy for anoxically irradiated tumours and 41.1 Gy for ambient tumours. Both healing graphs were essentially parallel to each other and relatively steep. The quantity of the hypoxic fraction could be assessed more acurately from the dose difference. Assuming Dsub(o) to be 3.9 Gy, a value of 1.8 x 10 -3 resulted which is fairly low compared with other animal tumours. (orig./MG) [de

  17. The use of urinary proteomics in the assessment of suitability of mouse models for ageing.

    Science.gov (United States)

    Nkuipou-Kenfack, Esther; Schanstra, Joost P; Bajwa, Seerat; Pejchinovski, Martin; Vinel, Claire; Dray, Cédric; Valet, Philippe; Bascands, Jean-Loup; Vlahou, Antonia; Koeck, Thomas; Borries, Melanie; Busch, Hauke; Bechtel-Walz, Wibke; Huber, Tobias B; Rudolph, Karl L; Pich, Andreas; Mischak, Harald; Zürbig, Petra

    2017-01-01

    Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8-96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.

  18. Dynamic changes in mouse hematopoietic stem cell numbers during aging

    NARCIS (Netherlands)

    de Haan, G; Van Zant, G

    1999-01-01

    To address the fundamental question of whether or not stem cell populations age, we performed quantitative measurements of the cycling status and frequency of hematopoietic stem cells in long-lived C57BL/6 (B6) and short-lived DBA/2 (DBA) mice at different developmental and aging stages. The

  19. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  20. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus.

    Science.gov (United States)

    Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan

    2014-08-01

    Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.

  1. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.

    Science.gov (United States)

    Grifoni, Samira C; Chiposi, Rumbidzayi; McKey, Susan E; Ryan, Michael J; Drummond, Heather A

    2010-02-01

    Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.

  2. Altered whole kidney blood flow autoregulation in a mouse model of reduced β-ENaC

    Science.gov (United States)

    Grifoni, Samira C.; Chiposi, Rumbidzayi; McKey, Susan E.; Ryan, Michael J.

    2010-01-01

    Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (∼5 s) and slow acting tubuloglomerular feedback (TGF; ∼25 s). Previous studies suggest epithelial Na+ channel (ENaC) family proteins, β-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether β-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced β-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0–5, 6–25, and 110–120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by ∼50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between β-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in β-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest β-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo. PMID:19889952

  3. 2C.07: INVOLVEMENT OF THE RENIN-ANGIOTENSIN SYSTEM IN A PREMATURE AGING MOUSE MODEL.

    Science.gov (United States)

    Van Thiel, B S; Ridwan, Y; Garrelds, I M; Vermeij, M; Groningen, M C Clahsen-Van; Danser, A H J; Essers, J; Van Der Pluijm, I

    2015-06-01

    Changes in the renin-angiotensin system (RAS), known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. Here we characterized the RAS and kidney pathology in mice with genomic instability due to a defective nucleotide excision repair gene (Ercc1d/- mice). These mice display premature features of aging, including vascular dysfunction. Studies were performed in male and female Ercc1d/- mice and their wild type controls (Ercc1+/+) at the age of 12 or 18 weeks before and after treatment with losartan. The renin-activatable near-infrared fluorescent probe ReninSense 680™ was applied in vivo to allow non-invasive imaging of renin activity. Plasma renin concentrations (PRC) were additionally measured ex vivo by quantifying Ang I generation in the presence of excess angiotensinogen. Kidneys were harvested and examined for markers of aging, and albumin was determined in urine. Kidneys of 12-week old Ercc1d/- mice showed signs of aging, including tubular anisokaryosis, cell-senescence and increased apoptosis. This was even more pronounced at the age of 18 weeks. Yet, urinary albumin was normal at 12 weeks. The ReninSense 680™ probe showed increased intrarenal renin activity in Ercc1d/- mice versus Ercc1+/+ mice, both at 12 and 18 weeks of age, while PRC in these mice tended to be lower compared to Ercc1+/+ mice. Renin was higher in male than female mice, both in the kidney and in plasma, and losartan increased kidney and plasma renin in both Ercc1d/- and Ercc1+/+ mice. Rapidly aging Ercc1d/- mice display an activated intrarenal RAS, as evidenced by the increased fluorescence detected with the ReninSense 680™ probe. This increased RAS activity may contribute to the disturbed kidney pathology in these mice. The increased intrarenal activity detected with the ReninSense 680™ probe in male vs. female mice, as well as after losartan treatment, are in full agreement with the literature, and

  4. Reward components of feeding behavior are preserved during mouse aging

    Directory of Open Access Journals (Sweden)

    Mazen R. Harb

    2014-09-01

    Full Text Available Eating behavior depends on associations between the sensory and energetic properties of foods. Healthful balance of these factors is a challenge for industrialized societies that have an abundance of food, food choices and food-related cues. Here, we were interested in whether appetitive conditioning changes as a function of age. Operant and pavlovian conditioning experiments (rewarding stimulus was a palatable food in male mice (aged 3, 6 and 15 months showed that implicit (non-declarative memory remains intact during aging. Two other essential components of eating behavior, motivation and hedonic preference for rewarding foods, were also found not to be altered in aging mice. Specifically, hedonic responding by satiated mice to isocaloric foods of differing sensory properties (sucrose, milk was similar in all age groups; importantly, however, this paradigm disclosed that older animals adjust their energy intake according to energetic need. Based on the assumption that the mechanisms that control feeding are conserved across species, it would appear that overeating and obesity in humans reflects a mismatch between ancient physiological mechanisms and today’s cue-laden environment. The implication of the present results showing that aging does not impair the ability to learn stimulus-food associations is that the risk of overeating in response to food cues is maintained through to old age.

  5. Reward components of feeding behavior are preserved during mouse aging.

    Science.gov (United States)

    Harb, Mazen R; Sousa, Nuno; Zihl, Joseph; Almeida, Osborne F X

    2014-01-01

    Eating behavior depends on associations between the sensory and energetic properties of foods. Healthful balance of these factors is a challenge for industrialized societies that have an abundance of food, food choices and food-related cues. Here, we were interested in whether appetitive conditioning changes as a function of age. Operant and pavlovian conditioning experiments (rewarding stimulus was a palatable food) in male mice (aged 3, 6, and 15 months) showed that implicit (non-declarative) memory remains intact during aging. Two other essential components of eating behavior, motivation and hedonic preference for rewarding foods, were also found not to be altered in aging mice. Specifically, hedonic responding by satiated mice to isocaloric foods of differing sensory properties (sucrose, milk) was similar in all age groups; importantly, however, this paradigm disclosed that older animals adjust their energy intake according to energetic need. Based on the assumption that the mechanisms that control feeding are conserved across species, it would appear that overeating and obesity in humans reflects a mismatch between ancient physiological mechanisms and today's cue-laden environment. The implication of the present results showing that aging does not impair the ability to learn stimulus-food associations is that the risk of overeating in response to food cues is maintained through to old age.

  6. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities.

    Science.gov (United States)

    Vanhooren, Valerie; Libert, Claude

    2013-01-01

    The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effect of reproductive ageing on pregnant mouse uterus and cervix

    Science.gov (United States)

    Patel, Rima; Moffatt, James D.; Mourmoura, Evangelia; Demaison, Luc; Seed, Paul T.; Poston, Lucilla

    2017-01-01

    Key points Older pregnant women have a greater risk of operative delivery, still birth and post‐term induction.This suggests that maternal age can influence the timing of birth and processes of parturition.We have found that increasing maternal age in C57BL/6J mice is associated with prolongation of gestation and length of labour.Older pregnant mice also had delayed progesterone withdrawal and impaired myometrial function.Uterine ageing and labour dysfunction should be investigated further in older primigravid women. Abstract Advanced maternal age (≥35 years) is associated with increased rates of operative delivery, stillbirth and post‐term labour induction. The physiological causes remain uncertain, although impaired myometrial function has been implicated. To investigate the hypothesis that maternal age directly influences successful parturition, we assessed the timing of birth and fetal outcome in pregnant C57BL/6J mice at 3 months (young) and 5 months (intermediate) vs. 8 months (older) of age using infrared video recording. Serum progesterone profiles, myometrium and cervix function, and mitochondrial electron transport chain complex enzymatic activities were also examined. Older pregnant mice had a longer mean gestation and labour duration (P mice. Older mice did not exhibit the same decline in serum progesterone concentrations as younger mice. Cervical tissues from older mice were more distensible than younger mice (P mice (P mice, although there were no age‐induced changes to the enzymatic activities of the mitochondrial electron transport chain complexes. In conclusion, 8‐month‐old mice provide a useful model of reproductive ageing. The present study has identified potential causes of labour dysfunction amenable to investigation in older primigravid women. PMID:28083928

  8. Abnormal glutamate release in aged BTBR mouse model of autism.

    Science.gov (United States)

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  9. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  10. Local CD34-positive capillaries decrease in mouse models of kidney disease associating with the severity of glomerular and tubulointerstitial lesions.

    Science.gov (United States)

    Masum, Md Abdul; Ichii, Osamu; Elewa, Yaser Hosny Ali; Nakamura, Teppei; Kon, Yasuhiro

    2017-09-04

    The renal vasculature plays important roles in both homeostasis and pathology. In this study, we examined pathological changes in the renal microvascular in mouse models of kidney diseases. Glomerular lesions (GLs) in autoimmune disease-prone male BXSB/MpJ-Yaa (Yaa) mice and tubulointerstitial lesions (TILs) in male C57BL/6 mice subjected to unilateral ureteral obstruction (UUO) for 7 days were studied. Collected kidneys were examined using histopathological techniques. A nonparametric Mann-Whitney U test (P < 0.05) was performed to compare healthy controls and the experimental mice. The Kruskal-Wallis test was used to compare three or more groups, and multiple comparisons were performed using Scheffe's method when significant differences were observed (P < 0.05). Yaa mice developed severe autoimmune glomerulonephritis, and the number of CD34 + glomerular capillaries decreased significantly in GLs compared to that in control mice. However, UUO-treated mice showed severe TILs only, and CD34 + tubulointerstitial capillaries were decreased significantly in TILs with the progression of tubulointerstitial fibrosis compared to those in untreated control kidneys. Infiltrations of B-cells, T-cells, and macrophages increased significantly in the respective lesions of both disease models (P < 0.05). In observations of vascular corrosion casts by scanning electron microscopy and of microfil rubber-perfused thick kidney sections by fluorescence microscopy, segmental absences of capillaries were observed in the GLs and TILs of Yaa and UUO-treated mice, respectively. Further, transmission electron microscopy revealed capillary endothelial injury in the respective lesions of both models. The numbers of CD34 + glomerular and tubulointerstitial capillaries were negatively correlated with all examined parameters in GLs (P < 0.05) and TILs (P < 0.01), respectively. From the analysis of mouse models, we identified inverse pathological correlations between the number of

  11. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo

    International Nuclear Information System (INIS)

    Li, Jiasong; Wang, Shang; Singh, M; Larin, K V; Aglyamov, S; Emelianov, S; Twa, M D

    2014-01-01

    We demonstrate the use of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to assess the relaxation rate of deformation created by a focused air-pulse in tissue-mimicking gelatin phantoms of various concentrations and mouse corneas of different ages in vivo. The results show that the relaxation rate can be quantified and is different for gels with varying concentrations of gelatin and mouse corneas of different ages. The results indicate that gel phantoms with higher concentrations of gelatin as well as older mouse corneas have faster relaxation rates indicating stiffer material. This non-contact and non-invasive measurement technique utilizes low surface displacement amplitude (in µm scale) for tissue excitation and, therefore, can be potentially used to study the biomechanical properties of ocular and other sensitive tissues. (letter)

  12. A Kidney Graft Survival Calculator that Accounts for Mismatches in Age, Sex, HLA, and Body Size.

    Science.gov (United States)

    Ashby, Valarie B; Leichtman, Alan B; Rees, Michael A; Song, Peter X-K; Bray, Mathieu; Wang, Wen; Kalbfleisch, John D

    2017-07-07

    Outcomes for transplants from living unrelated donors are of particular interest in kidney paired donation (KPD) programs where exchanges can be arranged between incompatible donor-recipient pairs or chains created from nondirected/altruistic donors. Using Scientific Registry of Transplant Recipients data, we analyzed 232,705 recipients of kidney-alone transplants from 1998 to 2012. Graft failure rates were estimated using Cox models for recipients of kidney transplants from living unrelated, living related, and deceased donors. Models were adjusted for year of transplant and donor and recipient characteristics, with particular attention to mismatches in age, sex, human leukocyte antigens (HLA), body size, and weight. The dependence of graft failure on increasing donor age was less pronounced for living-donor than for deceased-donor transplants. Male donor-to-male recipient transplants had lower graft failure, particularly better than female to male (5%-13% lower risk). HLA mismatch was important in all donor types. Obesity of both the recipient (8%-18% higher risk) and donor (5%-11% higher risk) was associated with higher graft loss, as were donor-recipient weight ratios of transplants where both parties were of similar weight (9%-12% higher risk). These models are used to create a calculator of estimated graft survival for living donors. This calculator provides useful information to donors, candidates, and physicians of estimated outcomes and potentially in allowing candidates to choose among several living donors. It may also help inform candidates with compatible donors on the advisability of joining a KPD program. Copyright © 2017 by the American Society of Nephrology.

  13. Application of Circuit Simulation Method for Differential Modeling of TIM-2 Iron Uptake and Metabolism in Mouse Kidney Cells

    Directory of Open Access Journals (Sweden)

    Zhijian eXie

    2013-06-01

    Full Text Available Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modelling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS, we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt receptor, T cell immunoglobulin and mucin domain-2 (TIM-2. The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt was 2.17 pmol per million cells. TIM-2 binding probability with iron-loaded HFt was 16.6%. An average of 8.5 minutes was required for the complex of TIM-2 and iron-loaded HFt to form an endosome. The endosome containing HFt lasted roughly 2 hours. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.

  14. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  15. Influence of ageing on quantitative contrast-enhanced ultrasound of the kidneys in healthy cats.

    Science.gov (United States)

    Stock, Emmelie; Paepe, Dominique; Daminet, Sylvie; Duchateau, Luc; Saunders, Jimmy H; Vanderperren, Katrien

    2018-05-05

    The degenerative effects of ageing on the kidneys have been extensively studied in humans. However, only recently interest has been focused on renal ageing in veterinary medicine. Contrast-enhanced ultrasound allows non-invasive evaluation of renal perfusion in conscious cats. Renal perfusion parameters were obtained in 43 healthy cats aged 1-16 years old, and the cats were divided in four age categories: 1-3 years, 3-6 years, 6-10 years and over 10 years. Routine renal parameters as serum creatinine, serum urea, urine-specific gravity, urinary protein:creatinine ratio and systolic blood pressure were also measured. No significant differences in any of the perfusion parameters were observed among the different age categories. A trend towards a lower peak enhancement and wash-in area under the curve with increasing age, suggestive for a lower blood volume, was detected when comparing the cats over 10 years old with the cats of 1-3 years old. Additionally, no significant age-effect was observed for the serum and urine parameters, whereas a higher blood pressure was observed in healthy cats over 10 years old. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Abnormal glutamate release in aged BTBR mouse model of autism

    OpenAIRE

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses betw...

  17. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    Science.gov (United States)

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required. Copyright © 2016 the American Physiological Society.

  18. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mi-Jung, E-mail: mjl1213@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Myung-Joon, E-mail: mjkim@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Kyung Hwa, E-mail: khhan@yuhs.ac [Biostatistics Collaboration Unit, Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yoon, Choon Sik, E-mail: yooncs58@yuhs.ac [Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, 211 Unjoo-ro, Gangnam-gu, Seoul (Korea, Republic of)

    2013-06-15

    Objectives: To evaluate the feasibility and age-related changes of shear wave velocity (SWV) in normal livers, kidneys, and spleens of children using acoustic radiation force impulse (ARFI) imaging. Materials and methods: Healthy pediatric volunteers prospectively underwent abdominal ultrasonography and ARFI. The subjects were divided into three groups according to age: group 1: <5 years old; group 2: 5–10 years old; and group 3: >10 years old. The SWV was measured using a 4–9 MHz linear probe for group 1 and a 1–4 MHz convex probe for groups 2 and 3. Three valid SWV measurements were acquired for each organ. Results: Two hundred and two children (92 male, 110 female) with an average age of 8.1 years (±4.7) were included in this study and had a successful measurement rate of 97% (196/202). The mean SWVs were 1.12 m/s for the liver, 2.19 m/s for the right kidney, 2.33 m/s for the left kidney, and 2.25 m/s for the spleen. The SWVs for the right and left kidneys, and the spleen showed age-related changes in all children (p < 0.001). And the SWVs for the kidneys increased with age in group 1, and those for the liver changed with age in group 3. Conclusions: ARFI measurements are feasible for solid abdominal organs in children using high or low frequency probes. The mean ARFI SWV for the kidneys increased according to age in children less than 5 years of age and in the liver, it changed with age in children over 10.

  19. Unique sex- and age-dependent effects in protective pathways in acute kidney injury.

    Science.gov (United States)

    Boddu, Ravindra; Fan, Chunlan; Rangarajan, Sunil; Sunil, Bhuvana; Bolisetty, Subhashini; Curtis, Lisa M

    2017-09-01

    Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3 , when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3 , suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.

  20. D-aspartic acid in aged mouse skin and lens

    International Nuclear Information System (INIS)

    Fujii, Noriko; Muraoka, Shiro; Harada, Kaoru; Tamanoi, Itsuro; Joshima, Hisamasa; Kashima, Masatoshi.

    1987-01-01

    D-aspartic acid (D-Asp) was detected in the skin and lens from naturally aged mice. An analysis of the amino acid composition indicated that D-Asp did not derive from collagen. An immunological analysis using Oucterlony's agar diffusion method also confirmed that the protein containing D-Asp was not a serum protein. The process producing D-Asp is regarded as one other than racemization because the life span of mice is not long enough to permit D-Asp by racemization. Continuous low-dose-rate gamma-irradiation (37R per day) for 102 to 112 days did not increase significantly the amount of D-Asp in skin and lens of mice. (author)

  1. Cognitive and kidney function: results from a British birth cohort reaching retirement age.

    Directory of Open Access Journals (Sweden)

    Richard J Silverwood

    Full Text Available Previous studies have found associations between cognitive function and chronic kidney disease. We aimed to explore possible explanations for this association in the Medical Research Council National Survey of Health and Development, a prospective birth cohort representative of the general British population.Cognitive function at age 60-64 years was quantified using five measures (verbal memory, letter search speed and accuracy, simple and choice reaction times and glomerular filtration rate (eGFR at the same age was estimated using cystatin C. The cross-sectional association between cognitive function and eGFR was adjusted for background confounding factors (socioeconomic position, educational attainment, prior cognition, and potential explanations for any remaining association (smoking, diabetes, hypertension, inflammation, obesity.Data on all the analysis variables were available for 1306-1320 study members (depending on cognitive measure. Verbal memory and simple and choice reaction times were strongly associated with eGFR. For example, the lowest quartile of verbal memory corresponded to a 4.1 (95% confidence interval 2.0, 6.2 ml/min/1.73 m(2 lower eGFR relative to the highest quartile. Some of this association was explained by confounding due to socioeconomic factors, but very little of it by prior cognition. Smoking, diabetes, hypertension, inflammation and obesity explained some but not all of the remaining association.These analyses support the notion of a shared pathophysiology of impaired cognitive and kidney function at older age, which precedes clinical disease. The implications of these findings for clinical care and research are important and under-recognised, though further confirmatory studies are required.

  2. THE CAUSES AND THE COURSE OF CHRONIC KIDNEY DISEASE IN CHILDREN OF PRESCHOOL AGE

    Directory of Open Access Journals (Sweden)

    T. Yu. Abaseeva

    2015-01-01

    Full Text Available Background: Data on etiology and clinical course of CKD stage  3 to 5 in children of preschool  age could help obstetricians, pediatricians, and nephrologists with proper diagnostics and management of this condition and prediction of outcomes. Aim: To study causes and clinical features of CKD stage 3 to 5 in preschool  children. Materials and methods: The causes and clinical features of CKD stage 3 to 5 were investigated in 55 preschool children aged from 7 months  to 8 years. Twenty four had  CKD stage  3 to 4 and  31 children with endstage  CKD  were  on  peritoneal  dialysis. Results:96% of CKD stage 3 to 5 in preschool children were due  to  congenital/genetic kidney abnormalities. Predictors  of renal  replacement therapy  beginning in the first 5 years of life were as follows: antenatal detection of congenital  abnormalities  of the kidney and urinary tract, oligohydroamnion, high neonatal  BUN levels.  Anemia, hyperparathyroidism, arterial hypertension were more prevalent  in children on the dialysis stage of CKD, and myocardial hypertrophy and/or of the left ventricle dilatation were found in 26% of them. Forty two percent of children had growth retardation, and 40% had delayed  speech  development. Conclusion: The course CKD in preschool  children is characterized by a combination of typical metabolic  disorders with the growth  retardation (often dramatic and delayed mental development that significantly limits the possibilities of the social adaptation of these children and social activities of their parents. Participation  of  neuropsychiatrists,  clinical psychologists, and teachers, rather than pediatricians and  nephrologists only, is desirable  in management of preschool children with CKD stage 3 to 5.

  3. Voxel-based morphometry analyses of in-vivo MRI in the aging mouse lemur primate

    Directory of Open Access Journals (Sweden)

    Stephen John Sawiak

    2014-05-01

    Full Text Available Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus is a small primate used as a model of age-related neurodegenerative processes. It is the first nonhuman primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI. These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM. The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13-16, hypothalamus, putamen, thalamus, corpus callosum. Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal, nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.

  4. Aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes as revealed by microscopic radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji [Shinshu University, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2007-07-01

    This mini-review reports aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes. We have observed the macromolecular synthesis, such as DNA, RNA and proteins, in the mitochondria of various mammalian cells by means of electron microscopic radioautography technique developed in our laboratory. The number of mitochondria per cell, number of labeled mitochondria per cell with 3H-thymidine, 3H-uridine and 3H-leucine, precursors for DNA, RNA and proteins, respectively, were counted and the labeling indices at various ages, from fetal to postnatal early days and several months to 1 and 2 years in senescence, were calculated, which showed variations due to aging. (author)

  5. Kidney transplant

    Science.gov (United States)

    ... always take your medicine as directed. Alternative Names Renal transplant; Transplant - kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney - blood and urine flow Kidneys Kidney transplant - ...

  6. [Study on prevention and treatment of middle and aged women diabetes with kidney deficiency and bone metabolic disturbance].

    Science.gov (United States)

    Zhu, L; Li, H; Liu, Y

    1999-04-01

    To Study the therapeutic effect of Chinese herbal medicine (CHM) for supplementing Qi, activating blood circulation and tonifying Kidney on prevention and treatment of middle and aged women diabetes with Kidney Deficiency and bone metabolic disturbance. Clinical observation was taken in 52 patients, who were divided into two groups, the control group (treated with hypoglycemic agent alone) and the treated group (treated with hypoglycemic agent and CHM). Before treatment, patients of both groups showed obvious higher blood alkaline phosphatase, beta 2-microglobulin (beta 2-MG) level, urinary beta 2-MG, calcium and phosphorus level, but lower serum estradiol level than those in normal subjects. After 3 months' treatment, no apparent change on serum estradiol level was observed, but other parameters were all lowered obviously in the two groups, the changes revealed more obvious in the treated group. The symptoms of Kidney Deficiency, such as lumbodorsal pain, general fatigue, palpitation and vertigo, were improved after treatment, and the improvement was also more obvious in the treated group. CHM for supplementing Qi, activating blood circulation and tonifying Kidney was effective in improving Kidney Deficiency and mineral substance loss of bone in middle and aged women diabetes patients. The CHM and western drugs may acted synergistically.

  7. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome.

    Science.gov (United States)

    Tanaka, Mari; Asada, Misako; Higashi, Atsuko Y; Nakamura, Jin; Oguchi, Akiko; Tomita, Mayumi; Yamada, Sachiko; Asada, Nariaki; Takase, Masayuki; Okuda, Tomohiko; Kawachi, Hiroshi; Economides, Aris N; Robertson, Elizabeth; Takahashi, Satoru; Sakurai, Takeshi; Goldschmeding, Roel; Muso, Eri; Fukatsu, Atsushi; Kita, Toru; Yanagita, Motoko

    2010-03-01

    The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.

  8. Correlates of kidney stone disease differ by race in a multi-ethnic middle-aged population: The ARIC study

    NARCIS (Netherlands)

    S. Akoudad (Saloua); M. Szklo (Moyses); M.A. McAdams (Mara); T. Fulop (Tibor); C.A.M. Anderson (Cheryl); J. Coresh (Josef); A. Köttgen (Anna)

    2010-01-01

    textabstractObjective: To identify correlates of kidney stone disease in white and African American men and women in a population-based longitudinal study starting in four US communities, and to assess differences in correlates across racial groups. Methods: Between 1993 and 1995, 12,161 middle-aged

  9. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  10. Contemporary, age-based trends in the incidence and management of patients with early-stage kidney cancer.

    Science.gov (United States)

    Tan, Hung-Jui; Filson, Christopher P; Litwin, Mark S

    2015-01-01

    Although kidney cancer incidence and nephrectomy rates have risen in tandem, clinical advances have generated new uncertainty regarding the optimal management of patients with small renal tumors, especially the elderly. To clarify existing practice patterns, we assessed contemporary trends in the incidence and management of patients with early-stage kidney cancer. Using Surveillance, Epidemiology, and End Results data, we identified adult patients diagnosed with T1aN0M0 kidney cancer from 2000 to 2010. We determined age-adjusted and age-specific incidence and management rates (i.e., nonoperative, ablation, partial nephrectomy [PN], and radical nephrectomy) per 100,000 adults and determined the average annual percent change (AAPC). Finally, we compared management groups using multinomial logistic regression accounting for patient characteristics, cancer information, and county-level measures for health. From 2000 to 2010, we identified 41,645 adults diagnosed with T1aN0M0 kidney cancer. Overall incidence increased from 3.7 to 7.0 per 100,000 adults (AAPC = 7.0%, Pmanagement and ablation approached nephrectomy rates for those aged 75 to 84 years and became the predominant strategy for patients older than 84 years. Adjusting for clinical, oncological, and environmental factors, older patients less frequently underwent PN and more often received ablative or nonoperative management (P<0.001). As the incidence of early-stage kidney cancer rises, patients are increasingly treated with nonoperative and nephron-sparing strategies, especially among the most elderly. The broader array of treatment options suggests opportunities to better personalize kidney cancer care for seniors. Published by Elsevier Inc.

  11. MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging.

    Science.gov (United States)

    Bates, David J; Li, Na; Liang, Ruqiang; Sarojini, Harshini; An, Jin; Masternak, Michal M; Bartke, Andrzej; Wang, Eugenia

    2010-02-01

    The Ames dwarf mouse is well known for its remarkable propensity to delay the onset of aging. Although significant advances have been made demonstrating that this aging phenotype results primarily from an endocrine imbalance, the post-transcriptional regulation of gene expression and its impact on longevity remains to be explored. Towards this end, we present the first comprehensive study by microRNA (miRNA) microarray screening to identify dwarf-specific lead miRNAs, and investigate their roles as pivotal molecular regulators directing the long-lived phenotype. Mapping the signature miRNAs to the inversely expressed putative target genes, followed by in situ immunohistochemical staining and in vitro correlation assays, reveals that dwarf mice post-transcriptionally regulate key proteins of intermediate metabolism, most importantly the biosynthetic pathway involving ornithine decarboxylase and spermidine synthase. Functional assays using 3'-untranslated region reporter constructs in co-transfection experiments confirm that miRNA-27a indeed suppresses the expression of both of these proteins, marking them as probable targets of this miRNA in vivo. Moreover, the putative repressed action of this miRNA on ornithine decarboxylase is identified in dwarf mouse liver as early as 2 months of age. Taken together, our results show that among the altered aspects of intermediate metabolism detected in the dwarf mouse liver--glutathione metabolism, the urea cycle and polyamine biosynthesis--miRNA-27a is a key post-transcriptional control. Furthermore, compared to its normal siblings, the dwarf mouse exhibits a head start in regulating these pathways to control their normality, which may ultimately contribute to its extended health-span and longevity.

  12. Interactive effects of diabetes and impaired kidney function on cognitive performance in old age: a population-based study.

    Science.gov (United States)

    Yin, Zhaoxue; Yan, Zhongrui; Liang, Yajun; Jiang, Hui; Cai, Chuanzhu; Song, Aiqin; Feng, Lei; Qiu, Chengxuan

    2016-01-12

    The interactive effect between diabetes and impaired kidney function on cognitive impairment in older adults has not yet been reported. The aim of this study was to investigate the association of diabetes and impaired kidney function with cognitive impairment among Chinese older people living in a rural area. This cross-sectional study included 1,358 participants (age ≥60 years; 60.5% women) in the population-based Confucius Hometown Aging Project in Shandong, China. Data on demographics, lifestyle factors, health history, use of medications, global cognitive function, and kidney function were collected through structured interviews, clinical examinations, and blood tests. We defined diabetes as a fasting plasma glucose level ≥7.0 mmol/l or use of hypoglycemic agents, impaired kidney function as glomerular filtration rate estimated from cystatin C (eGFRcys) Cognitive impairment was defined using the education-based cut-off scores of Mini-Mental State Examination (MMSE). Data were analyzed using multiple general linear and logistic regression models. Cognitive impairment was defined in 197 (14.5%) persons. The multi-adjusted β coefficient of MMSE score associated with diabetes was -0.06 (95% confidence interval [CI], -0.16, 0.03); the corresponding figures associated with eGFRcys function showed an interactive effect on cognitive impairment ( interaction = 0.02). Compared with individuals having neither diabetes nor impaired kidney function, those with both conditions had a multi-adjusted odds ratio of 4.23 (95% CI, 2.10-8.49) for cognitive impairment. The relative excess risk due to interaction was 2.74. This study suggests that concurrent presence of diabetes and impaired kidney function is associated with a substantial likelihood for cognitive impairment in older adults.

  13. pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent

    Science.gov (United States)

    Wu, Yunkou; Zhang, Shanrong; Soesbe, Todd C.; Yu, Jing; Vinogradov, Elena; Lenkinski, Robert E.; Sherry, A. Dean

    2015-01-01

    Purpose This study explored the feasibility of using a pH responsive paraCEST agent to image the pH gradient in kidneys of healthy mice. Methods CEST signals were acquired on an Agilent 9.4 T small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. Results Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min post-injection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. Conclusion This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. PMID:26173637

  14. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo.

    Science.gov (United States)

    Mugford, Joshua W; Sipilä, Petra; Kobayashi, Akio; Behringer, Richard R; McMahon, Andrew P

    2008-07-15

    The mammalian kidney consists of an array of tubules connected to a ductal system that collectively function to control water/salt balance and to remove waste from the organisms' circulatory system. During mammalian embryogenesis, three kidney structures form within the intermediate mesoderm. The two most anterior structures, the pronephros and the mesonephros, are transitory and largely non-functional, while the most posterior, the metanephros, persists as the adult kidney. We have explored the mechanisms underlying regional specific differentiation of the kidney forming mesoderm. Previous studies have shown a requirement for Hox11 paralogs (Hoxa11, Hoxc11 and Hoxd11) in metanephric development. Mice lacking all Hox11 activity fail to form metanephric kidney structures. We demonstrate that the Hox11 paralog expression is restricted in the intermediate mesoderm to the posterior, metanephric level. When Hoxd11 is ectopically activated in the anterior mesonephros, we observe a partial transformation to a metanephric program of development. Anterior Hoxd11(+) cells activate Six2, a transcription factor required for the maintenance of metanephric tubule progenitors. Additionally, Hoxd11(+) mesonephric tubules exhibit an altered morphology and activate several metanephric specific markers normally confined to distal portions of the functional nephron. Collectively, our data support a model where Hox11 paralogs specify a metanephric developmental program in responsive intermediate mesoderm. This program maintains tubule forming progenitors and instructs a metanephric specific pattern of nephron differentiation.

  15. Metabolism of choline in brain of the aged CBF-1 mouse

    International Nuclear Information System (INIS)

    Saito, M.; Kindel, G.; Karczmar, A.G.; Rosenberg, A.

    1986-01-01

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM [ 3 H] choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain

  16. Frailty, Disability and Physical Exercise in the Aging Process and in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2014-07-01

    Full Text Available Frailty in the elderly is a state of vulnerability to poor resolution of homoeostasis after a stressor event and is a consequence of cumulative decline in many physiological systems during a lifetime. This cumulative decline depletes homoeostatic reserves until minor stressor events trigger disproportionate changes in health status. It is usually associated to adverse health outcomes and to one-year mortality risk. Physical exercise has found to be effective in preventing frailty and disability in this population. Chronic kidney disease (CKD is also a clinical condition where protein energy-wasting, sarcopenia and dynapenia ,very common symptoms in the frail elderly, may occur. Moreover elderly and CKD patients are both affected by an impaired physical performance that may be reversed by physical exercise with an improvement of the survival rate. These similarities suggest that frailty may be a common pathway of aging and CKD that may induce disability and that can be prevented by a multidimensional approach in which physical exercise plays an important role.

  17. Effect of thymectomy and splenectomy on the course of x-ray induced progressive intercapillary glomerulosclerosis in the mouse kidney

    Energy Technology Data Exchange (ETDEWEB)

    Guttman, P H

    1967-01-01

    Whole body neonatal irradiation (450 rads) of Swiss-Webster mice resulted in progressive intercapillary glomerulosclerosis (IGS). Neonatal thymectomy potentiated the effect of irradiation. Removal of the spleen at 18 days markedly reduced the effect of irradiation on the kidney when combined with thymectomy at birth. In the presence of an intact thymus, splenectomy had no effect on the course of radiation induced IGS. Germinal center formation and plasma cell infiltration were observed in the thymus of splenectomized-irradiated mice. The possible role of immunity in the pathogenesis of late effects of x-ray on the kidney is considered in the light of these findings.

  18. Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes.

    Directory of Open Access Journals (Sweden)

    Fatma Simsek-Duran

    Full Text Available BACKGROUND: In human oocytes, as in other mammalian ova, there is a significant variation in the pregnancy potential, with approximately 20% of oocyte-sperm meetings resulting in pregnancies. This frequency of successful fertilization decreases as the oocytes age. This low proportion of fruitful couplings appears to be influenced by changes in mitochondrial structure and function. In this study, we have examined mitochondrial biogenesis in both hamster (Mesocricetus auratus and mouse (Mus musculus ova as models for understanding the effects of aging on mitochondrial structure and energy production within the mammalian oocyte. METHODOLOGY/PRINCIPAL FINDINGS: Individual metaphase II oocytes from a total of 25 young and old mice and hamsters were collected from ovarian follicles after hormone stimulation and prepared for biochemical or structural analysis. Adenosine triphosphate levels and mitochondrial DNA number were determined within individual oocytes from young and old animals. In aged hamsters, oocyte adenosine triphosphate levels and mitochondrial DNA molecules were reduced 35.4% and 51.8%, respectively. Reductions of 38.4% and 44% in adenosine triphosphate and mitochondrial genomes, respectively, were also seen in aged mouse oocytes. Transmission electron microscopic (TEM analysis showed that aged rodent oocytes had significant alterations in mitochondrial and cytoplasmic lamellae structure. CONCLUSIONS/SIGNIFICANCE: In both mice and hamsters, decreased adenosine triphosphate in aged oocytes is correlated with a similar decrease in mtDNA molecules and number of mitochondria. Mitochondria in mice and hamsters undergo significant morphological change with aging including mitochondrial vacuolization, cristae alterations, and changes in cytoplasmic lamellae.

  19. MMP2-A2M interaction increases ECM accumulation in aged rat kidney and its modulation by calorie restriction

    Science.gov (United States)

    Kim, Kyung Mok; Chung, Ki Wung; Jeong, Hyeong Oh; Lee, Bonggi; Kim, Dae Hyun; Park, June Whoun; Kim, Seong Min; Yu, Byung Pal; Chung, Hae Young

    2018-01-01

    Age-associated renal fibrosis is related with renal function decline during aging. Imbalance between accumulation and degradation of extracellular matrix is key feature of fibrosis. In this study, RNA-sequencing (RNA-Seq) results based on next-generation sequencing (NGS) data were analyzed to identify key proteins that change during aging and calorie restriction (CR). Among the changed genes, A2M and MMP2, which are known to interact, exhibited the highest between centrality (BC) and degree values when analyzed by protein–protein interaction (PPI). Both mRNA and protein levels of MMP2 and A2M were increased during aging. Furthermore, the interaction between MMP2 and A2M was verified by immunoprecipitation and immunohistochemistry. MMP2 activity was further measured under the presence or absence of A2M-MMP2 interaction. MMP2 activity, which was increased under the absence of A2M-MMP2 interaction, was significantly decreased under the presence of interactions in aged kidney. We further hypothesized that the interaction between A2M-MMP2 played a role in the inactivation of MMP2 leading to accumulation of ECM including collagen type I and IV. Aged kidney showed highly accumulated MMP2 substrate proteins despite of increased MMP2 protein expression and CR blunted these accumulation. Additional in vivo analysis revealed that the signal transducer and activator of transcription (STAT) 3 transcriptional factor was significantly increased thus increasing A2M expression during aging. STAT3 activating cytokines were also highly increased in aged kidney. In conclusion, the results of the present study indicate that A2M-MMP2 interaction has a role in age-associated renal ECM accumulation and in the suppression such fibrosis by CR. PMID:29464020

  20. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease.

    Science.gov (United States)

    Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger

    2014-04-11

    Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention.

  1. Preliminary comparison of grating-based and in-line phase contrast X-ray imaging with synchrotron radiation for mouse kidney at TOMCAT

    International Nuclear Information System (INIS)

    Sun, J; Liu, P; Xu, L X; Irvine, S; Pinzer, B; Stampanoni, M

    2013-01-01

    Phase contrast imaging has been demonstrated to be advantageous in revealing detailed structures inside biological specimens without contrast agents. Grating-based differential phase contrast (DPC) and in-line phase contrast (ILPC) X-ray imaging are the two modalities frequently used at the beamline of TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source (SLS). In this paper, we preliminarily compared the abilities of two types of phase contrast imaging in distinguishing micro structures in mouse kidneys. The 3D reconstructions showed that the microstructures in kidney, such as micro vessels and renal tubules, were displayed clearly with both imaging modalities. The two techniques may be viewed as complementary. For larger features with very small density variations DPC is the desirable method. In cases where dose and time limits may prohibit the multiple steps required for DPC, and when the focus is on finer features, the ILPC method may be considered as a more viable alternative. Moreover, high resolution ILPC images are comparable with histological results.

  2. Age- and Hypertension-Associated Protein Aggregates in Mouse Heart Have Similar Proteomic Profiles.

    Science.gov (United States)

    Ayyadevara, Srinivas; Mercanti, Federico; Wang, Xianwei; Mackintosh, Samuel G; Tackett, Alan J; Prayaga, Sastry V S; Romeo, Francesco; Shmookler Reis, Robert J; Mehta, Jawahar L

    2016-05-01

    Neurodegenerative diseases are largely defined by protein aggregates in affected tissues. Aggregates contain some shared components as well as proteins thought to be specific for each disease. Aggregation has not previously been reported in the normal, aging heart or the hypertensive heart. Detergent-insoluble protein aggregates were isolated from mouse heart and characterized on 2-dimensional gels. Their levels increased markedly and significantly with aging and after sustained angiotensin II-induced hypertension. Of the aggregate components identified by high-resolution proteomics, half changed in abundance with age (392/787) or with sustained hypertension (459/824), whereas 30% (273/901) changed concordantly in both, each Phypertensive hearts, we posited that aging of fibroblasts may contribute to the aggregates observed in cardiac tissue. Indeed, as cardiac myofibroblasts "senesced" (approached their replicative limit) in vitro, they accrued aggregates with many of the same constituent proteins observed in vivo during natural aging or sustained hypertension. In summary, we have shown for the first time that compact (detergent-insoluble) protein aggregates accumulate during natural aging, chronic hypertension, and in vitro myofibroblast senescence, sharing many common proteins. Thus, aggregates that arise from disparate causes (aging, hypertension, and replicative senescence) may have common underlying mechanisms of accrual. © 2016 American Heart Association, Inc.

  3. Effect of age on the expression of Pex (Phex) in the mouse.

    Science.gov (United States)

    Meyer, R A; Young, C G; Meyer, M H; Garges, P L; Price, D K

    2000-04-01

    Pex is a newly discovered gene (also called Phex) whose mutation is the cause of X-linked hypophosphatemia. Other members of this gene family encode endopeptidases that activate or inactivate endocrine and paracrine factors. Though embryonic bone expresses mRNA for the Pex gene at relatively high levels, we have found Pex expression to be widespread in adult organs and to be poorly expressed in adult bone. This led to the hypothesis that Pex mRNA expression changes with age. To test this, genetically normal mice of the B6C3H hybrid strain were studied at 0 (newborn), 2, 3, 10, and 72 weeks of age. Organs known to express Pex were collected, and RNA was extracted from them. Following reverse transcription, cDNA was amplified by the polymerase chain reaction with primers for Pex and G3PDH, a housekeeping gene. The amplimers were separated by electrophoresis, blotted onto nylon membranes, and hybridized with radioactively labeled internal oligonucleotide probes. The radioactivity was quantified, and the data were analyzed as the Pex/G3PDH ratio. The brain samples had high levels of Pex mRNA expression that rose slightly with age. Calvaria, kidney, and lung samples had the highest Pex mRNA expression at birth. In these organs Pex mRNA expression fell with age to undetectable or barely detectable levels. Thymus, heart, and skeletal muscle samples had low Pex mRNA expression at birth that did not change with age. Some organs showed a decline in G3PDH levels with age, but Pex expression decreased more, leading to a reduced Pex/G3PDH ratio. The widespread expression of mRNA for Pex suggests a role beyond that of phosphate homeostasis. The high level of expression in newborn animals suggests a role in growth and development. This seems to occur in addition to its role for the endocrine regulation of phosphate homeostasis by as yet unknown humoral agents that must occur throughout life. In summary, Pex mRNA expression is high in brain and bone at birth. Expression remains

  4. The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice

    Directory of Open Access Journals (Sweden)

    David Harrison

    2011-06-01

    Full Text Available Inbred mice provide a unique tool to study aging populations because of the genetic homogeneity within an inbred strain, their short life span, and the tools for analysis which are available. A large-scale longitudinal and cross-sectional aging study was conducted on 30 inbred strains to determine, using histopathology, the type and diversity of diseases mice develop as they age. These data provide tools that when linked with modern in silico genetic mapping tools, can begin to unravel the complex genetics of many of the common chronic diseases associated with aging in humans and other mammals. In addition, novel disease models were discovered in some strains, such as rhabdomyosarcoma in old A/J mice, to diseases affecting many but not all strains including pseudoxanthoma elasticum, pulmonary adenoma, alopecia areata, and many others. This extensive data set is now available online and provides a useful tool to help better understand strain-specific background diseases that can complicate interpretation of genetically engineered mice and other manipulatable mouse studies that utilize these strains.

  5. Deficits of psychomotor and mnesic functions across aging in mouse lemur primates

    Directory of Open Access Journals (Sweden)

    Solène eLanguille

    2015-01-01

    Full Text Available Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus. Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, Mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.

  6. [Study on the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse].

    Science.gov (United States)

    Wang, Hui; Zhang, Jiaxiang; Li, Shulong; Zha, Wansheng; Wang, Feng; Zhu, Qixing

    2015-07-01

    To study the expression of bradykinin and its receptors B1R and B2R in the kidney immune injury in trichloroethylene-sensitized mouse and discuss the pathogenesis of Dermatitis Medicamentosa-like of TCE (ODMLT). On the first days, intradermal injection by 50% TCE and the amount of FCA mixture 100 µl for initial sensitization; on 4, 7, 10 days, painted abdominal skin by 100 µl 50% TCE for three sensitization, on 17, 19 days, painted on the back skin by 100 µl 30% TCE for initial excitation and the last challenge; 24 h before each challenge, PKSI-527+TCE group received intraperitoneal injection by inhibitor PKSI-527 (50 mg/kg); solvent control group treat without TCE and sensitization and excitation reagent the same proportion of olive oil and acetone mixture, blank control group without any treatment. Before killing the mouse, renal weight and body weight were recorded. The renals and plasma were separated at 24 h, 48 h, 72 h and 7 d after the last challenge and observed pathological of the renals. Expression of B1R and B2R in renal were examined by immunofluorescence technique. Plasma were examined by ELISA for BK. The renal pathological examination revealed the apparent damage of TCE sensitized mice which compared to solvent control group showed obvious cellular infiltration, vacuolar degeneration of renal tubular epithelial cells. The renal damage of PKSI-527+TCE-sensitized groups which compared to the corresponding point of TCE-sensitized groups showed significantly reduced. The expression of BK in 24 h, 48 h and 72 h TCE-sensitized groups were significant higher than solvent control group and related TCE non-sensitized groups (P trichloroethylene-sensitized mouse and the expression change of bradykinin and its receptors B1R and B2R which may play an important role in the process.

  7. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    Science.gov (United States)

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  8. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.

    Directory of Open Access Journals (Sweden)

    Xinping Hao

    Full Text Available Age-related hearing loss (presbycusis is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1-3 month-old and aged (2-2.5 year-old mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10(+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10(+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10(+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10(+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10(+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the

  9. Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model

    Directory of Open Access Journals (Sweden)

    Xinyi Mu

    2017-01-01

    Full Text Available Age-related regression in hematopoietic stem/progenitor cells (HSC/HPCs limits replenishment of the blood and immune system and hence contributes to hematopoietic diseases and declined immunity. In this study, we employed D-gal-induced aging mouse model and observed the antiaging effects of Angelica Sinensis Polysaccharide (ASP, a major active ingredient in dong quai (Chinese Angelica Sinensis, on the Sca-1+ HSC/HPCs in vivo. ASP treatment prevents HSC/HPCs senescence with decreased AGEs levels in the serum, reduced SA-β-Gal positive cells, and promoted CFU-Mix formation in the D-gal administrated mouse. We further found that multiple mechanisms were involved: (1 ASP treatment prevented oxidative damage as total antioxidant capacity was increased and levels of reactive oxygen species (ROS, 8-OHdG, and 4-HNE were declined, (2 ASP reduced the expression of γ-H2A.X which is a DNA double strand breaks (DSBs marker and decreased the subsequent ectopic expressions of effectors in p16Ink4a-RB and p19Arf-p21Cip1/Waf senescent pathways, and (3 ASP inhibited the excessive activation of Wnt/β-catenin signaling in aged HSC/HPCs, as the expressions of β-catenin, phospho-GSK-3β, and TCF-4 were decreased, and the cyto-nuclear translocation of β-catenin was inhibited. Moreover, compared with the positive control of Vitamin E, ASP exhibited a better antiaging effect and a weaker antioxidation ability, suggesting a novel protective role of ASP in the hematopoietic system.

  10. Time trend and age-period-cohort effect on kidney cancer mortality in Europe, 1981–2000

    Directory of Open Access Journals (Sweden)

    López-Abente Gonzalo

    2006-05-01

    Full Text Available Abstract Background The incorporation of diagnostic and therapeutic improvements, as well as the different smoking patterns, may have had an influence on the observed variability in renal cancer mortality across Europe. This study examined time trends in kidney cancer mortality in fourteen European countries during the last two decades of the 20th century. Methods Kidney cancer deaths and population estimates for each country during the period 1981–2000 were drawn from the World Health Organization Mortality Database. Age- and period-adjusted mortality rates, as well as annual percentage changes in age-adjusted mortality rates, were calculated for each country and geographical region. Log-linear Poisson models were also fitted to study the effect of age, death period, and birth cohort on kidney cancer mortality rates within each country. Results For men, the overall standardized kidney cancer mortality rates in the eastern, western, and northern European countries were 20, 25, and 53% higher than those for the southern European countries, respectively. However, age-adjusted mortality rates showed a significant annual decrease of -0.7% in the north of Europe, a moderate rise of 0.7% in the west, and substantial increases of 1.4% in the south and 2.0% in the east. This trend was similar among women, but with lower mortality rates. Age-period-cohort models showed three different birth-cohort patterns for both men and women: a decrease in mortality trend for those generations born after 1920 in the Nordic countries, a similar but lagged decline for cohorts born after 1930 in western and southern European countries, and a continuous increase throughout all birth cohorts in eastern Europe. Similar but more heterogeneous regional patterns were observed for period effects. Conclusion Kidney cancer mortality trends in Europe showed a clear north-south pattern, with high rates on a downward trend in the north, intermediate rates on a more marked rising

  11. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    Science.gov (United States)

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  12. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria.

    Science.gov (United States)

    Qian, Minxian; Liu, Zuojun; Peng, Linyuan; Tang, Xiaolong; Meng, Fanbiao; Ao, Ying; Zhou, Mingyan; Wang, Ming; Cao, Xinyue; Qin, Baoming; Wang, Zimei; Zhou, Zhongjun; Wang, Guangming; Gao, Zhengliang; Xu, Jun; Liu, Baohua

    2018-05-02

    DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans , but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases. © 2018, Qian et al.

  13. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney

    Science.gov (United States)

    O’Brown, Zach K.; Van Nostrand, Eric L.; Higgins, John P.; Kim, Stuart K.

    2015-01-01

    Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. PMID:26678048

  14. Less overdiagnosis of kidney cancer? an age-period-cohort analysis of incidence trends in 16 populations worldwide.

    Science.gov (United States)

    Znaor, Ariana; Laversanne, Mathieu; Bray, Freddie

    2017-09-01

    The increasing rates of kidney cancer incidence, reported in many populations globally, have been attributed both to increasing exposures to environmental risk factors, as well as increasing levels of incidental diagnosis due to widespread use of imaging. To better understand these trends, we examine long-term cancer registry data worldwide, focusing on the roles of birth cohort and calendar period, proxies for changes in risk factor prevalence and detection practice respectively. We used an augmented version of the Cancer Incidence in Five Continents series to analyze kidney cancer incidence rates 1978-2007 in 16 geographically representative populations worldwide by sex for ages 30-74, using age-period-cohort (APC) analysis. The full APC model provided the best fit to the data in most studied populations. While kidney cancer incidence rates have been increasing in successive generations born from the early twentieth century in most countries, equivalent period-specific rises were observed from the late-1970s, although these have subsequently stabilized in certain European countries (the Czech Republic, Lithuania, Finland, Spain) as well as Japan from the mid-1990s, and from the mid-2000s, in Colombia, Costa Rica and Australia. Our results indicate that the effects of both birth cohort and calendar period contribute to the international kidney cancer incidence trends. While cohort-specific increases may partly reflect the rising trends in obesity prevalence and the need for more effective primary prevention policies, the attenuations in period-specific increases (observed in 8 of the 16 populations) highlight a possible change in imaging practices that could lead to mitigation of overdiagnosis and overtreatment. © 2017 UICC.

  15. Cytochrome P450-2E1 is involved in aging-related kidney damage in mice through increased nitroxidative stress.

    Science.gov (United States)

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwoon; Song, Byoung-Joon

    2017-11-01

    The aim of this study was to investigate the role of cytochrome P450-2E1 (CYP2E1) in aging-dependent kidney damage since it is poorly understood. Young (7 weeks) and aged female (16-17 months old) wild-type (WT) and Cyp2e1-null mice were used. Kidney histology showed that aged WT mice exhibited typical signs of kidney aging such as cell vacuolation, inflammatory cell infiltration, cellular apoptosis, glomerulonephropathy, and fibrosis, along with significantly elevated levels of renal TNF-α and serum creatinine than all other groups. Furthermore, the highest levels of renal hydrogen peroxide, protein carbonylation and nitration were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of iNOS and mitochondrial nitroxidative stress through altered amounts and activities of the mitochondrial complex proteins and significantly reduced levels of the antioxidant glutathione (GSH). In contrast, the aged Cyp2e1-null mice exhibited significantly higher antioxidant capacity with elevated heme oxygenase-1 and catalase activities compared to all other groups, while maintaining normal GSH levels with significantly less mitochondrial nitroxidative stress compared to the aged WT mice. Thus, CYP2E1 is important in causing aging-related kidney damage most likely through increasing nitroxidative stress and that CYP2E1 could be a potential target in preventing aging-related kidney diseases. Published by Elsevier Ltd.

  16. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    Science.gov (United States)

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  18. Fine genetic map of mouse chromosome 10 around the polycystic kidney disease gene, jcpk, and ankyrin 3

    Energy Technology Data Exchange (ETDEWEB)

    Bryda, E.C.; Ling, H.; Rathbun, D.E. [New York State Department of Health, Albany, NY (United States)] [and others

    1996-08-01

    A chlorambucil (CHL)-induced mutation of the jcpk (juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involving Mus musculus castaneus, jcpk was precisely mapped 0.2 cM distal to D10Mit115 and 0.8 cM proximal to D10Mit173. In addition, five genes, Cdc2a, Col6al, Col6a2, Bcr, and Ank3 were mapped in both this jcpk intercross and a (BALB/c X CAST/Ei)F{sub 1} x BALB/c backcross. All five genes were eliminated as possible candidates for jcpk based on the mapping data. The jcpk intercross allowed the orientation of the Ank3 gene relative to the centromere to be determined. D10Mit115, D10Mit173, D10Mit199, and D10Mit200 were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in the jcpk intercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies. 39 refs., 3 figs.

  19. Apparent diffusion coefficient measurements of bilateral kidneys at 3 T MRI: Effects of age, gender, and laterality in healthy adults

    International Nuclear Information System (INIS)

    Suo, S.-T.; Cao, M.-Q.; Ding, Y.-Z.; Yao, Q.-Y.; Wu, G.-Y.; Xu, J.-R.

    2014-01-01

    Aim: To investigate the effects of age and gender on apparent diffusion coefficient (ADC) measurements of bilateral kidneys at 3 T MRI, and compare the ADC values of left and right kidneys. Materials and methods: In all, 137 healthy participants (mean age 42.8 ± 14.7 years; age range 16–75 years) comprising 68 male and 69 female participants were enrolled. Three Tesla echo-planar diffusion-weighted imaging (DWI) of bilateral kidneys was performed and ADC values were measured in the cortex, medulla, and whole parenchyma. Pearson correlation analysis and linear regression were performed to determine the associations between the ADC values in each region and age. Effects of age and gender on ADC values were analysed using two-factor analysis of variance (ANOVA). The paired-samples t-test was established to compare the ADC values between left and right kidneys. Results: ADC values were significantly higher in the young group (≤50 years) than in the old group (>50 years), and correlated inversely with the age in all regions. Male participants had higher ADC values than female participants in all regions except left medulla. Two-factor ANOVA of age × gender showed no significant interactions between the variables age and gender were found. No significant differences in ADC values between left and right kidneys were observed. Conclusion: Renal ADC values are age- and gender-dependent, and show no significant difference between left and right kidneys. Age- and gender-related effects should be taken into consideration in future renal DWI studies when using normal ADC values from health controls. - Highlights: • Renal apparent diffusion coefficient (ADC) values decrease with ageing. • Men tend to have higher renal ADC values than women. • Bilateral kidneys seem to have no significantly different ADC values

  20. Study on radiation sickness and aging using the senescense accelerated mouse

    International Nuclear Information System (INIS)

    Kondo, Hisayoshi; Kishikawa, Masao; Iseki, Masachika

    1989-01-01

    We compared several statistical methods for dealing with the results from the step-down passive avoidance test using the senescense accelerated mouse, which is recently used to investigate aging. Testing the difference of step-down latency between the irradiated group and control group, we often obtained conflicting results from different statistical methods. Step-down latency does not obey a normal distribution, and includes censoring observations. Therefore, the log rank test, which is usually regarded as one of the statistical methods for life time analysis, seems more suitable than t-test or Wilcoxon's rank-sum test for comparing step-down latency. Namely, the log rank test treats cases which step down within 180 seconds as failures and cases which do not step down within 180 seconds as censored cases. (author)

  1. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Weissman, Lior; Yang, JL

    2012-01-01

    Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging...... process and the pathogenesis of several neurodegenerative diseases. Here we have investigated the repair of oxidative base damage, in synaptosomes of mouse brain during normal aging and in an AD model. During normal aging, a reduction in the base excision repair (BER) capacity was observed...... suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms...

  2. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses

    OpenAIRE

    Jenna M. Bartley; Jenna M. Bartley; Xin Zhou; Xin Zhou; George A. Kuchel; George A. Kuchel; George M. Weinstock; George M. Weinstock; Laura Haynes; Laura Haynes

    2017-01-01

    Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection t...

  3. PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes.

    Science.gov (United States)

    Hassouneh, Ramzi; Nasrallah, Rania; Zimpelmann, Joe; Gutsol, Alex; Eckert, David; Ghossein, Jamie; Burns, Kevin D; Hébert, Richard L

    2016-06-01

    The first clinical manifestation of diabetes is polyuria. The prostaglandin E2 (PGE2) receptor EP3 antagonises arginine vasopressin (AVP)-mediated water reabsorption and its expression is increased in the diabetic kidney. The purpose of this work was to study the contribution of EP3 to diabetic polyuria and renal injury. Male Ep 3 (-/-) (also known as Ptger3 (-/-)) mice were treated with streptozotocin (STZ) to generate a mouse model of diabetes and renal function was evaluated after 12 weeks. Isolated collecting ducts (CDs) were microperfused to study the contribution of EP3 to AVP-mediated fluid reabsorption. Ep 3 (-/-)-STZ mice exhibited attenuated polyuria and increased urine osmolality compared with wild-type STZ (WT-STZ) mice, suggesting enhanced water reabsorption. Compared with WT-STZ mice, Ep 3 (-/-)-STZ mice also had increased protein expression of aquaporin-1, aquaporin-2, and urea transporter A1, and reduced urinary AVP excretion, but increased medullary V2 receptors. In vitro microperfusion studies indicated that Ep 3 (-/-) and WT-STZ CDs responded to AVP stimulation similarly to those of wild-type mice, with a 60% increase in fluid reabsorption. In WT non-injected and WT-STZ mice, EP3 activation with sulprostone (PGE2 analogue) abrogated AVP-mediated water reabsorption; this effect was absent in mice lacking EP3. A major finding of this work is that Ep 3 (-/-)-STZ mice showed blunted renal cyclooxygenase-2 protein expression, reduced renal hypertrophy, reduced hyperfiltration and reduced albuminuria, as well as diminished tubular dilation and nuclear cysts. Taken together, the data suggest that EP3 contributes to diabetic polyuria by inhibiting expression of aquaporins and that it promotes renal injury during diabetes. EP3 may prove to be a promising target for more selective management of diabetic kidney disease.

  4. Effects of IMOD and Angipars on Mouse D-Galactose-Induced Model of Aging

    Directory of Open Access Journals (Sweden)

    Samane Ghanbari

    2012-10-01

    Full Text Available The aim of this study was to evaluate the effects of two registered herbal drugs called IMOD and Angipars on mouse model of. Aging was induced by D-galactose (500 mg/kgadministered to animals for 6 weeks through drinking water. Male BALB/c mice were randomly divided into 5 groups receiving D-galactose (D-galactose, 500 mg/kg for 6 weeks; positive control (D-galactose [500 mg/kg] for 6 weeks + Vitamin E [200 mg/kg/day]intraperitoneally for 4 weeks; IMOD (D-galactose [500 mg/kg] for 6 weeks + IMOD [20 mg/kg/day] intraperitoneally for 4 weeks, Angipars (D-galactose [500 mg/kg] for 6 weeks + Angipars [2.1 mg/kg/day] by gavage for 4 weeks; and the fifth group that was sham and not given D-galactose. At the end of treatment, pro-inflammatory markers including tumor necrosis factor-α (TNF-α, interlukine-1β (IL-β, interlukine-6 (IL-6, NF-kappaB (NF-κb, total antioxidant power (TAP, lipid peroxides (LPO and male sex hormones i.e.testosterone and dehydroepiandrosterone-sulfate (DHEA-S were measured in the blood.Results showed that D-Galactose induces a significant oxidative stress and proinflammatory cascade of aging while both IMOD and Angipars recovered all of them. Interestingly, IMOD and Angipars were better than Vitamin E in improving male sex hormones that were declined in aged mice. This effect is so important and should be considered as an advantage although it cannot be explained with current knowledge. The conclusion is that IMOD and Angipars have marked anti-aging effect on D-galactose-induced model of aging.

  5. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    Science.gov (United States)

    Wavre-Shapton, Silène T; Tolmachova, Tanya; Lopes da Silva, Mafalda; da Silva, Mafalda Lopes; Futter, Clare E; Seabra, Miguel C

    2013-01-01

    The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox), Tyr-Cre+). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox), Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  6. Conditional ablation of the choroideremia gene causes age-related changes in mouse retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Silène T Wavre-Shapton

    Full Text Available The retinal pigment epithelium (RPE is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1. REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the Chm/Rep1 gene is deleted only in pigmented cells (Chm(Flox, Tyr-Cre+. Transmission electron microscopy (TEM was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. Chm/Rep1 gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the Chm(Flox, Tyr-Cre+ mice suggests that loss of the Chm/Rep1 gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD suggest that membrane traffic defects may contribute to the pathogenesis of AMD.

  7. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    OpenAIRE

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thi...

  8. Leptospira Interrogans Induces Fibrosis in the Mouse Kidney through Inos-Dependent, TLR- and NLR-Independent Signaling Pathways

    Science.gov (United States)

    Fanton d'Andon, Martine; Quellard, Nathalie; Fernandez, Béatrice; Ratet, Gwenn; Lacroix-Lamandé, Sonia; Vandewalle, Alain; Boneca, Ivo G.; Goujon, Jean-Michel; Werts, Catherine

    2014-01-01

    Background Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process. Methodology/principal findings Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis. Conclusion/significance To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors

  9. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    Directory of Open Access Journals (Sweden)

    Oleh Dzyubachyk

    Full Text Available In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  10. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    Science.gov (United States)

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  11. Advanced glycation end-products (AGEs accumulation in skin: relations with chronic kidney disease-mineral and bone disorder

    Directory of Open Access Journals (Sweden)

    Renata de Almeida França

    2017-08-01

    Full Text Available Abstract Introduction: Chronic kidney disease (CKD is associated with high morbidity and mortality rates, main causes related with cardiovascular disease (CVD and bone mineral disorder (CKD-BMD. Uremic toxins, as advanced glycation end products (AGEs, are non-traditional cardiovascular risk factor and play a role on development of CKD-BMD in CKD. The measurement of skin autofluorescence (sAF is a noninvasive method to assess the level of AGEs in tissue, validated in CKD patients. Objective: The aim of this study is analyze AGEs measured by sAF levels (AGEs-sAF and its relations with CVD and BMD parameters in HD patients. Methods: Twenty prevalent HD patients (HD group and healthy subjects (Control group, n = 24, performed biochemical tests and measurements of anthropometric parameters and AGEs-sAF. In addition, HD group performed measurement of intact parathormone (iPTH, transthoracic echocardiogram and radiographies of pelvis and hands for vascular calcification score. Results: AGEs-sAF levels are elevated both in HD and control subjects ranged according to the age, although higher at HD than control group. Single high-flux HD session does not affect AGEs-sAF levels. AGEs-sAF levels were not related to ventricular mass, interventricular septum or vascular calcification in HD group. AGEs-sAF levels were negatively associated with serum iPTH levels. Conclusion: Our study detected a negative correlation of AGEs-sAF with serum iPTH, suggesting a role of AGEs on the pathophysiology of bone disease in HD prevalent patients. The nature of this relation and the clinical application of this non-invasive methodology for evaluation AGEs deposition must be confirmed and clarified in future studies.

  12. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    Energy Technology Data Exchange (ETDEWEB)

    Skröder, Helena [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Hawkesworth, Sophie [Medical Research Council (MRC), International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK. (United Kingdom); Kippler, Maria [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); El Arifeen, Shams [International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka (Bangladesh); Wagatsuma, Yukiko [Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. (Japan); Moore, Sophie E. [MRC Human Nutrition Research, Cambridge (United Kingdom); Vahter, Marie, E-mail: marie.vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2015-07-15

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  13. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    International Nuclear Information System (INIS)

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria; El Arifeen, Shams; Wagatsuma, Yukiko; Moore, Sophie E.; Vahter, Marie

    2015-01-01

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m 2 , corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  14. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, A.; Gorgels, T.G.M.F.; ten Brink, J.B.; van der Spek, P.J.; Bossers, K.; Heine, V.M.; Bergen, A.A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  15. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles : Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G M F; Ten Brink, Jacoline B; van der Spek, Peter J; Bossers, Koen; Heine, Vivi M; Bergen, Arthur A

    2015-01-01

    BACKGROUND: The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to

  16. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    NARCIS (Netherlands)

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new

  17. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain.

    Science.gov (United States)

    Tang, Jason J; Podratz, Jewel L; Lange, Miranda; Scrable, Heidi J; Jang, Mi-Hyeon; Windebank, Anthony J

    2017-07-07

    Mechano growth factor (MGF) is a splice variant of IGF-1 first described in skeletal muscle. MGF induces muscle cell proliferation in response to muscle stress and injury. In control mice we found endogenous expression of MGF in neurogenic areas of the brain and these levels declined with age. To better understand the role of MGF in the brain, we used transgenic mice that constitutively overexpressed MGF from birth. MGF overexpression significantly increased the number of BrdU+ proliferative cells in the dentate gyrus (DG) of the hippocampus and subventricular zone (SVG). Although MGF overexpression increased the overall rate of adult hippocampal neurogenesis at the proliferation stage it did not alter the distribution of neurons at post-mitotic maturation stages. We then used the lac-operon system to conditionally overexpress MGF in the mouse brain beginning at 1, 3 and 12 months with histological and behavioral observation at 24 months of age. With conditional overexpression there was an increase of BrdU+ proliferating cells and BrdU+ differentiated mature neurons in the olfactory bulbs at 24 months when overexpression was induced from 1 and 3 months of age but not when started at 12 months. This was associated with preserved olfactory function. In vitro, MGF increased the size and number of neurospheres harvested from SVZ-derived neural stem cells (NSCs). These findings indicate that MGF overexpression increases the number of neural progenitor cells and promotes neurogenesis but does not alter the distribution of adult newborn neurons at post-mitotic stages. Maintaining youthful levels of MGF may be important in reversing age-related neuronal loss and brain dysfunction.

  18. Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer's disease model mouse.

    Science.gov (United States)

    Oue, Hiroshi; Miyamoto, Yasunari; Koretake, Katsunori; Okada, Shinsuke; Doi, Kazuya; Jung, Cha-Gyun; Michikawa, Makoto; Akagawa, Yasumasa

    2016-09-01

    Previous studies have reported that tooth loss is a risk factor of Alzheimer's disease (AD). However, the association between tooth loss and cognition and the impact of tooth loss on the molecular pathogenesis of AD remain elusive. In this study, we tested the effect of tooth loss on learning and memory and on the molecular pathogenesis of AD in an aged AD model mice. We divided 14-month-old amyloid precursor protein (APP) transgenic mice, an AD model mouse line, into upper molar extracted group (experimental) and molar intact group (control). At 18 months old, we analysed not only the changes of amyloid-beta (Aβ), pyramidal cells in the brain but also the learning and memory ability with step-through passive avoidance test. The amount of Aβ and the number of pyramidal cells in the hippocampus were not significantly different between the experimental and control group. Similarly, the difference of learning and memory ability could not be distinguished between the groups. Neither molecular pathogenesis of AD nor associated learning and memory were aggravated by tooth loss in these mice. The limited results of this study which used the aged mice may help the dental profession to plan and explain treatments to patients with AD, which must be designed while taking into account the severity of the AD symptoms. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  19. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Directory of Open Access Journals (Sweden)

    Hao Ren

    Full Text Available Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons. The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  20. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    Science.gov (United States)

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  1. Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China.

    Science.gov (United States)

    Cui, Jia; Wu, Bin; Halbrook, Richard S; Zang, Shuying

    2013-12-01

    Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.

  2. Age-related variability of some characters of karyotype instability in the mouse line CC57W/Mv

    International Nuclear Information System (INIS)

    Glazko, T.T.; Safonova, N.A.; Kovaleva, O.A.; Stolina, M.P.; Solomko, A.P.; Malyuta, S.S.; Glazko, V.I.; AN Ukrainskoj SSR, Kiev

    1995-01-01

    The investigations of relations between cytogenetical variability in cells of bone marrow of the mouse line CC57W/Mv and factors of age and radioactivity pollution (the specific vivarium in the 30-km Chernobyl zone) were carried out. The karyotype instability on some characters were similarly between young mice in the Chernobyl zone and old mice under control conditions. The old Chernobyl mice differentiated from old control ones by a low frequency of some cytogenetic anomalies and higher values of the mitotic index. The contribution of the intensity of cell division into observed variabilities of cytogenetic character between different mouse groups was discussed

  3. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    Science.gov (United States)

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Inhibitory neuron and hippocampal circuit dysfunction in an aged mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Anupam Hazra

    Full Text Available In Alzheimer's disease (AD, a decline in explicit memory is one of the earliest signs of disease and is associated with hippocampal dysfunction. Amyloid protein exerts a disruptive impact on neuronal function, but the specific effects on hippocampal network activity are not well known. In this study, fast voltage-sensitive dye imaging and extracellular and whole-cell electrophysiology were used on entorhinal cortical-hippocampal slice preparations to characterize hippocampal network activity in 12-16 month old female APPswe/PSEN1DeltaE9 (APdE9 mice mice. Aged APdE9 mice exhibited profound disruptions in dentate gyrus circuit activation. High frequency stimulation of the perforant pathway in the dentate gyrus (DG area of APdE9 mouse tissue evoked abnormally large field potential responses corresponding to the wider neural activation maps. Whole-cell patch clamp recordings of the identified inhibitory interneurons in the molecular layer of DG revealed that they fail to reliably fire action potentials. Taken together, abnormal DG excitability and an inhibitory neuron failure to generate action potentials are suggested to be important contributors to the underlying cellular mechanisms of early-stage Alzheimer's disease pathophysiology.

  5. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  6. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    International Nuclear Information System (INIS)

    Barregard, Lars; Bergström, Göran; Fagerberg, Björn

    2014-01-01

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations. Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or NGT

  7. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg P.O. Box 414, SE-405 30 Gothenburg (Sweden); Bergström, Göran, E-mail: goran.bergstrom@wlab.gu.se [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University Hospital, SE-405 30 Gothenburg (Sweden); Department of Molecular and Clinical Medicine, University of Gothenburg, SE-405 30 Gothenburg (Sweden); Fagerberg, Björn, E-mail: bjorn.fagerberg@wlab.gu.se [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University Hospital, SE-405 30 Gothenburg (Sweden); Department of Molecular and Clinical Medicine, University of Gothenburg, SE-405 30 Gothenburg (Sweden)

    2014-11-15

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations. Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or NGT

  8. Characterization of blood biochemical markers during aging in the Grey Mouse Lemur (Microcebus murinus: impact of gender and season

    Directory of Open Access Journals (Sweden)

    Marchal Julia

    2012-11-01

    Full Text Available Abstract Background Hematologic and biochemical data are needed to characterize the health status of animal populations over time to determine the habitat quality and captivity conditions. Blood components and the chemical entities that they transport change predominantly with sex and age. The aim of this study was to utilize blood chemistry monitoring to establish the reference levels in a small prosimian primate, the Grey Mouse Lemur (Microcebus murinus. Method In the captive colony, mouse lemurs may live 10–12 years, and three age groups for both males and females were studied: young (1–3 years, middle-aged (4–5 years and old (6–10 years. Blood biochemical markers were measured using the VetScan Comprehensive Diagnostic Profile. Because many life history traits of this primate are highly dependent on the photoperiod (body mass and reproduction, the effect of season was also assessed. Results The main effect of age was observed in blood markers of renal functions such as creatinine, which was higher among females. Additionally, blood urea nitrogen significantly increased with age and is potentially linked to chronic renal insufficiency, which has been described in captive mouse lemurs. The results demonstrated significant effects related to season, especially in blood protein levels and glucose rates; these effects were observed regardless of gender or age and were likely due to seasonal variations in food intake, which is very marked in this species. Conclusion These results were highly similar with those obtained in other primate species and can serve as references for future research of the Grey Mouse Lemur.

  9. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging.

    Science.gov (United States)

    Di Emidio, Giovanna; Falone, Stefano; Vitti, Maurizio; D'Alessandro, Anna Maria; Vento, Marilena; Di Pietro, Cinzia; Amicarelli, Fernanda; Tatone, Carla

    2014-09-01

    Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 µM cilostamide. Groups of 30 oocytes were exposed to 25 µM H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 µM) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in

  10. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    Science.gov (United States)

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  11. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    Directory of Open Access Journals (Sweden)

    Fabien Pifferi

    2013-01-01

    Full Text Available In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.

  12. The senile kidney

    Directory of Open Access Journals (Sweden)

    Denisova Т.Р.

    2015-03-01

    Full Text Available The given work summarizes external data and self-obtained results on development and diagnostic of kidney involution modifications. Article discusses definition of "senile kidney" as a clinical and pathomorphological term. Major statements on pathophysiological causes of age-associated renal disorders and their prognosis, specifics of chronic kidney disease in elderly and senile patients have been reviewed. Phenomenon of renal "multimorbidity" in eldely maximizes worsening risk of unmodifiable kidney function.

  13. Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Lisa Placanica

    Full Text Available Alzheimer disease (AD is an age-related disorder. Aging and female gender are two important risk factors associated with sporadic AD. However, the mechanism by which aging and gender contribute to the pathogenesis of sporadic AD is unclear. It is well known that genetic mutations in gamma-secretase result in rare forms of early onset AD due to the aberrant production of Abeta42 peptides, which are the major constituents of senile plaques. However, the effect of age and gender on gamma-secretase has not been fully investigated. Here, using normal wild-type mice, we show mouse brain gamma-secretase exhibits gender- and age-dependent activity. Both male and female mice exhibit increased Abeta42ratioAbeta40 ratios in aged brain, which mimics the effect of familial mutations of Presenilin-1, Presenlin-2, and the amyloid precursor protein on Abeta production. Additionally, female mice exhibit much higher gamma-secretase activity in aged brain compared to male mice. Furthermore, both male and female mice exhibit a steady decline in Notch1 gamma-secretase activity with aging. Using a small molecule affinity probe we demonstrate that male mice have less active gamma-secretase complexes than female mice, which may account for the gender-associated differences in activity in aged brain. These findings demonstrate that aging can affect gamma-secretase activity and specificity, suggesting a role for gamma-secretase in sporadic AD. Furthermore, the increased APP gamma-secretase activity seen in aged females may contribute to the increased incidence of sporadic AD in women and the aggressive Abeta plaque pathology seen in female mouse models of AD. In addition, deceased Notch gamma-secretase activity may also contribute to neurodegeneration. Therefore, this study implicates altered gamma-secretase activity and specificity as a possible mechanism of sporadic AD during aging.

  14. Inhibiting Effects of Achyranthes Bidentata Polysaccharide and Lycium Barbarum Polysaccharide on Nonenzyme Glycation in D-galactose Induced Mouse Aging Model

    Institute of Scientific and Technical Information of China (English)

    HONG-BIN DENG; DA-PENG CUI; JIAN-MING JIANG; YAN-CHUN FENG; NIAN-SHENG CAI; DIAN-DONG LI

    2003-01-01

    To investigate the inhibiting effects and mechanism of achyranthes bidentata polysaccharide (ABP) and lycium barbarum polysaccharide (LBP) on nonenzyme glycation in D-galactose induced mouse aging model. Methods Serum AGE levels were determined by AGE-ELISA, MTT method was used to determine lymphocyte proliferation, IL-2 activity was determined by a bioassay method. Spontaneous motor activity was used to detect mouse's neuromuscular movement, latency of step-through method was used to examine learning and memory abilities of mouse, colormetric assay was used to determine hydroxyproline concentration in mouse skin, pyrogallol autoxidation method was used to determine superoxide dismutase (SOD) activity of erythrocytes. Results Decreased levels of serum AGE, hydroxyproline concentration in mouse skin and spontaneous motor activity in D-galactose mouse aging model were detected after treated with ABP or LBP, while lymphocyte proliferation and IL-2 activity, learning and memory abilities,SOD activity of erythrocytes, were enhanced. Conclusions ABP and LBP could inhibit nonenzyme glycation in D-galactose induced mouse aging model in vivo and ABP has a better inhibiting effect than LBP.

  15. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    Science.gov (United States)

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  16. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  17. Kidney Disease

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Kidney Disease KidsHealth / For Teens / Kidney Disease What's in ... Coping With Kidney Conditions Print What Do the Kidneys Do? You might never think much about some ...

  18. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Hafner, Katlyn S., E-mail: katlynhafner@gmail.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2014-04-15

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  19. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    International Nuclear Information System (INIS)

    Wang, Wei; Hafner, Katlyn S.; Flaws, Jodi A.

    2014-01-01

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  20. Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy?

    Science.gov (United States)

    Lin, Chi Hua Sarah; Chen, Jun; Ziman, Bruce; Marshall, Shannon; Maizel, Julien; Goligorsky, Michael S

    2014-06-15

    A recurring theme of a host of gerontologic studies conducted in either experimental animals or in humans is related to documenting the functional decline with age. We hypothesize that elevated circulating levels of a powerful antiangiogenic peptide, endostatin, represent one of the potent systemic causes for multiorgan microvascular rarefaction and functional decline due to fibrosis. It is possible that during the life span of an organism there is an accumulation of dormant transformed cells producing antiangiogenic substances (endostatin) that maintain the dormancy of such scattered malignant cells. The proof of this postulate cannot be obtained by physically documenting these scattered cells, and it rests exclusively on the detection of sequelae of shifted pro- and antiangiogenic balance toward the latter. Here we compared circulating levels of endostatin in young and aging mice of two different strains and showed that endostatin levels are elevated in the latter. Renal expression of endostatin increased ~5.6-fold in aging animals. This was associated with microvascular rarefaction and progressive tubulointerstitial fibrosis. In parallel, the levels of sirtuins 1 and 3 were significantly suppressed in aging mice in conjunction with the expression of markers of senescence. Treating young mice with endostatin for 28 days showed delayed recovery of circulation after femoral artery ligation and reduced patency of renal microvasculature but no fibrosis. In conclusion, the findings are consistent with the hypothesis on elevation of endostatin levels and parallel microvascular rarefaction and induction of renal fibrosis in aging mice. Copyright © 2014 the American Physiological Society.

  1. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  2. THE CAUSES AND THE COURSE OF CHRONIC KIDNEY DISEASE IN CHILDREN OF PRESCHOOL AGE

    OpenAIRE

    T. Yu. Abaseeva; T. E. Pankratenko; A. A. Burov; Kh. M. Emirova; A. L. Muzurov

    2015-01-01

    Background: Data on etiology and clinical course of CKD stage  3 to 5 in children of preschool  age could help obstetricians, pediatricians, and nephrologists with proper diagnostics and management of this condition and prediction of outcomes. Aim: To study causes and clinical features of CKD stage 3 to 5 in preschool  children. Materials and methods: The causes and clinical features of CKD stage 3 to 5 were investigated in 55 preschool children aged from 7 months  to 8 years. Twenty four had...

  3. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses

    Directory of Open Access Journals (Sweden)

    Jenna M. Bartley

    2017-09-01

    Full Text Available Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu. Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR and ad lib fed (AL mice were examined after a sublethal flu infection. All mice lost 10–20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These

  4. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  5. Age and gender differences in the relationship between hepatitis C infection and all stages of Chronic kidney disease.

    Science.gov (United States)

    Li, W-C; Lee, Y-Y; Chen, I-C; Wang, S-H; Hsiao, C-T; Loke, S-S

    2014-10-01

    Chronic kidney disease (CKD) is a worldwide health issue with heavy economic burden. Chronic hepatitis C virus (HCV) infection is a common cause of CKD, which can significantly impact the progression and mortality among patients with CKD. The prevalence of both illnesses is high in Taiwan. A multicentre and population-based cross-sectional study including 24 642 subjects was conducted to explore the association of HCV infection with the prevalence and severity of CKD. The measurements of metabolic parameters, eGFR and CKD stages were compared between subjects with HCV seropositivity and seronegativity. The analyses of association between HCV infection with CKD stages and evaluation of potential risk factors of CKD were performed by gender and age (≤ and >45 years). HCV-seropositive subjects accounted for 6.9% and had a significantly older age. The prevalence of CKD increased in those with HCV seropositivity (16.5%). Significantly higher prevalence of CKD stages ≥3 in HCV-seropositive subjects was noticed (7.8%). Age (>45 year), male gender, alcohol drinking, hypertension, creatinine and HCV infection were the significant factors associated with the presence of CKD. HCV seropositivity was an independent risk factor of developing CKD and associated with an increased risk of having CKD of all stages. The higher prevalence of earlier stage of CKD warrants longitudinal studies with frequent testing on renal function and sufficient duration to determine the changes of eGFR over time. Implementation of effective treatment intervention is also required for these subjects to prevent the progression of CKD to late stages. © 2013 John Wiley & Sons Ltd.

  6. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index.

    Science.gov (United States)

    Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F

    2010-11-01

    Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.

  7. Protective effects of ethanol extracts of Artemisia asiatica Nakai ex Pamp. on ageing-induced deterioration in mouse oocyte quality.

    Science.gov (United States)

    Jeon, Hyuk-Joon; You, Seung Yeop; Kim, Dong Hyun; Jeon, Hong Bae; Oh, Jeong Su

    2017-08-01

    Following ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.

  8. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2008-06-01

    Full Text Available Abstract Background The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL feeding with a group on lifespan-extending 40% calorie restriction (CR. Results We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months, whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis. Conclusion Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.

  9. Aged garlic extract modulates the oxidative modifications induced by γ-rays in mouse bone marrow and erythrocytes cells

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Elshamy, E.; Sallam, M.H.

    2006-01-01

    Gamma-ray generate hydroxyl radicals in cells and induce cellular DNA damage which leads to genotoxicity and chromosomes aberrations. The radioprotective and therapeutic efficacy of aged garlic extract (AGE) was investigated with micronucleus method as a reliable method for the detection of chromosomes damage induced by chemical and radiation. The frequency of micronuclei found in bone marrow erythroblast cells of the Protected and treated groups with 1.0 ml/20 g body wt/day for 10 consecutive days were significantly much lower than that of the exposed groups to γ-irradiation without protection or treatment. In addition, the enzyme activities of mouse erythrocyte antioxidant defense mechanism: superoxide dismutase (SOD), glutathione peroxidase (GSH-P x ) and glutathione reductase (GSH-R) were markedly decreased after irradiation while in protected and treated groups with Age showed significant increase but did not reach the control level except for Gash-R activity of protected group

  10. Senescence-accelerated mouse prone 8 (SAMP8) as a model of age-related hearing loss.

    Science.gov (United States)

    Marie, Aurore; Larroze-Chicot, Philippe; Cosnier-Pucheu, Sylvie; Gonzalez-Gonzalez, Sergio

    2017-08-24

    Hearing loss is the most common form of sensory impairment in humans, affecting 5.3% worldwide population. In industrial countries, age-related hearing loss is a major health problem affecting one-third of individuals over 65years old. However, the physiological and molecular changes involved in this senescence process remain unclear. In this study, we determined the influence of age on auditory brainstem response (ABR) and the distortion product otoacoustic emissions (DPOAE) in the premature senescence mouse model SAMP8 for five months. We showed a progressive increase of ABR thresholds and a decrease of distortion product amplitude from 37days old in SAMP8 compared to CBA mice. The data we show here provide new knowledge in functional auditory changes during the senescence process and open up new opportunities for the development of new drugs involved in age-related hearing loss treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.

    Science.gov (United States)

    Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela

    2018-03-02

    Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.

  12. Kidney biopsy

    Science.gov (United States)

    ... the kidney (in rare cases, may require a blood transfusion) Bleeding into the muscle, which might cause soreness Infection (small risk) Alternative Names Renal biopsy; Biopsy - kidney Images Kidney anatomy ...

  13. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  14. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose.

    Directory of Open Access Journals (Sweden)

    Shengchang Zhang

    Full Text Available INTRODUCTION: Glycation products accumulate during aging of slowly renewing tissue, including skin, and are suggested as an important mechanism underlying the skin aging process. Adipose-derived cells are widely used in the clinic to treat ischemic diseases and enhance wound healing. Interestingly, adipose-derived stem cells (ASCs are also effective in anti-aging therapy, although the mechanism underlying their effects remains unknown. The purpose of the present study was to examine the anti-aging effect of ASCs in a D-galactose-induced aging animal model and to clarify the underlying mechanism. MATERIALS AND METHODS: Six-week-old nude mice were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, mice were randomized to receive subcutaneous injections of 106 green fluorescent protein (GFP-expressing ASCs, aminoguanidine (AG or phosphate-buffered saline (PBS. Control mice received no treatment. We examined tissue histology and determined the activity of senescence-associated molecular markers such as superoxide dismutase (SOD and malondialdehyde (MDA. RESULTS: Transplanted ASCs were detectable for 14 days and their GFP signal disappeared at day 28 after injection. ASCs inhibited advanced glycation end product (AGE levels in our animal model as well as increased the SOD level and decreased the MDA level, all of which act to reverse the aging phenotype in a similar way to AG, an inhibitor of AGE formation. Furthermore, ASCs released angiogenic factors in vivo such as vascular endothelial growth factor, suggesting a skin trophic effect. CONCLUSIONS: These results demonstrate that ASCs may contribute to the regeneration of skin during aging. In addition, the data shows that ASCs provide a functional benefit by glycation suppression, antioxidation, and trophic effects in a mouse model of aging.

  15. Reduced developmental competence of immature, in-vitro matured and postovulatory aged mouse oocytes following IVF and ICSI

    Directory of Open Access Journals (Sweden)

    Trounson Alan

    2008-12-01

    Full Text Available Abstract Background The present study highlights basic physiological differences associated with oocyte maturation and ageing. The study explores the fertilizing capacity and resistance to injury of mouse oocytes at different stages of maturation and ageing following IVF and ICSI. Also, the study examines the developmental competence of embryos obtained from these oocytes. The outcome of the study supports views that the mouse can be a model for human IVF suggesting that utilizing in-vitro matured and failed fertilized oocytes to produce embryos mainly when limited number of oocytes is retrieved in a specific cycle, should be carefully considered. Methods Hybrid strain mouse oocytes were inseminated by in-vitro fertilization (IVF or intracytoplasmic sperm injection (ICSI. Oocytes groups that were used were germinal vesicle (GV in-vitro matured metaphase II (IVM-MII, freshly ovulated MII (OV-MII, 13 hrs in-vitro aged MII (13 hrs-MII and 24 hrs in-vitro aged MII (24 hrs-MII. Fertilization and embryo development to the blastocyst stage were monitored up to 5 days in culture for IVF and ICSI zygotes. Sperm head decondensation and pronuclear formation were examined up to 9 hrs in oocytes following ICSI. Apoptotic events in blocked embryos were examined using the TUNNEL assay. Differences between females for the number and quality of GV and OV-MII oocytes were examined by ANOVA analyses. Differences in survival after ICSI, fertilization by IVF and ICSI and embryo development were analysed by Chi-square test with Yates correction. Results No differences in number and quality of oocytes were identified between females. The findings suggest that inability of GV oocytes to participate in fertilization and embryo development initiates primarily from their inability to support initial post fertilization events such as sperm decondensation and pronuclei formation. These events occur in all MII oocytes in similar rates (87–98% for IVF and ICSI. Following

  16. Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes

    Directory of Open Access Journals (Sweden)

    J. Bento-Torres

    2017-01-01

    Full Text Available Because enriched environment (EE and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A. Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.

  17. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain

    International Nuclear Information System (INIS)

    Enokido, Yasushi; Yoshitake, Ayaka; Ito, Hikaru; Okazawa, Hitoshi

    2008-01-01

    HMGB1 is an evolutionarily conserved non-histone chromatin-associated protein with key roles in maintenance of nuclear homeostasis; however, the function of HMGB1 in the brain remains largely unknown. Recently, we found that the reduction of nuclear HMGB1 protein level in the nucleus associates with DNA double-strand break (DDSB)-mediated neuronal damage in Huntington's disease [M.L. Qi, K. Tagawa, Y. Enokido, N. Yoshimura, Y. Wada, K. Watase, S. Ishiura, I. Kanazawa, J. Botas, M. Saitoe, E.E. Wanker, H. Okazawa, Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases, Nat. Cell Biol. 9 (2007) 402-414]. In this study, we analyze the region- and cell type-specific changes of HMGB1 and DDSB accumulation during the aging of mouse brain. HMGB1 is localized in the nuclei of neurons and astrocytes, and the protein level changes in various brain regions age-dependently. HMGB1 reduces in neurons, whereas it increases in astrocytes during aging. In contrast, DDSB remarkably accumulates in neurons, but it does not change significantly in astrocytes during aging. These results indicate that HMGB1 expression during aging is differentially regulated between neurons and astrocytes, and suggest that the reduction of nuclear HMGB1 might be causative for DDSB in neurons of the aged brain

  18. Gene expression of drug metabolizing enzymes in adult and aged mouse liver: A modulation by immobilization stress

    International Nuclear Information System (INIS)

    Mikhailova, O.N.; Gulyaeva, L.F.; Filipenko, M.L.

    2005-01-01

    The role of stress in the regulation of enzymatic systems involved in the biotransformation of xenobiotics, as well as endogenous substrates in the liver was investigated using single immobilization stress as a model. Adult (3 months of age) and aged (26 months) C3H/a male mice were used. Cytochrome P450 1A1 and 1A2 (CYP1A1 and CYP1A2), glutathione S-transferase M1 (GSTM1), aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and catechol-O-methyltransferase (COMT) mRNA levels in the mouse liver were measured by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) method. Excluding CYP1A1, experiments revealed significant differences in the expression of these genes between adult- and aged-control animals. The influence of stress on the expression of genes studied was shown to be higher in adult mice than in aged ones. Our results clearly demonstrate the lack of response or even the attenuation of gene expression in aged animals that may play an important role in age-related pathologies and diseases

  19. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Chiang Wen-Sheng

    2010-03-01

    Full Text Available Abstract Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs of young (8-10 weeks, adult (5 months, and old (21 months mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.

  20. Simple Kidney Cysts

    Science.gov (United States)

    ... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...

  1. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2016-12-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

  2. Recovery of aging-related size increase of skin epithelial cells: in vivo mouse and in vitro human study.

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    Full Text Available The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment. An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8. A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20-40% for cells of older passage (6-8 passages whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.

  3. Identification of age-dependent motor and neuropsychological behavioural abnormalities in a mouse model of Mucopolysaccharidosis Type II

    Science.gov (United States)

    Gleitz, Hélène F. E.; O’Leary, Claire; Holley, Rebecca J.

    2017-01-01

    Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II. PMID:28207863

  4. Mitochondrial energy metabolism changes during aging-mouse cranial nerve cells treated with various doses and forms of Fructus schizandrae

    Institute of Scientific and Technical Information of China (English)

    Hongyan Guo; Jinhe Li

    2008-01-01

    BACKGROUND: During the cellular aging process, the number of mitochondria, generation of adenosine triphosphate (ATP), activity of respiratory chain enzyme complex 1 and 4, and oxidation decrease. OBJECTIVE: To observe the effects of aqueous and spirituous extract, as well as polysaccharides from Fructus schizandrae (Magnolia Vine) on energy metabolism and mitochondrial anti-oxidation in cranial nerve cells of a D-gal-induccd aging mouse model.DESIGN, TIME AND SETTING: A randomized, controlled, animal study. The experiment was conducted at the Department of Biochemistry, Qiqihar Medical College between March and July 2006.MATERIALS: Fifty healthy, Kunming mice of both sexes, aged 2 3 months old and weighing 18-22 g, were used for the present study. Fructus schizandrae was purchased from the Medical College of Jiamusi University. Aqueous extracts, spirituous extracts, and polysaccharides from Fructus schizandrae were prepared. D-galactose (D-gal) is a product of the Second Reagent Factory, Shanghai City, China. Mn-superoxide dismutase (Mn-SOD) kit, malonaldehyde (MDA) kit, protein quantification kit, and inorganic phosphorus testing kit were purchased from Jian Cheng Bioeng. Co., China.METHODS: Fifty mice were randomly divided into five groups, with 10 mice in each group: young control, aging model, aqueous Fructus schizandrae extract, spirituous Fructus schizandrae extract, and Fructus schizandrae polysaccharides. Over a course of 30 days, mice in aging model, aqueous Fructus schizandrae extract, spirituous Fructus schizandrae extract, and Fructus schizandrae polysaccharides groups were injected subcutaneously with D-gal (100 mg/kg) into the nape of the neck daily, and administered intragastrically with an equal volume of sterile, warm water (aging model), aqueous Fructus schizandrae extract (2 g/kg), spirituous Fructus schizandrae extract (2 g/kg), or Fructus schizandrae polysaccharides (0.2 g/kg), respectively. Mice in the young control group were injected into

  5. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  6. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    Science.gov (United States)

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  7. Enhanced experimental tumor metastasis with age in senescence-accelerated mouse

    International Nuclear Information System (INIS)

    Shimizu, Kosuke; Kinouchi Shimizu, Naomi; Asai, Tomohiro; Oku, Naoto; Tsukada, Hideo

    2008-01-01

    Tumor metastasis is affected by the host immune surveillance system. Since aging may attenuate the host immune potential, the experimental tumor metastasis may be enhanced with age. In the present study, we investigated this alteration of experimental tumor metastasis with age. We used senescence-accelerated mice prone 10 (SAMP10) as a model of aged animals. Natural killer cell (NK) activity, as an indicator of immune surveillance potential, in 8-month-old (aged) SAMP10 mice was observed to be much lower than that in 2-month-old (young) mice. When we examined the in vivo trafficking of lung-metastatic K1735M2 melanoma cells in SAMP10 with positron emission tomography (PET), K1735M2 cells labeled with [2- 18 F]2-deoxy-2-fluoro-D-glucose ([ 18 F]FDG) were observed in both young and aged SAMP10 just after injection of the cells, whereas the clearance of 18 F from the lungs was retarded in aged animals. The accumulation of 5-[ 125 I]iodo-2'-deoxyuridine ([ 125 I]IUdR)-labeled K1735M2 cells in the lungs of SAMP10 at 24 h after injection was significantly higher in aged mice. Corresponding to these results, the number of metastatic colonies in the lung was larger in the aged SAMP10 of the experimental tumor metastasis model. The present study demonstrated that the aging process produced a susceptible environment allowing the tumor cells to metastasize due to decrease in the host immune surveillance potential with age. (author)

  8. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Yamada

    2017-03-01

    Full Text Available Changes in oocyte quality can have great impact on the developmental potential of early embryos. Here we test whether nuclear genome transfer from a developmentally incompetent to a developmentally competent oocyte can restore developmental potential. Using in vitro oocyte aging as a model system we performed nuclear transfer in mouse oocytes at metaphase II or at the first interphase, and observed that development to the blastocyst stage and to term was as efficient as in control embryos. The increased developmental potential is explained primarily by correction of abnormal cytokinesis at anaphase of meiosis and mitosis, by a reduction in chromosome segregation errors, and by normalization of the localization of chromosome passenger complex components survivin and cyclin B1. These observations demonstrate that developmental decline is primarily due to abnormal function of cytoplasmic factors involved in cytokinesis, while the genome remains developmentally fully competent.

  9. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.

    Science.gov (United States)

    Tiede-Lewis, LeAnn M; Xie, Yixia; Hulbert, Molly A; Campos, Richard; Dallas, Mark R; Dusevich, Vladimir; Bonewald, Lynda F; Dallas, Sarah L

    2017-10-26

    Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.

  10. Caffeine alleviates the deterioration of Ca2+ release mechanisms and fragmentation of in vitro aged mouse eggs

    Science.gov (United States)

    Zhang, Nan; Wakai, Takuya; Fissore, Rafael. A.

    2011-01-01

    The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others found that in these eggs the intracellular calcium ([Ca2+]i) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca2+ release is not well known. Here, we investigated if the function of IP3R1, the major Ca2+ release channel at fertilization, was undermined in in vitro aged mouse eggs. We found that in aged eggs IP3R1 displayed reduced function, as many of the changes acquired during maturation that enhance IP3R1 Ca2+ conductivity such as phosphorylation, receptor reorganization and increased Ca2+ store content ([Ca2+]ER) were lost with increasing postovulatory time. IP3R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP3R1 function and maintained [Ca2+]ER content. Caffeine also maintained mitochondrial membrane potential as measured by JC-1 fluorescence. We therefore conclude that [Ca2+]i responses in aged eggs are undermined by reduced IP3R1 sensitivity, decreased [Ca2+]ER and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs. PMID:22095868

  11. Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse.

    Science.gov (United States)

    Scott, Karen A; Ida, Masayuki; Peterson, Veronica L; Prenderville, Jack A; Moloney, Gerard M; Izumo, Takayuki; Murphy, Kiera; Murphy, Amy; Ross, R Paul; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    Over the last decade, there has been increased interest in the role of the gut microbiome in health including brain health. This is by no means a new theory; Elie Metchnikoff proposed over a century ago that targeting the gut by consuming lactic acid bacteria such as those in yogurt, could improve or delay the onset of cognitive decline associated with ageing. However, there is limited information characterising the relationship between the behavioural and physiological sequelae of ageing and alterations in the gut microbiome. To this end, we assessed the behavioural, physiological and caecal microbiota profile of aged male mice. Older mice (20-21months old) exhibited deficits in spatial memory and increases in anxiety-like behaviours compared to younger mice (2-3months old). They also exhibited increased gut permeability, which was directly correlated with elevations in peripheral pro-inflammatory cytokines. Furthermore, stress exacerbated the gut permeability of aged mice. Examination of the caecal microbiota revealed significant increases in phylum TM7, family Porphyromonadaceae and genus Odoribacter of aged mice. This represents a shift of aged microbiota towards a profile previously associated with inflammatory disease, particularly gastrointestinal and liver disorders. Furthermore, Porphyromonadaceae, which has also been associated with cognitive decline and affective disorders, was directly correlated with anxiety-like behaviour in aged mice. These changes suggest that changes in the gut microbiota and associated increases in gut permeability and peripheral inflammation may be important mediators of the impairments in behavioural, affective and cognitive functions seen in ageing. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Erythropoiesis in the aged mouse. I. Response to stimulation in vivo

    International Nuclear Information System (INIS)

    Udupa, K.B.; Lipschitz, D.A.

    1984-01-01

    Changes in erythropoiesis with age were studied by examining the hematocrit increase in response to hypoxia in aged mice and by assessing the change in erythropoiesis following the injection of erythropoietin in young and old polycythemic mice. The increase in hematocrit after exposure to hypoxia was more variable and generally lower in old mice than in young mice. When erythropoietin was injected into polycythemic animals, the increase in differentiated erythroid cells and 59 Fe incorporation into erythroid marrow and peripheral blood cells was significantly lower in old mice than in young mice. In contrast to differentiated erythroid cells, there was less evidence of a reduced response to simulation of the more primitive erythroid progenitor cells of aged animals. The early undifferentiated erythroid progenitor, burst-forming units, did not decrease when either young or aged mice were made polycythemic, and no change following erythropoietin injection was noted. Polycythemia suppressed the late-differentiated erythroid progenitor, erythroid colony-forming units, to a greater extent in aged animals, but when erythropoietin was injected, the percent increase over the subsequent 24 hours was identical to that in young mice. These observations indicate a reduced erythropoietic capacity with age, the abnormality being most obvious in the more mature erythroid precursors

  13. [Hispanic American kidney patients in the age of online social networks: content analysis of postings, 2010 - 2012].

    Science.gov (United States)

    Mercado-Martínez, Francisco J; Urias-Vázquez, Jorge E

    2014-01-01

    Describe the use of online social networks by people with chronic kidney disease, their caregivers, and family members, living in Hispanic American countries, and identify the most frequent topics and subtopics in their postings. A qualitative study was conducted of postings by chronic kidney patients, their caregivers, and family members, living in Hispanic America, on five social networks: Blogger, Facebook, Twitter, WordPress, and YouTube, from 2010 to 2012. The internal search engines of each network were used with medical and lay terms in Spanish: chronic kidney disease, renal failure, peritoneal dialysis, hemodialysis, renal transplant, renal patient, nephropathy, and kidney patients association. An analysis was carried out of the thematic content of 1 846 postings on Facebook, Blogger, and WordPress. A total of 162 social network accounts were identified (97 individuals and 65 groups); the majority was in Mexico (46), with others in Argentina, Chile, Colombia, and Peru (44 accounts). The most frequent topics were exchange of information (46.0%), descriptions of experiences as patients (17.9%), support (15.6%), descriptions of experiences with health services (8.5%), interaction with peers (3.5%), and promotion of behavior change (3.4%). Chronic kidney patients living in Hispanic America use online social networks to inform and to be informed, describe their experiences with the disease and health services, and as a support mechanism. This produces knowledge that is different from and complementary to knowledge conveyed by health professionals. There is a pressing need to promote studies of the opportunities that these technologies offer in the Americas, a region characterized by enormous social inequality.

  14. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age-related osteoporosis

    Directory of Open Access Journals (Sweden)

    Tracy A. Brennan

    2014-05-01

    Full Text Available A major medical challenge in the elderly is osteoporosis and the high risk of fracture. Telomere dysfunction is a cause of cellular senescence and telomere shortening, which occurs with age in cells from most human tissues, including bone. Telomere defects contribute to the pathogenesis of two progeroid disorders characterized by premature osteoporosis, Werner syndrome and dyskeratosis congenital. It is hypothesized that telomere shortening contributes to bone aging. We evaluated the skeletal phenotypes of mice with disrupted telomere maintenance mechanisms as models for human bone aging, including mutants in Werner helicase (Wrn−/−, telomerase (Terc−/− and Wrn−/−Terc−/− double mutants. Compared with young wild-type (WT mice, micro-computerized tomography analysis revealed that young Terc−/− and Wrn−/−Terc−/− mice have decreased trabecular bone volume, trabecular number and trabecular thickness, as well as increased trabecular spacing. In cortical bone, young Terc−/− and Wrn−/−Terc−/− mice have increased cortical thinning, and increased porosity relative to age-matched WT mice. These trabecular and cortical changes were accelerated with age in Terc−/− and Wrn−/−Terc−/− mice compared with older WT mice. Histological quantification of osteoblasts in aged mice showed a similar number of osteoblasts in all genotypes; however, significant decreases in osteoid, mineralization surface, mineral apposition rate and bone formation rate in older Terc−/− and Wrn−/−Terc−/− bone suggest that osteoblast dysfunction is a prominent feature of precocious aging in these mice. Except in the Wrn−/− single mutant, osteoclast number did not increase in any genotype. Significant alterations in mechanical parameters (structure model index, degree of anistrophy and moment of inertia of the Terc−/− and Wrn−/−Terc−/− femurs compared with WT mice were also observed. Young Wrn

  15. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Age-related auditory pathology in the CBA/J mouse

    Science.gov (United States)

    Sha, Su-Hua; Kanicki, Ariane; Dootz, Gary; Talaska, Andra E.; Halsey, Karin; Dolan, David; Altschuler, Richard; Schacht, Jochen

    2008-01-01

    Commercially obtained aged male CBA/J mice presented a complex pattern of hearing loss and morphological changes. A significant threshold shift in auditory brainstem responses (ABR) occurred at 3 months of age at 4 kHz without apparent loss of hair cells, rising slowly at later ages accompanied by loss of apical hair cells. A delayed high-frequency deficit started at 24 kHz around the age of 12 months. At 20 to 26 months, threshold shifts at 12 and 24 kHz and the accompanying hair cell loss at the base of the cochlea were highly variable with some animals appearing almost normal and others showing large deficits. Spiral ganglion cells degenerated by 18 months in all regions of the cochlea, with cell density reduced by approximately 25%. There was no degeneration of the stria vascularis and the endocochlear potential remained stable from 3 to 25 months of age regardless of whether the animals had normal or highly elevated ABR thresholds. The slow high frequency hearing loss combined with a modest reduction of ganglion cell density and an unchanged endocochlear potential suggest sensorineural presbycusis. The superimposed early hearing loss at low frequencies, which is not seen in animals bred in-house, may complicate the use of these animals as a presbycusis model. PMID:18573325

  17. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    Science.gov (United States)

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Micro-MRI study of cerebral aging: ex vivo detection of hippocampal sub-field reorganization, micro-hemorrhages and amyloid plaques in mouse lemur primates

    International Nuclear Information System (INIS)

    Bertrand, Anne; Petiet, Alexandra; Dhenain, Marc; Pasquier, Adrien; Kraska, Audrey; Joseph-Mathurin, Nelly; Wiggins, Christopher; Aujard, Fabienne; Mestre-Frances, Nadine

    2013-01-01

    Mouse lemurs are non-human primate models of cerebral aging and neuro-degeneration. Much smaller than other primates, they recapitulate numerous features of human brain aging, including progressive cerebral atrophy and correlation between regional atrophy and cognitive impairments. Characterization of brain atrophy in mouse lemurs has been done by MRI measures of regional CSF volume and by MRI measures of regional atrophy. Here, we further characterize mouse lemur brain aging using ex vivo MR microscopy (31 μm in-plane resolution). First, we performed a non-biased, direct volumetric quantification of dentate gyrus and extended Ammon's horn. We show that both dentate gyrus and Ammon's horn undergo an age-related reorganization leading to a growth of the dentate gyrus and an atrophy of the Ammon's horn, even in the absence of global hippocampal atrophy. Second, on these first MR microscopic images of the mouse lemur brain, we depicted cortical and hippocampal hypointense spots. We demonstrated that their incidence increases with aging and that they correspond either to amyloid deposits or to cerebral micro-hemorrhages. (authors)

  19. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  20. The effects of ageing on mouse muscle microstructure: a comparative study of time-dependent diffusion MRI and histological assessment.

    Science.gov (United States)

    Porcari, Paola; Hall, Matt G; Clark, Chris A; Greally, Elizabeth; Straub, Volker; Blamire, Andrew M

    2018-03-01

    The investigation of age-related changes in muscle microstructure between developmental and healthy adult mice may help us to understand the clinical features of early-onset muscle diseases, such as Duchenne muscular dystrophy. We investigated the evolution of mouse hind-limb muscle microstructure using diffusion imaging of in vivo and in vitro samples from both actively growing and mature mice. Mean apparent diffusion coefficients (ADCs) of the gastrocnemius and tibialis anterior muscles were determined as a function of diffusion time (Δ), age (7.5, 22 and 44 weeks) and diffusion gradient direction, applied parallel or transverse to the principal axis of the muscle fibres. We investigated a wide range of diffusion times with the goal of probing a range of diffusion lengths characteristic of muscle microstructure. We compared the diffusion time-dependent ADC of hind-limb muscles with histology. ADC was found to vary as a function of diffusion time in muscles at all stages of maturation. Muscle water diffusivity was higher in younger (7.5 weeks) than in adult (22 and 44 weeks) mice, whereas no differences were observed between the older ages. In vitro data showed the same diffusivity pattern as in vivo data. The highlighted differences in diffusion properties between young and mature muscles suggested differences in underlying muscle microstructure, which were confirmed by histological assessment. In particular, although diffusion was more restricted in older muscle, muscle fibre size increased significantly from young to adult age. The extracellular space decreased with age by only ~1%. This suggests that the observed diffusivity differences between young and adult muscles may be caused by increased membrane permeability in younger muscle associated with properties of the sarcolemma. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Age-related effects of X-ray irradiation on mouse hippocampus

    DEFF Research Database (Denmark)

    Casciati, Arianna; Dobos, Katalin; Antonelli, Francesca

    2016-01-01

    Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay w...

  2. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    Science.gov (United States)

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  3. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus.

    Science.gov (United States)

    Saransaari, P; Oja, S S

    1997-08-01

    Taurine has been shown to be essential for neuronal development and survival in the central nervous system. The release of preloaded [3H]taurine was studied in hippocampal slices from seven-day-, three-month- and 18-22-month-old mice in cell-damaging conditions. The slices were superfused in hypoxic, hypoglycemic and ischemic conditions and exposed to free radicals and oxidative stress. The release of taurine was greatly enhanced in the above conditions in all age groups, except in oxidative stress. The release was large in ischemia, particularly in the hippocampus of aged mice. Potassium stimulation was still able to release taurine in cell-damaging conditions in immature mice, whereas in adult and aged animals the release was so substantial that this additional stimulus failed to work. Taurine release was partially Ca2+-dependent in all cases. The massive release of the inhibitory amino acid taurine in ischemic conditions could act neuroprotectively, counteracting in several ways the effects of simultaneous release of excitatory amino acids. This protection could be of great importance in developing brain tissue, while also having an effect in aged brains.

  4. Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent

    Directory of Open Access Journals (Sweden)

    Hossein Azizi

    2016-01-01

    Full Text Available Here, we aimed to answer important and fundamental questions in germ cell biology with special focus on the age of the male donor cells and the possibility to generate embryonic stem cell- (ESC- like cells. While it is believed that spermatogonial stem cells (SSCs and truly pluripotent ESC-like cells can be isolated from adult mice, it remained unknown if the spontaneous conversion of SSCs to ESC-like cells fails at some age. Similarly, there have been differences in the literature about the duration of cultures during which ESC-like cells may appear. We demonstrate the possibility to derive ESC-like cells from SSC cultures until they reach adolescence or up to 7 weeks of age, but we point out the impossibility to derive these cells from older, mature adult mice. The inability of real adult SSCs to shift to a pluripotent state coincides with a decline in expression of the core pluripotency genes Oct4, Nanog, and Sox2 in SSCs with age. At the same time genes of the spermatogonial differentiation pathway increase. The generated ESC-like cells were similar to ESCs and express pluripotency markers. In vitro they differentiate into all three germ lineages; they form complex teratomas after transplantation in SCID mice and produce chimeric mice.

  5. Erythropoiesis in the aged mouse. II. Response to stimulation in vitro

    International Nuclear Information System (INIS)

    Udupa, K.B.; Lipschitz, D.A.

    1984-01-01

    In this study, in vitro evidence is presented that erythropoietic precursors in aged mice respond less to stimulation by erythropoietin than do precursors in young mice. The effect of age on proliferation of differentiated erythroid cells from the marrow of young and old mice was examined in liquid culture to which increasing concentrations of erythropoietin were added. Cellular proliferation was measured indirectly by 59 Fe incorporation into heme and directly as tritiated thymidine incorporation into DNA. The number of normoblasts remaining in culture with and without the addition of erythropoietin was also measured. In each case, cellular proliferation was significantly lower in marrow in old than in young mice. In contrast, CFU-E colonies cultured with increasing doses of erythropoietin were similar in young and old animals. These findings indicate that aging causes a reduction in the proliferative response of differentiated erythroid cells. Failure of these cells to respond to stimulation is the likely mechanism for the reduced erythropoietic proliferative capacity found in aged animals

  6. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse.

    Science.gov (United States)

    Hadem, Ibanylla Kynjai Hynniewta; Sharma, Ramesh

    2017-08-01

    Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective

  7. Antiaging Effect of Inula britannica on Aging Mouse Model Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2016-01-01

    Full Text Available The antiaging effect of Inula britannica flower total flavonoids (IBFTF on aging mice induced by D-galactose and its mechanism was examined in this study. From the results, the biochemical indexes and histological analysis of skin tissues showed that IBFTF could effectively improve the antioxidant enzyme activity of the aging mice, enhance the activities of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px of skin tissue, and decrease the malondialdehyde (MDA content. Besides, IBFTF could maintain the skin collagen, hydroxyproline (Hyp, dermal thickness, and moisture content. Meanwhile, IBFTF could significantly reduce the number of cells arrested in G0/G1 phase, and from the point of view of protein and mRNA expression level in skin tissue, IBFTF could significantly increase the expression of Sirt1 and CyclinD1 but decrease the expression of p16 and p21, and its effect was not less than that of the well-known vitamin E (VE. Overall, these results seem to be implying that IBFTF is a potential natural anti-skin aging agent with great antioxidant ability.

  8. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    Science.gov (United States)

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  9. Kidney Cancer

    Science.gov (United States)

    ... kind of kidney cancer called Wilms' tumor. The incidence of kidney cancer seems to be increasing. One ... doesn't go away Loss of appetite Unexplained weight loss Tiredness Fever, which usually comes and goes ( ...

  10. Kidney Failure

    Science.gov (United States)

    Healthy kidneys clean your blood by removing excess fluid, minerals, and wastes. They also make hormones that keep your ... strong and your blood healthy. But if the kidneys are damaged, they don't work properly. Harmful ...

  11. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model

    OpenAIRE

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-01-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30–35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose,...

  12. The characteristics and mortality risk factors for acute kidney injury in different age groups in China-a cross sectional study.

    Science.gov (United States)

    Wei, Qing; Liu, Hong; Tu, Yan-; Tang, Ri-Ning; Wang, Yan-Li; Pan, Ming-Ming; Liu, Bi-Cheng

    2016-10-01

    Age is an independent risk factor for acute kidney injury (AKI). The causes and outcomes of AKI in children, middle-aged, and older patients are different. The objective of this country-based study was to identify the characteristics and mortality factors for AKI in different age groups in China. Using data from 374,286 adult patients (≥18 years) admitted to 44 study hospitals, we investigated the characteristics and mortality risk factors for AKI in four different age groups: 18-39 years of age, 40-59 years of age, 60-79 years of age, and ≥80 years of age. The identification criteria for AKI included the 2012 KDIGO AKI definition and an expanded criterion. The country-based survey included 7604 AKI patients (7604/374,286, 2.03%). The proportions of AKI in the four age groups were 11.52%, 30.79%, 41.03%, and 16.66%, respectively. In any age group, the patients with AKI stage 1 were the majority (43.4%, 42.4%, 46.4%, and 52.2%, respectively), and the most common classification of AKI was pre-renal AKI (44.3%, 51.3%, 52.3%, and 56.4%, respectively). The higher AKI peak stage occurred for the in-hospital mortality factors for AKI in all age groups; except for the AKI stage 2 patients in the 18-39 age group. The characteristics and mortality factors for AKI vary by age in China. Elderly patients were the primary population with AKI, and the most common type of AKI was pre-renal AKI. Special caution should be taken to the old population in hospitalized patients to prevent the pre-renal AKI.

  13. The electrocorticograms of the aged mouse x-irradiated at juvenile or young adult

    International Nuclear Information System (INIS)

    Minamisawa, Takeru; Sasaki, Shunsaku.

    1984-01-01

    The electrocorticograms (ECoGs) of the (C57BL/6 x C3H)F 1 mice irradiated at juvenile or young adult were studied when they attained the age of 24-26 months. One group of mice was irradiated 35 days post partum (35-DPP) and another 105 days (105-DPP). All the animals were irradiated with 300 R of X-rays to whole body. The ECoGs were recorded from the freely moving animals with the permanently implanted electrodes fixed over the visual cortical surface. The resulted ECoGs were divided into 3 patterns: wakefulness (W), slow wave sleep (SWS), and paradoxical sleep (PS). Six parameters of the 3 patterns were compared among the 2 irradiated groups and the non-irradiated control group. The mean SWS- and PS-cycle times, and mean SWS length were significantly longer in the 35-DPP group than in the control group. Changes in the ECoGs were less profound in the 105-DPP group than those in the 35-DPP group: only a significant change due to irradiation at 105-DPP was a decrease in the ratio of the total PS time to the total sleep time (TST = total SWS time + total PS time). There was no difference in the body weight and brain weight among the 2 irradiated groups and the control group. (author)

  14. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age.

    Science.gov (United States)

    Vasilaki, A; McArdle, F; Iwanejko, L M; McArdle, A

    2006-11-01

    This study has characterised the time course of two major transcriptional adaptive responses to exercise (changes in antioxidant defence enzyme activity and heat shock protein (HSP) content) in muscles of adult and old male mice following isometric contractions and has examined the mechanisms involved in the age-related reduction in transcription factor activation. Muscles of B6XSJL mice were subjected to isometric contractions and analysed for antioxidant defence enzyme activities, heat shock protein content and transcription factor DNA binding activity. Data demonstrated a significant increase in superoxide dismutase (SOD) and catalase activity and HSP content of muscles of adult mice following contractile activity which was associated with increased activation of the transcription factors, nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and heat shock factor (HSF) following contractions. Significant increases in SOD and catalase activity and heat shock cognate (HSC70) content were seen in quiescent muscles of old mice. The increase in antioxidant defence enzyme activity following contractile activity seen in muscles of adult mice was not seen in muscles of old mice and this was associated with a failure to fully activate NF-kappaB and AP-1 following contractions. In contrast, although the production of HSPs was also reduced in muscles of old mice following contractile activity compared with muscles of adult mice following contractions, this was not due to a gross reduction in the DNA binding activity of HSF.

  15. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma.

    Science.gov (United States)

    Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-11-28

    Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.

  16. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Science.gov (United States)

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A roadmap for the genetic analysis of renal aging.

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-10-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. © 2015 The Authors. Aging Cell published by the Anatomical Society and John

  18. Omega-3 PUFA supplementation differentially affects behavior and cognition in the young and aged non-human primate Grey mouse lemur (Microcebus murinus

    Directory of Open Access Journals (Sweden)

    Pifferi Fabien

    2014-01-01

    Full Text Available Data are divergent about the ability of dietary ω3 fatty acids to prevent age-associated cognitive decline. Most of the clinical trials failed to demonstrate a protective effect of ω3 fatty acids against cognitive decline and methodological issues are still under debate. Conversely to human studies, experiments performed in adult rodents clearly indicate that long chain ω3 fatty acids play a beneficial role in behavioral and cognitive functions. Inconsistent observations between human and rodent studies highlight the importance of the use of non-human primate models. We recently started a series of experiments on Grey mouse lemurs, an emerging non-human primate model of aging in order to assess the impact of ω3 fatty acids dietary supplementation on several brain functions. These experiments started with the determination of the fatty acids composition of target organs (brain, adipose tissue, liver, plasma of animals fed under control diet. We then explored the impact of ω3 polyunsaturated fatty acids (PUFA supplementation on cognition and behavior in young and aged grey mouse lemurs. The aim of the present review is to compare the observations made in young and aged grey mouse lemurs and to explore the possibilities of new experiments in order to bridge the gap between rodents and Humans.

  19. A roadmap for the genetic analysis of renal aging

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  20. Comparison of survival analysis and palliative care involvement in patients aged over 70 years choosing conservative management or renal replacement therapy in advanced chronic kidney disease.

    Science.gov (United States)

    Hussain, Jamilla A; Mooney, Andrew; Russon, Lynne

    2013-10-01

    There are limited data on the outcomes of elderly patients with chronic kidney disease undergoing renal replacement therapy or conservative management. We aimed to compare survival, hospital admissions and palliative care access of patients aged over 70 years with chronic kidney disease stage 5 according to whether they chose renal replacement therapy or conservative management. Retrospective observational study. Patients aged over 70 years attending pre-dialysis clinic. In total, 172 patients chose conservative management and 269 chose renal replacement therapy. The renal replacement therapy group survived for longer when survival was taken from the time estimated glomerular filtration rate management, in patients older than 80 years or with a World Health Organization performance score of 3 or more. There was also a significant reduction in the effect of renal replacement therapy on survival in patients with high Charlson's Comorbidity Index scores. The relative risk of an acute hospital admission (renal replacement therapy vs conservative management) was 1.6 (p management patients died in hospital, compared to 69% undergoing renal replacement therapy (Renal Registry data). Seventy-six percent of the conservative management group accessed community palliative care services compared to 0% of renal replacement therapy patients. For patients aged over 80 years, with a poor performance status or high co-morbidity scores, the survival advantage of renal replacement therapy over conservative management was lost at all levels of disease severity. Those accessing a conservative management pathway had greater access to palliative care services and were less likely to be admitted to or die in hospital.

  1. Contrasting Effects of Systemic Monocyte/Macrophage and CD4+ T Cell Depletion in a Reversible Ureteral Obstruction Mouse Model of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Lee D. Chaves

    2013-01-01

    Full Text Available Using a reversible UUO model (rUUO, we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5 or liposomal clodronate to systemically deplete CD4+ T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4+ T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.

  2. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-06-01

    Full Text Available miR-126 has recently been implicated in modulating angiogenic factors in vascular development. Understandings its biological significance might enable development of therapeutic interventions for diseases like age-related macular degeneration (AMD. We aimed to determine the role of miR-126 in AMD using a laser-induced choroidal neovascularization (CNV mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-126 mimic. The expression of miR-126, vascular endothelial growth factor-A (VEGF-A, Kinase insert domain receptor (KDR and Sprouty-related EVH1 domain-containing protein 1 (SPRED-1 in ocular tissues were analyzed by qPCR and Western blot. The overexpression effects of miR-126 were also proven on human microvascular endothelial cells (HMECs. miR-126 showed a significant decrease in CNV mice (p < 0.05. Both mRNA and protein levels of VEGF-A, KDR and SPRED-1 were upregulated with CNV; these changes were ameliorated by restoration of miR-126 (p < 0.05. CNV was reduced after miR-126 transfection. Transfection of miR-126 reduced the HMECs 2D-capillary-like tube formation (p < 0.01 and migration (p < 0.01. miR-126 has been shown to be a negative modulator of angiogenesis in the eye. All together these results high lights the therapeutic potential of miR-126 suggests that it may contribute as a putative therapeutic target for AMD in humans.

  3. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease.

    Directory of Open Access Journals (Sweden)

    Thérèse Couderc

    2008-02-01

    Full Text Available Chikungunya virus (CHIKV is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-alpha/betaR(+/- or totally (IFN-alpha/betaR(-/- abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.

  4. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Sylvia eGarza-Manero

    2015-02-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized clinically by the progressive decline of memory and cognition. Histopathologically, two main hallmarks have been identified in AD: amyloid-β peptide extracellular neuritic plaques and neurofibrillary tangles formed by posttranslational modified tau protein. A definitive diagnosis can only be achieved after the post mortem verification of the histological mentioned alterations. Therefore the development of biomarkers that allow an early diagnosis and/or predict disease progression is imperative. The prospect of a blood-based biomarker is possible with the finding of circulating microRNAs (miRNAs, a class of small non-coding RNAs of 22-25 nucleotides length that regulate mRNA translation rate. miRNAs travel through blood and recent studies performed in potential AD cases suggest the possibility of finding pathology-associated differences in circulating miRNA levels that may serve to assist in early diagnosis of the disease. However, these studies analyzed samples at a single time-point, limiting the use of miRNAs as biomarkers in AD progression. In this study we evaluated miRNA levels in plasma samples at different time-points of the evolution of an AD-like pathology in a transgenic mouse model of the disease (3xTg-AD. We performed multiplex qRT-PCR and compared the plasmatic levels of 84 miRNAs previously associated to central nervous system development and disease. No significant differences were detected between WT and transgenic young mice. However, age-related significant changes in miRNA abundance were observed for both WT and transgenic mice, and some of these were specific for the 3xTg-AD. In agreement, variations in the levels of particular miRNAs were identified between WT and transgenic old mice thus suggesting that the age-dependent evolution of the AD-like pathology, rather than the presence and expression of the transgenes, modifies the circulating miRNA levels in

  5. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease.

    Science.gov (United States)

    Yanda, Murali K; Liu, Qiangni; Cebotaru, Valeriu; Guggino, William B; Cebotaru, Liudmila

    2017-10-27

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of multiple renal cysts, often leading to renal failure that cannot be prevented by a current treatment. Two proteins encoded by two genes are associated with ADPKD: PC1 ( pkd1 ), primarily a signaling molecule, and PC2 ( pkd2 ), a Ca 2+ channel. Dysregulation of cAMP signaling is central to ADPKD, but the molecular mechanism is unresolved. Here, we studied the role of histone deacetylase 6 (HDAC6) in regulating cyst growth to test the possibility that inhibiting HDAC6 might help manage ADPKD. Chemical inhibition of HDAC6 reduced cyst growth in PC1-knock-out mice. In proximal tubule-derived, PC1-knock-out cells, adenylyl cyclase 6 and 3 (AC6 and -3) are both expressed. AC6 protein expression was higher in cells lacking PC1, compared with control cells containing PC1. Intracellular Ca 2+ was higher in PC1-knock-out cells than in control cells. HDAC inhibition caused a drop in intracellular Ca 2+ and increased ATP-simulated Ca 2+ release. HDAC6 inhibition reduced the release of Ca 2+ from the endoplasmic reticulum induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca 2+ -ATPase. HDAC6 inhibition and treatment of cells with the intracellular Ca 2+ chelator 1,2-bis(2-aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid tetrakis(acetoxymethyl ester) reduced cAMP levels in PC1-knock-out cells. Finally, the calmodulin inhibitors W-7 and W-13 reduced cAMP levels, and W-7 reduced cyst growth, suggesting that AC3 is involved in cyst growth regulated by HDAC6. We conclude that HDAC6 inhibition reduces cell growth primarily by reducing intracellular cAMP and Ca 2+ levels. Our results provide potential therapeutic targets that may be useful as treatments for ADPKD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Impact of Total Ischemic Time, Donor Age and the Pathway of Donor Death on Graft Outcomes After Deceased Donor Kidney Transplantation.

    Science.gov (United States)

    Wong, Germaine; Teixeira-Pinto, Armando; Chapman, Jeremy R; Craig, Jonathan C; Pleass, Henry; McDonald, Stephen; Lim, Wai H

    2017-06-01

    Prolonged ischemia is a known risk factor for delayed graft function (DGF) and its interaction with donor characteristics, the pathways of donor death, and graft outcomes may have important implications for allocation policies. Using data from the Australian and New Zealand Dialysis and Transplant registry (1994-2013), we examined the relationship between total ischemic time with graft outcomes among recipients who received their first deceased donor kidney transplants. Total ischemic time (in hours) was defined as the time of the donor renal artery interruption or aortic clamp, until the time of release of the clamp on the renal artery in the recipient. A total of 7542 recipients were followed up over a median follow-up time of 5.3 years (interquartile range of 8.2 years). Of these, 1823 (24.6%) experienced DGF and 2553 (33.9%) experienced allograft loss. Recipients with total ischemic time of 14 hours or longer experienced an increased odd of DGF compared with those with total ischemic time less than 14 hours. This effect was most marked among those with older donors (P value for interaction = 0.01). There was a significant interaction between total ischemic time, donor age, and graft loss (P value for interaction = 0.03). There was on average, a 9% increase in the overall risk of graft loss per hour increase in the total ischemic time (adjusted hazard ratio, 1.09; 95% confidence interval, 1.01-1.18; P = 0.02) in recipients with older donation after circulatory death grafts. There is a clinically important interaction between donor age, the pathway of donor death, and total ischemic time on graft outcomes, such that the duration of ischemic time has the greatest impact on graft survival in recipients with older donation after circulatory death kidneys.

  7. Kidney Stones

    Science.gov (United States)

    ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ...

  8. Kidney Cancer

    Science.gov (United States)

    You have two kidneys. They are fist-sized organs on either side of your backbone above your waist. The tubes inside filter and ... blood, taking out waste products and making urine. Kidney cancer forms in the lining of tiny tubes ...

  9. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain.

    Science.gov (United States)

    Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A

    2012-01-01

    The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.

  10. Age modifies the risk factor profiles for acute kidney injury among recently diagnosed type 2 diabetic patients: a population-based study.

    Science.gov (United States)

    Chao, Chia-Ter; Wang, Jui; Wu, Hon-Yen; Huang, Jenq-Wen; Chien, Kuo-Liong

    2018-04-01

    The incidence of acute kidney injury (AKI) rises with age and is associated with multiple risk factors. Here, we compared the risk factors for AKI between younger and older incident diabetic patients to examine the trends in risk alteration for individual factors across different age groups. Between 2007 and 2013, we selected all incident type 2 diabetic adults from the Taiwan National Health Insurance registry, stratified based on age: young (< 65 years), old (≥ 65 but < 75 years), and older-old (≥ 75 years). All factors with potential renal influence (e.g., comorbidities, medications, and diagnostics/procedures) were recorded during the study period, with a nested case-controlled approach utilized to identify independent risk factors for AKI in each age group. Totally, 930,709 type 2 diabetic patients were categorized as young (68.7%), old (17.7%), or older-old (13.6%). Older-old patients showed a significantly higher incidence of AKI than the old and the young groups. Cardiovascular morbidities (hypertension, atrial fibrillation, acute coronary syndrome, and cerebrovascular disease) were shown to increase the risk of AKI, although the risk declined with increasing age. Chronic obstructive pulmonary disease and receiving cardiac catheterization elevated the risk of AKI preferentially in the older-old/old and older-old group, respectively, while the administration of angiotensin-converting enzyme/α-blocker and angiotensin receptor blocker/calcium channel blocker reduced the risk of AKI preferentially in the older-old and older-old/old group, respectively. In conclusion, our findings highlight the importance of devising age-specific risk factor panels for AKI in patients with recently diagnosed type 2 diabetes.

  11. Association between chronic kidney disease detected using creatinine and cystatin C and death and cardiovascular events in elderly Mexican Americans: the Sacramento Area Latino Study on Aging.

    Science.gov (United States)

    Peralta, Carmen A; Lee, Anne; Odden, Michelle C; Lopez, Lenny; Zeki Al Hazzouri, Adina; Neuhaus, John; Haan, Mary N

    2013-01-01

    Creatinine, the current clinical standard to detect chronic kidney disease (CKD), is biased by muscle mass, age and race. The authors sought to determine whether cystatin C, an alternative marker of kidney function less biased by these factors, can identify elderly Mexican Americans with CKD who are at high risk for death and cardiovascular disease. Longitudinal, with mean follow-up of 6.8 years. Sacramento Area Latino Study of Aging (SALSA). One thousand four hundred and thirty five Mexican Americans aged 60 to 101. Estimated glomerular filtration rate (eGFR, mL/min per 1.73 m(2)) was determined according to creatinine (eGFRcreat) and cystatin C (eGFRcys), and participants were classified into four mutually exclusive categories: CKD neither (eGFRcreat ≥60 mL/min per 1.73 m(2); eGFRcys ≥60 mL/min per 1.73 m(2)), CKD creatinine only (eGFRcreat cause death and cardiovascular (CV) death were studied using Cox regression. At baseline, mean age was 71 ± 7; 481 (34%) had diabetes mellitus, and 980 (68%) had hypertension. Persons with CKD both had higher risk for all-cause (HR = 2.30, 95% confidence interval (CI) = 1.78-2.98) and CV disease (CVD) (HR = 2.75, 95% CI = 1.96-3.86) death than CKD neither after full adjustment. Persons with CKD cystatin C only were also at greater risk of all-cause (HR = 1.91, 95% CI = 1.37-2.67) and CV (HR = 2.56, 95% CI = 1.64-3.99) death than CKD neither. In contrast, persons with CKD creatinine only were not at greater risk for CV death (HR = 1.39, 95% CI = 0.71-2.72) but were at higher risk for all-cause death (HR = 1.95, 95% CI = 1.27-2.98). Cystatin C may be a useful alternative to creatinine for detecting high risk of death and CVD in elderly Mexican Americans with CKD. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

  12. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila.

    Science.gov (United States)

    Brandt, Tobias; Mourier, Arnaud; Tain, Luke S; Partridge, Linda; Larsson, Nils-Göran; Kühlbrandt, Werner

    2017-07-12

    Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies ( Drosophila melanogaster ) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.

  13. Injury - kidney and ureter

    Science.gov (United States)

    ... kidney; Ureteral injury; Pre-renal failure - injury, Post-renal failure - injury; Kidney obstruction - injury Images Kidney anatomy Kidney - blood and urine flow References Molitoris BA. Acute kidney injury. In: Goldman ...

  14. Chronic Kidney Diseases

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Chronic Kidney Diseases KidsHealth / For Kids / Chronic Kidney Diseases What's ... re talking about your kidneys. What Are the Kidneys? Your kidneys are tucked under your lower ribs ...

  15. The Associations of Malnutrition and Aging with Fluid Volume Imbalance between Intra- and Extracellular Water in Patients with Chronic Kidney Disease.

    Science.gov (United States)

    Ohashi, Y; Tai, R; Aoki, T; Mizuiri, S; Ogura, T; Tanaka, Y; Okada, T; Aikawa, A; Sakai, K

    2015-12-01

    Fluid imbalance due to sodium retention and malnutrition can be characterized by the ratio of extracellular water (ECW) to intracellular water (ICW). We investigated whether the ECW/ICW ratio is a risk factor for adverse outcomes. Retrospective cohort study. 149 patients with chronic kidney disease from 2005 to 2009, who were followed until August 2013. Body fluid composition was measured by bioelectrical impedance analysis. Patients were categorized according to the ECW/ICW ratio tertile. Daily nutrient intake was estimated from 24-h dietary recall and analyzed using standard food composition tables. The main outcomes were adverse renal outcomes, as defined by a decline of 50% or more from the baseline glomerular filtration rate or initiation of renal replacement therapy, cardiovascular events, and all-cause mortality. The ECW/ICW ratio increased with downward ICW slope with age and renal dysfunction besides ECW excess with massive proteinuria. Sodium intake, protein intake, and calorie intake were negatively correlated with the ECW/ICW ratios due to the steeper decreasing ICW content with the decreased dietary intake than the decreasing ECW content. During a median 4.9-year follow up, patients in the highest tertile had the worst adverse renal outcomes (15.9 vs. 5.1 per 100 patient-years, P patient-years, P = 0.002), and mortality (11.2 vs. 1.3 per 100 patient-years, P patients with chronic kidney disease may explain the reserve capacity for volume overload and is associated with adverse renal outcomes and all-cause mortality.

  16. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Goris, Maaike; Landheer, Sjoerd W.; Buikema, Hendrik; van Dokkum, Richard P. E.

    Introduction:Intact myogenic constriction plays a role in renal blood flow autoregulation and protection against pressure-related (renal) injury. However, to what extent alterations in renal artery myogenic constriction are involved in development of renal damage during aging is unknown. Therefore,

  17. Kidney function changes with aging in adults: comparison between cross-sectional and longitudinal data analyses in renal function assessment.

    Science.gov (United States)

    Chung, Sang M; Lee, David J; Hand, Austin; Young, Philip; Vaidyanathan, Jayabharathi; Sahajwalla, Chandrahas

    2015-12-01

    The study evaluated whether the renal function decline rate per year with age in adults varies based on two primary statistical analyses: cross-section (CS), using one observation per subject, and longitudinal (LT), using multiple observations per subject over time. A total of 16628 records (3946 subjects; age range 30-92 years) of creatinine clearance and relevant demographic data were used. On average, four samples per subject were collected for up to 2364 days (mean: 793 days). A simple linear regression and random coefficient models were selected for CS and LT analyses, respectively. The renal function decline rates per year were 1.33 and 0.95 ml/min/year for CS and LT analyses, respectively, and were slower when the repeated individual measurements were considered. The study confirms that rates are different based on statistical analyses, and that a statistically robust longitudinal model with a proper sampling design provides reliable individual as well as population estimates of the renal function decline rates per year with age in adults. In conclusion, our findings indicated that one should be cautious in interpreting the renal function decline rate with aging information because its estimation was highly dependent on the statistical analyses. From our analyses, a population longitudinal analysis (e.g. random coefficient model) is recommended if individualization is critical, such as a dose adjustment based on renal function during a chronic therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    Science.gov (United States)

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2017-08-01

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Kidney Quiz

    Science.gov (United States)

    ... Cares Peers Support Ask the Doctor My Food Coach Nutrition Dialysis Patient & Family Resources Emergency Resources A ... State Charity Registration Disclosures © 2017 National Kidney Foundation, Inc., 30 East 33rd Street, New York, NY 10016, ...

  20. Kidney Transplant

    Science.gov (United States)

    ... that links the kidney to the bladder — is connected to your bladder. After the procedure After your ... three to eight weeks after transplant. No lifting objects weighing more than 10 pounds or exercise other ...

  1. Kidney School

    Science.gov (United States)

    ... but food is a major focus of family life and social events. Learn how to balance your food intake so you can eat the foods ... Getting Adequate Dialysis Healthy kidneys work 24 hours a day, 7 days a week. ...

  2. Kidney Cancer

    Science.gov (United States)

    ... common cancers in the United States. Cancer Home Kidney Cancer Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir Anatomy of the male urinary system (left panel) and ...

  3. Kidney Facts

    Science.gov (United States)

    ... Research Institute Veterans Administration Special thanks to our corporate sponsor for supporting excellence in transplant education: Learn more about the UNOS Kidney Transplant Learning Center Patient brochures What Every Patient Needs to ...

  4. Kidney Dysplasia

    Science.gov (United States)

    ... whose mothers used certain prescription medications or illegal drugs during pregnancy What are the signs of kidney dysplasia? Many ... the use of certain prescription medications or illegal drugs during pregnancy. Pregnant women should talk with their health care ...

  5. Kidney Facts

    Science.gov (United States)

    ... to know FAQ Living donation What is living donation? Organs Types Being a living donor First steps Being ... treatment option for kidney failure or disease through organ donation from a healthy, living person who is a ...

  6. Pathological Outcomes in Kidney and Brain in Male Fischer Rats Given Dietary Ochratoxin A, Commencing at One Year of Age

    Science.gov (United States)

    Mantle, Peter G.; Nolan, Christopher C.

    2010-01-01

    Malignant renal carcinoma, manifest in morbid ageing rats, is the striking component of an otherwise silent response after about nine months of exposure to ochratoxin A in the first year of life (daily intake ~100-250 µg/kg body weight). Reasons for the long latency are unclear, as is whether there would be a similar carcinogenic response if toxin exposure started at one year of age. Therefore, 24 male Fischer rats were given 100 µg ochratoxin A as a daily dietary contaminant for 35 weeks from age 50 weeks. Plasma ochratoxin A concentration reached a maximum value of ~8 µg/mL within one month of starting the toxin regimen. No renal carcinomas occurred. Four renal adenomas, two of which were only microscopic, were found among the six rats surviving for 110 weeks. The findings raise new questions about a difference between young adults and mature adults in sensitivity of male rats to the ochratoxin A-induced DNA damage necessary for renal carcinogenesis. A pilot histological study of perfuse-fixed brains of the toxin-treated rats showed no gross abnormalities, correlating with the consistent absence of behavioral or neurological disorders from chronic ochratoxin A exposure regimens in the range 100-250 µg/kg/day during the second half of life. Reasoned questioning concerning ochratoxin A as a neurotoxic mycotoxin is made. PMID:22069628

  7. Pathological Outcomes in Kidney and Brain in Male Fischer Rats Given Dietary Ochratoxin A, Commencing at One Year of Age

    Directory of Open Access Journals (Sweden)

    Peter G. Mantle

    2010-05-01

    Full Text Available Malignant renal carcinoma, manifest in morbid ageing rats, is the striking component of an otherwise silent response after about nine months of exposure to ochratoxin A in the first year of life (daily intake ~100–250 µg/kg body weight. Reasons for the long latency are unclear, as is whether there would be a similar carcinogenic response if toxin exposure started at one year of age. Therefore, 24 male Fischer rats were given 100 µg ochratoxin A as a daily dietary contaminant for 35 weeks from age 50 weeks. Plasma ochratoxin A concentration reached a maximum value of ~8 µg/mL within one month of starting the toxin regimen. No renal carcinomas occurred. Four renal adenomas, two of which were only microscopic, were found among the six rats surviving for 110 weeks. The findings raise new questions about a difference between young adults and mature adults in sensitivity of male rats to the ochratoxin A-induced DNA damage necessary for renal carcinogenesis. A pilot histological study of perfuse-fixed brains of the toxin-treated rats showed no gross abnormalities, correlating with the consistent absence of behavioral or neurological disorders from chronic ochratoxin A exposure regimens in the range 100–250 µg/kg/day during the second half of life. Reasoned questioning concerning ochratoxin A as a neurotoxic mycotoxin is made.

  8. Acute Kidney Injury in the Elderly

    Science.gov (United States)

    Abdel-Kader, Khaled; Palevsky, Paul

    2009-01-01

    Synopsis The aging kidney undergoes a number of important anatomic and physiologic changes that increase the risk of acute kidney injury (formerly acute renal failure) in the elderly. This article reviews these changes and discusses the diagnoses frequently encountered in the elderly patient with acute kidney injury. The incidence, staging, evaluation, management, and prognosis of acute kidney injury are also examined with special focus given to older adults. PMID:19765485

  9. Association between dyslipidemia and chronic kidney disease: a cross-sectional study in the middle-aged and elderly Chinese population.

    Science.gov (United States)

    Liu, Dong-Wei; Wan, Jia; Liu, Zhang-Suo; Wang, Pei; Cheng, Gen-Yang; Shi, Xue-Zhong

    2013-04-01

    Dyslipidemia, a well-known risk factor for cardiovascular disease, is common in patients with kidney disease. Recent studies discerned that dyslipidemias play a critical role in renal damage progression in renal diseases, but the association between dyslipidemias and chronic kidney disease (CKD) in the general population remains unknown. Thus, we assessed whether the growing prevalence of dyslipidemia could increase the risk of CKD. A total of 4779 middle-aged and elderly participants participated in this study. Dyslipidemias were defined by the 2007 Guidelines in Chinese Adults. Incident CKD was defined as albuminuria and/or reduced estimated glomerular filtration rate (eGFR, dyslipidemia and albuminuria/reduced eGFR. Participants with hypercholesterolemia exhibited a greater prevalence of albuminuria and reduced eGFR (10.0% vs. 6.1%, P = 0.001; 4.0% vs. 2.4%, P = 0.028, respectively). Both hypercholesterolemia and low high density lipoprotein cholesterol (HDL-C) were independently associated with albuminuria (odds ratio (OR) 1.49; 95% confidence interval (CI) 1.08 - 2.07 and OR 1.53; 95%CI 1.13 - 2.09, respectively). The multivariable adjusted OR of reduced eGFR in participants with hypercholesterolemia was 1.65 (95%CI 1.03 - 2.65). As the number of dyslipidemia components increased, so did the OR of CKD: 0.87 (95%CI 0.65 - 1.15), 1.29 (95%CI, 0.83 - 2.01), and 7.87 (95%CI, 3.75 - 16.50) for albuminuria, and 0.38 (95%CI 0.21 - 0.69), 1.92 (95%CI 1.14 - 3.25), and 5.85 (95%CI 2.36 - 14.51) for reduced eGFR, respectively. Our findings indicate that dyslipidemias increase the risk of CKD in the middle-aged and elderly Chinese population. Hypercholesterolemia plays an important role in reducing total eGFR. Both low HDL-C and hypercholesterolemia are associated with an increased risk for albuminuria.

  10. Pain Medicines and Kidney Damage

    Science.gov (United States)

    ... acute illnesses involving fluid loss or decreased fluid intake. Other patients in these reports had risk factors such as systemic lupus erythematosus, advanced age, chronic kidney disease, or recent heavy alcohol consumption. These cases involved a single dose in ...

  11. Improvement of ovarian response and oocyte quality of aged female by administration of bone morphogenetic protein-6 in a mouse model

    Directory of Open Access Journals (Sweden)

    Park Seung S

    2012-12-01

    Full Text Available Abstract Background Advancing female age remains a difficult problem in infertility treatment. Ovarian angiogenesis plays an important role in follicular development and the activation of ovarian angiogenesis has been emerged as a new strategy for the improvement of age-related decline of oocyte quality. BMP-6 affect gonadotropin signals in granulosa cells and it promotes normal fertility by enabling appropriate response to LH and normal oocyte quality. BMP-6 has a potential role in regulation of angiogenesis and regulates the expression of inhibitor of DNA-binding proteins (Ids. Ids involved in the control and timing of follicle selection and granulosa cells differentiation. Especially, Id-1 is well-characterized target of BMP-6 signaling. Therefore, this study investigated whether co-administration of BMP-6 during superovulation process improves ovarian response, oocyte quality and expression of Id-1 and vascular endothelial growth factor (VEGF in the ovary of aged female using a mouse model. Methods Aged C57BL/6 female mice (26–31 weeks old were superovulated by injection with 0.1 mL of 5 IU equine chorionic gonadotropin (eCG containing recombinant mouse BMP-6 at various doses (0, 0.01, 0.1, 1, and 10 ng, followed by injection with 5 IU human chorionic gonadotropin (hCG 48 h later. Then, the mice were immediately paired with an individual male. The aged control group was superovulated without BMP-6. Young mice of 6–9 weeks old were superovulated without BMP-6 as a positive control for superovulation and in vitro culture of embryos. Eighteen hours after hCG injection, zygotes were retrieved and cultured for 4 days. Both ovaries of each mouse were provided in the examination of ovarian expression of Id-1 and VEGF by reverse transcriptase-polymerase chain reaction, western blot, and immunohistochemistry. Results Administration of 0.1 ng BMP-6 significantly increased the number and blastocyst formation rate of oocytes ovulated and ovarian

  12. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model.

    Science.gov (United States)

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-04-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30-35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose, D-galactose + VAC hydroalcoholic extract, aged, aged + VAC hydroalcoholic extract. The aged model was prepared by subcutaneous injection of D-galactose for 45 days and, VAC hydroalcoholic extract was gavaged twice a day in the last 7 days. 24 h after the last drug and extract administrations, serum samples and pancreatic tissues were removed to evaluate experimental and histological determinations. Serum glucose level decreased in VAC, D-galactose and, aged-treated groups compared to the control ( P < 0.05). Insulin level increased in VAC and decreased in D-galactose and aged VAC-treated mice compared to the control ( P < 0.05). Homeostasis model assessment-estimated insulin resistance (HOMA-IR) increased in D-galactose, aging, and VAC hydroalcoholic extract groups ( P < 0.05) and, administration of VAC hydroalcoholic extract improved HOMA-IR in D-galactose and aging treated animals. Despite the size of pancreatic islets decreased in aged and D-galactose groups, VAC administration recovered it. Present data showed that VAC hydroalcoholic extract has hypoglycemic and pancreatic protective effects in natural aged and aging model mice.

  13. Diabetic kidney disease.

    Science.gov (United States)

    Thomas, Merlin C; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A M; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E

    2015-07-30

    The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin-angiotensin-aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg.

  14. The Association Between Unhealthy Lifestyle Behaviors and the Prevalence of Chronic Kidney Disease (CKD) in Middle-Aged and Older Men.

    Science.gov (United States)

    Michishita, Ryoma; Matsuda, Takuro; Kawakami, Shotaro; Kiyonaga, Akira; Tanaka, Hiroaki; Morito, Natsumi; Higaki, Yasuki

    2016-07-05

    This cross-sectional study evaluated the association between unhealthy lifestyle behaviors and the prevalence of chronic kidney disease (CKD) in middle-aged and older men. The subjects included 445 men without a history of cardiovascular disease, stroke, or dialysis treatment, who were not taking medications. Unhealthy lifestyle behaviors were evaluated using a standardized self-administered questionnaire and were defined as follows: 1) lack of habitual moderate exercise, 2) lack of daily physical activity, 3) slow walking speed, 4) fast eating speed, 5) late-night dinner, 6) bedtime snacking, and 7) skipping breakfast. The participants were divided into four categories, which were classified into quartile distributions based on the number of unhealthy lifestyle behaviors (0-1, 2, 3, and ≥4 unhealthy behaviors). According to a multivariate analysis, the odds ratio (OR) for CKD (defined as estimated glomerular filtration rate [eGFR] unhealthy lifestyle behaviors, especially those related to lack of habitual moderate exercise and presence of late-night dinner and bedtime snacking may be associated with the prevalence of CKD.

  15. The joint impact of habitual exercise and glycemic control on the incidence of chronic kidney disease (CKD) in middle-aged and older males.

    Science.gov (United States)

    Michishita, Ryoma; Matsuda, Takuro; Kawakami, Shotaro; Tanaka, Satoshi; Kiyonaga, Akira; Tanaka, Hiroaki; Morito, Natsumi; Higaki, Yasuki

    2017-11-06

    This retrospective study evaluated the influence of the joint impact of habitual exercise and glycemic control on the incidence of chronic kidney disease (CKD) during a 6-year follow-up period in middle-aged and older males. The study population included 303 males without a history of cardiovascular disease, stroke, renal dysfunction, or dialysis treatment. Their lifestyle behaviors regarding exercise and physical activity were evaluated using a standardized self-administered questionnaire. The participants were divided into four categories according to the performance or non-performance of habitual exercise and the presence or absence of hyperglycemia. After 6 years, 32 subjects (10.6%) developed CKD (estimated glomerular filtration rate exercise and hyperglycemic subjects (log-rank test: p exercise (HR = 2.82, 95% confidence of interval (CI) = 1.07-7.36, p = 0.034) and that in hyperglycemic subjects who did not perform habitual exercise (HR = 5.89, 95% CI = 1.87-16.63, p = 0.003) were significantly higher in comparison to the subjects with a NGT who performed habitual exercise. These results suggest that the habitual exercise and good glycemic control and their combination were associated with the incidence of CKD.

  16. Ontology Design Patterns for Combining Pathology and Anatomy: Application to Study Aging and Longevity in Inbred Mouse Strains

    KAUST Repository

    Alghamdi, Sarah M.

    2018-05-13

    In biomedical research, ontologies are widely used to represent knowledge as well as to annotate datasets. Many of the existing ontologies cover a single type of phenomena, such as a process, cell type, gene, pathological entity or anatomical structure. Consequently, there is a requirement to use multiple ontologies to fully characterize the observations in the datasets. Although this allows precise annotation of different aspects of a given dataset, it limits our ability to use the ontologies in data analysis, as the ontologies are usually disconnected and their combinations cannot be exploited. Motivated by this, here we present novel ontology design methods for combining pathology and anatomy concepts. To this end, we use a dataset of mouse models which has been characterized through two ontologies: one of them is the mouse pathology ontology (MPATH) covering pathological lesions while the other is the mouse anatomy ontology (MA) covering the anatomical site of the lesions. We propose four novel ontology design patterns for combining these ontologies, and use these patterns to generate four ontologies in a data-driven way. To evaluate the generated ontologies, we utilize these in ontology-based data analysis, including ontology enrichment analysis and computation of semantic similarity. We demonstrate that there are significant differences between the four ontologies in different analysis approaches. In addition, when using semantic similarity to confirm the hypothesis that genetically identical mice should develop more similar diseases, the generated combined ontologies lead to significantly better analysis results compared to using each ontology individually. Our results reveal that using ontology design patterns to combine different facets characterizing a dataset can improve established analysis methods.

  17. Association of homocysteine level and vascular burden and cognitive function in middle-aged and older adults with chronic kidney disease.

    Science.gov (United States)

    Yeh, Yi-Chun; Huang, Mei-Feng; Hwang, Shang-Jyh; Tsai, Jer-Chia; Liu, Tai-Ling; Hsiao, Shih-Ming; Yang, Yi-Hsin; Kuo, Mei-Chuan; Chen, Cheng-Sheng

    2016-07-01

    Patients with chronic kidney disease (CKD) have been found to have cognitive impairment. However, the core features and clinical correlates of cognitive impairment are still unclear. Elevated homocysteine levels are present in CKD, and this is a risk factor for cognitive impairment and vascular diseases in the general population. Thus, this study investigated the core domains of cognitive impairment and investigated the associations of homocysteine level and vascular burden with cognitive function in patients with CKD. Patients with CKD aged ≥ 50 years and age- and sex-matched normal comparisons were enrolled. The total fasting serum homocysteine level was measured. Vascular burden was assessed using the Framingham Cardiovascular Risk Scale. Cognitive function was evaluated using comprehensive neuropsychological tests. A total of 230 patients with CKD and 92 comparisons completed the study. Memory impairment and executive dysfunction were identified as core features of cognitive impairment in the CKD patients. Among the patients with CKD, higher serum homocysteine levels (β = -0.17, p = 0.035) and higher Framingham Cardiovascular Risk Scale scores (β = -0.18, p = 0.013) were correlated with poor executive function independently. However, an association with memory function was not noted. Our results showed that an elevated homocysteine level and an increased vascular burden were independently associated with executive function, but not memory, in CKD patients. This findings suggested the co-existence of vascular and non-vascular hypotheses regarding executive dysfunction in CKD patients. Meanwhile, other risk factors related to CKD itself should be investigated in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology: implications for Alzheimer's disease.

    Science.gov (United States)

    Thomas, Rhian S; Alsaqati, Mouhamed; Bice, Justin S; Hvoslef-Eide, Martha; Good, Mark A; Kidd, Emma J

    2017-10-18

    A major risk factor for the development of Alzheimer's disease (AD) is increasing age, but the reason behind this association has not been identified. It is thought that the changes in endocytosis seen in AD patients are causal for this condition. Thus, we hypothesized that the increased risk of developing AD associated with ageing may be because of changes in endocytosis. We investigated using Western blotting whether the expression of endocytic proteins involved in clathrin-mediated and clathrin-independent endocytosis are altered by increasing age in a mouse model of amyloid pathology. We used mice transgenic for human amyloid precursor protein containing the V717I London mutation. We compared the London mutation mice with age-matched wild-type (WT) controls at three ages, 3, 9 and 18 months, representing different stages in the development of pathology in this model. Having verified that the London mutation mice overexpressed amyloid precursor protein and β-amyloid, we found that the expression of the smallest isoform of PICALM, a key protein involved in the regulation of clathrin-coated pit formation, was significantly increased in WT mice, but decreased in the London mutation mice with age. PICALM levels in WT 18-month mice and clathrin levels in WT 9-month mice were significantly higher than those in the London mutation mice of the same ages. The expression of caveolin-1, involved in clathrin-independent endocytosis, was significantly increased with age in all mice. Our results suggest that endocytic processes could be altered by the ageing process and such changes could partly explain the association between ageing and AD.

  19. Nephrectomy (Kidney Removal)

    Science.gov (United States)

    ... nephrectomy is needed because of other kidney diseases. Kidney function Most people have two kidneys — fist-sized ... and the disease that prompted the surgery? Monitoring kidney function Most people can function well with only ...

  20. Kidney Stones (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Kidney Stones KidsHealth / For Parents / Kidney Stones What's in ... other treatments to help remove the stones. How Kidney Stones Form It's the kidneys' job to remove ...

  1. Dopaminergic Immunofluorescence Studies in Kidney Tissue.

    Science.gov (United States)

    Gildea, J J; Van Sciver, R E; McGrath, H E; Kemp, B A; Jose, P A; Carey, R M; Felder, R A

    2017-01-01

    The kidney is a highly integrated system of specialized differentiated cells that are responsible for fluid and electrolyte balance in the body. While much of today's research focuses on isolated nephron segments or cells from nephron segments grown in tissue culture, an often overlooked technique that can provide a unique view of many cell types in the kidney is slice culture. Here, we describe techniques that use freshly excised kidney tissue from rats to perform a variety of experiments shortly after isolating the tissue. By slicing the rat kidney in a "bread loaf" format, multiple studies can be performed on slices from the same tissue in parallel. Cryosectioning and staining of the tissue allow for the evaluation of physiological or biochemical responses in a wide variety of specific nephron segments. The procedures described within this chapter can also be extended to human or mouse kidney tissue.

  2. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    Science.gov (United States)

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  3. Kidney pain (image)

    Science.gov (United States)

    A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the size of sand or ... A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the ...

  4. Structural modifications in the arterial wall during physiological aging and as a result of diabetes mellitus in a mouse model: are the changes comparable?

    Science.gov (United States)

    Prévost, G; Bulckaen, H; Gaxatte, C; Boulanger, E; Béraud, G; Creusy, C; Puisieux, F; Fontaine, P

    2011-04-01

    Vascular accelerated aging represents the major cause of morbidity and mortality in subjects with diabetes mellitus. In the present study, our aim was to compare premature functional and morphological changes in the arterial wall resulting from streptozotocin (STZ)-induced diabetes mellitus in mice over a short-term period with those that develop during physiological aging. The effect of aminoguanidine (AG) on the prevention of these alterations in the diabetic group was also analyzed. The vascular relaxation response to acetylcholine (ACh) in the mouse was tested in isolated segments of phenylephrine (Phe)-precontracted aorta at 2, 4 and 8 weeks (wk) of STZ-induced diabetes and compare to 12- and 84-wk-old mice. Aortic structural changes were investigated, and receptor for AGE (RAGE) aortic expression was quantified by western blot. Compared to the 12-wk control group (76 ± 5%), significant endothelium-dependant relaxation (EDR) impairment was found in the group of 12-wk-old mice, which underwent a 4-wk diabetes-inducing STZ treatment (12wk-4WD) (52 ± 4%; P aging preventive effect on the structural changes of the arterial wall. Our study compared EDR linked to physiological aging with that observed in the case of STZ-induced diabetes over a short-term period, and demonstrated the beneficial effect of AG. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.

    Science.gov (United States)

    Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M

    2006-08-25

    Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement

  6. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.

    Science.gov (United States)

    Chen, Jiayin; Or, Calvin

    2017-11-01

    This study assessed the use of an immersive virtual reality (VR), a mouse and a touchscreen for one-directional pointing, multi-directional pointing, and dragging-and-dropping tasks involving targets of smaller and larger widths by young (n = 18; 18-30 years), middle-aged (n = 18; 40-55 years) and older adults (n = 18; 65-75 years). A three-way, mixed-factorial design was used for data collection. The dependent variables were the movement time required and the error rate. Our main findings were that the participants took more time and made more errors in using the VR input interface than in using the mouse or the touchscreen. This pattern applied in all three age groups in all tasks, except for multi-directional pointing with a larger target width among the older group. Overall, older adults took longer to complete the tasks and made more errors than young or middle-aged adults. Larger target widths yielded shorter movement times and lower error rates in pointing tasks, but larger targets yielded higher rates of error in dragging-and-dropping tasks. Our study indicated that any other virtual environments that are similar to those we tested may be more suitable for displaying scenes than for manipulating objects that are small and require fine control. Although interacting with VR is relatively difficult, especially for older adults, there is still potential for older adults to adapt to that interface. Furthermore, adjusting the width of objects according to the type of manipulation required might be an effective way to promote performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Association Between Unhealthy Lifestyle Behaviors and the Prevalence of Chronic Kidney Disease (CKD in Middle-Aged and Older Men

    Directory of Open Access Journals (Sweden)

    Ryoma Michishita

    2016-07-01

    Full Text Available Background: This cross-sectional study evaluated the association between unhealthy lifestyle behaviors and the prevalence of chronic kidney disease (CKD in middle-aged and older men. Methods: The subjects included 445 men without a history of cardiovascular disease, stroke, or dialysis treatment, who were not taking medications. Unhealthy lifestyle behaviors were evaluated using a standardized selfadministered questionnaire and were defined as follows: 1 lack of habitual moderate exercise, 2 lack of daily physical activity, 3 slow walking speed, 4 fast eating speed, 5 late-night dinner, 6 bedtime snacking, and 7 skipping breakfast. The participants were divided into four categories, which were classified into quartile distributions based on the number of unhealthy lifestyle behaviors (0–1, 2, 3, and ≥4 unhealthy behaviors. Results: According to a multivariate analysis, the odds ratio (OR for CKD (defined as estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m2 and/or proteinuria was found to be significantly higher in the ≥4 group than in the 0–1 group (OR 4.67; 95% confidence interval [CI], 1.51–14.40. Moreover, subjects’ lack of habitual moderate exercise (OR 3.06; 95% CI, 1.13–8.32 and presence of late-night dinner (OR 2.84; 95% CI, 1.40–5.75 and bedtime snacking behaviors (OR 2.87; 95% CI, 1.27–6.45 were found to be significantly associated with the prevalence of CKD. Conclusions: These results suggest that an accumulation of unhealthy lifestyle behaviors, especially those related to lack of habitual moderate exercise and presence of late-night dinner and bedtime snacking may be associated with the prevalence of CKD.

  8. Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Qun Shan

    2009-01-01

    Full Text Available Purple sweet potato color (PSPC, a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal. The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks. We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2, inhibited nuclear translocation of nuclear factor-kappaB (NF-κB, increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD and catalase (CAT, and reduced the content of malondialdehyde (MDA, respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.

  9. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system.

    Directory of Open Access Journals (Sweden)

    Yuen Fei Wong

    2011-02-01

    Full Text Available Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys.RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules.Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the

  10. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex.

    Science.gov (United States)

    Guo, Shan-Shan; Gao, Xiao-Fang; Gu, Yan-Rong; Wan, Zhong-Xiao; Lu, A-Ming; Qin, Zheng-Hong; Luo, Li

    2016-01-01

    Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline.

  11. Preservation of Cognitive Function by Lepidium meyenii (Maca Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex

    Directory of Open Access Journals (Sweden)

    Shan-Shan Guo

    2016-01-01

    Full Text Available Maca has been used as a foodstuff and a traditional medicine in the Andean region for over 2,000 years. Recently the neuroprotective effects of maca also arouse interest of researchers. Decrease in mitochondrial function and decline in autophagy signaling may participate in the process of age-related cognitive decline. This study aimed to investigate if maca could improve cognitive function of middle-aged mice and if this effect was associated with improvement of mitochondrial activity and modulation of autophagy signaling in mouse cortex. Fourteen-month-old male ICR mice received maca powder administered by gavage for five weeks. Maca improved cognitive function, motor coordination, and endurance capacity in middle-aged mice, accompanied by increased mitochondrial respiratory function and upregulation of autophagy-related proteins in cortex. Our findings suggest that maca is a newly defined nutritional plant which can improve mitochondrial function and upregulate autophagy-related proteins and may be an effective functional food for slowing down age-related cognitive decline.

  12. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. The Fmr1 knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC of Fmr1KO mice from 2 to 12 months. In young adult Fmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-old Fmr1KO mice. We found that acute pharmacological blockade of mGlu5 receptor in 12-month-old Fmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP in Fmr1KO mice, which may correlate to some of the complex age-related deficits in FXS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Kidney transplant outcomes from older deceased donors

    DEFF Research Database (Denmark)

    Pippias, Maria; Jager, Kitty J; Caskey, Fergus

    2018-01-01

    As the median age of deceased kidney donors rises, updated knowledge of transplant outcomes from older deceased donors in differing donor-recipient age groups is required. Using ERA-EDTA Registry data we determined survival outcomes of kidney allografts donated from the same older deceased donor...

  14. The kidneys

    International Nuclear Information System (INIS)

    Freeman, L.M.; Lutzker, L.G.

    1984-01-01

    It has unfortunately remained true that radionuclide renal imaging studies have not been so widely accepted as other types of scintigraphy, despite improvements in radiopharmaceuticals and imaging techniques. Perhaps this is because of the variety of established radiologic techniques available for the study of the kidneys and the addition of new modalities such as CT scanning and ultrasound. Clinicians may have become confused by the multiplicity of options, which has obscured the distinction between renal scintigraphy and all other methods of imaging the kidney, i.e., that renal scintigraphy provides functional information in an easily quantifiable form. It is interesting that pediatric practitioners have more easily recognized the functional importance of this modality than have the practitioners of adult medicine, who more often prefer anatomic modalities, either traditional or new

  15. Meta-analysis of Gene Expression in the Mouse Liver Reveals Biomarkers Associated with Inflammation Increased Early During Aging

    Science.gov (United States)

    Aging is associated with a predictable loss of cellular homeostasis, a decline in physiological function and an increase in various diseases. We hypothesized that similar age-related gene expression profiles would be observed in mice across independent studies. Employing a metaan...

  16. Dual kidney transplantation with organs from extended criteria cadaveric donors.

    LENUS (Irish Health Repository)

    D'Arcy, Frank T

    2009-10-01

    The critical shortage of kidneys available for transplantation has led to alternate strategies to expand the pool. Transplantation of the 2 kidneys into a single recipient using organs suboptimal for single kidney transplantation was suggested. We assessed results in 24 grafts allocated for dual kidney transplantation vs those in a control group of 44 designated for single kidney transplantation. Each group underwent pretransplant biopsy and recipients were age matched.

  17. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    Science.gov (United States)

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  18. Alterations in mouse hypothalamic adipokine gene expression and leptin signaling following chronic spinal cord injury and with advanced age.

    Directory of Open Access Journals (Sweden)

    Gregory E Bigford

    Full Text Available Chronic spinal cord injury (SCI results in an accelerated trajectory of several cardiovascular disease (CVD risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF, resistin (Rstn, long-form leptin receptor (LepRb and suppressor of cytokine-3 (SOCS3 gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER stress and activation of the uncoupled protein response (UPR as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions.

  19. Bio-Spectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Ageing Mouse Model.

    Science.gov (United States)

    Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J

    2018-06-14

    Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at

  20. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling.

    Science.gov (United States)

    Dong, Dan; Cai, Guang-Yan; Ning, Yi-Chun; Wang, Jing-Chao; Lv, Yang; Hong, Quan; Cui, Shao-Yuan; Fu, Bo; Guo, Ya-Nan; Chen, Xiang-Mei

    2017-03-07

    Renal fibrosis contributes to declining renal function in the elderly. What is unclear however, is whether epithelial-mesenchymal transition (EMT) contributes to this age-related renal fibrosis. Here, we analyzed indicators of EMT during kidney aging and investigated the protective effects and mechanisms of short-term regimens of caloric restriction (CR) or caloric restriction mimetics (CRMs), including resveratrol and metformin. High glucose was used to induce premature senescence and EMT in human primary proximal tubular cells (PTCs) in vitro. To test the role of AMPK-mTOR signaling, siRNA was used to deplete AMPK. Cellular senescence and AMPK-mTOR signaling markers associated with EMT were detected. CR or CRMs treatment alleviated age-related EMT in aging kidneys, which was accompanied by activation of AMPK-mTOR signaling. High glucose induced premature senescence and EMT in PTCs in vitro, which was accompanied by down-regulation of AMPK/mTOR signaling. CRMs alleviated high glucose-induced senescence and EMT via stimulation of AMPK/mTOR signaling. Activation of AMPK/mTOR signaling protected PTCs from high glucose-induced EMT and cellular senescence. Short-term regimens of CR and CRMs alleviated age-related EMT via AMPK-mTOR signaling, suggesting a potential approach to reducing renal fibrosis during aging.

  1. Age-related increase in the rate of spontaneou and γ-ray-induced hprt mutations in mouse spleen lymphocytes

    International Nuclear Information System (INIS)

    Gazlev, A.I.; Podlutskii, A.Ya.; Bradbury, R.

    1994-01-01

    Endogenous and exogenous factors continually afflict DNA of cells of organisms. A certain amount of the damage is accumulated causing mutations, increasing the risk of malignacies, impairing cell functions, and upsetting the body's homeostasis. The research reported here studies the rates of spontaneous hprt nmutationsand those induced you ggammairradiation in the splenocytes of mice at various ages. The rate of spontaneous and induced hprt gene mutations increases with aging. In gamma irradiated mice the rate of radiation-induced mutations depended on the absorbed dose and age, with the rate 2.3-3.0 fold higher in 104-110 week old mice than in younger pups. 15 refs., 1 tab

  2. Glial molecular alterations with mouse brain development and aging: up-regulation of the Kir4.1 and aquaporin-4.

    Science.gov (United States)

    Gupta, Rajaneesh Kumar; Kanungo, Madhusudan

    2013-02-01

    Glial cells, besides participating as passive supporting matrix, are also proposed to be involved in the optimization of the interstitial space for synaptic transmission by tight control of ionic and water homeostasis. In adult mouse brain, inwardly rectifying K+ (Kir4.1) and aquaporin-4 (AQP4) channels localize to astroglial endfeets in contact with brain microvessels and glutamate synapses, optimizing clearance of extracellular K(+) and water from the synaptic layers. However, it is still unclear whether there is an age-dependent difference in the expressions of Kir4.1 and AQP4 channels specifically during postnatal development and aging when various marked changes occur in brain and if these changes region specific. RT-PCR and immunoblotting was conducted to compare the relative expression of Kir4.1 and AQP4 mRNA and protein in the early and mature postnatal (0-, 15-, 45-day), adult (20-week), and old age (70-week) mice cerebral and cerebellar cortices. Expressions of Kir4.1 and AQP4 mRNA and protein are very low at 0-day. A pronounced and continuous increase was observed by mature postnatal ages (15-, 45-days). However, in the 70-week-old mice, expressions are significantly up-regulated as compared to 20-week-old mice. Both genes follow the same age-related pattern in both cerebral and cerebellar cortices. The time course and expression pattern suggests that Kir4.1 and AQP4 channels may play an important role in brain K(+) and water homeostasis in early postnatal weeks after birth and during aging.

  3. Age-dependent changes of cerebral copper metabolism in Atp7b -/- knockout mouse model of Wilson's disease by [64Cu]CuCl2-PET/CT.

    Science.gov (United States)

    Xie, Fang; Xi, Yin; Pascual, Juan M; Muzik, Otto; Peng, Fangyu

    2017-06-01

    Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([ 64 C]CuCl 2 ) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [ 64 C]CuCl 2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64 Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64 Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [ 64 C]CuCl 2 as a tracer. Furthermore, age-dependent increase of 64 Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [ 64 C]CuCl 2 -PET/CT study of Atp7b -/- knockout mice with orally administered [ 64 Cu]CuCl 2 as a tracer. The findings of this study support clinical use of [ 64 Cu]CuCl 2 -PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.

  4. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver

    DEFF Research Database (Denmark)

    Maag Kristensen, Caroline; Brandt, Christina Tingbjerg; Jørgensen, Stine Ringholm

    2017-01-01

    of specific UPR pathways and increased activity of the ATF6 pathway in the liver with aging. Lifelong exercise training prevented the age-associated change in BiP and IRE1α protein, but not cleaved ATF6 protein and resulted in further decreased PERK protein. Taken together, the present study provides evidence...... that the capacity and activity of the three UPR pathways are differentially regulated in the liver with aging and lifelong exercise training. In addition, PGC-1α does not seem to regulate the activity of hepatic UPR in response to exercise training, but to influence the capacity of the liver to induce UPR......Aging is associated with changes in several metabolic pathways affecting liver function including the adaptive unfolded protein response (UPR). On the other hand, exercise training has been shown to exert beneficial effects on metabolism in the liver and exercise training has been reported...

  5. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner

    DEFF Research Database (Denmark)

    Halling, Jens Frey; Jørgensen, Stine Ringholm; Olesen, Jesper

    2017-01-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effect...... evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner....

  6. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Directory of Open Access Journals (Sweden)

    Sherif F Tadros

    Full Text Available Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  7. Age-related hearing loss: Aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response – ABR thresholds, and distortion-product otoacoustic emission – DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain – inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age. PMID:19070604

  8. Effect of Schisandra chinensis polysaccharide on intracerebral acetylcholinesterase and monoamine neurotransmitters in a D-galactose-induced aging brain mouse model

    Institute of Scientific and Technical Information of China (English)

    Mingsan Miao; Jianlian Gao; Guangwei Zhang; Xiao Ma; Ying Zhang

    2009-01-01

    BACKGROUND: The most prominent characteristic of brain aging is decreased learning and memory ability. The functions of learning and memory are closely related to intracerebral acetylcholinesterase (ACHE) and monoamine neurotransmitter activity. Previous studies have shown that Schisandra chinensis potysaccharide has an anti-aging effect. OBJECTIVE: To explore the effects of Schisandra chinensis polysaccharide on AChE activity and monoamine neurotransmitter content, as well as learning and memory ability in a D-galactose-induced aging mouse brain model compared with the positive control drug Kangnaoling. DESIGN, TIME AND SETTING: Completely randomized, controlled experiment based on neurobiochemistry was performed at the Pharmacological Laboratory, Henan University of Traditional Chinese Medicine from September to December 2003.MATERIALS: Schisandra chinensis was purchased from Henan Provincial Medicinal Company. Schisandra chinensis polysaccharide was obtained by water extraction and alcohol precipitation. Kangnaoling pellets were provided by Liaoning Tianlong Pharmaceutical (batch No. 20030804;state drug permit No. H21023095). A total of 50 six-week-old Kunming mice were randomly divided into five groups: blank control, model, Kangnaoling, high and low dosage Schisandra chinensis polysaccharide groups, with 10 mice per group. METHODS: Mice in the blank control group were subcutaneously injected with 0.5 mL/20 g normal saline into the nape of the neck each day, while the remaining mice were subcutaneously injected with 5% D-galactose saline solution (0.5 mL/20 g) in the nape for 40 days to induce a brain aging model. On day 11, mice in the high and low dosage Schisandra chinensis polysaccharide groups were intragastrically infused with 20 mg/mL and 10 mg/mL Schisandra chinensis polysaccharide solution (0.2 mL/10 g), respectively. Mice from the Kangnaoling group were intragastrically infused with 35 mg/mL Kangnaoling suspension (0.2 mL/10 g), and the mice in the

  9. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Directory of Open Access Journals (Sweden)

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  10. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    Science.gov (United States)

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  11. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  13. Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Geraldine Gontier

    2018-02-01

    Full Text Available Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2, which catalyzes the production of 5-hydroxymethylcytosine (5hmC, rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.

  14. Depletion of the Third Complement Component Ameliorates Age-Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Dorota Rogińska

    2017-01-01

    Full Text Available The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT, electrophysiological function (ERG, and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. Moreover, global gene expression in retinas was analyzed by RNA arrays. We found that the absence of active C3 was associated with (1 alleviation of the age-dependent decrease in retinal thickness and gradual deterioration of retinal bioelectrical function, (2 significantly higher levels of antioxidant enzymes (catalase and glutathione reductase and the antiapoptotic survivin and Mcl-1/Bak dimer, (3 lower expression of the cellular oxidative stress marker—4HNE—and decreased activity of proapoptotic caspase-3, (4 ameliorated retinal autophagic activity with localization of ubiquitinated protein conjugates commonly along the retinal pigment epithelium (RPE layer, and (5 significantly increased expression of several gene sets associated with maintenance of the physiological functions of the neural retina. Our findings shed light on mechanisms of age-related retinal alterations by identifying C3 as a potential therapeutic target for retinal aging.

  15. Kidney transplantation in the elderly.

    Science.gov (United States)

    Singh, Neeraj; Nori, Uday; Pesavento, Todd

    2009-08-01

    Recent outcome data, ongoing organ shortage and proposed changes in allocation policies are driving the need to review current practices and possible future course of kidney transplantation in the elderly patients. A proposed new kidney allocation system based on matching donor and recipient characteristics to enable 'age-matched' kidney allocation is currently being discussed in the USA. While this system benefits younger recipients, implications for elderly recipients receiving older grafts remain a matter of debate. Despite improved outcomes, there remain significant challenges to kidney transplantation in the elderly, including organ shortage, poor transplant rate, evolving allocation policies, high wait-list mortality and nonstandardized immunosuppression. Prospective studies are needed to evaluate the strategies to meet these challenges and to study the impact of proposed new allocation system.

  16. Rhabdomyosarcoma of the kidney

    Directory of Open Access Journals (Sweden)

    Alaa Samkari

    2018-05-01

    Full Text Available Rhabdomyosarcoma is considered the most common soft tissue sarcoma arising in patients younger than 15 years old, accounting for 5%–10% of childhood solid tumors. Sarcoma of the kidney represents 1% of all primary renal malignancies. Primary renal rhabdomyosarcoma is a very rare entity with limited number of cases reported in the literature. In this paper we present two cases of primary renal rhabdomyosarcoma in pediatric patients. The two tumors involved the renal parenchyma and occurred in 2-year-old girl and 6-year-old boy, respectively. Histopathology examination and immunohistochemistry studies confirm the diagnosis of embryonal rhabdomyosarcoma with pleomorphic component, and pleomorphic rhabdomyosarcoma, respectively. Both cases are treated with chemotherapy and show a good response with no evidence of recurrence or metastasis. The aim of this paper is to expand the differential diagnosis of primary mesenchymal kidney tumors in pediatric age group. Keywords: Rhabdomyosarcoma, Renal neoplasm, Pediatric, Oncology

  17. Recovery of immune competence following sublethal irradiation: the role of the mouse strains, thymic function and aging

    International Nuclear Information System (INIS)

    Peterson, W.J.

    1976-01-01

    The bone marrow, thymus and lymphohematopoietic microenvironments are determining factors in recovery of immune competence following sublethal irradiation. Because of age-related degenerative changes in all of these parameters it was anticipated that immune competence of irradiated old mice would show an altered pattern of recovery. Therefore, three age groups (3-7, 15, and 23-34-months) of C57BL/6J mice were treated with either 250R, 500R or 600R. At various intervals thereafter their spleen cells were assessed for recovery of humoral and cell-mediated immunologic activity and for thymus derived (T-), bone marrow derived (B-) and stem-cell compartments. Two age groups (3-7 and 23-months) of C3H/Anf Cum mice were also treated with the two highest doses or irradiation and their spleen cells tested only for recovery of T- and B-cell compartments. The results showed that recovery of immune competence following 250R was independent of age

  18. No late effect of ionizing radiation on the aging-related oxidative changes in the mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beom Su; Kim, Seol Wha; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    Radiation-induced late injury to normal tissue is a primary area of radiation biology research. The present study was undertaken to investigate whether the late effect of the ionizing radiation appears as an age-related oxidative status in the brain. Three groups of 4-month old C57BL/6 mice that were exposed to {sup 137}Cs {gamma}-rays at a single dose (5 Gy) or fractionated doses (1 Gy x 5 times, or 0,2 Gy x 25 times) at 2 months old were investigated for the oxidative status of their brains with both young (2-month) and old (24-month) mice. A significant (page-matched control group mice. SOD activity and MDA content were observed within good parameters of brain aging and there no late effects on the age-related oxidative level in the {gamma}-ray irradiated mice brains.

  19. No late effect of ionizing radiation on the aging-related oxidative changes in the mouse brain

    International Nuclear Information System (INIS)

    Jang, Beom Su; Kim, Seol Wha; Jung, U Hee; Jo, Sung Kee

    2010-01-01

    Radiation-induced late injury to normal tissue is a primary area of radiation biology research. The present study was undertaken to investigate whether the late effect of the ionizing radiation appears as an age-related oxidative status in the brain. Three groups of 4-month old C57BL/6 mice that were exposed to 137 Cs γ-rays at a single dose (5 Gy) or fractionated doses (1 Gy x 5 times, or 0,2 Gy x 25 times) at 2 months old were investigated for the oxidative status of their brains with both young (2-month) and old (24-month) mice. A significant (p< o.05) decrease in superoxide dismutase (SOD) activity was observed in old mice brains compared with that of the young mice. Malondialdehyde (MDA) content was significantly (p<0.05) increased in the old mice brain. However, any significant difference in SOD activity and MDA contents of the irradiated brain was not observed compared to age-matched control group mice. SOD activity and MDA content were observed within good parameters of brain aging and there no late effects on the age-related oxidative level in the γ-ray irradiated mice brains

  20. Interactions of hearing loss and diabetes mellitus in the middle age CBA/CaJ mouse model of presbycusis.

    Science.gov (United States)

    Vasilyeva, Olga N; Frisina, Susan T; Zhu, Xiaoxia; Walton, Joseph P; Frisina, Robert D

    2009-03-01

    Recently, we characterized the more severe nature of hearing loss in aged Type 2 diabetic human subjects [Frisina, S.T., Mapes, F., Kim, S., Frisina, D.R., Frisina, R.D., 2006. Characterization of hearing loss in aged type II diabetics. Hear. Res. 211, 103-113]. The current study prospectively assessed hearing abilities in middle age CBA/CaJ mice with Type 1 diabetes mellitus (T1DM) (STZ injection) or Type 2 diabetes mellitus (T2DM) (high fat diet), for a period of 6 months. Blood glucose, body weight and auditory tests (Auditory Brainstem Response-ABR, Distortion Product Otoacoustic Emissions-DPOAE) were evaluated at baseline and every 2 months. Tone and broad-band noise-burst responses in the inferior colliculus were obtained at 6 months. Body weights of controls did not change over 6 months (approximately 32 g), but there was a significant (approximately 5 g) decline in the T1DM, while T2DM exhibited approximately 10 g weight gain. Blood glucose levels significantly increased: 3-fold for T1DM, 1.3-fold for T2DM; with no significant changes in controls. ABR threshold elevations were found for both types of diabetes, but were most pronounced in the T2DM, starting as early as 2 months after induction of diabetes. A decline of mean DPOAE amplitudes was observed in both diabetic groups at high frequencies, and for the T2DM at low frequencies. In contrast to ABR thresholds, tone and noise thresholds in the inferior colliculus were lower for both diabetic groups. Induction of diabetes in middle-aged CBA/CaJ mice promotes amplification of age-related peripheral hearing loss which makes it a suitable model for studying the interaction of age-related hearing loss and diabetes. On the other hand, initial results of effects from very high blood glucose level (T1DM) on the auditory midbrain showed disruption of central inhibition, increased response synchrony or enhanced excitation in the inferior colliculus.

  1. Acute kidney failure

    Science.gov (United States)

    ... Renal failure - acute; ARF; Kidney injury - acute Images Kidney anatomy References Devarajan P. Biomarkers for assessment of renal function during acute kidney injury. In: Alpern RJ, Moe OW, Caplan M, ...

  2. Chronic Kidney Disease

    Science.gov (United States)

    You have two kidneys, each about the size of your fist. Their main job is to filter your blood. They remove wastes and ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  3. Diabetic Kidney Problems

    Science.gov (United States)

    ... too high. Over time, this can damage your kidneys. Your kidneys clean your blood. If they are damaged, waste ... in your blood instead of leaving your body. Kidney damage from diabetes is called diabetic nephropathy. It ...

  4. Medullary Sponge Kidney

    Science.gov (United States)

    ... UTI removing any kidney stones Curing an Existing Urinary Tract Infection To treat a UTI , the health care provider ... UTIs and kidney stones. Medications to Prevent Future Urinary Tract Infections and Kidney Stones Health care providers may prescribe ...

  5. Population Reference Values for Serum Methylmalonic Acid Concentrations and Its Relationship with Age, Sex, Race-Ethnicity, Supplement Use, Kidney Function and Serum Vitamin B12 in the Post-Folic Acid Fortification Period

    Directory of Open Access Journals (Sweden)

    Vijay Ganji

    2018-01-01

    Full Text Available Serum methylmalonic acid (MMA is elevated in vitamin B-12 deficiency and in kidney dysfunction. Population reference values for serum MMA concentrations in post-folic acid fortification period are lacking. Aims of this study were to report the population reference values for serum MMA and to evaluate the relation between serum MMA and sex, age, race-ethnicity, kidney dysfunction and vitamin B-12. We used data from three National Health and Nutrition Examination Surveys, 1999–2000, 2001–2002 and 2003–2004 conducted after folic acid fortification commenced (n = 18,569. Geometric mean MMA was ≈22.3% higher in non-Hispanic white compared to non-Hispanic black (141.2 vs. 115.5 nmol/L and was ≈62.7% higher in >70 years old persons compared to 21–30 years old persons (196.9 vs. 121.0 nmol/L. Median serum MMA was ≈28.5% higher in the 1st the quartile of serum vitamin B-12 than in the 4th quartile of serum vitamin B-12 and was ≈35.8% higher in the 4th quartile of serum creatinine than in the 1st quartile of serum creatinine. Multivariate-adjusted serum MMA concentration was significantly associated with race-ethnicity (p < 0.001 and age (p < 0.001 but not with sex (p = 0.057. In this large US population based study, serum MMA concentrations presented here reflect the post-folic acid fortification scenario. Serum MMA concentrations begin to rise at the age of 18–20 years and continue to rise afterwards. Age-related increase in serum MMA concentration is likely to be due to a concomitant decline in kidney function and vitamin B-12 status.

  6. Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer's disease mouse models.

    Science.gov (United States)

    Neuner, Sarah M; Wilmott, Lynda A; Hoffmann, Brian R; Mozhui, Khyobeni; Kaczorowski, Catherine C

    2017-03-30

    Alzheimer's disease (AD), the most common form of dementia in the elderly, has no cure. Thus, the identification of key molecular mediators of cognitive decline in AD remains a top priority. As aging is the most significant risk factor for AD, the goal of this study was to identify altered proteins and pathways associated with the development of normal aging and AD memory deficits, and identify unique proteins and pathways that may contribute to AD-specific symptoms. We used contextual fear conditioning to diagnose 8-month-old 5XFAD and non-transgenic (Ntg) mice as having either intact or impaired memory, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify hippocampal membrane proteins across groups. Subsequent analysis detected 113 proteins differentially expressed relative to memory status (intact vs impaired) in Ntg mice and 103 proteins in 5XFAD mice. Thirty-six proteins, including several involved in neuronal excitability and synaptic plasticity (e.g., GRIA1, GRM3, and SYN1), were altered in both normal aging and AD. Pathway analysis highlighted HDAC4 as a regulator of observed protein changes in both genotypes and identified the REST epigenetic regulatory pathway and G i intracellular signaling as AD-specific pathways involved in regulating the onset of memory deficits. Comparing the hippocampal membrane proteome of Ntg versus AD, regardless of cognitive status, identified 138 differentially expressed proteins, including confirmatory proteins APOE and CLU. Overall, we provide a novel list of putative targets and pathways with therapeutic potential, including a set of proteins associated with cognitive status in normal aging mice or gene mutations that cause AD. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    Science.gov (United States)

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  8. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    Science.gov (United States)

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  10. Cadmium and the kidney.

    OpenAIRE

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; cha...

  11. Chronic Kidney Disease and Kidney Failure

    Science.gov (United States)

    ... death rates limited life expectancy. Some patients were lucky enough to get a kidney transplant, which greatly ... epidemic rates. Through the 1980s and 1990s, the number of patients developing end-stage kidney failure nearly ...

  12. Digital three-dimensional reconstruction and ultrastructure of the mouse proximal tubule

    DEFF Research Database (Denmark)

    Zhai, X.Y.; Birn, H.; Jensen, K.B.

    2003-01-01

    . In the medullary rays, these are arranged in layers outside the clusters of more superficial tubules. In contrast to rat and human kidney, no major segmental variation in the ultrastructure of the proximal tubule was identified, and no parameters enabled definition of distinct segments in this strain of mice......, detailed analyses of normal mouse kidney structure and organization are lacking. This study describes the 3D organization and ultrastructural, segmental variation of the mouse kidney proximal tubule. A total of 160 proximal tubules in three C57/BL/6J mouse kidneys were analyzed on 800 serial sections from...

  13. Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1.

    Science.gov (United States)

    Roper, James A; Williamson, Rosalind C; Bally, Blandine; Cowell, Christopher A M; Brooks, Rebecca; Stephens, Phil; Harrison, Andrew J; Bass, Mark D

    2015-11-01

    Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.

  14. The association between changes in lifestyle behaviors and the incidence of chronic kidney disease (CKD) in middle-aged and older?men

    OpenAIRE

    Michishita, Ryoma; Matsuda, Takuro; Kawakami, Shotaro; Tanaka, Satoshi; Kiyonaga, Akira; Tanaka, Hiroaki; Morito, Natsumi; Higaki, Yasuki

    2017-01-01

    Background: This study was designed to evaluate whether changes in lifestyle behaviors are correlated with the incidence of chronic kidney disease (CKD). Methods: The subjects consisted of 316 men without a history of cardiovascular disease, stroke, or renal dysfunction or dialysis treatment. The following lifestyle behaviors were evaluated using a standardized self-administered questionnaire: habitual moderate exercise, daily physical activity, walking speed, eating speed, late-night din...

  15. Kidneys and Urinary Tract

    Science.gov (United States)

    ... Videos for Educators Search English Español Kidneys and Urinary Tract KidsHealth / For Teens / Kidneys and Urinary Tract What's ... a sign of diabetes . What the Kidneys and Urinary Tract Do Although the two kidneys work together to ...

  16. [Acute kidney injury

    NARCIS (Netherlands)

    Hageman, D.; Kooman, J.P.; Lance, M.D.; van Heurn, L.W.; Snoeijs, M.G.

    2012-01-01

    - 'Acute kidney injury' is modern terminology for a sudden decline in kidney function, and is defined by the RIFLE classification (RIFLE is an acronym for Risk, Injury, Failure, Loss and End-stage kidney disease).- Acute kidney injury occurs as a result of the combination of reduced perfusion in the

  17. Ultrasonography of the Kidney

    DEFF Research Database (Denmark)

    Lindskov Hansen, Kristoffer; Nielsen, Michael Bachmann; Ewertsen, Caroline

    2016-01-01

    Ultrasonography of the kidneys is essential in the diagnosis and management of kidney-related diseases. The kidneys are easily examined, and most pathological changes in the kidneys are distinguishable with ultrasound. In this pictorial review, the most common findings in renal ultrasound...

  18. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008–2011

    Science.gov (United States)

    Moon, Sung Jin; Kim, Tae Ho; Yoon, Soo Young; Chung, Jae Ho; Hwang, Hee-Jin

    2015-01-01

    Background Protein-energy wasting is common in patients with end-stage kidney disease. However, few studies have examined the relationship between early stages of chronic kidney disease (CKD) and sarcopenia. Methods We conducted a cross-sectional study based on data in the Korea National Health and Nutrition Examination Survey, 2008–2011. In total, 11,625 subjects aged 40 years or older who underwent dual-energy X-ray absorptiometry were analyzed. Sarcopenia was defined based on values of appendicular skeletal muscle mass as a percentage of body weight (ASM/Wt) two standard deviations below the gender-specific mean for young adults. Estimated glomerular filtration rates (eGFR) were calculated using the CKD-EPI equation. Results Mean age, body mass index (BMI), and HOMA-IR were higher and caloric intake, physical activity, and vitamin D level were lower in the sarcopenia groups in both men and women. As the stage of CKD increased, the prevalence of sarcopenia increased, even in the early stages of CKD (normal and CKD1, 2, and 3-5: 2.6%, 5.6%, and 18.1% in men and 5.3%, 7.1%, and 12.6% in women, respectively; p sarcopenia with respect to CKD 3–5 was 1.93 (95% CI = 1.02–3.68) in men but was not statistically significant in women. Conclusions The prevalence of sarcopenia was higher in elderly Korean patients with even mildly reduced kidney function. Stage of CKD was associated with an increased prevalence of sarcopenia in men but not women. Thus, we should evaluate the risk of sarcopenia and work to prevent it, even in patients with early CKD. PMID:26083479

  19. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011.

    Science.gov (United States)

    Moon, Sung Jin; Kim, Tae Ho; Yoon, Soo Young; Chung, Jae Ho; Hwang, Hee-Jin

    2015-01-01

    Protein-energy wasting is common in patients with end-stage kidney disease. However, few studies have examined the relationship between early stages of chronic kidney disease (CKD) and sarcopenia. We conducted a cross-sectional study based on data in the Korea National Health and Nutrition Examination Survey, 2008-2011. In total, 11,625 subjects aged 40 years or older who underwent dual-energy X-ray absorptiometry were analyzed. Sarcopenia was defined based on values of appendicular skeletal muscle mass as a percentage of body weight (ASM/Wt) two standard deviations below the gender-specific mean for young adults. Estimated glomerular filtration rates (eGFR) were calculated using the CKD-EPI equation. Mean age, body mass index (BMI), and HOMA-IR were higher and caloric intake, physical activity, and vitamin D level were lower in the sarcopenia groups in both men and women. As the stage of CKD increased, the prevalence of sarcopenia increased, even in the early stages of CKD (normal and CKD1, 2, and 3-5: 2.6%, 5.6%, and 18.1% in men and 5.3%, 7.1%, and 12.6% in women, respectively; p sarcopenia with respect to CKD 3-5 was 1.93 (95% CI = 1.02-3.68) in men but was not statistically significant in women. The prevalence of sarcopenia was higher in elderly Korean patients with even mildly reduced kidney function. Stage of CKD was associated with an increased prevalence of sarcopenia in men but not women. Thus, we should evaluate the risk of sarcopenia and work to prevent it, even in patients with early CKD.

  20. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation.

    Science.gov (United States)

    Igarashi, Hideki; Takahashi, Toshifumi; Abe, Hiroyuki; Nakano, Hiroshi; Nakajima, Osamu; Nagase, Satoru

    2016-10-01

    Does in vivo aging of mouse oocytes affect mitochondrial function? Mitochondrial function was impaired in post-ovulatory in vivo-aged mouse oocytes and microinjection of somatic cell mitochondria did not rescue poor fertilization and embryonic development rates. The mechanisms underlying the decline in oocyte quality associated with oocyte aging remain unknown, although studies have suggested that the decline is regulated by mitochondrial dysfunction. However, only a limited number of studies have provided direct evidence implicating mitochondrial dysfunction in oocyte quality during the aging of oocytes. We used post-ovulatory, in vivo-aged mouse oocytes as a model for studying low-quality oocytes in oocyte aging. Superovulated oocytes released from the oviduct at 14 h and 20-24 h post-hCG injection were designated as 'fresh' and 'aged' oocytes, respectively. Membrane potentials and oxygen consumption in single oocytes were evaluated as measures of mitochondrial function in fresh and aged oocytes. Mitochondrial transcriptional factor A (TFAM) expression levels were examined by western blotting, and colocalization of mitochondria and TFAM was analyzed by measuring immunofluorescence in fresh and aged oocytes. IVF and blastocyst formation rates were calculated after oocyte microinjection with mitochondria derived from liver cells. The average mitochondrial membrane potential in fresh oocytes was significantly higher than that in aged oocytes (P transfer of cytosolic factors or cellular organelles, such as the endoplasmic reticulum or mitochondria, from specific cell types. This study was supported by Grants-in-Aid for General Science Research to Toshifumi Takahashi (No. 25462550) and Hideki Igarashi (No. 26462474). The funding source played no role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The authors have no conflict of interest to disclose.

  1. Evaluation of {sup 123}I-orthoiodohippurate single kidney clearance rate by renal sequential scintigraphy in a large cohort of likely normal subjects aged between 0 and 18 years

    Energy Technology Data Exchange (ETDEWEB)

    Imperiale, Alessio; Olianti, Catia; Comis, Giannetto; Cava, Giuseppe la [University of Florence, Nuclear Medicine Unit, Department of Clinical Pathophysiology, Florence (Italy)

    2006-12-15

    Age-related values of{sup 123}I-orthoiodohippurate (OIH) single kidney clearance rate (Cl) were estimated in a large cohort of likely normal children aged between 0 and 18 years. Among 4,111 children examined in the past 10 years, 917 were selected with the following inclusion criteria: (a) mild ultrasonographic hydronephrosis with right differential renal function (DRF) <53% and >47% (498 pts), (b) known or suspected urinary tract infection with normal ultrasound, serum creatinine and DMSA and DRF <53% and >47% (419 pts).{sup 123}I-OIH-Cl was assessed using a validated gamma camera method. Children were divided into 21 age classes: from 0 to 2 years, eight 3-month classes; from 2 to 14 years, twelve 1-year classes; from 14 to 18 years, one 4-year class. Cl, plotted against age, was fitted using an increasing function (y = a - be - cx). Mean{sup 123}I-OIH-Cl of 1,834 kidneys was 306{+-}22 ml/min/1.73 m{sup 2} BSA. Mean{sup 123}I-OIH-Cl of the right and left kidneys was 307{+-}23 and 305{+-}22 ml/min/1.73 m{sup 2} BSA, respectively (p<0.002). The best-fitting{sup 123}I-OIH-Cl growing function was: Cl=311-230e-0.69 x Age (months).{sup 123}I-OIH-Cl improved progressively starting from birth, reaching 96% and 98% of the mature value at 1 and 1.5 years, respectively.{sup 123}I-OIH-Cl at birth (age=0) was 81 ml/min/1.73 m{sup 2} BSA. After 18.6 days of life, the renal function had doubled its starting value, and it reached a plateau of 311 ml/min/1.73 m{sup 2} BSA at 2 years. This work represents a systematic evaluation of ERPF by a gamma camera method in a large cohort of selected likely normal paediatric subjects. (orig.)

  2. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    Science.gov (United States)

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice.

    Science.gov (United States)

    Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong

    2016-02-01

    The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.

  4. Perspectives of Older Kidney Transplant Recipients on Kidney Transplantation.

    Science.gov (United States)

    Pinter, Jule; Hanson, Camilla S; Chapman, Jeremy R; Wong, Germaine; Craig, Jonathan C; Schell, Jane O; Tong, Allison

    2017-03-07

    Older kidney transplant recipients are susceptible to cognitive impairment, frailty, comorbidities, immunosuppression-related complications, and chronic graft failure, however, there has been limited focus on their concerns and expectations related to transplantation. This study aims to describe the perspectives of older kidney transplant recipients about their experience of kidney transplantation, self-management, and treatment goals to inform strategies and interventions that address their specific needs. Face-to-face semistructured interviews were conducted with 30 kidney transplant recipients aged 65-80 years from five renal units in Australia. Transcripts were analyzed thematically. Six themes were identified: restoring vitality of youth (with subthemes of revived mindset for resilience, embracing enjoyment in life, drive for self-actualization); persisting through prolonged recovery (yielding to aging, accepting functional limitations, pushing the limit, enduring treatment responsibilities); imposing sicknesses (combatting devastating comorbidities, painful restrictions, emerging disillusionment, anxieties about accumulating side effects, consuming treatment burden); prioritizing graft survival (privileged with a miracle, negotiating risks for longevity, enacting a moral duty, preserving the last opportunity); confronting health deterioration (vulnerability and helplessness, narrowing focus to immediate concerns, uncertainty of survival); and value of existence (purpose through autonomy, refusing the burden of futile treatment, staying alive by all means). Older kidney transplant recipients felt able to enjoy life and strived to live at their newly re-established potential and capability, which motivated them to protect their graft. However, some felt constrained by slow recuperation and overwhelmed by unexpected comorbidities, medication-related side effects, and health decline. Our findings suggest the need to prepare and support older recipients for self

  5. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir.

    Science.gov (United States)

    Zhang, Jian; Zhao, Xiao; Jiang, Yunyun; Zhao, Wen; Guo, Ting; Cao, Yongqiang; Teng, Junwei; Hao, Xiaona; Zhao, Juan; Yang, Zhennai

    2017-08-01

    This study investigated the effect of exopolysaccharide (EPS) produced by Lactobacillus plantarum YW11 on the oxidative status and gut microbiota in an aging mouse model induced with d-galactose. The in vitro assay of the antioxidant activity of the EPS showed concentration-dependent (0.25-3.0 mg/mL) activities. At 3.0 mg/mL, the EPS reached the highest scavenging activities with half maximal inhibitory concentration values against hydroxyl radicals at 75.10% and 1.22 mg/mL, superoxide anion at 62.71% and 1.54 mg/mL, 2, 2-diphenyl-1-picrylhydrazyl at 35.11% and 0.63 mg/mL, and the maximal chelating rate on ferrous ion and the half-maximal chelating concentration of the EPS at 41.09% and 1.07 mg/mL, respectively. High doses of EPS (50 mg/kg per day) effectively relieved the oxidative stress in the aging mice with increased levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in mice serum by 21.55, 33.14, 61.09, and 38.18%, respectively, and decreased malondialdehyde level from 11.69 to 5.89 mmol/mL compared with those in the untreated aging mice model. The analysis of pyrosequencing sequence data from the gut microbiota revealed that the EPS could recover the microbiota diversity and phylotypes decreased or eliminated by the d-galactose treatment. The EPS could selectively decrease the abundance of Flexispira (37.5 fold), and increase the abundance of Blautia (36.5 fold) and Butyricicoccus (9.5 fold), which correspondingly decreased the content of nitrogen oxides to 9.87% and increased the content of short-chain fatty acids by 2.23 fold, thereby improving the oxidative and health conditions of the host intestinal tract. Further correlation analysis of core-microbiota variation induced by different treatments showed a strong correlation with oxidative phenotypes [catalase, goodness of prediction (Q 2 ) = 0.49; total antioxidant capacity, Q 2 = 0.45; nitrogen oxides, Q 2 = 0.67; short-chain fatty acids, Q 2 = 0.55]. The

  6. Prolonged CT urography in duplex kidney.

    Science.gov (United States)

    Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang

    2016-05-13

    Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.

  7. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  8. Early-stage chronic kidney disease, insulin resistance, and osteoporosis as risk factors of sarcopenia in aged population: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008-2009.

    Science.gov (United States)

    Kim, J E; Lee, Y-H; Huh, J H; Kang, D R; Rhee, Y; Lim, S-K

    2014-09-01

    Sarcopenia means the progressive loss of skeletal muscle mass and strength with aging. In this study, we found that insulin resistance, chronic kidney disease stage 3, and osteoporosis at the femur neck were closely associated with sarcopenia in elderly men. These conditions modified to slow down the progression of sarcopenia. Sarcopenia is known to have multiple contributing factors; however, its modifiable risk factors have not yet been determined. The aim of this study was to identify the most influential and modifiable risk factors for sarcopenia in elderly. This was a population-based, cross-sectional study using data from the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008-2009. This study included 940 men and 1,324 women aged 65 years and older who completed a body composition analysis using dual-energy X-ray absorptiometry. Sarcopenia was defined as an appendicular skeletal muscle mass divided by height(2) of less than 1 standard deviation below the sex-specific mean for a younger reference group. Using univariate analysis, age, body mass index (BMI), homeostasis model assessment for insulin resistance (HOMA-IR), limitations in daily activities, regular exercise, high-risk drinking, family income, osteoporosis, daily energy, and protein intake were associated with sarcopenia in men; age, BMI, limitations in daily activities, regular exercise, occupation, osteoporosis at the total hip, and daily energy intake were associated with sarcopenia in women. In the multivariate logistic regression analysis, HOMA-IR ≥2.5 (odds ratio [OR] for sarcopenia, 2.27; 95 % confidence interval [CI], 1.21-4.25), chronic kidney disease stage 3 (OR, 3.13; 95 % CI, 1.14-8.61), and osteoporosis at the femur neck (OR, 6.83; 95 % CI, 1.08-43.41) were identified as risk factors for sarcopenia in men. Insulin resistance, chronic kidney disease, and osteoporosis at the femur neck should be modified to prevent the acceleration of skeletal muscle

  9. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2, 2008-2011.

    Directory of Open Access Journals (Sweden)

    Sung Jin Moon

    Full Text Available Protein-energy wasting is common in patients with end-stage kidney disease. However, few studies have examined the relationship between early stages of chronic kidney disease (CKD and sarcopenia.We conducted a cross-sectional study based on data in the Korea National Health and Nutrition Examination Survey, 2008-2011. In total, 11,625 subjects aged 40 years or older who underwent dual-energy X-ray absorptiometry were analyzed. Sarcopenia was defined based on values of appendicular skeletal muscle mass as a percentage of body weight (ASM/Wt two standard deviations below the gender-specific mean for young adults. Estimated glomerular filtration rates (eGFR were calculated using the CKD-EPI equation.Mean age, body mass index (BMI, and HOMA-IR were higher and caloric intake, physical activity, and vitamin D level were lower in the sarcopenia groups in both men and women. As the stage of CKD increased, the prevalence of sarcopenia increased, even in the early stages of CKD (normal and CKD1, 2, and 3-5: 2.6%, 5.6%, and 18.1% in men and 5.3%, 7.1%, and 12.6% in women, respectively; p < 0.001. In addition, a correlation analysis showed that GFR and ASM/Wt had significant correlations in both men and women. Logistic regression analyses, after adjusting for age, BMI, caloric intake, log(physical activity, vitamin D level, and log(HOMA-IR, showed that the odds ratio for sarcopenia with respect to CKD 3-5 was 1.93 (95% CI = 1.02-3.68 in men but was not statistically significant in women.The prevalence of sarcopenia was higher in elderly Korean patients with even mildly reduced kidney function. Stage of CKD was associated with an increased prevalence of sarcopenia in men but not women. Thus, we should evaluate the risk of sarcopenia and work to prevent it, even in patients with early CKD.

  10. Age

    Science.gov (United States)

    ... adults? How can you reduce anesthesia risks in older patients? Age Age may bring wisdom but it also brings ... Ask your physician to conduct a pre-surgery cognitive test — an assessment of your mental function. The physician can use the results as a ...

  11. At Risk for Kidney Disease?

    Science.gov (United States)

    ... Heart Disease Mineral & Bone Disorder Causes of Chronic Kidney Disease Diabetes and high blood pressure are the most ... blood vessels in your kidneys. Other causes of kidney disease Other causes of kidney disease include a genetic ...

  12. Kidney function tests

    Science.gov (United States)

    Kidney function tests are common lab tests used to evaluate how well the kidneys are working. Such tests include: ... Oh MS, Briefel G. Evaluation of renal function, water, electrolytes ... and Management by Laboratory Methods . 23rd ed. Philadelphia, ...

  13. Pregnancy and Kidney Disease

    Science.gov (United States)

    ... who has a kidney transplant have a baby? Yes. If you have a kidney transplant, you are likely to have regular menstrual periods and good general health. Therefore, getting pregnant and having a child is possible. But ...

  14. Hydronephrosis of one kidney

    Science.gov (United States)

    Hydronephrosis; Chronic hydronephrosis; Acute hydronephrosis; Urinary obstruction; Unilateral hydronephrosis; Nephrolithiasis - hydronephrosis; Kidney stone - hydronephrosis; Renal calculi - hydronephrosis; ...

  15. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Fabricius-Lagging, Elisabeth [Department of Nephrology, Sahlgrenska University Hospital and Boras Hospital (Sweden); Lundh, Thomas [Department of Occupational and Environmental Medicine, Lund University Hospital and Lund University (Sweden); Moelne, Johan [Department of Clinical Pathology, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Wallin, Maria [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Olausson, Michael [Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Modigh, Cecilia; Sallsten, Gerd [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden)

    2010-01-15

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  16. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    International Nuclear Information System (INIS)

    Barregard, Lars; Fabricius-Lagging, Elisabeth; Lundh, Thomas; Moelne, Johan; Wallin, Maria; Olausson, Michael; Modigh, Cecilia; Sallsten, Gerd

    2010-01-01

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 μg/g (wet weight) for cadmium, 0.21 μg/g for mercury, and 0.08 μg/g for lead. Kidney Cd increased by 3.9 μg/g for a 10 year increase in age, and by 3.7 μg/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 μg/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  17. Acute arterial occlusion - kidney

    Science.gov (United States)

    ... main artery to the kidney is called the renal artery. Reduced blood flow through the renal artery can hurt kidney function. ... need include: Duplex Doppler ultrasound exam of the renal arteries to test blood flow MRI of the kidney arteries, which can show ...

  18. Diabetes and Kidney Disease

    Science.gov (United States)

    ... et.al. Clinical manifestations of kidney disease among US adults with diabetes. Journal of the American Medical Association. 2016;316( ... of Washington, Associate Director, Kidney Research Institute ... The National Institute of Diabetes and Digestive and Kidney Diseases Health Information Center ...

  19. Mouse immature oocytes irradiated in vivo at 14-days of age and evaluated for transmitted effects using the aggregation embryo chimera assay

    International Nuclear Information System (INIS)

    Straume, T.; Raabe, O.G.; Walsh, K.J.; Wiley, L.M.

    1996-01-01

    A previous study using the mouse-preimplantation-embryo-chimera assay demonstrated a reproducible transmitted effect (proliferation disadvantage observed in early embryos) from females irradiated as 49-day-old adults using 0.15 Gy of gamma rays and then mated seven weeks later, i.e., embryos were from oocytes that were immature at time of irradiation. Because mouse immature oocytes are known to be much more radiosensitive to cell killing in juveniles than in adults, a follow-on study was performed here using 14-day-old juvenile mice. In contrast to adults, the exposure of juveniles to 0.15 Gy of gamma rays did not result in a detectable transmitted proliferation disadvantage when animals were mated 7 or 12 weeks later. This observation is discussed in light of previous studies on mouse immature oocytes and embryo chimeras

  20. Aging

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Kodama, Kazunori; Yamada, Michiko

    1991-01-01

    The hypothesis that exposure to ionizing radiation accelerates the aging process has been actively investigated at ABCC-RERF since 1958, when longitudinal cohort studies of the Adult Health Study (AHS) and the Life Span Study (LSS) were initiated. In their 1975 overall review of aging studies related to the atomic bomb (A-bomb) survivors, Finch and Beebe concluded that while most studies had shown no correlation between aging and radiation exposure, they had not involved the large numbers of subjects required to provide strong evidence for or against the hypothesis. Extending LSS mortality data up to 1978 did not alter the earlier conclusion that any observed life-shortening was associated primarily with cancer induction rather than with any nonspecific cause. The results of aging studies conducted during the intervening 15 years using data from the same populations are reviewed in the present paper. Using clinical, epidemiological, and laboratory techniques, a broad spectrum of aging parameters have been studied, such as postmortem morphological changes, tests of functional capacity, physical tests and measurements, laboratory tests, tissue changes, and morbidity. With respect to the aging process, the overall results have not been consistent and are generally thought to show no relation to radiation exposure. Although some preliminary results suggest a possible radiation-induced increase in atherosclerotic diseases and acceleration of aging in the T-cell-related immune system, further study is necessary to confirm these findings. In the future, applying the latest gerontological study techniques to data collected from subjects exposed 45 years ago to A-bomb radiation at relatively young ages will present a new body of data relevant to the study of late radiation effects. (author) 103 refs

  1. Estimated GFR and Subsequent Higher Left Ventricular Mass in Young and Middle-Aged Adults With Normal Kidney Function: The Coronary Artery Risk Development in Young Adults (CARDIA) Study.

    Science.gov (United States)

    Bansal, Nisha; Lin, Feng; Vittinghoff, Eric; Peralta, Carmen; Lima, Joao; Kramer, Holly; Shlipak, Michael; Bibbins-Domingo, Kirsten

    2016-02-01

    Left ventricular hypertrophy is common and is associated with cardiovascular events and death among patients with known chronic kidney disease. However, the link between reduced glomerular filtration rate (GFR) and left ventricular mass index (LVMI) remains poorly explored among young and middle-aged adults with preserved kidney function. In this study, we examined the association of cystatin C-based estimated GFR (eGFRcys) and rapid decline in eGFR with subsequent LVMI. Observational study. We included 2,410 participants from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort with eGFRcys > 60mL/min/1.73m(2) at year 15 and who had an echocardiogram obtained at year 25. eGFRcys at year 15 and rapid decline in eGFRcys (defined as >3% per year over 5 years from years 15 to 20). LVMI measured at year 25. We adjusted for age, sex, race, diabetes, body mass index, low- and high-density lipoprotein cholesterol levels, cumulative systolic blood pressure, and albuminuria. Mean age was 40±4 (SD) years, 58% were women, and 43% were black. After 10 years of follow-up, mean LVMI was 39.6±13.4g/m(2.7). Compared with eGFRcys > 90mL/min/1.73m(2) (n = 2,228), eGFRcys of 60 to 75mL/min/1.73m(2) (n = 29) was associated with 5.63 (95% CI, 0.90-10.36) g/m(2.7) greater LVMI (P = 0.02), but there was no association of eGFRcys of 76 to 90mL/min/1.73m(2) (n = 153) with LVMI after adjustment for confounders. Rapid decline in eGFRcys was associated with higher LVMI compared with participants without a rapid eGFRcys decline (β coefficient, 1.48; 95% CI, 0.11-2.83; P = 0.03) after adjustment for confounders. There were a limited number of participants with eGFRcys of 60 to 90mL/min/1.73m(2). Among young and middle-aged adults with preserved kidney function, eGFRcys of 60 to 75mL/min/1.73m(2) and rapid decline in eGFRcys were significantly associated with subsequently higher LVMI. Further studies are needed to understand the mechanisms that contribute to elevated

  2. Aging

    International Nuclear Information System (INIS)

    Finch, S.C.; Beebe, G.W.

    1975-01-01

    The hypothesis that ionizing radiation accelerates natural aging has been under investigation at the Atomic Bomb Casualty Commission since 1959. Postmortem observations of morphologic and chemical changes, tests of functional capacity, physical tests and measurements, clinical laboratory tests, tissue changes, morbidity, and mortality have all been examined by ABCC investigators interested in this hypothesis. These studies have been beset with conceptual difficulties centered on the definition and measurement of aging. An empirical approach early led to the calculation of an index of physiologic age as a linear combination of age-related tests of various organ systems. Most studies have been negative but have not involved the large numbers that might be required to provide strong evidence for or against the hypothesis. Mortality, however, has been examined on the basis of a large sample and over the period 1950-1972 had provided no support for the hypothesis of radiation-accelerated aging. Ionizing radiation dose, of course shorten human life, but its life-shortening effect appears to be the result of specific radiation-induced disease, especially neoplasms. The hypothesis is now much less attractive than it was 10-20 years ago but still has some value in stimulating research on aging. The experience of the A-bomb survivors provides an unusual opportunity for a definitive test of the hypothesis. (auth.)

  3. Higher Serum Direct Bilirubin Levels Were Associated with a Lower Risk of Incident Chronic Kidney Disease in Middle Aged Korean Men

    Science.gov (United States)

    Ryu, Seungho; Chang, Yoosoo; Zhang, Yiyi; Woo, Hee-Yeon; Kwon, Min-Jung; Park, Hyosoon; Lee, Kyu-Beck; Son, Hee Jung; Cho, Juhee; Guallar, Eliseo

    2014-01-01

    Background The association between serum bilirubin levels and incident chronic kidney disease (CKD) in the general population is unknown. We aimed to examine the association between serum bilirubin concentration (total, direct, and indirect) and the risk of incident CKD. Methods and Findings Longitudinal cohort study of 12,823 Korean male workers 30 to 59 years old without CKD or proteinuria at baseline participating in medical health checkup program in a large worksite. Study participants were followed for incident CKD from 2002 through 2011. Estimated glomerular filtration rate (eGFR) was estimated by using the CKD-EPI equation. CKD was defined as eGFR bilirubin were 0.93 (95% CI 0.67–1.28), 0.88 (0.60–1.27) and 0.60 (0.42–0.88), respectively. In multivariable models, the adjusted hazard ratio for CKD comparing the highest to the lowest quartile of serum direct bilirubin levels was 0.60 (95% CI 0.41–0.87; P trend = 0.01). Neither serum total nor indirect bilirubin levels were significantly associated with the incidence of CKD. Conclusions Higher serum direct bilirubin levels were significantly associated with a lower risk of developing CKD, even adjusting for a variety of cardiometabolic parameters. Further research is needed to elucidate the mechanisms underlying this association and to establish the role of serum direct bilirubin as a marker for CKD risk. PMID:24586219

  4. Formation of DNA adducts in mouse tissues after 1-nitropyrene administration

    International Nuclear Information System (INIS)

    Mitchell, C.E.

    1986-01-01

    DNA adducts were isolated and characterized in mouse lung, liver and kidney after intratracheal instillation of [ 3 H]-1-nitropyrene (1-NP). HPLC analysis of the enzymatically digested DNA indicated the presence of multiple DNA adducts in mouse lung, liver and kidney. These results indicate that DNA adducts of 1-NP are formed in mouse lung, liver and kidney after intratracheal instillation of 1-NP; the HPLC profiles of the multiple adducts suggests that adducts may be formed via metabolic pathways that involve both nitroreduction and ring-oxidation. 6 references, 1 figure

  5. 77 FR 38075 - National Institute of Diabetes and Digestive and Kidney Diseases; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-26

    ... Diabetes and Digestive and Kidney Diseases Special Emphasis Panel; Type 1 Diabetes Mouse Resource. Date: July 23, 2012. Time: 1 p.m. to 3 p.m. Agenda: To review and evaluate grant applications. Place... Diabetes and Digestive and Kidney Diseases; Notice of Closed Meetings Pursuant to section 10(d) of the...

  6. Diagnostic imaging of lymphoma of the kidney

    International Nuclear Information System (INIS)

    Grzesiakowska, U.; Smorczewska, M.; Huczynska-Szubert, E.

    2010-01-01

    Purpose. The aim of this paper is to discuss both the clinical and radiological signs and the diagnostic principles of lymphomatous infiltrations of the kidney. Materials and methods. The studied group consisted of 20 patients (9 women, 11 men) aged 18-79 years. The follows-up varied from 2 to 156 months. All patients underwent CT and ultrasound investigations, while only 1 patient had an MRI examination. In 7 cases surgical treatment was performed, while the remaining 13 patients received chemotherapy. One patient died, 12 are in remission and seven are under observation and considered cured. Results. The radiological signs of kidney lymphoma may be divided into groups: a) kidney enlargement, obliteration of the cortex-core differentiation and obliteration of the outline; b) heterogenous kidney structure with undefined hypodense fociand lack of enhancement after the administration of contrasting material; c) presence of a well-defined tumor within the renal pelvis and external infiltration of the kidney, d) infiltration of the kidney originating from the retroperitoneal space encompassing the organ from the outside. Conclusions. The radiological signs of lymphoma differ in the kidney and exhibit a characteristic set of features. Radiology results combined with clinical symptoms may suggest lymphoma in the kidney and thus advocate the necessity of pathological evaluation prior to surgical treatment. (authors)

  7. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  8. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.

    Science.gov (United States)

    Schermer, Bernhard; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Braun, Fabian; Schultze, Joachim L; Roodbergen, Marianne; Hoeijmakers, Jan Hj; Schumacher, Björn; Nürnberg, Peter; Dollé, Martijn Et; Benzing, Thomas; Müller, Roman-Ulrich; Kurschat, Christine E

    2013-08-16

    Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.

  9. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    Science.gov (United States)

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  10. The association between changes in lifestyle behaviors and the incidence of chronic kidney disease (CKD) in middle-aged and older men.

    Science.gov (United States)

    Michishita, Ryoma; Matsuda, Takuro; Kawakami, Shotaro; Tanaka, Satoshi; Kiyonaga, Akira; Tanaka, Hiroaki; Morito, Natsumi; Higaki, Yasuki

    2017-08-01

    This study was designed to evaluate whether changes in lifestyle behaviors are correlated with the incidence of chronic kidney disease (CKD). The subjects consisted of 316 men without a history of cardiovascular disease, stroke, or renal dysfunction or dialysis treatment. The following lifestyle behaviors were evaluated using a standardized self-administered questionnaire: habitual moderate exercise, daily physical activity, walking speed, eating speed, late-night dinner, bedtime snacking, skipping breakfast, and drinking and smoking habits. The subjects were divided into four categories according to the change in each lifestyle behavior from baseline to the end of follow-up (healthy-healthy, unhealthy-healthy, healthy-unhealthy and unhealthy-unhealthy). A multivariate analysis showed that, with respect to habitual moderate exercise and late-night dinner, maintaining an unhealthy lifestyle resulted in a significantly higher odds ratio (OR) for the incidence of CKD than maintaining a lifestyle (OR 8.94; 95% confidence interval [CI], 1.10-15.40 for habitual moderate exercise and OR 4.00; 95% CI, 1.38-11.57 for late-night dinner). In addition, with respect to bedtime snacking, the change from a healthy to an unhealthy lifestyle and maintaining an unhealthy lifestyle resulted in significantly higher OR for incidence of CKD than maintaining a healthy lifestyle (OR 4.44; 95% CI, 1.05-13.93 for healthy-unhealthy group and OR 11.02; 95% CI, 2.83-26.69 for unhealthy-unhealthy group). The results of the present study suggest that the lack of habitual moderate exercise, late-night dinner, and bedtime snacking may increase the risk of CKD. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. PATHOMORPHOLOGY OF ZERO BIOPSIES OF DONOR KIDNEYS

    Directory of Open Access Journals (Sweden)

    M. L. Arefjev

    2011-01-01

    Full Text Available There is well known fact that kidney transplants from Extended Criteria Donors may increase risk of De- layed Graft Function and Primary Non-Function of transplants. We have collected and tested 65 «zero» kidney biopsies from cadaver donors aged from 19 to 71 years old. In the pool of elderly donors who died from cerebrovascular accident the frequency of nephrosclerosis presentation was higher than in donors of yonger age who died from craniocephalic trauma. Nevertheless in the general donor pool the number of sclerosed glomeruli was no more than 12%. We did not meet at all in the whole volume of material any bi- opsy with the severe degree of arteriosclerosis. The «zero» biopsies of cadaver kidneys is quite usable and unexpensive tool to measure the degree of nephrosclerosis in order to exclude kidneys which are not fitable for transplantation. 

  12. [Kidney transplantation epidemiology in France].

    Science.gov (United States)

    Hiesse, Christian

    2013-11-01

    Kidney transplantation activity in France is among the most important worldwide: in 2011, 2976 transplants have been performed (47.5 per million population), and the number of patients living with a functional graft is estimated around 30,000, representing 44.7% of all patients (n = 67,270) treated for end-stage renal failure. However, the rate of preemptive kidney transplants remains very low, only 3.3% of incident patients starting renal replacement therapy. The analysis of demand showed a progressive increase in recent years, as demonstrated by the registration rate on the kidney transplantation waiting list, increasing by 5% yearly between 2006 and 2010, but with huge differences according to age categories and regional registration areas, reflecting discrepant appreciations in indications for kidney transplantation. The median waiting time between registration and transplantation increased progressively in recent years, reaching 22.3 months with considerable variations according to regional areas and transplantation teams. Kidney transplantation activity, while increasing continuously, is far to cover the rising demand, and inexorably patients accumulate on the waiting list (around 9000 patients were registered by January 2012). This situation is the consequence of insufficient organ procurement activity. The deceased organ procurement rate remained high: 1572 harvested donors in 2011 (24.1 per million population), but the proportion of older donors rose in recent years, to reach the rate of 26% of donors older than 65 years in 2011. The procurement activity of donors after cardiac arrest was reintroduced in 2006, but increased slowly: 65 transplants were performed in 2011 using kidney procured in non heart-beating donors. The living donor kidney transplantation activity has markedly increased recently: 302 living donor transplantations were performed in 2011, representing 10.1% of the kidney transplantations. Facing the predictable increase in the number of

  13. Kidney cancer

    International Nuclear Information System (INIS)

    Rajer, M.

    2007-01-01

    The purpose of this paper is to present the epidemiology, diagnostic workup and treatment of renal cell carcinoma (RCC) with an emphasis on the Slovenian epidemiological data. RCC represents 2% of all cancers and is the third most common genitourinary tract tumour. It most frequently occurs among people of ages, between 50 and 60 years. Male patients are more prone to it than female. A number of environmental, occupational and genetic factors have been found to be associated with the development of RCC. Patients often have nonspecific symptoms and this is the reason why for half of them the disease is already metastatic when diagnosed. The most common sites of metastases are lungs (75%), followed by soft tissues (36%), bones (20%), liver (18%), skin (8%) and central nerve system (8%). In the evaluation of RCC multiple diagnostic procedures are needed with obligatory image diagnostics. Radical nephrectomy is still the mainstream treatment of localized disease. Nephron sparing techniques have been used in cases, where radical operation would result in an anephric patient. Efficient adjuvant therapy has not been discovered yet. Until recently interpherone and interleukin were the only known effective treatments for metastatic disease, but now new and more efficient biologic agents are being discovered. The most important prognostic factor for survival is stage at the beginning of treatment. The 5-year survival rate is 95% for patients with stage I disease, 88% for stage II, 59% for stage III and 20% for stage IV. (author)

  14. Effects of acute administration of donepezil or memantine on sleep-deprivation-induced spatial memory deficit in young and aged non-human primate grey mouse lemurs (Microcebus murinus.

    Directory of Open Access Journals (Sweden)

    Anisur Rahman

    Full Text Available The development of novel therapeutics to prevent cognitive decline of Alzheimer's disease (AD is facing paramount difficulties since the translational efficacy of rodent models did not resulted in better clinical results. Currently approved treatments, including the acetylcholinesterase inhibitor donepezil (DON and the N-methyl-D-aspartate antagonist memantine (MEM provide marginal therapeutic benefits to AD patients. There is an urgent need to develop a predictive animal model that is phylogenetically proximal to humans to achieve better translation. The non-human primate grey mouse lemur (Microcebus murinus is increasingly used in aging research, but there is no published results related to the impact of known pharmacological treatments on age-related cognitive impairment observed in this primate. In the present study we investigated the effects of DON and MEM on sleep-deprivation (SD-induced memory impairment in young and aged male mouse lemurs. In particular, spatial memory impairment was evaluated using a circular platform task after 8 h of total SD. Acute single doses of DON or MEM (0.1 and 1mg/kg or vehicle were administered intraperitoneally 3 h before the cognitive task during the SD procedure. Results indicated that both doses of DON were able to prevent the SD-induced deficits in retrieval of spatial memory as compared to vehicle-treated animals, both in young and aged animals Likewise, MEM show a similar profile at 1 mg/kg but not at 0.1mg/kg. Taken together, these results indicate that two widely used drugs for mitigating cognitive deficits in AD were partially effective in sleep deprived mouse lemurs, which further support the translational potential of this animal model. Our findings demonstrate the utility of this primate model for further testing cognitive enhancing drugs in development for AD or other neuropsychiatric conditions.

  15. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Contribution of stone size to chronic kidney disease in kidney stone formers.

    Science.gov (United States)

    Ahmadi, Farrokhlagha; Etemadi, Samira Motedayen; Lessan-Pezeshki, Mahbob; Mahdavi-Mazdeh, Mitra; Ayati, Mohsen; Mir, Alireza; Yazdi, Hadi Rokni

    2015-01-01

    To determine whether stone burden correlates with the degree of chronic kidney disease in kidney stone formers. A total of 97 extracorporeal shockwave lithotripsy candidates aged 18 years and older were included. Size, number and location of the kidney stones, along with cumulative stone size, defined as the sum of diameters of all stones) were determined. Estimated glomerular filtration rate was determined using the Chronic Kidney Disease Epidemiology Collaboration cystatin C/creatinine equation, and chronic kidney disease was defined as estimated glomerular filtration rate chronic kidney disease. The relationship persisted even after adjustment for age, sex, body mass index, C-reactive protein, fasting plasma glucose, thyroid stimulating hormone, presence of microalbuminuria, history of renal calculi, history of extracorporeal shockwave lithotripsy, number and location of the stones (odds ratio 1.24, 95% confidence interval 1.02-1.52). The same was not observed for individuals with a cumulative stone size ≥ 20 mm. In kidney stone formers with a cumulative stone size up to 20 mm, estimated glomerular filtration rate linearly declines with increasing cumulative stone size. Additionally, cumulative stone size is an independent predictor of chronic kidney disease in this group of patients. © 2014 The Japanese Urological Association.

  17. Impact of Acute Kidney Injury in Patients Hospitalized With Pneumonia.

    Science.gov (United States)

    Chawla, Lakhmir S; Amdur, Richard L; Faselis, Charles; Li, Ping; Kimmel, Paul L; Palant, Carlos E

    2017-04-01

    Pneumonia is a common cause of hospitalization and can be complicated by the development of acute kidney injury. Acute kidney injury is associated with major adverse kidney events (death, dialysis, and durable loss of renal function [chronic kidney disease]). Because pneumonia and acute kidney injury are in part mediated by inflammation, we hypothesized that when acute kidney injury complicates pneumonia, major adverse kidney events outcomes would be exacerbated. We sought to assess the frequency of major adverse kidney events after a hospitalization for either pneumonia, acute kidney injury, or the combination of both. We conducted a retrospective database analysis of the national Veterans Affairs database for patients with a admission diagnosis of International Classification of Diseases-9 code 584.xx (acute kidney injury) or 486.xx (pneumonia) between October 1, 1999, and December 31, 2005. Three groups of patients were created, based on the diagnosis of the index admission and serum creatinine values: 1) acute kidney injury, 2) pneumonia, and 3) pneumonia with acute kidney injury. Patients with mean baseline estimated glomerular filtration rate less than 45 mL/min/1.73 m were excluded. The primary endpoint was major adverse kidney events defined as the composite of death, chronic dialysis, or a permanent loss of renal function after the primary discharge. The observations of 54,894 subjects were analyzed. Mean age was 68.7 ± 12.3 years. The percentage of female was 2.4, 73.3% were Caucasian, and 19.7% were African-American. Differences across the three diagnostic groups were significant for death, 25% decrease in estimated glomerular filtration rate from baseline, major adverse kidney events following admission, and major adverse kidney events during admission (all p pneumonia + acute kidney injury group (51% died and 62% reached major adverse kidney events). In both unadjusted and adjusted time to event analyses, patients with pneumonia + acute kidney injury

  18. Health Literacy of Living Kidney Donors and Kidney Transplant Recipients

    Science.gov (United States)

    Dageforde, Leigh Anne; Petersen, Alec W.; Feurer, Irene D.; Cavanaugh, Kerri L.; Harms, Kelly A.; Ehrenfeld, Jesse M.; Moore, Derek E.

    2015-01-01

    Background Health literacy (HL) may be a mediator for known socioeconomic and racial disparities in living kidney donation. Methods We evaluated the associations of patient and demographic characteristics with HL in living kidney donors (LD), living donor kidney transplant recipients (LDR), and deceased donor recipients (DDR) in a single center retrospective review of patients undergoing kidney donation or transplantation from September 2010 to July 2012. HL and demographic data were collected. HL was assessed via the Short Literacy Survey (SLS) comprising three self-reported screening questions scored using the 5-point Likert scale [low (3-8), moderate (9-14), high (15)]. Chi-square and logistic regression were used to test factors associated with lower HL. Results The sample included 360 adults (105 LD, 103 LDR, 152 DDR; 46±14 years; 70% white; 56% male; 14±3 years of education). HL scores were skewed (49% high, 41% moderate, 10% low). The distribution of HL categories differed significantly among groups (p=0.019). After controlling for age, race, gender, education and a race-education interaction term, DDR were more likely to have moderate or low HL than LDR (OR 1.911; 95%CI 1.096, 3.332; p=0.022) Conclusions Overall, living donors had high HL. The distribution of low, moderate and high HL differed significantly between LD, DDR and LDR. DDR had a higher likelihood of having low HL than LDR. Screening kidney transplant candidates and donors for lower HL may identify barriers to living donation. Future interventions addressing HL may be important to increase living donation and reduce disparities. PMID:24573114

  19. Ultrasonography of polycystic kidney

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Cho, Seung Gi; Lee, Kwan Seh; Kim, Kun Sang

    1980-01-01

    Polycystic disease is defined as a heritable disorder with diffuse involvement of both kidneys. The term 'Polycystic disease' comprises at least two separate, genetically different disease-one with an onset typically in childhood (infantile polycystic disease) and the other with an onset typically in adulthood (adult polycystic disease). Adult polycystic kidney disease is the most common form of cystic kidney disease in humans. Ultrasonography is a very useful noninvasive diagnostic modality in the patient with clinically suspected renal diseases as well as screening test. 14 cases of ultrasonography in patient with polycystic kidney were reviewed. All cases show unilateral or bilateral enlarged kidneys. 7 cases reveal kidneys and liver replaced by multiple cysts of varing size. Screening ultrasonography for a familial tree is reported

  20. Epigenetics of kidney disease.

    Science.gov (United States)

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  1. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis

    NARCIS (Netherlands)

    Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.; Evans, M.; Garg, A.X.; Hallan, S.I.; Inker, L.A.; Ito, S.; Jee, S.H.; Kovesdy, C.P.; Kronenberg, F.; Heerspink, H.J.; Marks, A.; Nadkarni, G.N.; Navaneethan, S.D.; Nelson, R.G.; Titze, S.; Sarnak, M.J.; Stengel, B.; Woodward, M.; Iseki, K.; Wetzels, J.F.M.; et al.,

    2016-01-01

    IMPORTANCE: Identifying patients at risk of chronic kidney disease (CKD) progression may facilitate more optimal nephrology care. Kidney failure risk equations, including such factors as age, sex, estimated glomerular filtration rate, and calcium and phosphate concentrations, were previously

  2. Measurement of kidney by computed tomography

    International Nuclear Information System (INIS)

    Hamada, Tatsumi; Nakagawa, Kenichi; Tamura, Kenji; Yoshida, Akio; Fujii, Koichi

    1983-01-01

    Several measurements of normal kidney in vivo were obtained from computed tomography and were correlated with age, sex and body dimensions. Forty four males and 21 females without a history of renal disease were studied. 1. Angle between renal coronal section and body frontal (degree): The mean value (+- SD) of the angle was 44.0 +- 11.1 for right kidney and 42.3 +- 11.2 for left, with a low correlation coefficient. The angle had no significant correlation with age nor sex. 2. The largest width of kidney (cm): The mean value of the width was 4.6 +- 0.6 for male right kidney, 5.1 +- 0.6 for male left, 4.6 +- 0.7 for female right and 4.7 +- 1.0 for female left. The values correlated with age under 40 positively and over 40 negatively. 3. Renal volume (cm 3 ): Renal volume was calculated by adding together the area measurements obtained from successive 1 cm thick scans, excluding renal sinus. The mean volume was 107 +- 27 for male right kidney, 114 +- 24 for male left, 101 +- 33 for female right and 111 +- 41 for female left. The correlation coefficient of right versus left renal volume was significantly high. Total renal volume, i. e. left + right renal volume, had significant negative correlation with age over 40. 4. CT numbers of kidney: Average value of right kidney was 31.4 +- 6.0 and that of left was 30.7 +- 5.9. Though the correlation coefficient between right and left was nearly 1, no significant correlation was found with other values. (author)

  3. Renal cancer in recipients of kidney transplant

    Directory of Open Access Journals (Sweden)

    Prajwal Dhakal

    2017-03-01

    Full Text Available The aim of our study is to determine characteristics and outcomes of kidney cancer in renal transplant recipients. MEDLINE ® database was searched in June 2015 to identify cases of kidney cancer in renal transplant recipients. We include also a new case. Descriptive statistics were used for analysis. Forty-eight (48 recipients reported in 25 papers met the eligibility criteria. The median age was 47 years (range 9-66; 27% were females. Chronic glomerulonephritis, cystic kidney disease and hypertension were common indications for renal transplant. Among donors 24% were females and the median age was 52.5 years (17- 73; 62% of kidney cancers were donor-derived. The median interval between transplant and cancer diagnosis was shorter for cancer of recipient versus donor origin (150 vs. 210 days. Clear cell carcinoma was diagnosed in 17%. 25% had metastasis at diagnosis. Kidney explantation or excision was done in 90% and 84% of cases with and without metastasis respectively. The median survival was 72 months. Actuarial 1-year and 5-year survival rates were 73.4% and 55.1% respectively. Among the recipients from 7 donors who subsequently developed malignancy, 57% were dead within a year. Kidney transplant recipients have a small risk of kidney cancer, which affects younger patients and occurs within a year of transplant, likely due to immunosuppression. Whether the use of older donors may increase the likelihood needs further investigation. The presence of metastasis, explantation or excision of affected kidney and development of cancer in donors predict outcomes. The results may guide patient education and informed decision-making.

  4. Prevalence of osteoporosis in patients with chronic kidney disease (stages 3-5) in comparison with age- and sex-matched controls: A study from Kashmir Valley Tertiary Care Center.

    Science.gov (United States)

    Najar, M Saleem; Mir, Mohamad Muzzafer; Muzamil, Mudasir

    2017-01-01

    Chronic kidney disease (CKD) is associated with a range of metabolic bone diseases. Fracture rates are higher in CKD patients than age-matched controls throughout all the five stages of CKD. Dialysis patients have 4 times as many hip fractures as expected for their age. CKD forms an independent risk factor for osteoporosis, even in the absence of traditional risk factors. This study was carried out at the nephrology unit in a tertiary care center of Kashmir to know the prevalence of osteoporosis in CKD patients having glomerular filtration rate (GFR) stages 3-5). Among the 151 cases studied, the average estimated GFR was 16.78 ± 10.714 mL/min. There were 98 males (64.9%) and 53 females (35.1%). Their mean age was 51.01 ± 14.138 years. Osteoporosis based on femoral neck T-Score was seen in 31 patients (31.6%) while 43 patients (28.5%) had osteoporosis at L1, L2 lumbar vertebrae. The prevalence of osteoporosis based on femoral neck T-Score as well as osteopenia was highest in stage-5 CKD. In our study, the body mass index (BMI) had a positive correlation with osteoporosis; low BMI patients were at higher risk for osteoporosis (P = 0.014). In the Kashmir valley, the prevalence of osteoporosis was 31.8% in CKD patients against 22% in controls. Thus, CKD forms an important risk factor for osteoporosis even in the absence of traditional risk factors. We recommend early screening, detection, and management of osteoporosis to reduce the burden of morbidity and mortality in this subset of patients.

  5. End-stage kidney disease

    Science.gov (United States)

    ... stage; Kidney failure - end stage; ESRD; ESKD Images Kidney anatomy References Fogarty DG, Taal MW. A stepped care approach to the management of chronic kidney disease. In: Skorecki K, Chertow GM, Marsden PA, ...

  6. Extraintestinal Complications: Kidney Disorders

    Science.gov (United States)

    ... the ureters, bladder, and urethra for the passage, storage, and voiding of urine. Serious kidney complications associated with IBD are rare, ... Proteinuria, an elevated level of protein in the urine, is one sign of amyloidosis. A biopsy (tissue sample) of the kidney can confirm the diagnosis. Various ...

  7. Complicated Horseshoe Kidney

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Kim, S. R.; Cha, K. S.; Park, S. S. [Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2010-05-15

    Horseshoe kidney is an important urological anomaly when it is complicated or accompanied by other diseases. Recently we have experienced four cases of horseshoe kidney which were complicated with hydronephrosis, renal stone and adrenal pheochromocytoma. With review of literatures, we emphasize the importance of detection of these complications.

  8. Complicated Horseshoe Kidney

    International Nuclear Information System (INIS)

    Kim, K. S.; Kim, S. R.; Cha, K. S.; Park, S. S.

    2010-01-01

    Horseshoe kidney is an important urological anomaly when it is complicated or accompanied by other diseases. Recently we have experienced four cases of horseshoe kidney which were complicated with hydronephrosis, renal stone and adrenal pheochromocytoma. With review of literatures, we emphasize the importance of detection of these complications.

  9. Kidney removal - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100069.htm Kidney removal (nephrectomy) - series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 5 Go to slide 2 out of ... to slide 5 out of 5 Overview The kidneys are paired organs that lie posterior to the ...

  10. Kidney Stones in Children

    Science.gov (United States)

    ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ...

  11. Kidney Infection (Pyelonephritis)

    Science.gov (United States)

    ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ... Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition Blood Diseases Diagnostic Tests La información ...

  12. Kidney Disease Basics

    Science.gov (United States)

    ... disease, you can continue to live a productive life, work, spend time with friends and family, stay physically active, and do other things you enjoy. You may need to change what you eat and add healthy ... active, and enjoy life. Will my kidneys get better? Kidney disease is ...

  13. Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging.

    Science.gov (United States)

    Li, Jing; Cai, Dachuan; Yao, Xin; Zhang, Yanyan; Chen, Linbo; Jing, Pengwei; Wang, Lu; Wang, Yaping

    2016-06-09

    Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1⁺ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1⁺ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16(Ink4a), Rb, p21(Cip1/Waf1) and p53 in senescent Sca-1⁺ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1⁺ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16(Ink4a)-Rb and p53-p21(Cip1/Waf1) signaling.

  14. Obesity and kidney disease

    Directory of Open Access Journals (Sweden)

    Geraldo Bezerra da Silva Junior

    Full Text Available Abstract Obesity has been pointed out as an important cause of kidney diseases. Due to its close association with diabetes and hypertension, excess weight and obesity are important risk factors for chronic kidney disease (CKD. Obesity influences CKD development, among other factors, because it predisposes to diabetic nephropathy, hypertensive nephrosclerosis and focal and segmental glomerulosclerosis. Excess weight and obesity are associated with hemodynamic, structural and histological renal changes, in addition to metabolic and biochemical alterations that lead to kidney disease. Adipose tissue is dynamic and it is involved in the production of "adipokines", such as leptin, adiponectin, tumor necrosis factor-α, monocyte chemoattractant protein-1, transforming growth factor-β and angiotensin-II. A series of events is triggered by obesity, including insulin resistance, glucose intolerance, dyslipidemia, atherosclerosis and hypertension. There is evidence that obesity itself can lead to kidney disease development. Further studies are required to better understand the association between obesity and kidney disease.

  15. Novel genes in renal aging

    OpenAIRE

    Noordmans, Gerda Anke

    2015-01-01

    Renal aging is characterized by structural changes and functional decline. These changes make the elderly more vulnerable to chronic kidney disease, hypertension, and cardiovascular disease. Furthermore, they also make it more difficult to cope with stress factors, such as dehydration, toxicity, and obstruction. These stress factors can lead to acute kidney injury and reduced recovery from acute kidney injury and may result in chronic kidney disease or even end-stage renal disease. The rate o...

  16. Effects of Vitex agnus-castus fruit on sex hormones and antioxidant indices in a d-galactose-induced aging female mouse model

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    2016-11-01

    Conclusion: Vitex improved some aging events in the reproductive system of female mice. Therefore, because of its apparent antiaging effects, Vitex can be suitable for some aging problems such as oxidative stress, female sex hormone deficiency, and an atrophic endometrium.

  17. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  19. Functional CT of the kidney

    International Nuclear Information System (INIS)

    Tsushima, Yoshito.

    1999-01-01

    The iodinated contrast agents used for computed tomography (CT) are filtered at the glomerulus and not reabsorbed by the tubules and have pharmacokinetics comparable to inulin. They can thus measure physiological indices such as contrast clearance per unit volume, which is closely related to glomerular filtration rate per unit renal volume of kidney, after due allowance for the difference between blood and plasma clearance. In this review, we show how dynamic CT can be used to measure both regional and global blood clearance of contrast material. A single slice of kidney is scanned sequentially after bolus intravenous (i.v.) injection of contrast material. Next, time-attenuation curves are constructed and contrast clearance per unit volume is calculated using a Patlak graphical analysis. CT determination of renal volume is made and global contrast clearance can be then also calculated. In normal kidneys, clearance/volume averaged 0.49±0.11 ml min -1 ml -1 (mean ±S.D.), and these values agreed with literature data obtained using other techniques. A negative correlation between patient's age and clearance/volume was seen. A strong correlation was observed between creatinine whole blood clearance and the global contrast clearance (the product of renal volume determined by CT and contrast clearance/volume). Dynamic CT can provide quantitative renal physiological information on a regional basis non-invasively

  20. Functional CT of the kidney

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Yoshito. E-mail: yoshito@xa2.so-net.ne.jp

    1999-06-01

    The iodinated contrast agents used for computed tomography (CT) are filtered at the glomerulus and not reabsorbed by the tubules and have pharmacokinetics comparable to inulin. They can thus measure physiological indices such as contrast clearance per unit volume, which is closely related to glomerular filtration rate per unit renal volume of kidney, after due allowance for the difference between blood and plasma clearance. In this review, we show how dynamic CT can be used to measure both regional and global blood clearance of contrast material. A single slice of kidney is scanned sequentially after bolus intravenous (i.v.) injection of contrast material. Next, time-attenuation curves are constructed and contrast clearance per unit volume is calculated using a Patlak graphical analysis. CT determination of renal volume is made and global contrast clearance can be then also calculated. In normal kidneys, clearance/volume averaged 0.49{+-}0.11 ml min{sup -1} ml{sup -1} (mean {+-}S.D.), and these values agreed with literature data obtained using other techniques. A negative correlation between patient's age and clearance/volume was seen. A strong correlation was observed between creatinine whole blood clearance and the global contrast clearance (the product of renal volume determined by CT and contrast clearance/volume). Dynamic CT can provide quantitative renal physiological information on a regional basis non-invasively.

  1. Protective role of ginseng against gentamicin induced changes in kidney of albino mice

    International Nuclear Information System (INIS)

    Hafeez, M.; Saeed, F.

    2011-01-01

    Background: Use of gentamicin is now limited due to its toxic effects, mainly on kidney and vestibular system. Herbal products including ginseng has been reported to possess protective effects against drugs induced nephrotoxicity in experimental animals. The current investigation was designed to evaluate the effects of ginseng on gentamicin induced nephrotoxicity. Methods: Eighteen male albino mice of 6-8 weeks age, were divided into 3 groups. Group-A served as control and was given normal mouse diet; Group-B was given 80 mg/Kg/day of gentamicin intraperitoneally dissolved in 1 ml of distilled water for fifteen days. Group-C was given 80 mg/Kg/day of gentamicin intraperitoneally dissolved in 1 ml of distilled water along with 100 mg/Kg/day of ginseng orally dissolved in 1 ml of distilled water, also for fifteen days. At the end of the experiment, blood was drawn from each animal by cardiac puncture for renal function tests. Each animal was then sacrificed and kidneys removed for routine histological studies. Results: In group B, weight of the animals and kidneys decreased and there was significant increase in mean serum urea, creatinine and intraluminal diameter (p<0.001) of proximal convoluted tubules as compared to the controls (group-A). Moderate to severe necrotic and degenerative changes in proximal convoluted tubules were seen in this group. When the Ginseng and gentamicin were given together (group-C), a statistically significant improvement in the mean body and kidney weight along with improvement in renal function tests and tubular diameter were seen (p<0.001). Conclusion: It appears that Ginseng has some protective role against gentamicin induced nephrotoxicity. (author)

  2. New biomarkers of acute kidney injury

    Directory of Open Access Journals (Sweden)

    Ruya Ozelsancak

    2013-04-01

    Full Text Available Acute kidney injury is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid-base disorders. It is an important clinical problem increasing mortality in patient with several co-morbid conditions. The frequency of acute kidney injury occurrence varies from 5% on the inpatients wards to 30-50% in patients from intensive care units. Serial measurement of creatinine and urine volume do not make it possible to diagnose acute kidney injury at early stages. Serum creatinine may be influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reasons we need new markers. Here, we are reviewing the most promising new acute kidney injury markers, neutrophil gelatinase associated lipocalin, cystatin-C, kidney injury molecule-1, liver fatty acid binding proteins and IL-18. [Archives Medical Review Journal 2013; 22(2.000: 221-229

  3. SECRETED KLOTHO AND CHRONIC KIDNEY DISEASE

    Science.gov (United States)

    Hu, Ming Chang; Kuro-o, Makoto; Moe, Orson W.

    2013-01-01

    Soluble Klotho (sKl) in the circulation can be generated directly by alterative splicing of the Klotho transcript or the extracellular domain of membrane Klotho can be released from membrane-anchored Klotho on the cell surface. Unlike membrane Klotho which functions as a coreceptor for fibroblast growth factor-23 (FGF23), sKl, acts as hormonal factor and plays important roles in anti-aging, anti-oxidation, modulation of ion transport, and Wnt signaling. Emerging evidence reveals that Klotho deficiency is an early biomarker for chronic kidney diseases as well as a pathogenic factor. Klotho deficiency is associated with progression and chronic complications in chronic kidney disease including vascular calcification, cardiac hypertrophy, and secondary hyperparathyroidism. In multiple experimental models, replacement of sKl, or manipulated up-regulation of endogenous Klotho protect the kidney from renal insults, preserve kidney function, and suppress renal fibrosis, in chronic kidney disease. Klotho is a highly promising candidate on the horizon as an early biomarker, and as a novel therapeutic agent for chronic kidney disease. PMID:22396167

  4. Kidney Transplantation: MedlinePlus Health Topic

    Science.gov (United States)

    ... as They Affect Physical Fitness: A Physical Therapist's Point of View (National Kidney Foundation) Solitary Kidney (National Institute of Diabetes and Digestive and Kidney Diseases) Travel Tips: A Guide for Kidney Patients (National Kidney ...

  5. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    Science.gov (United States)

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.

  6. Healthy Kidneys (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Kidney disease is among the leading causes of death in the U.S. More than one in 10 people over the age of 20 are impacted by this condition, and most don’t know it. In this podcast, Nilka Rios Burrows discusses the risks for kidney disease.

  7. Frailty in elderly people with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Portilla Franco

    2016-11-01

    Frailty can be reversed, which is why a study of frailty in patients with chronic kidney disease is of particular interest. This article aims to describe the association between ageing, frailty and chronic kidney disease in light of the most recent and relevant scientific publications.

  8. Cake kidney: a rare anomaly of renal fusion

    Directory of Open Access Journals (Sweden)

    Guilherme Lippi Ciantelli

    2012-06-01

    Full Text Available ABSTRACT The cake kidney is a rare congenital anomaly of the urinogenital tract that can be diagnosed at any age. Few more than 20 cases have been described in the literature. The authors describe in this article another case of this rare malformation. Key-words: kidney, congenital abnormalities, rare diseases.

  9. A mouse model for Costello syndrome reveals an Ang II–mediated hypertensive condition

    Science.gov (United States)

    Schuhmacher, Alberto J.; Guerra, Carmen; Sauzeau, Vincent; Cañamero, Marta; Bustelo, Xosé R.; Barbacid, Mariano

    2008-01-01

    Germline activation of H-RAS oncogenes is the primary cause of Costello syndrome (CS), a neuro-cardio-facio-cutaneous developmental syndrome. Here we describe the generation of a mouse model of CS by introduction of an oncogenic Gly12Val mutation in the mouse H-Ras locus using homologous recombination in ES cells. Germline expression of the endogenous H-RasG12V oncogene, even in homozygosis, resulted in hyperplasia of the mammary gland. However, development of tumors in these mice was rare. H-RasG12V mutant mice closely phenocopied some of the abnormalities observed in patients with CS, including facial dysmorphia and cardiomyopathies. These mice also displayed alterations in the homeostasis of the cardiovascular system, including development of systemic hypertension, extensive vascular remodeling, and fibrosis in both the heart and the kidneys. This phenotype was age dependent and was a consequence of the abnormal upregulation of the renin–Ang II system. Treatment with captopril, an inhibitor of Ang II biosynthesis, prevented development of the hypertension condition, vascular remodeling, and heart and kidney fibrosis. In addition, it partially alleviated the observed cardiomyopathies. These mice should help in elucidating the etiology of CS symptoms, identifying additional defects, and evaluating potential therapeutic strategies. PMID:18483625

  10. Liraglutide Reduces Both Atherosclerosis and Kidney Inflammation in Moderately Uremic LDLr-/- Mice

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Bosteen, Markus H; Fink, Lisbeth N

    2016-01-01

    Chronic kidney disease (CKD) leads to uremia. CKD is characterized by a gradual increase in kidney fibrosis and loss of kidney function, which is associated with a progressive increase in risk of atherosclerosis and cardiovascular death. To prevent progression of both kidney fibrosis and atherosc......Chronic kidney disease (CKD) leads to uremia. CKD is characterized by a gradual increase in kidney fibrosis and loss of kidney function, which is associated with a progressive increase in risk of atherosclerosis and cardiovascular death. To prevent progression of both kidney fibrosis...... aim was to examine effects of liraglutide on kidney fibrosis and atherosclerosis in a mouse model of moderate uremia (5/6 nephrectomy (NX)). Uremic (n = 29) and sham-operated (n = 14) atherosclerosis-prone low density lipoprotein receptor knockout mice were treated with liraglutide (1000 μg/kg, s.......c. once daily) or vehicle for 13 weeks. As expected, uremia increased aortic atherosclerosis. In the remnant kidneys from NX mice, flow cytometry revealed an increase in the number of monocyte-like cells (CD68+F4/80-), CD4+, and CD8+ T-cells, suggesting that moderate uremia induced kidney inflammation...

  11. [Autosomal dominant polycystic kidney].

    Science.gov (United States)

    Jorge Adad, S; Estevão Barbosa, M; Fácio Luíz, J M; Furlan Rodrigues, M C; Iwamoto, S

    1996-01-01

    A 48-year-old male had autosomic dominant polycystic kidneys with dimensions, to the best of our knowledge, never previously reported; the right kidney weighed 15,100 g and measured 53 x 33 x 9cm and the left one 10.200 g and 46 x 21 x 7cm, with cysts measuring up to 14cm in diameter. Nephrectomy was done to control persistent hematuria and to relief disconfort caused by the large kidneys. The renal function is stable four years after transplantation.

  12. Age-Related Alterations in the Expression of Genes and Synaptic Plasticity Associated with Nitric Oxide Signaling in the Mouse Dorsal Striatum

    Directory of Open Access Journals (Sweden)

    Aisa N. Chepkova

    2015-01-01

    Full Text Available Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old to old (18–24 months of age animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age. Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.

  13. Anemia in Chronic Kidney Disease

    Science.gov (United States)

    ... Cysts Solitary Kidney Your Kidneys & How They Work Anemia in Chronic Kidney Disease What is anemia? Anemia is a condition in which the body ... function as well as they should. How is anemia related to chronic kidney disease? Anemia commonly occurs ...

  14. Effects of Vitex agnus-castus fruit on sex hormones and antioxidant indices in a d-galactose-induced aging female mouse model.

    Science.gov (United States)

    Ahangarpour, Akram; Najimi, Seyedeh Asma; Farbood, Yaghoob

    2016-11-01

    Aging is associated with the loss of endocrine function. In this study, Vitex agnus-castus (Vitex), which has antioxidant effects and high levels of phytoestrogen, was investigated with regard to the hypothalamic-pituitary-gonadal axis and antioxidant indices in natural aging and in a d-galactose induced aging model in female mice. The mice were subcutaneously injected with d-galactose (500 mg/kg/d for 45 days). Extract of Vitex (600 mg/kg/bid for 7 days by gavage) was used to treat d-galactose-induced aging and natural aging in mice. Seventy-two female NMRI mice (48 3-month-old normal mice and 24 18-24-month-old mice), weighing 30-35 g were randomly divided into six groups: control, Vitex, d-galactose, Vitex + d-galactose, Aging, and Vitex + Aging. The antioxidant indices and sex hormone levels were subsequently measured by enzyme-linked immunosorbent assay kits. Body weight and the levels of malondialdehyde (MDA), follicle-stimulating hormone, and luteinizing hormone levels were significantly increased in the d-galactose aging and natural aging groups, whereas catalase and superoxide dismutase (SOD) activity and estrogen level were significantly decreased in these same groups. d-Galactose can also disrupt the estrous cycle and damage the uterus and ovarian tissues. Vitex could effectively attenuate these alterations. Vitex improved some aging events in the reproductive system of female mice. Therefore, because of its apparent antiaging effects, Vitex can be suitable for some aging problems such as oxidative stress, female sex hormone deficiency, and an atrophic endometrium. Copyright © 2016. Published by Elsevier Taiwan LLC.

  15. A dwarf mouse model with decreased GH/IGF-1 activity that does not experience life-span extension: potential impact of increased adiposity, leptin, and insulin with advancing age.

    Science.gov (United States)

    Berryman, Darlene E; Lubbers, Ellen R; Magon, Vishakha; List, Edward O; Kopchick, John J

    2014-02-01

    Reduced growth hormone (GH) action is associated with extended longevity in many vertebrate species. GH receptor (GHR) null (GHR(-)(/-)) mice, which have a disruption in the GHR gene, are a well-studied example of mice that are insulin sensitive and long lived yet obese. However, unlike other mouse lines with reduced GH action, GH receptor antagonist (GHA) transgenic mice have reduced GH action yet exhibit a normal, not extended, life span. Understanding why GHA mice do not have extended life span though they share many physiological attributes with GHR(-)(/-) mice will help provide clues about how GH influences aging. For this study, we examined age- and sex-related changes in body composition, glucose homeostasis, circulating adipokines, and tissue weights in GHA mice and littermate controls. Compared with previous studies with GHR(-)(/-) mice, GHA mice had more significant increases in fat mass with advancing age. The increased obesity resulted in significant adipokine changes. Euglycemia was maintained in GHA mice; however, hyperinsulinemia developed in older male GHA mice. Overall, GHA mice experience a more substantial, generalized obesity accompanied by altered adipokine levels and glucose homeostasis than GHR(-)(/-) mice, which becomes more exaggerated with advancing age and which likely contributes to the lack of life-span extension in these mice.

  16. Images in kidney trauma

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Rodriguez, Sonia Pilar; Manzano, Ana Cristina

    2007-01-01

    A case of a 3 years old female patient, who suffered blunt lumbar trauma (horse kick) with secondary kidney trauma, is reported. Imaging findings are described. Renal trauma classification and imaging findings are reviewed

  17. About Chronic Kidney Disease

    Science.gov (United States)

    ... detect CKD: blood pressure, urine albumin and serum creatinine. What causes CKD? The two main causes of chronic kidney disease are diabetes and high blood pressure , which are responsible for up to ...

  18. Polycystic kidney disease

    Science.gov (United States)

    ... don't have other diseases may be good candidates for a kidney transplant. Possible Complications Health problems ... www.urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. ...

  19. Kidney removal - discharge

    Science.gov (United States)

    ... Schwartz MJ, Rais-Bahrami S, Kavoussi LR. Laparoscopic and robotic surgery of the kidney. In: Wein AJ, Kavoussi ... Urology, West Bloomfield, MI. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, ...

  20. Kidney Cancer Risk Questionnaire

    Science.gov (United States)

    ... NCI Cancer Information A to Z Treatment Roles Cancer Types Bladder Brain/Spine Breast Cervical Colorectal Esophageal Gallbladder Head/Neck Kidney Leukemia Liver Lung Lymphoma Multiple Myeloma Ovarian Pancreatic ...

  1. American Kidney Fund

    Science.gov (United States)

    ... that you see in the box: Spam Control Text: Please leave this field empty Submit Change ... a kidney health educator Clinical Scientist in Nephrology program Online continuing education Search clinical ...

  2. National Kidney Foundation Newsroom

    Science.gov (United States)

    ... 11/2018 Using a Home Test Kit and Smartphone to Test for Kidney Disease - 04/10/2018 ... of millions of Americans at risk. The Better Business Bureau Wise Giving Alliance Charity Seal provides the ...

  3. Kidney compartment model

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-09-01

    A multiparameter kidney compartment model which quantitates the amount of iodohippurate concentration as a function of time in the blood, tissue, kidneys and bladder is developed from a system of differential equations which represent first order kinetics. The kinetic data are obtained using a gamma camera and an HP5407 computer system which allows one to delineate areas of interest for the blood and tissue, kidneys, and bladder thus separating the data into four data sets. The estimated tubular transit times have a high ratio of the signal to the variance whereas the estimates of the amount of iodohippurate in the blood, tissue and kidneys have a low ratio of the signal to the variance. Application of this model to patient data requires better statistics than available with conventional 131 I-hippurate doses; thus a true test of the efficacy awaits availability of 123 I-hippurate

  4. Testing for Kidney Disease

    Science.gov (United States)

    ... mean for you. If you have kidney disease, measuring the albumin in your urine helps your provider ... Staff Directory Budget & Legislative Information Advisory & Coordinating Committees Strategic Plans & Reports Research Areas FAQs Jobs at NIDDK ...

  5. Acquired Cystic Kidney Disease

    Science.gov (United States)

    ... including diabetes, high blood pressure, glomerulonephritis, and cys tic kidney diseases. Participants in clinical trials can play ... Life Options Rehabilitation Resource Center c/o Medical Education Institute, Inc. 414 D’Onofrio Drive, Suite 200 ...

  6. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  7. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  8. Resistive index for kidney evaluation in normal and diseased cats.

    Science.gov (United States)

    Tipisca, Vlad; Murino, Carla; Cortese, Laura; Mennonna, Giuseppina; Auletta, Luigi; Vulpe, Vasile; Meomartino, Leonardo

    2016-06-01

    The objectives were to determine the resistive index (RI) in normal cats and in cats with various renal diseases, and to evaluate the effect of age on RI. The subjects were cats that had ultrasonography (US) of the urinary tract and RI measurement at our centre between January 2003 and April 2014. Based on clinical evaluation, biochemical and haematological tests, urinalysis and US, the cats were classified as healthy or diseased. RI measurements were made from the interlobar or arcuate arteries. Data were analysed for differences between the right and the left kidney, the two sexes, different age groups in healthy cats, and between healthy and diseased cats. A total of 116 cats (68 males, 48 females) were included: 24 healthy and 92 diseased. In the healthy cats, RI (mean ± SD) differed significantly (P = 0.02) between the right kidney (0.54 ± 0.07) and the left kidney (0.59 ± 0.08). For the left kidney, RI was significantly higher in cats with chronic kidney disease (0.73 ± 0.12) and acute kidney injury (0.72 ± 0.08) (P = 0.0008). For the right kidney, RI was significantly higher in cats with chronic kidney disease (0.72 ± 0.11), acute kidney injury (0.74 ± 0.08), polycystic kidney disease (0.77 ± 0.11) and renal tumour (0.74 ± 0.001) (P cats, useful in the differential diagnosis of diffuse renal diseases. While it does not change with the age of the cat, ultrasonographers should be aware that RI may differ between the two kidneys. © ISFM and AAFP 2015.

  9. The role of mitochondrial superoxide anion (O2-) on physiological aging in C57BL/6J mice

    International Nuclear Information System (INIS)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Onouchi, Hiromi; Ishii, Naoaki; Noda, Setsuko; Hartman, Philip S.

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O 2 - ), which is also a critical free radical produced by ionizing radiation. The specific role of the mitochondrial O 2 - on physiological aging in mammals is still nuclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O 2 - is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O 2 - relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O 2 - production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O 2 - levels. Mitochondrial O 2 - production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O 2 - production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O 2 - production has high organ specificity, and oxidative damage by O 2 - from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O 2 - from mitochondria plays a core role in physiological aging. (author)

  10. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice.

    Science.gov (United States)

    Miyazawa, Masaki; Ishii, Takamasa; Yasuda, Kayo; Noda, Setsuko; Onouchi, Hiromi; Hartman, Philip S; Ishii, Naoaki

    2009-01-01

    Much attention has been focused on the mitochondrial superoxide anion (O2(-)), which is also a critical free radial produced by ionizing radiation. The specific role of the mitochondrial O2(-) on physiological aging in mammals is still unclear despite wide-spread evidence that oxidative stress is involved in aging and age-related diseases. The major endogenous source of O2(-) is generated as a byproduct of energy metabolism from mitochondria. In order to better understand how O2(-)relates to metazoan aging, we have comprehensively examined age-related changes in the levels of oxidative damage, mitochondrial O2(-) production, mitochondrial antioxidant enzyme activity and apoptosis induction in key organs of an inbred mouse strain (C57BL/6J). Oxidative damage accumulated and excess apoptosis occurred in the brain, oculus and kidney with aging, but comparatively little occurred in the heart and muscle. These rates are correlated with O2(-) levels. Mitochondrial O2(-) production levels increased with aging in the brain, oculus and kidney, and did not significantly increased in the heart and muscle. In contrast to O2(-) production, mitochondrial SOD activities increased in heart and muscle, and remained unchanged in the brain, oculus and kidney with aging. These results suggest that O2(-) production has high organ specificity, and oxidative damage by O2(-) from mitochondria mediated apoptosis can lead to organ atrophy and physiological dysfunction. In addition, O2(-) from mitochondria plays a core role in physiological aging.

  11. [Chronic kidney disease and kidney transplantation].

    Science.gov (United States)

    Thuret, R; Timsit, M O; Kleinclauss, F

    2016-11-01

    To report epidemiology and characteristics of end-stage renal disease (ESRD) patients and renal transplant candidates, and to evaluate access to waiting list and results of renal transplantation. An exhaustive systematic review of the scientific literature was performed in the Medline database (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) using different associations of the following keywords: "chronic kidney disease, epidemiology, kidney transplantation, cost, survival, graft, brain death, cardiac arrest, access, allocation". French legal documents have been reviewed using the government portal (http://www.legifrance.gouv.fr). Articles were selected according to methods, language of publication and relevance. The reference lists were used to identify additional historical studies of interest. Both prospective and retrospective series, in French and English, as well as review articles and recommendations were selected. In addition, French national transplant and health agencies (http://www.agence-biomedecine.fr and http://www.has-sante.fr) databases were screened using identical keywords. A total of 3234 articles, 6 official reports and 3 newspaper articles were identified; after careful selection 99 publications were eligible for our review. The increasing prevalence of chronic kidney disease (CKD) leads to worsen organ shortage. Renal transplantation remains the best treatment option for ESRD, providing recipients with an increased survival and quality of life, at lower costs than other renal replacement therapies. The never-ending lengthening of the waiting list raises issues regarding treatment strategies and candidates' selection, and underlines the limits of organ sharing without additional source of kidneys available for transplantation. Allocation policies aim to reduce medical or geographical disparities regarding enrollment on a waiting list or access to an allotransplant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. [Paired kidneys in transplant].

    Science.gov (United States)

    Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús

    2009-02-01

    Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.

  13. Dual Kidney Transplantation Offers a Valuable Source for Kidneys With Good Functional Outcome.

    Science.gov (United States)

    Khalid, U; Asderakis, A; Rana, T; Szabo, L; Chavez, R; Ilham, M A; Ablorsu, E

    2016-01-01

    Reasons for declining kidney donors are older age, with or without, hypertension, kidney dysfunction, and diabetes. Implantation of both kidneys into a single recipient from such donors may improve their acceptability and outcome. Patients who underwent dual kidney transplantation (DKT) between June 2010 and May 2014 were identified from a prospectively maintained database. Single kidney transplantations (SKT) with matching donor criteria were also identified. Donors considered for DKT were the following: DBDs >70