WorldWideScience

Sample records for mounted multi-sensor array

  1. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  2. Robust site security using smart seismic array technology and multi-sensor data fusion

    Science.gov (United States)

    Hellickson, Dean; Richards, Paul; Reynolds, Zane; Keener, Joshua

    2010-04-01

    Traditional site security systems are susceptible to high individual sensor nuisance alarm rates that reduce the overall system effectiveness. Visual assessment of intrusions can be intensive and manually difficult as cameras are slewed by the system to non intrusion areas or as operators respond to nuisance alarms. Very little system intrusion performance data are available other than discrete sensor alarm indications that provide no real value. This paper discusses the system architecture, integration and display of a multi-sensor data fused system for wide area surveillance, local site intrusion detection and intrusion classification. The incorporation of a novel seismic array of smart sensors using FK Beamforming processing that greatly enhances the overall system detection and classification performance of the system is discussed. Recent test data demonstrates the performance of the seismic array within several different installations and its ability to classify and track moving targets at significant standoff distances with exceptional immunity to background clutter and noise. Multi-sensor data fusion is applied across a suite of complimentary sensors eliminating almost all nuisance alarms while integrating within a geographical information system to feed a visual-fusion display of the area being secured. Real-time sensor detection and intrusion classification data is presented within a visual-fusion display providing greatly enhanced situational awareness, system performance information and real-time assessment of intrusions and situations of interest with limited security operator involvement. This approach scales from a small local perimeter to very large geographical area and can be used across multiple sites controlled at a single command and control station.

  3. Multi-sensor Array for High Altitude Balloon Missions to the Stratosphere

    Science.gov (United States)

    Davis, Tim; McClurg, Bryce; Sohl, John

    2008-10-01

    We have designed and built a microprocessor controlled and expandable multi-sensor array for data collection on near space missions. Weber State University has started a high altitude research balloon program called HARBOR. This array has been designed to data log a base set of measurements for every flight and has room for six guest instruments. The base measurements are absolute pressure, on-board temperature, 3-axis accelerometer for attitude measurement, and 2-axis compensated magnetic compass. The system also contains a real time clock and circuitry for logging data directly to a USB memory stick. In typical operation the measurements will be cycled through in sequence and saved to the memory stick along with the clock's time stamp. The microprocessor can be reprogrammed to adapt to guest experiments with either analog or digital interfacing. This system will fly with every mission and will provide backup data collection for other instrumentation for which the primary task is measuring atmospheric pressure and temperature. The attitude data will be used to determine the orientation of the onboard camera systems to aid in identifying features in the images. This will make these images easier to use for any future GIS (geographic information system) remote sensing missions.

  4. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  5. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  6. A vehicle mounted multi-sensor array for waste site characterization

    International Nuclear Information System (INIS)

    Baumgart, C.W.; Ciarcia, C.A.; Tunnell, T.W.

    1995-02-01

    Personnel at AlliedSignal Aerospace, Kirtland Operations (formerly EG ampersand G Energy Measurements, Kirtland Operations) and EG ampersand G Energy Measurements, Los Alamos Operations, have successfully developed and demonstrated a number of technologies which can be applied to the environmental remediation and waste management problem. These applications have included the development of self-contained and towed remote sensing platforms and advanced signal analysis techniques for the detection and characterization of subsurface features. This presentation will provide a brief overview of applications that have been and are currently being fielded by both AlliedSignal and EG ampersand G Energy Measurements personnel and will describe some of the ways that such technologies can and are being used for the detection and characterization of hazardous waste sites

  7. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  8. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  9. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  10. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  11. Beamforming with a circular array of microphones mounted on a rigid sphere (L)

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Jacobsen, Finn; Fernandez Grande, Efren

    2011-01-01

    Beamforming with uniform circular microphone arrays can be used for localizing sound sources over 360. Typically, the array microphones are suspended in free space or they are mounted on a solid cylinder. However, the cylinder is often considered to be infinitely long because the scattering problem...... has no exact solution for a finite cylinder. Alternatively one can use a solid sphere. This investigation compares the performance of a circular array mounded on a rigid sphere with that of such an array in free space and mounted on an infinite cylinder, using computer simulations. The examined...

  12. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  13. Concentrically Mounted Wrapped Array with Cable Support, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a lightweight PV array module architecture with up to or beyond 2500 m2 surface area autonomously and robustly deployable in a gravitational field from...

  14. CFRP platform and hexapod mount for the Array of MIcrowave Background Anisotropy (AMiBA)

    Science.gov (United States)

    Raffin, Philippe A.; Martin, Robert N.; Huang, Yau-De; Patt, Ferdinand; Romeo, Robert C.; Chen, Ming-Tang; Kingsley, Jeffrey S.

    2004-09-01

    AMiBA consists of a 90 GHz interferometric array telescope with dishes ranging in size from 0.3 to 2.4 meter in diameter, mounted on a 6-meter fully steerable platform. The dishes are attached to the receivers, which are mounted on a platform controlled by a six degree of freedom hexapod mount. The hexapod mount is a parallel connection manipulator also called Stewart Platform. The basic reference for this mechanism is a paper by Stewart. The Stewart Platform is a unique kinematically constrained work platform. It can be manipulated through the six degrees of freedom. The hexapod also provides better accuracy, rigidity, load to weight ratio and load distribution than a serial manipulator or traditional manipulator. The advantages of the hexapod shows that it is a great choice for the AMiBA project. Vertex Antennentechnik GmbH fabricates the hexapod. Testing has started in Germany. The telescope will be delivered in the summer of 2004. The 6m in diameter hexagonal platform is made of carbon fiber reinforced plastics (CFRP) and consists of seven pieces of three different unique types. The platform can be disassembled and fits in a container for transportation. The mounting plane flatness is an important issue for the platform assembly. The deflection angle of the mounting plane relative to any other mounting position must be less than 20 arcsec. Meanwhile, the platform must endure a loading of 3 tons. The platform has been built by Composite Mirror Applications, Inc. (CMA) in Tucson, and mounted on the Hexapod in Germany. This report describes the design and testing of platform and mount for the AMiBA telescope.

  15. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  16. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    Science.gov (United States)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  17. A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration

    National Research Council Canada - National Science Library

    Jean, Buddy H; Younker, John; Hung, Chih-Cheng

    2004-01-01

    .... This new technology will integrate multi-sensor information and extract integrated multi-sensor information to detect, track and identify multiple targets at any time, in any place under all weather conditions...

  18. Nonlinear gain of a millimetre wave antenna array mounted on a re-entry vehicle

    International Nuclear Information System (INIS)

    Sharma, Ashok Kumar; Kumar, Ashok

    2007-01-01

    A millimetre wave antenna array, mounted on a space vehicle re-entering the Earth's atmosphere, encounters a high density plasma around it. At high antenna power, the millimetre wave field heats the electrons nonuniformly. The electron temperature, T e , follows the antenna pattern, being maximum along the direction of the principal maximum (z-axis) and falling off rapidly across it. The ambipolar plasma diffusion under the pressure gradient force creates a refractive index profile with maximum on the z-axis, leading to self-convergence of the millimetre wave and enhancement in the effective gain of the antenna

  19. Ambient noise tomography across Mount St. Helens using a dense seismic array

    KAUST Repository

    Wang, Yadong

    2017-05-08

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an ~10–15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  20. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    Science.gov (United States)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  1. Performance evaluation of multi-sensor data fusion technique for ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Multi-sensor data fusion; Test Range application; trajectory .... Kalman filtering technique utilizes the noise statistics of the underlying system under con- ..... Hall D L 1992 Mathematical techniques in multi-sensor data fusion (Boston, MA: ...

  2. Multi-Sensor Mud Detection

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  3. A Method to Estimate Local Towed Array Angles Using Flush Mounted Hot Film Wall Shear Sensors

    National Research Council Canada - National Science Library

    Keith, William L; Cipolla, Kimberly M

    2008-01-01

    A towed array is provided with hot-film sensors and anemometer circuitry to calculate the angle of inclination of the towed array in real time during deployment of the towed array in a sea water environment...

  4. Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings.

    Science.gov (United States)

    Muñoz, P; Pastor, D; Capmany, J; Martínez, A

    2003-09-22

    In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

  5. High-throughput live-imaging of embryos in microwell arrays using a modular specimen mounting system.

    Science.gov (United States)

    Donoughe, Seth; Kim, Chiyoung; Extavour, Cassandra G

    2018-04-30

    High-throughput live-imaging of embryos is an essential technique in developmental biology, but it is difficult and costly to mount and image embryos in consistent conditions. Here, we present OMMAwell, a simple, reusable device to easily mount dozens of embryos in arrays of agarose microwells with customizable dimensions and spacing. OMMAwell can be configured to mount specimens for upright or inverted microscopes, and includes a reservoir to hold live-imaging medium to maintain constant moisture and osmolarity of specimens during time-lapse imaging. All device components can be fabricated by cutting pieces from a sheet of acrylic using a laser cutter or by making them with a 3D printer. We demonstrate how to design a custom mold and use it to live-image dozens of embryos at a time. We include descriptions, schematics, and design files for 13 additional molds for nine animal species, including most major traditional laboratory models and a number of emerging model systems. Finally, we provide instructions for researchers to customize OMMAwell inserts for embryos or tissues not described herein. © 2018. Published by The Company of Biologists Ltd.

  6. Measuring In-Home Walking Speed using Wall-Mounted RF Transceiver Arrays

    Science.gov (United States)

    Jacobs, Peter G.; Wan, Eric A.; Schafermeer, Erich; Adenwala, Fatema; Paul, Anindya S.; Preiser, Nick; Kaye, Jeffrey

    2014-01-01

    In this paper we present a new method for passively measuring walking speed using a small array of radio transceivers positioned on the walls of a hallway within a home. As a person walks between a radio transmitter and a receiver, the received signal strength (RSS) detected by the receiver changes in a repeatable pattern that may be used to estimate walking speed without the need for the person to wear any monitoring device. The transceivers are arranged as an array of 4 with a known distance between the array elements. Walking past the first pair of transceivers will cause a peak followed by a second peak when the person passes the second pair of transceivers. The time difference between these peaks is used to estimate walking speed directly. We further show that it is possible to estimate the walking speed by correlating the shape of the signal using a single pair of transceivers positioned across from each other in a hallway or doorframe. RMSE performance was less than 15 cm/s using a 2-element array, and less than 8 cm/s using a 4-element array relative to a gait mat used for ground truth. PMID:25570108

  7. Miniaturized multi-sensor for aquatic studies

    DEFF Research Database (Denmark)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis

    2011-01-01

    that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination...... of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10−7 Pa−1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74......We have developed and fabricated a multi-sensor chip for fisheries’ research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved...

  8. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  9. Miniaturized multi-sensor for aquatic studies

    International Nuclear Information System (INIS)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis; Thomsen, Erik V

    2011-01-01

    We have developed and fabricated a multi-sensor chip for fisheries' research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm 3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10 −7 Pa −1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74% in the range of visible light. The temperature sensor responds linearly with temperature and has a temperature coefficient of resistance of 2.9 × 10 −3 K −1 . The conductivity sensor can measure the salinity with an accuracy of ±0.1 psu. This is all together the smallest and best functioning fully integrated MEMS-based multi-sensor made to date for this specific application. However, each single-sensor performance can be optimized by introducing a considerably more complicated process sequence. In this paper, a new simpler process for integrating the four sensors on one single chip is presented in details for the first time. Further, an optimized performance of the individual sensors is presented

  10. A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration

    Science.gov (United States)

    2004-09-01

    NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha

  11. A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG).

    Science.gov (United States)

    Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John

    2010-01-01

    This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.

  12. Design and characterization of a laterally mounted phased-array transducer breast-specific MRgHIFU device with integrated 11-channel receiver array.

    Science.gov (United States)

    Payne, A; Merrill, R; Minalga, E; Vyas, U; de Bever, J; Todd, N; Hadley, R; Dumont, E; Neumayer, L; Christensen, D; Roemer, R; Parker, D

    2012-03-01

    This work presents the design and preliminary evaluation of a new laterally mounted phased-array MRI-guided high-intensity focused ultrasound (MRgHIFU) system with an integrated 11-channel phased-array radio frequency (RF) coil intended for breast cancer treatment. The design goals for the system included the ability to treat the majority of tumor locations, to increase the MR image's signal-to-noise ratio (SNR) throughout the treatment volume and to provide adequate comfort for the patient. In order to treat the majority of the breast volume, the device was designed such that the treated breast is suspended in a 17-cm diameter treatment cylinder. A laterally shooting 1-MHz, 256-element phased-array ultrasound transducer with flexible positioning is mounted outside the treatment cylinder. This configuration achieves a reduced water volume to minimize RF coil loading effects, to position the coils closer to the breast for increased signal sensitivity, and to reduce the MR image noise associated with using water as the coupling fluid. This design uses an 11-channel phased-array RF coil that is placed on the outer surface of the cylinder surrounding the breast. Mechanical positioning of the transducer and electronic steering of the focal spot enable placement of the ultrasound focus at arbitrary locations throughout the suspended breast. The treatment platform allows the patient to lie prone in a face-down position. The system was tested for comfort with 18 normal volunteers and SNR capabilities in one normal volunteer and for heating accuracy and stability in homogeneous phantom and inhomogeneous ex vivo porcine tissue. There was a 61% increase in mean relative SNR achieved in a homogeneous phantom using the 11-channel RF coil when compared to using only a single-loop coil around the chest wall. The repeatability of the system's energy delivery in a single location was excellent, with less than 3% variability between repeated temperature measurements at the same

  13. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    Science.gov (United States)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  14. Multi sensor reanalysis of total ozone

    Directory of Open Access Journals (Sweden)

    R. J. van der A

    2010-11-01

    Full Text Available A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR, has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe, SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16, GOME (ERS-2, SCIAMACHY (Envisat, OMI (EOS-Aura, and GOME-2 (Metop-A have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend, and effective ozone temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 1× 1 1/2° with a sample frequency of 6 h for the complete time period (1978–2008. The Observation-minus-Analysis (OmA statistics show that the bias of the MSR analyses is less than 1% with an RMS standard deviation of about 2% as compared to the corrected satellite observations used.

  15. Multi Sensor Approach to Address Sustainable Development

    Science.gov (United States)

    Habib, Shahid

    2007-01-01

    The main objectives of Earth Science research are many folds: to understand how does this planet operates, can we model her operation and eventually develop the capability to predict such changes. However, the underlying goals of this work are to eventually serve the humanity in providing societal benefits. This requires continuous, and detailed observations from many sources in situ, airborne and space. By and large, the space observations are the way to comprehend the global phenomena across continental boundaries and provide credible boundary conditions for the mesoscale studies. This requires a multiple sensors, look angles and measurements over the same spot in accurately solving many problems that may be related to air quality, multi hazard disasters, public health, hydrology and more. Therefore, there are many ways to address these issues and develop joint implementation, data sharing and operating strategies for the benefit of the world community. This is because for large geographical areas or regions and a diverse population, some sound observations, scientific facts and analytical models must support the decision making. This is crucial for the sustainability of vital resources of the world and at the same time to protect the inhabitants, endangered species and the ecology. Needless to say, there is no single sensor, which can answer all such questions effectively. Due to multi sensor approach, it puts a tremendous burden on any single implementing entity in terms of information, knowledge, budget, technology readiness and computational power. And, more importantly, the health of planet Earth and its ability to sustain life is not governed by a single country, but in reality, is everyone's business on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to bear this colossal responsibility. So far, each developed country within their means has proceeded along satisfactorily in implementing

  16. Multi sensor satellite imagers for commercial remote sensing

    Science.gov (United States)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  17. Multi-sensor explosive detection system

    International Nuclear Information System (INIS)

    Gozani, T.; Shea, P.M.; Sawa, Z.P.

    1992-01-01

    This patent describes an explosive detection system. It comprises a source of neutrons; a detector array comprising a plurality of gamma ray detectors, each of the gamma ray detectors providing a detection signal in the event a gamma ray is captured by the detector, and at least one neutron detector, the neutron detector providing a neutron detection signal in the event a neutron is captured by the neutron detector; means for irradiating an object being examined with neutrons from the neutron source and for positioning the detector array relative to the object so that gamma rays emitted from the elements within the object as a result of the neutron irradiation are detected by the gamma ray detectors of the detector array; and parallel distributed processing means responsive to the detection signals of the detector array for discriminating between objects carrying explosives and objects not carrying explosives, the parallel distributed processing means including an artificial neural system (ANS), the ANS having a parallel network of processors, each processor of the parallel network of processors, each processor of the parallel network of processors including means for receiving at least one input signal, and means for generating an output signal as a function of the at least one input signal

  18. Multi-Sensor Geomagnetic Prospection: A Case Study from Neolithic Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Tuna Kalaycı

    2016-11-01

    Full Text Available Multi-sensor prospecting is a fast-emerging paradigm in archaeological geophysics. Given suitable ground conditions for navigation, sensor arrays drastically increase efficiency in data collection. In particular, geomagnetic prospecting benefits from this development. Despite these advancements, data processing still lacks a best-practice approach. Conventional processing methods developed for gridded data has been challenged by sensor arrays “roaming” in the landscape. In realization of the issue, the Innovative Geophysical Approaches for the Study of Early Agricultural Villages of Neolithic Thessaly (IGEAN Project explored various innovative techniques for the betterment of the multi-sensor geomagnetic data processing. As a result, a modular pipeline is produced with minimal user intervention. In addition to standard steps, such as data clipping, various other algorithms have been introduced. This pipeline is tested over 20 Neolithic settlements in Thessaly, Greece, three of which are presented here in detail. The proposed workflow provides drastic improvements over raw data. As a result of these improvements, the IGEAN project revealed astonishing details on architectural elements, settlement enclosures, and paleolandscapes, changing completely the existing perspective of the Neolithic habitation in Thessaly.

  19. Extending lifetime of wireless sensor networks using multi-sensor ...

    Indian Academy of Sciences (India)

    SOUMITRA DAS

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony ... niques for efficiently routing the data from source to the BS ... Literature review ... efficient scheduling and lot more to increase the lifetime of ... Nature-inspired algorithms such as ACO algorithms have.

  20. Performance evaluation of multi-sensor data-fusion systems

    Indian Academy of Sciences (India)

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included.

  1. Advanced Integrated Multi-Sensor Surveillance (AIMS. Operator Machine Interface (OMI) Definition Study

    National Research Council Canada - National Science Library

    Baker, Kevin; Youngson, Gord

    2007-01-01

    To enhance the capability of airborne search and rescue (SAR) and surveillance, particularly at night and in poor weather, a multi sensor electro optical imaging system, the Advanced Integrated Multi sensor Surveillance (AIMS...

  2. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  3. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  4. Advances in multi-sensor data fusion: algorithms and applications.

    Science.gov (United States)

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.

  5. Oriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement

    Directory of Open Access Journals (Sweden)

    Myung-Ho Ju

    2013-10-01

    Full Text Available In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multi-sensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enables fast image alignment by identifying matching features in multi-sensor images. We enhance the aligned multi-sensor images through the fusion of the salient regions from each image. The results of stitching the multi-sensor images and their enhancement demonstrate that our proposed method can align and enhance multi-sensor images more efficiently than previous methods.

  6. Limited Scope Design Study for Multi-Sensor Towbody

    Science.gov (United States)

    2016-06-01

    ports 2 Leak sensors 1 Electrical Surface supply voltage 300 V nominal (250–425 Vdc) Towbody output voltages 48/24/12 Vdc Load power...shallow water (អ m) at thousands of current and former Department of Defense (DoD) sites encompassing millions of acres. This design study...addresses the munitions remediation in shallow water problem with a system that uses a Multi-Sensor Towbody (MuST) and surface vessel with support

  7. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  8. Multi-sensor control for precise assembly of optical components

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-06-01

    Full Text Available In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT is designed to adjust the relation of position and attitude between the spherical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.

  9. A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes

    Directory of Open Access Journals (Sweden)

    Detong Kong

    2012-02-01

    Full Text Available Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  10. RadMAP: The Radiological Multi-sensor Analysis Platform

    International Nuclear Information System (INIS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-01-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  11. RadMAP: The Radiological Multi-sensor Analysis Platform

    Energy Technology Data Exchange (ETDEWEB)

    Bandstra, Mark S., E-mail: msbandstra@lbl.gov [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aucott, Timothy J. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Brubaker, Erik [Sandia National Laboratory, Livermore, CA (United States); Chivers, Daniel H.; Cooper, Reynold J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Curtis, Joseph C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States); Davis, John R. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Srinivasan, Shreyas [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Zakhor, Avideh; Zhang, Richard [Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Vetter, Kai [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States)

    2016-12-21

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  12. Development of novel EMAT-ECT multi-sensor and verification of its feasibility

    International Nuclear Information System (INIS)

    Suzuki, Kenichiro; Uchimoto, Tetsuya; Takagi, Toshiyuki; Sato, Takeshi; Guy, Philippe; Casse, Amelie

    2006-01-01

    In this study, we propose a novel EMAT-ECT multi sensor aiming at advanced structural health monitoring. For the purpose, proto-type EMAT-ECT multi-sensor was developed and their functions both as ECT and EMAT prove were evaluated. Experimental results of pulse ECT using the EMAT-ECT multi-sensor showed that the proposed sensor has a capability of detection and sizing of flaws. Experimental results of EMAT evaluation using the EMAT-ECT multi-sensor showed that ultrasonic wave was transmitted by EMAT-ECT multi sensor and flaw echo was observed. These results imply that EMAT-ECT multi sensor is available for pulse ECT and EMAT. (author)

  13. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  14. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be

  15. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  16. Case-Based Multi-Sensor Intrusion Detection

    Science.gov (United States)

    Schwartz, Daniel G.; Long, Jidong

    2009-08-01

    Multi-sensor intrusion detection systems (IDSs) combine the alerts raised by individual IDSs and possibly other kinds of devices such as firewalls and antivirus software. A critical issue in building a multi-sensor IDS is alert-correlation, i.e., determining which alerts are caused by the same attack. This paper explores a novel approach to alert correlation using case-based reasoning (CBR). Each case in the CBR system's library contains a pattern of alerts raised by some known attack type, together with the identity of the attack. Then during run time, the alert streams gleaned from the sensors are compared with the patterns in the cases, and a match indicates that the attack described by that case has occurred. For this purpose the design of a fast and accurate matching algorithm is imperative. Two such algorithms were explored: (i) the well-known Hungarian algorithm, and (ii) an order-preserving matching of our own device. Tests were conducted using the DARPA Grand Challenge Problem attack simulator. These showed that the both matching algorithms are effective in detecting attacks; but the Hungarian algorithm is inefficient; whereas the order-preserving one is very efficient, in fact runs in linear time.

  17. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  18. Design and operation of a high-heat flux, flush-mounted ‘rail’ Langmuir probe array on Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    A.Q. Kuang

    2017-08-01

    Full Text Available A poloidal array of toroidally-extended, flush-mounted ‘rail’ Langmuir probes was recently installed on Alcator C-Mod's vertical target plate divertor. The aim was to investigate if a Langmuir probe array could be designed to survive reactor-level heat fluxes and have the ability to make measurements that could be reliably interpreted under reactor-level plasma densities, neutral densities and magnetic fields. Langmuir probes are typically built to have incident field-line angles >10° to avoid interpretation issues associated with sheath expansion. However, at the high parallel heat fluxes experienced in reactor-relevant conditions such a probe would quickly overheat and melt. To mitigate both the issues of extreme heat flux and sheath expansion, each probe was designed to be flush with the divertor surface, toroidally-extended and field-aligned, giving it a ‘rail’ geometry. The flush mounted probes have proven to be exceptionally robust surviving the 2015–2016 campaign – a first for a C-Mod probe system. Examination of the probe current-voltage (I-V characteristics reveals that they are immune to sheath expansion at incident field angles down to ∼0.5°. Comparison of the flush probes to traditional proud probes shows that both measure the same electron pressure across the divertor plate. However, there are significant and systematic differences in the density, temperature and floating potential. This suggests that there is important physics, perhaps unique to conditions in a vertical-target plate divertor with small field-line attack angles, that affects the I-V characteristics and is not currently included in probe data analyses. Finally, the probe response is examined in the ‘death-ray’ regime, just near detachment. Previous work using proud probes has suggested that the ‘death-ray’ is an artefact of the probe bias. However, on flush mounted probes the ‘death-ray’ manifests itself under different conditions, which

  19. Array-Based Receiver Function Analysis of the Subducting Juan de Fuca Plate Beneath the Mount St. Helens Region and its Implications for Subduction Geometry and Metamorphism

    Science.gov (United States)

    Mann, M. E.; Abers, G. A.; Creager, K. C.; Ulberg, C. W.; Crosbie, K.

    2017-12-01

    Mount St. Helens (MSH) is unusual as a prolific arc volcano located 50 km towards the forearc of the main Cascade arc. The iMUSH (imaging Magma Under mount St. Helens) broadband deployment featured 70 seismometers at 10-km spacing in a 50-km radius around MSH, spanning a sufficient width for testing along-strike variation in subsurface geometry as well as deep controls on volcanism in the Cascade arc. Previous estimates of the geometry of the subducting Juan de Fuca (JdF) slab are extrapolated to MSH from several hundred km to the north and south. We analyze both P-to-S receiver functions and 2-D Born migrations of the full data set to locate the upper plate Moho and the dip and depth of the subducting slab. The strongest coherent phase off the subducting slab is the primary reverberation (Ppxs; topside P-to-S reflection) from the Moho of the subducting JdF plate, as indicated by its polarity and spatial pattern. Migration images show a dipping low velocity layer at depths less than 50 km that we interpret as the subducting JdF crust. Its disappearance beyond 50 km depth may indicate dehydration of subducting crust or disruption of high fluid pressures along the megathrust. The lower boundary of the low velocity zone, the JdF Moho, persists in the migration image to depths of at least 90 km and is imaged at 74 km beneath MSH, dipping 23 degrees. The slab surface is 68 km beneath MSH and 85 km beneath Mount Adams volcano to the east. The JdF Moho exhibits 10% velocity contrasts as deep as 85 km, an observation difficult to reconcile with simple models of crustal eclogitization. The geometry and thickness of the JdF crust and upper plate Moho is consistent with similar transects of Cascadia and does not vary along strike beneath iMUSH, indicating a continuous slab with no major disruption. The upper plate Moho is clear on the east side of the array but it disappears west of MSH, a feature we interpret as a result of both serpentinization of the mantle wedge and a

  20. Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2013-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will

  1. Integration of Multi-sensor Data for Desertification Monitoring

    Science.gov (United States)

    Lin, S.; Kim, J.

    2010-12-01

    The desert area has been rapidly expanding globally due to reasons such as climate change, uninhibited human activities, etc. The continuous desertification has seriously affected in (and near) desert area all over the world. As sand dune activity has been recognised as an essential indicator of desertification (it is the signature and the consequence of desertification), an accurate monitoring of desert dune movement hence becomes crucial for understanding and modelling the progress of desertification. In order to determine dune’s moving speed and tendency, also to understand the propagation occurring in transition region between desert and soil rich area, a monitoring system applying multi-temporal and multi-sensor remote sensed data are proposed and implemented. Remote sensed data involved in the monitoring scheme include space-borne optical image, Synthetic Aperture Radar (SAR) data, multi- and hyper-spectral image, and terrestrial close range image. In order to determine the movement of dunes, a reference terrain surface is required. To this end, a digital terrain model (DTM) covering the test site is firstly produced using high resolution optical stereo satellite images. Subsequently, ERS-1/2 SAR imagery are employed as another resource for dune field observation. Through the interferometric SAR (InSAR) technique combining with image-based stereo DTM, the surface displacements are obtained. From which the movement and speed of the dunes can be determined. To understand the effect of desertification combating activities, the correlation between dune activities and the landcover change is also an important issue to be covered in the monitoring scheme. The task is accomplished by tracing soil and vegetation canopy variation with the multi and hyper spectral image analysis using Hyperion and Ali imagery derived from Earth Observation Mission 1 (EO-1). As a result, the correlation between the soil restorations, expanding of vegetation canopy and the ceasing of

  2. Scintillation crystal mounting apparatus

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Deans, A.J.

    1982-01-01

    An improved detector head for a gamma camera is disclosed. The detector head includes a housing and a detector assembly mounted within the housing. Components of the detector assembly include a crystal sub-assembly, a phototube array, and a light pipe between the phototube array and crystal sub-assembly. The invention provides a unique structure for maintaining the phototubes in optical relationship with the light pipe and preventing the application of forces that would cause the camera's crystal to crack

  3. Security of nuclear materials using fusion multi sensor wavelett

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho

    2010-01-01

    Security of a nuclear material in an installation is determined by how far the installation is to assure that nuclear material remains at a predetermined location. This paper observed a preliminary design on nuclear material tracking system in the installation for decision making support based on multi sensor fusion that is reliable and accurate to ensure that the nuclear material remains inside the control area. Capability on decision making in the Management Information System is represented by an understanding of perception in the third level of abstraction. The second level will be achieved with the support of image analysis and organizing data. The first level of abstraction is constructed by merger between several CCD camera sensors distributed in a building in a data fusion representation. Data fusion is processed based on Wavelett approach. Simulation utilizing Matlab programming shows that Wavelett fuses multi information from sensors as well. Hope that when the nuclear material out of control regions which have been predetermined before, there will arise a warning alarm and a message in the Management Information System display. Thus the nuclear material movement time event can be obtained and tracked as well. (author)

  4. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. (Tennessee Univ., Tullahoma, TN (United States). Space Inst.); Pap, R.M.; Harston, C.T. (Accurate Automation Corp., Chattanooga, TN (United States))

    1989-01-01

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  5. A hierarchical structure approach to MultiSensor Information Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maren, A.J. [Tennessee Univ., Tullahoma, TN (United States). Space Inst.; Pap, R.M.; Harston, C.T. [Accurate Automation Corp., Chattanooga, TN (United States)

    1989-12-31

    A major problem with image-based MultiSensor Information Fusion (MSIF) is establishing the level of processing at which information should be fused. Current methodologies, whether based on fusion at the pixel, segment/feature, or symbolic levels, are each inadequate for robust MSIF. Pixel-level fusion has problems with coregistration of the images or data. Attempts to fuse information using the features of segmented images or data relies an a presumed similarity between the segmentation characteristics of each image or data stream. Symbolic-level fusion requires too much advance processing to be useful, as we have seen in automatic target recognition tasks. Image-based MSIF systems need to operate in real-time, must perform fusion using a variety of sensor types, and should be effective across a wide range of operating conditions or deployment environments. We address this problem through developing a new representation level which facilitates matching and information fusion. The Hierarchical Scene Structure (HSS) representation, created using a multilayer, cooperative/competitive neural network, meets this need. The MSS is intermediate between a pixel-based representation and a scene interpretation representation, and represents the perceptual organization of an image. Fused HSSs will incorporate information from multiple sensors. Their knowledge-rich structure aids top-down scene interpretation via both model matching and knowledge-based,region interpretation.

  6. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  7. Quantitative falls risk estimation through multi-sensor assessment of standing balance.

    Science.gov (United States)

    Greene, Barry R; McGrath, Denise; Walsh, Lorcan; Doheny, Emer P; McKeown, David; Garattini, Chiara; Cunningham, Clodagh; Crosby, Lisa; Caulfield, Brian; Kenny, Rose A

    2012-12-01

    Falls are the most common cause of injury and hospitalization and one of the principal causes of death and disability in older adults worldwide. Measures of postural stability have been associated with the incidence of falls in older adults. The aim of this study was to develop a model that accurately classifies fallers and non-fallers using novel multi-sensor quantitative balance metrics that can be easily deployed into a home or clinic setting. We compared the classification accuracy of our model with an established method for falls risk assessment, the Berg balance scale. Data were acquired using two sensor modalities--a pressure sensitive platform sensor and a body-worn inertial sensor, mounted on the lower back--from 120 community dwelling older adults (65 with a history of falls, 55 without, mean age 73.7 ± 5.8 years, 63 female) while performing a number of standing balance tasks in a geriatric research clinic. Results obtained using a support vector machine yielded a mean classification accuracy of 71.52% (95% CI: 68.82-74.28) in classifying falls history, obtained using one model classifying all data points. Considering male and female participant data separately yielded classification accuracies of 72.80% (95% CI: 68.85-77.17) and 73.33% (95% CI: 69.88-76.81) respectively, leading to a mean classification accuracy of 73.07% in identifying participants with a history of falls. Results compare favourably to those obtained using the Berg balance scale (mean classification accuracy: 59.42% (95% CI: 56.96-61.88)). Results from the present study could lead to a robust method for assessing falls risk in both supervised and unsupervised environments.

  8. Quantitative falls risk estimation through multi-sensor assessment of standing balance

    International Nuclear Information System (INIS)

    Greene, Barry R; McGrath, Denise; Walsh, Lorcan; Doheny, Emer P; McKeown, David; Garattini, Chiara; Cunningham, Clodagh; Crosby, Lisa; Caulfield, Brian; Kenny, Rose A

    2012-01-01

    Falls are the most common cause of injury and hospitalization and one of the principal causes of death and disability in older adults worldwide. Measures of postural stability have been associated with the incidence of falls in older adults. The aim of this study was to develop a model that accurately classifies fallers and non-fallers using novel multi-sensor quantitative balance metrics that can be easily deployed into a home or clinic setting. We compared the classification accuracy of our model with an established method for falls risk assessment, the Berg balance scale. Data were acquired using two sensor modalities—a pressure sensitive platform sensor and a body-worn inertial sensor, mounted on the lower back—from 120 community dwelling older adults (65 with a history of falls, 55 without, mean age 73.7 ± 5.8 years, 63 female) while performing a number of standing balance tasks in a geriatric research clinic. Results obtained using a support vector machine yielded a mean classification accuracy of 71.52% (95% CI: 68.82–74.28) in classifying falls history, obtained using one model classifying all data points. Considering male and female participant data separately yielded classification accuracies of 72.80% (95% CI: 68.85–77.17) and 73.33% (95% CI: 69.88–76.81) respectively, leading to a mean classification accuracy of 73.07% in identifying participants with a history of falls. Results compare favourably to those obtained using the Berg balance scale (mean classification accuracy: 59.42% (95% CI: 56.96–61.88)). Results from the present study could lead to a robust method for assessing falls risk in both supervised and unsupervised environments. (paper)

  9. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Laura Ruotsalainen

    2018-02-01

    Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is

  10. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  11. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  12. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  13. Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach

    Science.gov (United States)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.

    2012-12-01

    Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory

  14. Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Birkelund, Karen; Janting, Jakob

    2008-01-01

    in the filling material is measured. The packaging concept is used to encapsulate a microfabricated multi-sensor (measuring temperature, water conductivity, pressure and light intensity). The direct exposure of the sensors results in high sensitivity and fast response time. The design of an elongated multi-sensor......A packaging concept for Data Storage Tags is presented. A potted-tube packaging concept, using a polystyrene tube and different epoxies as filling material that allows for direct sensor exposure is investigated. The curing temperature, water uptake and the diffusion coefficient for water...... is described and effectiveness of the packaging is demonstrated with the precise measurement of water conductivity using the packaged multi-sensor. The packaging concept is very promising for high accuracy measurements in harsh environments....

  15. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  16. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna

    NARCIS (Netherlands)

    Weimar Acerbi, F.; Clevers, J.G.P.W.; Schaepman, M.E.

    2006-01-01

    Multi-sensor image fusion using the wavelet approach provides a conceptual framework for the improvement of the spatial resolution with minimal distortion of the spectral content of the source image. This paper assesses whether images with a large ratio of spatial resolution can be fused, and

  17. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  18. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    2003-01-01

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  19. A composite hydrogels-based photonic crystal multi-sensor

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  20. Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.

    2012-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within Sci

  1. Portable multi-sensor system for gas detection using the temporal window technique; Systeme multicapteurs de detection de gaz, portable, utilisant la technique du fenetrage temporel

    Energy Technology Data Exchange (ETDEWEB)

    Cazaubon, Ch. [Bordeaux-1 Univ., CRED, 33 - Talence (France); Levi, H.; Bordieu, Ch.; Rebiere, D.; Pistre, J. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France)

    1999-07-01

    An autonomous and portable multi-sensor system was constructed. It can drive four gas sensors (surface acoustic waves. SAW. for examples) and four voltage output gas sensors (semiconductor metal oxide sensors, for example). Two micro-controllers. MC68HC11F1 and MC68HC711E9, used as master and slave respectively, are mounted on two cards. The first card contains the signal processing treatment algorithm using a neural network and a shifting temporal window technique: it allows real time gas selection. The second card insure the overall temperature control by an auto-adaptive PID. GB gas SAW responses were applied to the device in order to test his performances. (authors)

  2. Physical assessment of coastal vulnerability under enhanced land subsidence in Semarang, Indonesia, using multi-sensor satellite data

    Science.gov (United States)

    Husnayaen; Rimba, A. Besse; Osawa, Takahiro; Parwata, I. Nyoman Sudi; As-syakur, Abd. Rahman; Kasim, Faizal; Astarini, Ida Ayu

    2018-04-01

    Research has been conducted in Semarang, Indonesia, to assess coastal vulnerability under enhanced land subsidence using multi-sensor satellite data, including the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR), Landsat TM, IKONOS, and TOPEX/Poseidon. A coastal vulnerability index (CVI) was constructed to estimate the level of vulnerability of a coastline approximately 48.68 km in length using seven physical variables, namely, land subsidence, relative sea level change, coastal geomorphology, coastal slope, shoreline change, mean tidal range, and significant wave height. A comparison was also performed between a CVI calculated using seven parameters and a CVI using six parameters, the latter of which excludes the land subsidence parameter, to determine the effects of land subsidence during the coastal vulnerability assessment. This study showed that the accuracy of coastal vulnerability was increased 40% by adding the land subsidence factor (i.e., CVI 6 parameters = 53%, CVI 7 parameters = 93%). Moreover, Kappa coefficient indicated very good agreement (0.90) for CVI 7 parameters and fair agreement (0.3) for CVI 6 parameters. The results indicate that the area of very high vulnerability increased by 7% when land subsidence was added. Hence, using the CVI calculation including land subsidence parameters, the very high vulnerability area is determined to be 20% of the total coastline or 9.7 km of the total 48.7 km of coastline. This study proved that land subsidence has significant influence on coastal vulnerability in Semarang.

  3. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017.

    Science.gov (United States)

    Jin, Xue-Bo; Sun, Shuli; Wei, Hong; Yang, Feng-Bao

    2018-04-11

    The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.

  4. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-07-01

    Full Text Available This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  5. A Vision for an International Multi-Sensor Snow Observing Mission

    Science.gov (United States)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  6. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017

    Directory of Open Access Journals (Sweden)

    Xue-Bo Jin

    2018-04-01

    Full Text Available The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.

  7. Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Hyeon; Chong, Kil To [Chon-bok National University, Jeonju (Korea, Republic of); Park, Jong Ho [Seonam University, Namwon (Korea, Republic of); Ryu, Ji Hyoung [ETRI, Daejeon (Korea, Republic of)

    2015-05-15

    This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications . We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

  8. Multi-sensor analysis to study turbidity patterns in the Guadalquivir estuary

    OpenAIRE

    I. Caballero; G. Navarro

    2016-01-01

    Revista oficial de la Asociación Española de Teledetección [EN] A detailed study of the mechanisms generated through the turbidity plume and its variability at the Guadalquivir estuary has been carried out with remote sensing and in situ data. Several sensors with different characteristics have been required (spatial, temporal and spectral resolution), thereby providing information for a multi-sensor analysis. The main objective was to determine the water quality parameters (suspended soli...

  9. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-07-01

    Full Text Available In this work, an asynchronous multi-sensor micro control unit (MCU core is proposed for wireless body sensor networks (WBSNs. It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE, and an error correct coder (ECC. To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.

  10. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Kyeonghwan Park

    2017-04-01

    Full Text Available This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  11. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    Science.gov (United States)

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  12. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    Science.gov (United States)

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  13. An enhanced data visualization method for diesel engine malfunction classification using multi-sensor signals.

    Science.gov (United States)

    Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan

    2015-10-21

    The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  14. Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-11-01

    Full Text Available This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA, and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.

  15. Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2014-10-01

    Full Text Available Multi-sensor and information fusion technology based on Dempster-Shafer evidence theory is applied in the system of a building fire alarm to realize early detecting and alarming. By using a multi-sensor to monitor the parameters of the fire process, such as light, smoke, temperature, gas and moisture, the range of fire monitoring in space and time is expanded compared with a single-sensor system. Then, the D-S evidence theory is applied to fuse the information from the multi-sensor with the specific fire model, and the fire alarm is more accurate and timely. The proposed method can avoid the failure of the monitoring data effectively, deal with the conflicting evidence from the multi-sensor robustly and improve the reliability of fire warning significantly.

  16. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  17. Mounting and performance measurements of a PV array addition to an existing small wind-power installation for greenhouse electric supply in Patagonia

    Directory of Open Access Journals (Sweden)

    Rafael Oliva

    2016-08-01

    Full Text Available A small wind-power system intended for electric supply of a research greenhouse at the local University facilities in San Julian region incorporates a photovoltaic (PV array and regulator, which is described in this report together with its data-acquisition system. The main application is control and lighting. The Alternative Energy Group at the University seeks through this project to acquire knowledge and practical experience in the combination of renewable energy sources for optimal electrical supply of isolated systems, their associated measurements and processing of resulting data

  18. Clinical introduction of a linac head-mounted 2D detector array based quality assurance system in head and neck IMRT

    International Nuclear Information System (INIS)

    Korevaar, Erik W.; Wauben, David J.L.; Hulst, Peter C. van der; Langendijk, Johannes A.; Veld, Aart A. van't

    2011-01-01

    Background and purpose: IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H and N) IMRT. Materials and methods: A total number of 24 treatments were selected from an existing database with more than 100 film based H and N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index 0.5, respectively with 3%/3 mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day. Results: Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83 ± 0.09, 1SD with 1%/1 mm criteria, 0.33 ± 0.04 with 3%/3 mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film. Conclusions: Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1 mm

  19. Observability considerations for multi-sensor and product fusion: Bias, information content, and validation (Invited)

    Science.gov (United States)

    Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.

    2009-12-01

    With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of

  20. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  1. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  2. Enhanced polymeric encapsulation for MEMS based multi sensors for fisheries research

    DEFF Research Database (Denmark)

    Birkelund, Karen; Nørgaard, Lars; Thomsen, Erik Vilain

    2011-01-01

    light intensity, temperature, pressure and conductivity. For precise and fast measurements a direct exposure of the sensor to the water is desirable. A potted tube encapsulation concept has shown to be promising for accurate and fast measurements in harsh environment, provided a tight sealing......This paper presents the challenges of a packaged MEMS-based multi sensor system that allow for direct exposure of the sensing part to sea water. The system is part of a data storage tag used on fish to provide the researcher with information on fish behaviour and migration. The sensor measures...... compared to low pressure chemical vapor deposited (LPCVD) silicon nitride and untreated silicon dioxide....

  3. Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments

    OpenAIRE

    Xing, Yuxin; Vincent, Timothy A.; Cole, Marina; Gardner, Julian W.; Fan, Han; Hernandez Bennetts, Victor; Schaffernicht, Erik; Lilienthal, Achim

    2017-01-01

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operati...

  4. An configuration method of patient service cloud for the home patient with multi sensor network

    International Nuclear Information System (INIS)

    Noji, Tamotsu; Arino, Masashi; Saito, Mayuko; Horii, Minoru; Ogino, Tadashi; Suto, Yasuzo; Sasaki, Hitoshi; Mansei, Kouiti

    2010-01-01

    We are advancing the research of patient service cloud in the global medical collaboration network system based on 3D electronic referral letters. In this paper it proposes one configuration method of private cloud that aims at the home care patient's health care and independence support based on voice navigation system (VONAVS). We evaluate 3D image compression rate, try image compositing Cloud's configuration by the multi sensor network, and search for the configuration method of the remote image diagnosis. The proposed configuration method expands the possibility to the global medical collaboration network system for new large areas such as a telemedicine, an emergency care, and home medical care. (author)

  5. A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.

    Science.gov (United States)

    Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui

    2015-04-01

    In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.

  6. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    Science.gov (United States)

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  7. Analysis of evolution of meddies in the North Atlantic using float experiments and multi - sensor data

    Science.gov (United States)

    Jo, Y.; Yan, X.; Zheng, Q.; Klemas, V. V.; Liu, W.

    2002-05-01

    We analyzed the interactions of Mediterranean eddies (meddies) in the North Atlantic with large - and meso - scale dynamic processes. The study focuses on the baroclinic instability due to the surface wind forcing, topographical Rossby wave (TRW) and the meddies' signals in multi-sensor data. The Hilbert - Huang's Energy - Frequency - Time spectrum was employed to estimate the dominant frequency. The major power peak of the surface wind forcing and sea surface height anomaly occurs every 33 months and relates to horizontal translation of the southwestward meddies. This frequency is quite close to M\\x81ler and Siedler's (1992) zonal variability with periods of 3 - 4 years. The subsequent power peaks in the vertical displacement of the meddies are at 5 day and 10 day intervals as derived from AMUSE and SEMAPHORE experiments (1993 - 1995). These 5 and 10 day periods may be caused by the intrusion of dense Mediterranean water. The contributions of the rotation speed, thermal expansion, and vertical fluctuation in the meddies' signals were estimated using the data taken by the AMUSE and the SEMAPHORE experiments. Consequently, mean monthly climatological meddies' signals from the multi-sensor analysis and float measurements show that the meddies mean kinetic energy is related to topographic scales.

  8. An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis

    Science.gov (United States)

    Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu

    2018-05-01

    The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.

  9. RheoStim: Development of an Adaptive Multi-Sensor to Prevent Venous Stasis

    Directory of Open Access Journals (Sweden)

    Sören Weyer

    2016-03-01

    Full Text Available Chronic venous insufficiency of the lower limbs is often underestimated and, in the absence of therapy, results in increasingly severe complications, including therapy-resistant tissue defects. Therefore, early diagnosis and adequate therapy is of particular importance. External counter pulsation (ECP therapy is a method used to assist the venous system. The main principle of ECP is to squeeze the inner leg vessels by muscle contractions, which are evoked by functional electrical stimulation. A new adaptive trigger method is proposed, which improves and supplements the current therapeutic options by means of pulse synchronous electro-stimulation of the muscle pump. For this purpose, blood flow is determined by multi-sensor plethysmography. The hardware design and signal processing of this novel multi-sensor plethysmography device are introduced. The merged signal is used to determine the phase of the cardiac cycle, to ensure stimulation of the muscle pump during the filling phase of the heart. The pulse detection of the system is validated against a gold standard and provides a sensitivity of 98% and a false-negative rate of 2% after physical exertion. Furthermore, flow enhancement of the system has been validated by duplex ultrasonography. The results show a highly increased blood flow in the popliteal vein at the knee.

  10. RheoStim: Development of an Adaptive Multi-Sensor to Prevent Venous Stasis

    Science.gov (United States)

    Weyer, Sören; Weishaupt, Fabio; Kleeberg, Christian; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    Chronic venous insufficiency of the lower limbs is often underestimated and, in the absence of therapy, results in increasingly severe complications, including therapy-resistant tissue defects. Therefore, early diagnosis and adequate therapy is of particular importance. External counter pulsation (ECP) therapy is a method used to assist the venous system. The main principle of ECP is to squeeze the inner leg vessels by muscle contractions, which are evoked by functional electrical stimulation. A new adaptive trigger method is proposed, which improves and supplements the current therapeutic options by means of pulse synchronous electro-stimulation of the muscle pump. For this purpose, blood flow is determined by multi-sensor plethysmography. The hardware design and signal processing of this novel multi-sensor plethysmography device are introduced. The merged signal is used to determine the phase of the cardiac cycle, to ensure stimulation of the muscle pump during the filling phase of the heart. The pulse detection of the system is validated against a gold standard and provides a sensitivity of 98% and a false-negative rate of 2% after physical exertion. Furthermore, flow enhancement of the system has been validated by duplex ultrasonography. The results show a highly increased blood flow in the popliteal vein at the knee. PMID:27023544

  11. MULTI-SENSOR NETWORK FOR LANDSLIDES SIMULATION AND HAZARD MONITORING - DESIGN AND DEPLOYMENT

    Directory of Open Access Journals (Sweden)

    H. Wu

    2012-08-01

    Full Text Available This paper describes a newly developed multi-sensor network system for landslide and hazard monitoring. Landslide hazard is one of the most destructive natural disasters, which has severely affected human safety, properties and infrastructures. We report the results of designing and deploying the multi-sensor network, based on the simulated landslide model, to monitor typical landslide areas and with a goal to predict landslide hazard and mitigate damages. The integration and deployment of the prototype sensor network were carried out in an experiment area at Tongji University in Shanghai. In order to simulate a real landslide, a contractible landslide body is constructed in the experiment area by 7m*1.5m. Then, some different kind of sensors, such as camera, GPS, crackmeter, accelerometer, laser scanning system, inclinometer, etc., are installed near or in the landslide body. After the sensors are powered, continuous sampling data will be generated. With the help of communication method, such as GPRS, and certain transport devices, such as iMesh and 3G router, all the sensor data will be transported to the server and stored in Oracle. These are the current results of an ongoing project of the center. Further research results will be updated and presented in the near future.

  12. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Boyang Xing

    2018-05-01

    Full Text Available A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland. Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB beacon and lidar to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV visual localization and robotics control.

  13. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  14. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Science.gov (United States)

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  15. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    Directory of Open Access Journals (Sweden)

    Enhad A Chowdhury

    Full Text Available Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise and over a 24 hour period in free-living conditions. Thirty men (n = 15 and women (n = 15 wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR, an accelerometry-only device as a comparison (Jawbone UP24 and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™. During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01. The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01. None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors

  16. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    Science.gov (United States)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  17. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  18. A Novel Approach to Selecting Contractor in Agent-based Multi-sensor Battlefield Reconnaissance Simulation

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2012-11-01

    Full Text Available This paper presents a novel approach towards showing how contractor in agent-based simulation for complex warfare system such as multi-sensor battlefield reconnaissance system can be selected in Contract Net Protocol (CNP with high efficiency. We first analyze agent and agent-based simulation framework, CNP and collaborators, and present agents interaction chain used to actualize CNP and establish agents trust network. We then obtain contractor's importance weight and dynamic trust by presenting fuzzy similarity-based algorithm and trust modifying algorithm, thus we propose contractor selecting approach based on maximum dynamic integrative trust. We validate the feasibility and capability of this approach by implementing simulation, analyzing compared results and checking the model.

  19. Multi-sensor integration for autonomous robots in nuclear power plants

    International Nuclear Information System (INIS)

    Mann, R.C.; Jones, J.P.; Beckerman, M.; Glover, C.W.; Farkas, L.; Bilbro, G.L.; Snyder, W.

    1989-01-01

    As part of a concerted RandD program in advanced robotics for hazardous environments, scientists and engineers at the Oak Ridge National Laboratory (ORNL) are performing research in the areas of systems integration, range-sensor-based 3-D world modeling, and multi-sensor integration. This program features a unique teaming arrangement that involves the universities of Florida, Michigan, Tennessee, and Texas; Odetics Corporation; and ORNL. This paper summarizes work directed at integrating information extracted from data collected with range sensors and CCD cameras on-board a mobile robot, in order to produce reliable descriptions of the robot's environment. Specifically, the paper describes the integration of two-dimensional vision and sonar range information, and an approach to integrate registered luminance and laser range images. All operations are carried out on-board the mobile robot using a 16-processor hypercube computer. 14 refs., 4 figs

  20. Strive toward data harmony of multi sensor aerosol data - Tribute to Dr. Gregory Leptoukh

    Science.gov (United States)

    Wei, J. C.; Lynnes, C.; Kempler, S. J.; Shen, S.

    2012-12-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) has been involved with aerosol data synergy activities and projects over recent years, led by Dr. Gregory Leptoukh. His particular interests centered on issues related to comparison and harmonization of several aspects of aerosol data, such as data quality, bias adjustment, and data provenance. A thorough understanding of these issues is needed to guide multi-sensor data usage and avoid apples-to-oranges inter-comparison and data fusion. In this talk, I will highlight these activities/projects. These would include the tools developed, but also the projects that address specific user needs and innovative services, such as GIOVANNI-MAPSS, AeroStat, NEESPI, MAIRS, ATDD, MDSA, LTA-SWDB, etc. I will also discuss preliminary results from new projects and future goals that build on the ground breaking work, left by Dr. Leptoukh.

  1. Design and testing of a multi-sensor pedestrian location and navigation platform.

    Science.gov (United States)

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  2. A Bayes-Maximum Entropy method for multi-sensor data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.

    1991-01-01

    In this paper we introduce a Bayes-Maximum Entropy formalism for multi-sensor data fusion, and present an application of this methodology to the fusion of ultrasound and visual sensor data as acquired by a mobile robot. In our approach the principle of maximum entropy is applied to the construction of priors and likelihoods from the data. Distances between ultrasound and visual points of interest in a dual representation are used to define Gibbs likelihood distributions. Both one- and two-dimensional likelihoods are presented, and cast into a form which makes explicit their dependence upon the mean. The Bayesian posterior distributions are used to test a null hypothesis, and Maximum Entropy Maps used for navigation are updated using the resulting information from the dual representation. 14 refs., 9 figs.

  3. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.

    Science.gov (United States)

    Eide, Ingvar; Westad, Frank

    2018-01-01

    A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors), salinity (calculated from temperature and conductivity), biomass at three different depth intervals (5-50, 50-120, 120-250 m), and current speed measured in two directions (east and north) using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA). Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.

  4. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.

    Directory of Open Access Journals (Sweden)

    Ingvar Eide

    Full Text Available A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors, salinity (calculated from temperature and conductivity, biomass at three different depth intervals (5-50, 50-120, 120-250 m, and current speed measured in two directions (east and north using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA. Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.

  5. PV module mounting method and mounting assembly

    Science.gov (United States)

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  6. Development of a Multi-Sensor Cancer Detection Probe Final Report CRADA No. TC-2026-01

    Energy Technology Data Exchange (ETDEWEB)

    Marion, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hular, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This collaboration continued work started under a previous CRADA (TSB-2023-00) to take a detailed concept specification for a multi-sensor needle/probe suitable for breast cancer analysis and produce a prototype system suitable for human FDA trials.

  7. Magnetic core mounting system

    Science.gov (United States)

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  8. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  9. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    Science.gov (United States)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  10. Depth-area-duration characteristics of storm rainfall in Texas using Multi-Sensor Precipitation Estimates

    Science.gov (United States)

    McEnery, J. A.; Jitkajornwanich, K.

    2012-12-01

    This presentation will describe the methodology and overall system development by which a benchmark dataset of precipitation information has been used to characterize the depth-area-duration relations in heavy rain storms occurring over regions of Texas. Over the past two years project investigators along with the National Weather Service (NWS) West Gulf River Forecast Center (WGRFC) have developed and operated a gateway data system to ingest, store, and disseminate NWS multi-sensor precipitation estimates (MPE). As a pilot project of the Integrated Water Resources Science and Services (IWRSS) initiative, this testbed uses a Standard Query Language (SQL) server to maintain a full archive of current and historic MPE values within the WGRFC service area. These time series values are made available for public access as web services in the standard WaterML format. Having this volume of information maintained in a comprehensive database now allows the use of relational analysis capabilities within SQL to leverage these multi-sensor precipitation values and produce a valuable derivative product. The area of focus for this study is North Texas and will utilize values that originated from the West Gulf River Forecast Center (WGRFC); one of three River Forecast Centers currently represented in the holdings of this data system. Over the past two decades, NEXRAD radar has dramatically improved the ability to record rainfall. The resulting hourly MPE values, distributed over an approximate 4 km by 4 km grid, are considered by the NWS to be the "best estimate" of rainfall. The data server provides an accepted standard interface for internet access to the largest time-series dataset of NEXRAD based MPE values ever assembled. An automated script has been written to search and extract storms over the 18 year period of record from the contents of this massive historical precipitation database. Not only can it extract site-specific storms, but also duration-specific storms and

  11. MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new independent image representations, Local Average Phase (LAP and Local Weighted Amplitude (LWA, are presented to emphasize the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity Measure (CSM is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude and phase of local frequency information. In many image matching applications, the template is usually selected without consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has advantages over other state-of-the-art approaches, which include: the

  12. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

    Science.gov (United States)

    Turner, Darren; Lucieer, Arko; Malenovský, Zbyněk; King, Diana; Robinson, Sharon A.

    2018-06-01

    Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.

  13. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Directory of Open Access Journals (Sweden)

    Inigo de Loyola Ortiz-Vigon Uriarte

    2015-03-01

    Full Text Available This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG and galvanic skin resistance (GSR. An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS, a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio.

  14. Low cost, multiscale and multi-sensor application for flooded area mapping

    Directory of Open Access Journals (Sweden)

    D. Giordan

    2018-05-01

    Full Text Available Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed and multispectral sensors (MODIS, Sentinel-2. Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  15. Multi-Sensor Documentation of Metric and Qualitative Information of Historic Stone Structures

    Science.gov (United States)

    Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A.

    2017-08-01

    This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.

  16. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, John R., E-mail: john.davis@usma.edu [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); The United States Military Academy, West Point, NY (United States); Brubaker, Erik [Sandia National Laboratories, Livermore, CA (United States); Vetter, Kai [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2017-06-21

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

  17. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Directory of Open Access Journals (Sweden)

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  18. Atmospheric Signals Associated with Major Earthquakes. A Multi-Sensor Approach. Chapter 9

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We are studying the possibility of a connection between atmospheric observation recorded by several ground and satellites as earthquakes precursors. Our main goal is to search for the existence and cause of physical phenomenon related to prior earthquake activity and to gain a better understanding of the physics of earthquake and earthquake cycles. The recent catastrophic earthquake in Japan in March 2011 has provided a renewed interest in the important question of the existence of precursory signals preceding strong earthquakes. We will demonstrate our approach based on integration and analysis of several atmospheric and environmental parameters that were found associated with earthquakes. These observations include: thermal infrared radiation, radon! ion activities; air temperature and humidity and a concentration of electrons in the ionosphere. We describe a possible physical link between atmospheric observations with earthquake precursors using the latest Lithosphere-Atmosphere-Ionosphere Coupling model, one of several paradigms used to explain our observations. Initial results for the period of2003-2009 are presented from our systematic hind-cast validation studies. We present our findings of multi-sensor atmospheric precursory signals for two major earthquakes in Japan, M6.7 Niigata-ken Chuetsu-oki of July16, 2007 and the latest M9.0 great Tohoku earthquakes of March 11,2011

  19. A novel framework for feature extraction in multi-sensor action potential sorting.

    Science.gov (United States)

    Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran

    2015-09-30

    Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. MULTI-SENSOR DOCUMENTATION OF METRIC AND QUALITATIVE INFORMATION OF HISTORIC STONE STRUCTURES

    Directory of Open Access Journals (Sweden)

    E. Adamopoulos

    2017-08-01

    Full Text Available This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.

  1. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  2. A Multi-Sensor Approach to Documenting a Large Collapse Sinkhole in West-Central Florida

    Science.gov (United States)

    Collins, L. D.; Kiflu, H. G.; Robinson, T.; Doering, T.; Eilers, D.; Rodgers, M.; Kruse, S.; Landry, S.; Braunmiller, J.; Speed, G.; Gonzalez, J.; McKenzie, R.

    2017-12-01

    The Saxon Lake sinkhole collapse of July 14, 2017 in Land O Lakes, Florida, caused the destruction of two homes and the evacuation of nine additional residences. The sinkhole is slightly oval with dimensions of approximately 51 meters east-west and 42 meters north-south, and it is reportedly 15 meters deep. This is presumably the largest sinkhole to form in Pasco County during the last 30 years. The surface collapse happened rapidly and continued over three days, with slumping and erosion increasing the size. The site is located near two natural lakes in a housing development from the late 1960s. This occurrence is within an area of well-developed karst, with a number of natural lakes. We present preliminary analysis of the sequence of deformation, sinkhole geometry, surrounding subsurface structures, and seismic activity. Data are assembled from terrestrial and aerial LiDAR, UAS survey and PhoDAR modeling, aerial imagery, ground penetrating radar, lake-bottom profiling, and seismic monitoring. Additionally, multi-sensor data were brought together in a Geographic Information Systems (GIS) and included an analysis of georeferenced historic imagery and maps. These spatial data indicate historic land use change and development alterations that included lake shore reconfiguration, canal construction, and connection of lake water systems in the area of impact. Three subsidence reports from the 1980s are also recorded within 500 meters of the collapse.

  3. Monitoring drought using multi-sensor remote sensing data in cropland of Gansu Province

    International Nuclear Information System (INIS)

    Zeng, Linglin; Shan, Jie; Xiang, Daxiang

    2014-01-01

    Various drought monitoring models have been developed from different perspectives, as drought is impacted by various factors (precipitation, evaporation, runoff) and usually reflected in various aspects (vegetation condition, temperature). Cloud not only plays an important role in the earth's energy balance and climate change, but also directly impacts the regional precipitation and evaporation. As a result, the change of cloud cover and cloud type can be used to monitor drought. This paper proposes a new drought composite index, the Drought Composite Index (DCI), for drought monitoring based on multi-sensor remote sensing data in cropland of Gansu Province. This index combines the cloud classification data (CLS) from FY satellite and Vegetation Condition Index (VCI) which was calculated using the maximum and minimum NDVI values for the same time period from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Pearson correlation was performed to correlate NDVI, VCI, CLS and DCI values to precipitation data and soil moisture (SM) data collected from 20 meteorological stations during the growing season of 2011 and 2012. Better agreement was observed between DCI and precipitation as compared with that between NDVI/VCI and precipitation, especially the one-month precipitation, and there is an obvious time lag in the response of vegetation to precipitation. In addition, the results indicated that DCI well reflected precipitation fluctuations in the study area promising a possibility for early drought awareness necessary and near real-time drought monitoring

  4. A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion

    Directory of Open Access Journals (Sweden)

    Fuyuan Xiao

    2018-05-01

    Full Text Available Dempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, how to avoid the counter-intuitive results is an open issue when combining highly conflicting pieces of evidence. In order to handle such a problem, a weighted combination method for conflicting pieces of evidence in multi-sensor data fusion is proposed by considering both the interplay between the pieces of evidence and the impacts of the pieces of evidence themselves. First, the degree of credibility of the evidence is determined on the basis of the modified cosine similarity measure of basic probability assignment. Then, the degree of credibility of the evidence is adjusted by leveraging the belief entropy function to measure the information volume of the evidence. Finally, the final weight of each piece of evidence generated from the above steps is obtained and adopted to modify the bodies of evidence before using Dempster’s combination rule. A numerical example is provided to illustrate that the proposed method is reasonable and efficient in handling the conflicting pieces of evidence. In addition, applications in data classification and motor rotor fault diagnosis validate the practicability of the proposed method with better accuracy.

  5. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Science.gov (United States)

    Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route. PMID:29088087

  6. Adaptive Multi-Sensor Perception for Driving Automation in Outdoor Contexts

    Directory of Open Access Journals (Sweden)

    Annalisa Milella

    2014-08-01

    Full Text Available In this research, adaptive perception for driving automation is discussed so as to enable a vehicle to automatically detect driveable areas and obstacles in the scene. It is especially designed for outdoor contexts where conventional perception systems that rely on a priori knowledge of the terrain's geometric properties, appearance properties, or both, is prone to fail, due to the variability in the terrain properties and environmental conditions. In contrast, the proposed framework uses a self-learning approach to build a model of the ground class that is continuously adjusted online to reflect the latest ground appearance. The system also features high flexibility, as it can work using a single sensor modality or a multi-sensor combination. In the context of this research, different embodiments have been demonstrated using range data coming from either a radar or a stereo camera, and adopting self-supervised strategies where monocular vision is automatically trained by radar or stereo vision. A comprehensive set of experimental results, obtained with different ground vehicles operating in the field, are presented to validate and assess the performance of the system.

  7. Engineering report : technical review of the GPSI model G3000 series multi-sensor controller system

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S.; Campbell, I. [Gas Protection Systems Inc., Maple Ridge, BC (Canada)

    2001-12-01

    The Enviro Sentry 24/7 model G3002 remote computer was developed by Gas Production Services Inc. (GPSI). This low cost Universal Detector/Controller consists of a stand-alone, scalable network connected to a daisy-chain topology. M. Collyer reviewed the capabilities of the GPSI model G3000 series multi-sensor controller system from an engineering perspective and presented an independent opinion on its performance and operation. Its evaluation was based on a randomly selected production unit supplied by GPSI. M. Collyer used widely used industry principles, electronic laboratory testing methods, prepared schematic diagrams, and presented operator ratings. The strength of the system's viability in the global market is that its use is not constrained by regulations or standards of any country, province, state or region. It can be used to provide solutions for air quality, protection and energy management. In particular, the G3000 series provides continuous protection and intelligent management in combustible gas detection; seismic risk mitigation; toxic gas early detection; air quality management; and, energy conservation. 1 tab.

  8. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  9. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    Science.gov (United States)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  10. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  11. Multi-sensor analysis to study turbidity patterns in the Guadalquivir estuary

    Directory of Open Access Journals (Sweden)

    I. Caballero

    2016-06-01

    Full Text Available A detailed study of the mechanisms generated through the turbidity plume and its variability at the Guadalquivir estuary has been carried out with remote sensing and in situ data. Several sensors with different characteristics have been required (spatial, temporal and spectral resolution, thereby providing information for a multi-sensor analysis. The main objective was to determine the water quality parameters (suspended solids and chlorophyll and implement the methodology to define the empirical and semi-analytical algorithms from satellite data (MODIS, METIS, Deimos-1. The processes occurred in the estuary and adjacent region have been examined identifying those involved in the different variability scales. The forcings associated with rainfall and discharge from Alcalá del Río dam in addition to the climatic NAO index control seasonal and inter-annual fluctuations, while tide effects (semi-daily and fortnightly cycles modulate the plume at the mouth throughout the year with significant variability. Special emphasis is focused on diagnosing the role of these mechanisms on the continental shelf ecosystems, constituting a powerful tool for the water quality management and coastal resources.

  12. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    Directory of Open Access Journals (Sweden)

    Sandro Barone

    2012-12-01

    Full Text Available Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface.

  13. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  14. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Science.gov (United States)

    Ortiz-Vigon Uriarte, Inigo de Loyola; Garcia-Zapirain, Begonya; Garcia-Chimeno, Yolanda

    2015-01-01

    This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG) and galvanic skin resistance (GSR). An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS), a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio. PMID:25789493

  15. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    Science.gov (United States)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  16. A METEOROLOGICAL RISK ASSESSMENT METHOD FOR POWER LINES BASED ON GIS AND MULTI-SENSOR INTEGRATION

    Directory of Open Access Journals (Sweden)

    Z. Lin

    2016-06-01

    Full Text Available Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  17. Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure.

    Science.gov (United States)

    Duncan, Glen E; Lester, Jonathan; Migotsky, Sean; Goh, Jorming; Higgins, Lisa; Borriello, Gaetano

    2011-09-01

    The ability to relate physical activity to health depends on accurate measurement. Yet, none of the available methods are fully satisfactory due to several factors. This study examined the accuracy of a multi-sensor board (MSB) that infers activity types (sitting, standing, walking, stair climbing, and running) and estimates energy expenditure in 57 adults (32 females) 39.2 ± 13.5 years. In the laboratory, subjects walked and ran on a treadmill over a select range of speeds and grades for 3 min each (six stages in random order) while connected to a stationary calorimeter, preceded and followed by brief sitting and standing. On a different day, subjects completed scripted activities in the field connected to a portable calorimeter. The MSB was attached to a strap at the right hip. Subjects repeated one condition (randomly selected) on the third day. Accuracy of inferred activities compared with recorded activities (correctly identified activities/total activities × 100) was 97 and 84% in the laboratory and field, respectively. Absolute accuracy of energy expenditure [100 - absolute value (kilocalories MSB - kilocalories calorimeter/kilocalories calorimeter) × 100] was 89 and 76% in the laboratory and field, the later being different (P calorimeter. Test-retest reliability for energy expenditure was significant in both settings (P type in laboratory and field settings and energy expenditure during treadmill walking and running although the device underestimates energy expenditure in the field.

  18. Geospatial analysis of creeks evolution in the Indus Delta, Pakistan using multi sensor satellite data

    Science.gov (United States)

    Ijaz, Muhammad Wajid; Mahar, Rasool Bux; Siyal, Altaf Ali; Anjum, Muhammad Naveed

    2018-01-01

    Sea level rise (SLR) in response to looming climate change is being considered as a major impediment to coastal areas. Acute wave activities and tidal propagations of semi-diurnal to mixed type are impairing the morphology of the Indus Delta in Pakistan. In this study a synthetic approach has been adopted using multi sensor satellite and ground data in order to integrate the individual effect of topography, oceanic activities and vegetative canopy for deduction of a synergic impact over the morphology of the Indus Delta creeks system from 1972 to 2017. Geomorphologic anomalies in the planform of fourteen major creeks were explored. Spatiotemporal variations suggested that a substantial amount of the delta alluvium had been engulfed by the Arabian Sea. On average, the creeks located on the right side of the Indus River were relatively less wide (3.9 km) than those of on the left side (5.2 km). Zonal statistics calculated with topographic position index (TPI) enabled to understand the tide induced inundation extents. The mangrove canopy on the right side was found greater, which is why tidal basins on that side experienced less erosive activities. Thus, it could be maintained that the coastal sedimentary processes may be monitored effectively with the remotely sensed data and temporal pattern of changes can be quantified for future planning and mitigation of adverse effects.

  19. Towards a social and context-aware multi-sensor fall detection and risk assessment platform.

    Science.gov (United States)

    De Backere, F; Ongenae, F; Van den Abeele, F; Nelis, J; Bonte, P; Clement, E; Philpott, M; Hoebeke, J; Verstichel, S; Ackaert, A; De Turck, F

    2015-09-01

    For elderly people fall incidents are life-changing events that lead to degradation or even loss of autonomy. Current fall detection systems are not integrated and often associated with undetected falls and/or false alarms. In this paper, a social- and context-aware multi-sensor platform is presented, which integrates information gathered by a plethora of fall detection systems and sensors at the home of the elderly, by using a cloud-based solution, making use of an ontology. Within the ontology, both static and dynamic information is captured to model the situation of a specific patient and his/her (in)formal caregivers. This integrated contextual information allows to automatically and continuously assess the fall risk of the elderly, to more accurately detect falls and identify false alarms and to automatically notify the appropriate caregiver, e.g., based on location or their current task. The main advantage of the proposed platform is that multiple fall detection systems and sensors can be integrated, as they can be easily plugged in, this can be done based on the specific needs of the patient. The combination of several systems and sensors leads to a more reliable system, with better accuracy. The proof of concept was tested with the use of the visualizer, which enables a better way to analyze the data flow within the back-end and with the use of the portable testbed, which is equipped with several different sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Multi-Sensor Acquisition Architecture and Real-Time Reference for Sensor and Fusion Methods Benchmarking

    OpenAIRE

    KAIS, Mikaël; MILLESCAMPS, Damien; BETAILLE, David; LUSETTI, Benoît; CHAPELON, Antoine

    2006-01-01

    Localization is a key functionality for Advance Driving Assistance Systems (ADAS) as well as for Vehicle-Vehicle or Vehicle-Infrastructure cooperation. Indeed, depending on the accuracy and integrity of the localization process, applications such as driver information, driver assistance or even fully autonomous driving can be performed. This paper presents a multi-sensor acquisition architecture for localization. Special attention has been given to main parameters that can affect the accuracy...

  1. Demonstration of Helicopter Multi-Sensor Towed Array Detection System (MTADS) Magnetometry Technology at Victorville Precision Bombing Range, California

    Science.gov (United States)

    2008-09-12

    measurement Fluxgate magnetometer 10 RS232- ASCII SerialDevice.fluxgate Provides redundant aircraft attitude measurement Acoustic altimeters 10 Analog...primarily by terrain, vegetation, and structural inhibitions to safe low-altitude flight. The magnetometer data can be analyzed to extract either...to validate the results of the magnetometer survey. ESTCP Victorville PBR WAA Final Report December 2008 Sky Research, Inc. 2 1.2. Objectives of

  2. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Directory of Open Access Journals (Sweden)

    J. Bhardwaj

    2018-02-01

    Full Text Available New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  3. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    OpenAIRE

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-01-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor no...

  4. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  5. Liner mounting assembly

    Science.gov (United States)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  6. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    Science.gov (United States)

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  7. A multi-sensor fusion framework for improving situational awareness in demanding maritime training

    International Nuclear Information System (INIS)

    Sanfilippo, Filippo

    2017-01-01

    Real offshore operational scenarios can involve a considerable amount of risk. Sophisticated training programmes involving specially designed simulator environments constitute a promising approach for improving an individual's perception and assessment of dangerous situations in real applications. One of the world's most advanced providers of simulators for such demanding offshore operations is the Offshore Simulator Centre AS (OSC). However, even though the OSC provides powerful simulation tools, techniques for visualising operational procedures that can be used to further improve Situational awareness (SA), are still lacking. Providing the OSC with an integrated multi-sensor fusion framework is the goal of this work. The proposed framework is designed to improve planning, execution and assessment of demanding maritime operations by adopting newly-designed risk-evaluation tools. Different information from the simulator scene and from the real world can be collected, such as audio, video, bio-metric data from eye-trackers, other sensor data and annotations. This integration is the base for research on novel SA assessment methodologies. This will serve the industry for the purpose of improving operational effectiveness and safety through the use of simulators. In this work, a training methodology based on the concept of briefing/debriefing is adopted based on previous literature. By using this methodology borrowed from similarly demanding applications, the efficiency of the proposed framework is validated in a conceptual case study. In particular, the training procedure, which was previously performed by Statoil and partners, for the world's first sub-sea gas compression plant, in Aasgard, Norway, is considered and reviewed highlighting the potentials of the proposed framework. - Highlights: • A framework for improving SA in demanding maritime training is proposed. • The proposed framework is integrated with the Offshore Simulator Centre AS (OSC). • This

  8. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Directory of Open Access Journals (Sweden)

    Z. Takbiri

    2017-06-01

    Full Text Available We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS on board the Defense Meteorological Satellite Program (DMSP F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM Microwave Imager (GMI products.

  9. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    Science.gov (United States)

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  10. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    International Nuclear Information System (INIS)

    Baker, J.E.

    1993-05-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different 44 realities'' lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) ''detail enhancement,'' wherein the relative information content of the original images is less rich than the desired representation; (2) ''data enhancement,'' wherein the MSI techniques axe concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) ''conceptual enhancement,'' wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail. This research focuses on data and conceptual enhancement algorithms. To be useful in many real-world applications, e.g., autonomous or teleoperated robotics, real-time feedback is critical. But, many MSI/image processing algorithms require significant processing time. This is especially true of feature extraction, object isolation, and object recognition algorithms due to their typical reliance on global or large neighborhood information. This research attempts to exploit the speed currently available in state-of-the-art digitizers and highly parallel processing systems by developing MSI algorithms based on pixel rather than global-level features

  11. A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Science.gov (United States)

    Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi

    2017-06-01

    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.

  12. A multi-sensor monitoring system of human physiology and daily activities.

    Science.gov (United States)

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  13. MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    S. Chhatkuli

    2015-05-01

    Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  14. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  15. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  16. Optoelectronic Mounting Structure

    Science.gov (United States)

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  17. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach

    Directory of Open Access Journals (Sweden)

    Mengyun Liu

    2017-12-01

    Full Text Available After decades of research, there is still no solution for indoor localization like the GNSS (Global Navigation Satellite System solution for outdoor environments. The major reasons for this phenomenon are the complex spatial topology and RF transmission environment. To deal with these problems, an indoor scene constrained method for localization is proposed in this paper, which is inspired by the visual cognition ability of the human brain and the progress in the computer vision field regarding high-level image understanding. Furthermore, a multi-sensor fusion method is implemented on a commercial smartphone including cameras, WiFi and inertial sensors. Compared to former research, the camera on a smartphone is used to “see” which scene the user is in. With this information, a particle filter algorithm constrained by scene information is adopted to determine the final location. For indoor scene recognition, we take advantage of deep learning that has been proven to be highly effective in the computer vision community. For particle filter, both WiFi and magnetic field signals are used to update the weights of particles. Similar to other fingerprinting localization methods, there are two stages in the proposed system, offline training and online localization. In the offline stage, an indoor scene model is trained by Caffe (one of the most popular open source frameworks for deep learning and a fingerprint database is constructed by user trajectories in different scenes. To reduce the volume requirement of training data for deep learning, a fine-tuned method is adopted for model training. In the online stage, a camera in a smartphone is used to recognize the initial scene. Then a particle filter algorithm is used to fuse the sensor data and determine the final location. To prove the effectiveness of the proposed method, an Android client and a web server are implemented. The Android client is used to collect data and locate a user. The web

  18. Evaluating the MSG satellite Multi-Sensor Precipitation Estimate for extreme rainfall monitoring over northern Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Dhib

    2017-06-01

    Full Text Available Knowledge and evaluation of extreme precipitation is important for water resources and flood risk management, soil and land degradation, and other environmental issues. Due to the high potential threat to local infrastructure, such as buildings, roads and power supplies, heavy precipitation can have an important social and economic impact on society. At present, satellite derived precipitation estimates are becoming more readily available. This paper aims to investigate the potential use of the Meteosat Second Generation (MSG Multi-Sensor Precipitation Estimate (MPE for extreme rainfall assessment in Tunisia. The MSGMPE data combine microwave rain rate estimations with SEVIRI thermal infrared channel data, using an EUMETSAT production chain in near real time mode. The MPE data can therefore be used in a now-casting mode, and are potentially useful for extreme weather early warning and monitoring. Daily precipitation observed across an in situ gauge network in the north of Tunisia were used during the period 2007–2009 for validation of the MPE extreme event data. As a first test of the MSGMPE product's performance, very light to moderate rainfall classes, occurring between January and October 2007, were evaluated. Extreme rainfall events were then selected, using a threshold criterion for large rainfall depth (>50 mm/day occurring at least at one ground station. Spatial interpolation methods were applied to generate rainfall maps for the drier summer season (from May to October and the wet winter season (from November to April. Interpolated gauge rainfall maps were then compared to MSGMPE data available from the EUMETSAT UMARF archive or from the GEONETCast direct dissemination system. The summation of the MPE data at 5 and/or 15 min time intervals over a 24 h period, provided a basis for comparison. The MSGMPE product was not very effective in the detection of very light and light rain events. Better results were obtained for the slightly

  19. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  20. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Omid Dehzangi

    2017-11-01

    Full Text Available The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures and distinguish the target individual from others. However, the manual and hand crafted feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial sensors have complex structure and the detachment between manual feature extraction module and the predictive learning models might limit the generalization capabilities. In this paper, we propose a novel approach for human gait identification using time-frequency (TF expansion of human gait cycles in order to capture joint 2 dimensional (2D spectral and temporal patterns of gait cycles. Then, we design a deep convolutional neural network (DCNN learning to extract discriminative features from the 2D expanded gait cycles and jointly optimize the identification model and the spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human subject synchronously in order to investigate the impact of sensor location on the gait identification performance. We then present two methods for early (input level and late (decision score level multi-sensor fusion to improve the gait identification generalization performance. We specifically propose the minimum error score fusion (MESF method that discriminatively learns the linear fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the training data in an iterative manner. 10 subjects participated in this study and hence, the problem is a 10-class

  1. Intensive time series data exploitation: the Multi-sensor Evolution Analysis (MEA) platform

    Science.gov (United States)

    Mantovani, Simone; Natali, Stefano; Folegani, Marco; Scremin, Alessandro

    2014-05-01

    The monitoring of the temporal evolution of natural phenomena must be performed in order to ensure their correct description and to allow improvements in modelling and forecast capabilities. This assumption, that is obvious for ground-based measurements, has not always been true for data collected through space-based platforms: except for geostationary satellites and sensors, that allow providing a very effective monitoring of phenomena with geometric scale from regional to global; smaller phenomena (with characteristic dimension lower than few kilometres) have been monitored with instruments that could collect data only with a time interval in the order of several days; bi-temporal techniques have been the most used ones for years, in order to characterise temporal changes and try identifying specific phenomena. The more the number of flying sensor has grown and their performance improved, the more their capability of monitoring natural phenomena at a smaller geographic scale has grown: we can now count on tenth of years of remotely sensed data, collected by hundreds of sensors that are now accessible from a wide users' community, and the techniques for data processing have to be adapted to move toward a data intensive exploitation. Starting from 2008, the European Space Agency has initiated the development of the Multi-sensor Evolution Analysis (MEA) platform (https://mea.eo.esa.int), whose first aim was to permit the access and exploitation of long term remotely sensed satellite data from different platforms: 15 years of global (A)ATSR data together with 5 years of regional AVNIR-2 data were loaded into the system and were used, through a web-based graphic user interface, for land cover change analysis. The MEA data availability has grown during years integrating multi-disciplinary data that feature spatial and temporal dimensions: so far tenths of Terabytes of data in the land and atmosphere domains are available and can be visualized and exploited, keeping the

  2. Global Sea Surface Temperature: A Harmonized Multi-sensor Time-series from Satellite Observations

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    This paper presents the methods used to obtain a new global sea surface temperature (SST) dataset spanning the early 1980s to the present, intended for use as a climate data record (CDR). The dataset provides skin SST (the fundamental measurement) and an estimate of the daily mean SST at depths compatible with drifting buoys (adjusting for skin and diurnal variability). The depth SST provided enables the CDR to be used with in situ records and centennial-scale SST reconstructions. The new SST timeseries is as independent as possible from in situ observations, and from 1995 onwards is harmonized to an independent satellite reference (namely, SSTs from the Advanced Along Track Scanning Radiometer (Advanced ATSR)). This maximizes the utility of our new estimates of variability and long-term trends in interrogating previous datasets tied to in situ observations. The new SSTs include full resolution (swath, level 2) data, single-sensor gridded data (level 3, 0.05 degree latitude-longitude grid) and a multi-sensor optimal analysis (level 4, same grid). All product levels are consistent. All SSTs have validated uncertainty estimates attached. The sensors used include all Advanced Very High Resolution Radiometers from NOAA-6 onwards and the ATSR series. AVHRR brightness temperatures (BTs) are calculated from counts using a new in-flight re-calibration for each sensor, ultimately linked through to the AATSR BT calibration by a new harmonization technique. Artefacts in AVHRR BTs linked to varying instrument temperature, orbital regime and solar contamination are significantly reduced. These improvements in the AVHRR BTs (level 1) translate into improved cloud detection and SST (level 2). For cloud detection, we use a Bayesian approach for all sensors. For the ATSRs, SSTs are derived with sufficient accuracy and sensitivity using dual-view coefficients. This is not the case for single-view AVHRR observations, for which a physically based retrieval is employed, using a hybrid

  3. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  4. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  5. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  6. New mounting improves solar-cell efficiency

    Science.gov (United States)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  7. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  8. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    Science.gov (United States)

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  9. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    Science.gov (United States)

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-01-01

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767

  10. A Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Fuyuan Xiao

    2017-10-01

    Full Text Available The multi-sensor data fusion technique plays a significant role in fault diagnosis and in a variety of such applications, and the Dempster–Shafer evidence theory is employed to improve the system performance; whereas, it may generate a counter-intuitive result when the pieces of evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion approach on the basis of the distance of evidence, belief entropy and fuzzy preference relation analysis is proposed. A function of evidence distance is first leveraged to measure the conflict degree among the pieces of evidence; thus, the support degree can be obtained to represent the reliability of the evidence. Next, the uncertainty of each piece of evidence is measured by means of the belief entropy. Based on the quantitative uncertainty measured above, the fuzzy preference relations are applied to represent the relative credibility preference of the evidence. Afterwards, the support degree of each piece of evidence is adjusted by taking advantage of the relative credibility preference of the evidence that can be utilized to generate an appropriate weight with respect to each piece of evidence. Finally, the modified weights of the evidence are adopted to adjust the bodies of the evidence in the advance of utilizing Dempster’s combination rule. A numerical example and a practical application in fault diagnosis are used as illustrations to demonstrate that the proposal is reasonable and efficient in the management of conflict and fault diagnosis.

  11. Nile Basin Vegetation Response and Vulnerability to Climate Change: A Multi-Sensor Remote Sensing Approach

    Science.gov (United States)

    Yitayew, M.; Didan, K.; Barreto-munoz, A.

    2013-12-01

    The Nile Basin is one of the world's water resources hotspot that is home to over 437 million people in ten riparian countries with 54% or 238 millions live directly within the basin. The basin like all other basins of the world is facing water resources challenges exacerbated by climate change and increased demand. Nowadays any water resource management action in the basin has to assess the impacts of climate change to be able to predict future water supply and also to help in the negotiation process. Presently, there is a lack of basin wide weather networks to understand sensitivity of the vegetation cover to the impacts of climate change. Vegetation plays major economic and ecological functions in the basin and provides key services ranging from pastoralism, agricultural production, firewood, habitat and food sources for the rich wildlife, as well as a major role in the carbon cycle and climate regulation of the region. Under the threat of climate change and the incessant anthropogenic pressure the distribution and services of the region's ecosystems are projected to change The goal of this work is to assess and characterize how the basin vegetation productivity, distribution, and phenology have changed over the last 30+ years and what are the key climatic drivers of this change. This work makes use of a newly generated multi-sensor long-term land surface data set about vegetation and phenology. Vegetation indices derived from remotely sensed surface reflectance data are commonly used to characterize phenology or vegetation dynamics accurately and with enough spatial and temporal resolution to support change detection. We used more than 30 years of vegetation index and growing season data from AVHRR and MODIS sensors compiled by the Vegetation Index and Phenology laboratory (VIP LAB) at the University of Arizona. Available climate data about precipitation and temperature for the corresponding 30 years period is also used for this analysis. We looked at the

  12. Housing And Mounting Structure

    Science.gov (United States)

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  13. Transducer-Mounting Fixture

    Science.gov (United States)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  14. Water quality assessment by an integrated multi-sensor based on semiconductor RuO2 nanostructures

    International Nuclear Information System (INIS)

    Zhuiykov, Serge; O'Brien, David; Best, Michael

    2009-01-01

    A multi-sensor based on a nanostructured semiconductor ruthenium oxide (RuO 2 ) sensing electrode (RuO 2 -SE) deposited on an alumina substrate and capable of being coupled with a simple turbidity sensor has been evaluated for long-term pH stability during a 12-month non-stop trial. The multi-sensor is designed to detect the main parameters of water quality: pH, dissolved oxygen (DO), temperature, conductivity and turbidity over a temperature range of 9–30 °C. The morphology of the film SE used in the sensor structure was investigated by scanning electron microscopy and energy dispersive x-ray-analysis at the beginning of the trial and after 12 months of service. It was found that both morphology and surface compositions of nanostructured RuO 2 -SEs did not change significantly. They keep their high sensitivity to adsorption of superoxide ions (O 2 − ) despite heavy depositions of bio-fouling. The sensors with a RuO 2 -SE have demonstrated a stable Nernstian response to pH from 2.0 to 13.0 and were also capable of measuring DO in the range of 0.6–8.0 ppm. The measurement results show very good linearity, and excellent reproducibility was obtained during the trial. The Nernstian slope was approximately 58 mV pH −1 at a temperature of 23 °C. Although RuO 2 -SEs have been shown to exhibit very good response time for pH changes, within a few seconds at a temperature of 23 °C, as the water temperature cooled down, the sensor response time increased significantly and was about 8–10 min or longer at a temperature of 9 °C. The influence of hydrogen ion (H + ) diffusion in nanostructured RuO 2 films on the output emf drift during pH measurements was also investigated. Additional turbidity and conductivity measurements revealed that the multi-sensor is capable of measuring both high and low ranges at different temperatures, exhibiting a high linearity of characteristics

  15. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine

    Science.gov (United States)

    Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix

    2017-12-01

    Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was

  16. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  17. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  18. A novel method of range measuring for a mobile robot based on multi-sensor information fusion

    International Nuclear Information System (INIS)

    Zhang Yi; Luo Yuan; Wang Jifeng

    2005-01-01

    The traditional measuring range for a mobile robot is based on a sonar sensor. Because of different working environments, it is very difficult to obtain high precision by using just one single method of range measurement. So, a hybrid sonar sensor and laser scanner method is put forward to overcome these shortcomings. A novel fusion model is proposed based on basic theory and a method of information fusion. An optimal measurement result has been obtained with information fusion from different sensors. After large numbers of experiments and performance analysis, a conclusion can be drawn that the laser scanner and sonar sensor method with multi-sensor information fusion have a higher precision than the single method of sonar. It can also be the same with different environments

  19. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    Science.gov (United States)

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  20. A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications

    KAUST Repository

    Nassar, Joanna M.

    2017-02-07

    We report CMOS technology enabled fabrication and system level integration of flexible bulk silicon (100) based multi-sensors platform which can simultaneously sense pressure, temperature, strain and humidity under various physical deformations. We also show an advanced wearable version for body vital monitoring which can enable advanced healthcare for IoT applications.

  1. A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications

    KAUST Repository

    Nassar, Joanna M.; Sevilla, Galo T.; Velling, Seneca J.; Cordero, Marlon D.; Hussain, Muhammad Mustafa

    2017-01-01

    We report CMOS technology enabled fabrication and system level integration of flexible bulk silicon (100) based multi-sensors platform which can simultaneously sense pressure, temperature, strain and humidity under various physical deformations. We also show an advanced wearable version for body vital monitoring which can enable advanced healthcare for IoT applications.

  2. Characterization of Engine Mount Elastomers

    National Research Council Canada - National Science Library

    Szabo, Jeffrey P

    2005-01-01

    As part of a project to develop methods for modelling the performance of engine mounts, several oil resistant alternative materials were prepared, and compared to conventional materials from mounts...

  3. Microneedle array electrode for human EEG recording.

    NARCIS (Netherlands)

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  4. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  5. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  6. Synergistic soil moisture observation - an interdisciplinary multi-sensor approach to yield improved estimates across scales

    Science.gov (United States)

    Schrön, M.; Fersch, B.; Jagdhuber, T.

    2017-12-01

    The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The

  7. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  8. Precision of EM Simulation Based Wireless Location Estimation in Multi-Sensor Capsule Endoscopy.

    Science.gov (United States)

    Khan, Umair; Ye, Yunxing; Aisha, Ain-Ul; Swar, Pranay; Pahlavan, Kaveh

    2018-01-01

    In this paper, we compute and examine two-way localization limits for an RF endoscopy pill as it passes through an individuals gastrointestinal (GI) tract. We obtain finite-difference time-domain and finite element method-based simulation results position assessment employing time of arrival (TOA). By means of a 3-D human body representation from a full-wave simulation software and lognormal models for TOA propagation from implant organs to body surface, we calculate bounds on location estimators in three digestive organs: stomach, small intestine, and large intestine. We present an investigation of the causes influencing localization precision, consisting of a range of organ properties; peripheral sensor array arrangements, number of pills in cooperation, and the random variations in transmit power of sensor nodes. We also perform a localization precision investigation for the situation where the transmission signal of the antenna is arbitrary with a known probability distribution. The computational solver outcome shows that the number of receiver antennas on the exterior of the body has higher impact on the precision of the location than the amount of capsules in collaboration within the GI region. The large intestine is influenced the most by the transmitter power probability distribution.

  9. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    Science.gov (United States)

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  10. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    Science.gov (United States)

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  11. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  12. Recognition of Wheat Spike from Field Based Phenotype Platform Using Multi-Sensor Fusion and Improved Maximum Entropy Segmentation Algorithms

    Directory of Open Access Journals (Sweden)

    Chengquan Zhou

    2018-02-01

    Full Text Available To obtain an accurate count of wheat spikes, which is crucial for estimating yield, this paper proposes a new algorithm that uses computer vision to achieve this goal from an image. First, a home-built semi-autonomous multi-sensor field-based phenotype platform (FPP is used to obtain orthographic images of wheat plots at the filling stage. The data acquisition system of the FPP provides high-definition RGB images and multispectral images of the corresponding quadrats. Then, the high-definition panchromatic images are obtained by fusion of three channels of RGB. The Gram–Schmidt fusion algorithm is then used to fuse these multispectral and panchromatic images, thereby improving the color identification degree of the targets. Next, the maximum entropy segmentation method is used to do the coarse-segmentation. The threshold of this method is determined by a firefly algorithm based on chaos theory (FACT, and then a morphological filter is used to de-noise the coarse-segmentation results. Finally, morphological reconstruction theory is applied to segment the adhesive part of the de-noised image and realize the fine-segmentation of the image. The computer-generated counting results for the wheat plots, using independent regional statistical function in Matlab R2017b software, are then compared with field measurements which indicate that the proposed method provides a more accurate count of wheat spikes when compared with other traditional fusion and segmentation methods mentioned in this paper.

  13. Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors

    Science.gov (United States)

    Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J.

    2016-08-01

    Glass fibre-reinforced polymer (GFRP) composites offer a higher stiffness-to-weight ratio than conventional rotor materials used in turbomachinery. However, the material behaviour of GFRP high-speed rotors is difficult to predict due to the complexity of the composite material and the dynamic loading conditions. Consequently dynamic expansion measurements of GRFP rotors are required in situ and with micron precision. However, the whirling motion amplitude is about two orders of magnitude higher than the desired precision. To overcome this problem, a multi-sensor system capable of separating rotor expansion and whirling motion is proposed. High measurement rates well above the rotational frequency and micron uncertainty are achieved at whirling amplitudes up to 120μm and surface velocities up to 300 m/s. The dynamic elliptical expansion of a GFRP rotor is investigated in a rotor loading test rig under vacuum conditions. In situ measurements identified not only the introduced damage but also damage initiation and propagation.

  14. Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data

    Science.gov (United States)

    Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M.

    2013-08-01

    We developed and tested a methodology to estimate olive (Olea europaea L.) gross primary production (GPP) combining ground and multi-sensor satellite data. An eddy-covariance station placed in an olive grove in central Italy provided carbon and water fluxes over two years (2010-2011), which were used as reference to evaluate the performance of a GPP estimation methodology based on a Monteith type model (modified C-Fix) and driven by meteorological and satellite (NDVI) data. A major issue was related to the consideration of the two main olive grove components, i.e. olive trees and inter-tree ground vegetation: this issue was addressed by the separate simulation of carbon fluxes within the two ecosystem layers, followed by their recombination. In this way the eddy covariance GPP measurements were successfully reproduced, with the exception of two periods that followed tillage operations. For these periods measured GPP could be approximated by considering synthetic NDVI values which simulated the expected response of inter-tree ground vegetation to tillages.

  15. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  16. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  17. Resilient mounting systems in buildings

    NARCIS (Netherlands)

    Breeuwer, R.; Tukker, J.C.

    1976-01-01

    The basic elements of resilient mounting systems are described and various measures for quantifying the effect of such systems defined. Using electrical analogue circuits, the calculation of these measures is illustrated. With special reference to resilient mounting systems in buildings, under

  18. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  19. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  20. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  1. TOPOGRAPHIC LOCAL ROUGHNESS EXTRACTION AND CALIBRATION OVER MARTIAN SURFACE BY VERY HIGH RESOLUTION STEREO ANALYSIS AND MULTI SENSOR DATA FUSION

    Directory of Open Access Journals (Sweden)

    J. R. Kim

    2012-08-01

    Full Text Available The planetary topography has been the main focus of the in-orbital remote sensing. In spite of the recent development in active and passive sensing technologies to reconstruct three dimensional planetary topography, the resolution limit of range measurement is theoretically and practically obvious. Therefore, the extraction of inner topographical height variation within a measurement spot is very challengeable and beneficial topic for the many application fields such as the identification of landform, Aeolian process analysis and the risk assessment of planetary lander. In this study we tried to extract the topographic height variation over martian surface so called local roughness with different approaches. One method is the employment of laser beam broadening effect and the other is the multi angle optical imaging. Especially, in both cases, the precise pre processing employing high accuracy DTM (Digital Terrain Model were introduced to minimise the possible errors. Since a processing routine to extract very high resolution DTMs up to 0.5–4m grid-spacing from HiRISE (High Resolution Imaging Science Experiment and 20–10m DTM from CTX (Context Camera stereo pair has been developed, it is now possible to calibrate the local roughness compared with the calculated height variation from very high resolution topographic products. Three testing areas were chosen and processed to extract local roughness with the co-registered multi sensor data sets. Even though, the extracted local roughness products are still showing the strong correlation with the topographic slopes, we demonstrated the potentials of the height variations extraction and calibration methods.

  2. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Science.gov (United States)

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734

  3. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Chun-Chang Wu

    2017-03-01

    Full Text Available A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS system-on-chip (SoC is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE, an analog-to-digital convertor (ADC, a digital controller and a power management unit (PMU. Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity sensing platform that demonstrates a true self-powering functionality for long-term operations.

  4. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.

    Science.gov (United States)

    Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G

    2016-11-02

    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.

  5. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring.

    Science.gov (United States)

    Wu, Chun-Chang; Chuang, Wen-Yu; Wu, Ching-Da; Su, Yu-Cheng; Huang, Yung-Yang; Huang, Yang-Jing; Peng, Sheng-Yu; Yu, Shih-An; Lin, Chih-Ting; Lu, Shey-Shi

    2017-03-29

    A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO₂ detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO₂ sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS) system-on-chip (SoC) is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE), an analog-to-digital convertor (ADC), a digital controller and a power management unit (PMU). Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC) module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO₂/Humidity) sensing platform that demonstrates a true self-powering functionality for long-term operations.

  6. Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations

    International Nuclear Information System (INIS)

    Islam, Tanvir; Srivastava, Prashant K.

    2015-01-01

    The cloud ice water path (IWP) is one of the major parameters that have a strong influence on earth's radiation budget. Onboard satellite sensors are recognized as valuable tools to measure the IWP in a global scale. Albeit, active sensors such as the Cloud Profiling Radar (CPR) onboard the CloudSat satellite has better capability to measure the ice water content profile, thus, its vertical integral, IWP, than any passive microwave (MW) or infrared (IR) sensors. In this study, we investigate the retrieval of IWP from MW and IR sensors, including AMSU-A, MHS, and HIRS instruments on-board the N19 satellite, such that the retrieval is consistent with the CloudSat IWP estimates. This is achieved through the collocations between the passive satellite measurements and CloudSat scenes. Potential benefit of synergistic multi-sensor multi-frequency retrieval is investigated. Two modeling approaches are explored for the IWP retrieval – generalized linear model (GLM) and neural network (NN). The investigation has been carried out over both ocean and land surface types. The MW/IR synergy is found to be retrieved more accurate IWP than the individual AMSU-A, MHS, or HIRS measurements. Both GLM and NN approaches have been able to exploit the synergistic retrievals. - Highlights: • MW/IR synergy is investigated for IWP retrieval. • The IWP retrieval is modeled using CloudSat collocations. • Two modeling approaches are explored – GLM and ANN. • MW/IR synergy performs better than the MW or IR only retrieval

  7. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    Science.gov (United States)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  8. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2014-12-01

    Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  9. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Daniel Scheffler

    2017-07-01

    Full Text Available Geospatial co-registration is a mandatory prerequisite when dealing with remote sensing data. Inter- or intra-sensoral misregistration will negatively affect any subsequent image analysis, specifically when processing multi-sensoral or multi-temporal data. In recent decades, many algorithms have been developed to enable manual, semi- or fully automatic displacement correction. Especially in the context of big data processing and the development of automated processing chains that aim to be applicable to different remote sensing systems, there is a strong need for efficient, accurate and generally usable co-registration. Here, we present AROSICS (Automated and Robust Open-Source Image Co-Registration Software, a Python-based open-source software including an easy-to-use user interface for automatic detection and correction of sub-pixel misalignments between various remote sensing datasets. It is independent of spatial or spectral characteristics and robust against high degrees of cloud coverage and spectral and temporal land cover dynamics. The co-registration is based on phase correlation for sub-pixel shift estimation in the frequency domain utilizing the Fourier shift theorem in a moving-window manner. A dense grid of spatial shift vectors can be created and automatically filtered by combining various validation and quality estimation metrics. Additionally, the software supports the masking of, e.g., clouds and cloud shadows to exclude such areas from spatial shift detection. The software has been tested on more than 9000 satellite images acquired by different sensors. The results are evaluated exemplarily for two inter-sensoral and two intra-sensoral use cases and show registration results in the sub-pixel range with root mean square error fits around 0.3 pixels and better.

  10. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    Science.gov (United States)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge

  11. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  12. Mount Rainier National Park

    Science.gov (United States)

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  13. Mount Oku, Cameroon Volcanic Line

    African Journals Online (AJOL)

    and continental sectors especially for trace elements in basalts. ... continental sector of the trend is a complex .... values higher than those of HIMU but is within ...... (Mount Cameroon, Central Africa): petrogenetic implications. Miner. Petrol.,.

  14. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  15. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target ty...

  16. Mounting clips for panel installation

    Science.gov (United States)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph

    2017-07-11

    A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.

  17. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Preparation and mounting of adult Drosophila structures in Canada balsam.

    Science.gov (United States)

    Stern, David L; Sucena, Elio

    2012-03-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. To prepare fine "museum-quality," permanent slides, it is best to mount specimens in Canada Balsam. It is difficult to give precise recipes for Canada Balsam, because every user seems to prefer a slightly different viscosity. Dilute solutions spread easily and do not dry too rapidly while mounting specimens. The disadvantage is that there is actually less Balsam in a "drop" of the solution, and when dried, it can contract from the sides of the coverslip, sometimes disturbing the specimen. Unfortunately, there is no substitute for experience when using Canada Balsam. This protocol describes a procedure for mounting adult cuticles in Canada Balsam.

  19. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models.

    Science.gov (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas

    2013-04-01

    mass variations in this region; this is also verified by WGHM simulations. An important implication of this finding is the possibility of GRACE to analyses storage changes in other hydrological compartments (soil moisture, snow and groundwater) once the signal has been reduced for surface water storage changes. Therefore the congruent use of multi-sensor satellite data for hydrological studies proves to be a great source of information for assessing terrestrial water storage variations.

  20. Short-term association between personal exposure to noise and heart rate variability: The RECORD MultiSensor Study.

    Science.gov (United States)

    El Aarbaoui, Tarik; Méline, Julie; Brondeel, Ruben; Chaix, Basile

    2017-12-01

    Studies revealed long-term associations between noise exposure and cardiovascular health, but the underlying short-term mechanisms remain uncertain. To explore the concomitant and lagged short-term associations between personal exposure to noise and heart rate variability (HRV) in a real life setting in the Île-de-France region. The RECORD MultiSensor Study collected between July 2014 and June 2015 noise and heart rate data for 75 participants, aged 34-74 years, in their living environments for 7 days using a personal dosimeter and electrocardiography (ECG) sensor on the chest. HRV parameters and noise levels were calculated for 5-min windows. Short-term relationships between noise level and log-transformed HRV parameters were assessed using mixed effects models with a random intercept for participants and a temporal autocorrelation structure, adjusted for heart rate, physical activity (accelerometry), and short-term trends. An increase by one dB(A) of A-weighted equivalent sound pressure level (Leq) was associated with a 0.97% concomitant increase of the Standard deviation of normal to normal intervals (SDNN) (95% CI: 0.92, 1.02), of 2.08% of the Low frequency band power (LF) (95% CI: 1.97, 2.18), of 1.30% of the High frequency band power (HF) (95% CI: 1.17, 1.43), and of 1.16% of the LF/HF ratio (95% CI: 1.10, 1.23). The analysis of lagged exposures to noise adjusted for the concomitant exposure illustrates the dynamic of recovery of the autonomic nervous system. Non-linear associations were documented with all HRV parameters with the exception of HF. Piecewise regression revealed that the association was almost 6 times stronger below than above 65 Leq dB(A) for the SDNN and LF/HF ratio. Personal noise exposure was found to be related to a concomitant increase of the overall HRV, with evidence of imbalance of the autonomic nervous system towards sympathetic activity, a pathway to increased cardiovascular morbidity and mortality. Copyright © 2017 Elsevier Ltd

  1. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.

    Science.gov (United States)

    Dörnhöfer, Katja; Klinger, Philip; Heege, Thomas; Oppelt, Natascha

    2018-01-15

    Phytoplankton indicated by its photosynthetic pigment chlorophyll-a is an important pointer on lake ecology and a regularly monitored parameter within the European Water Framework Directive. Along with eutrophication and global warming cyanobacteria gain increasing importance concerning human health aspects. Optical remote sensing may support both the monitoring of horizontal distribution of phytoplankton and cyanobacteria at the lake surface and the reduction of spatial uncertainties associated with limited water sample analyses. Temporal and spatial resolution of using only one satellite sensor, however, may constrain its information value. To discuss the advantages of a multi-sensor approach the sensor-independent, physically based model MIP (Modular Inversion and Processing System) was applied at Lake Kummerow, Germany, and lake surface chlorophyll-a was derived from 33 images of five different sensors (MODIS-Terra, MODIS-Aqua, Landsat 8, Landsat 7 and Sentinel-2A). Remotely sensed lake average chlorophyll-a concentration showed a reasonable development and varied between 2.3±0.4 and 35.8±2.0mg·m -3 from July to October 2015. Match-ups between in situ and satellite chlorophyll-a revealed varying performances of Landsat 8 (RMSE: 3.6 and 19.7mg·m -3 ), Landsat 7 (RMSE: 6.2mg·m -3 ), Sentinel-2A (RMSE: 5.1mg·m -3 ) and MODIS (RMSE: 12.8mg·m -3 ), whereas an in situ data uncertainty of 48% needs to be respected. The temporal development of an index on harmful algal blooms corresponded well with the cyanobacteria biomass development during summer months. Satellite chlorophyll-a maps allowed to follow spatial patterns of chlorophyll-a distribution during a phytoplankton bloom event. Wind conditions mainly explained spatial patterns. Integrating satellite chlorophyll-a into trophic state assessment resulted in different trophic classes. Our study endorsed a combined use of satellite and in situ chlorophyll-a data to alleviate weaknesses of both approaches and

  2. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Shaohong Tian

    2016-11-01

    classification by fusing multi-sensor data can retrieve better wetland landcover information than the other classifiers, which is significant for the monitoring and management of the wetland ecological resources in arid areas.

  3. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    Science.gov (United States)

    Hanlon, Nicholas P.

    nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.

  4. Development of multivariate and multi-sensors systems for the measurement of atmospheric pollutants; Developpement de systemes multicapteurs et multivariables pour la mesure en continu de polluants atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Kamionka, M.

    2005-04-15

    The purpose of this work was to measure the concentrations of atmospheric pollutants using sensors based on a metal semiconductor, tin dioxide. These sensors were tested with two reducing gases which are carbon monoxide (0-20 ppm), a mixture of hydrocarbons (0-10 ppm) and two oxidizing gases which is ozone (0-500 ppb) and nitrogen dioxide (0-500 ppb). One of the major disadvantages of this type of sensor is their lack of selectivity. Thus the association of several different sensors in multi-sensors system can be a solution. We have developed an automated test bench able to generate the suitable gas concentrations with a controlled humidity. It is then possible to carry out the acquisition of four devices (mono or multi-sensors) with cycles of temperature. We followed the evolution with their age of the performances of various sensors worked out by serigraphy. At the end of these experiments, we showed the interest of the use of some of these sensors for the evaluation of two major components of pollution: ozone and hydrocarbons. We could not prove that the capacitive effects and the effects of electrode were useful parameters for our application. Nevertheless, the measurement with increasing temperature give additional information. Thus, two multi-sensors systems were carried out. One associates three independent sensors and the other consists of three layers deposited on the same heating substrate. These three layers are initially identical (tin dioxide) but two are covered with a thin film, platinum for one and silica for the other. Moreover, one system made up of three commercial sensors used with a constant temperature was also tested. For each studied system, we built behavior models using a Neural Network algorithm. Whereas the models carried out using synthetic gas mixtures appeared unusable for measurements in real pollution, it was shown that a model calibrated directly with air bled in urban environment appears effective for the measurement of

  5. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  6. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2018-01-30

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  7. Solar panel truss mounting systems and methods

    Science.gov (United States)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  8. Mounting clips for panel installation

    Science.gov (United States)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph; Valdes, Francisco

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the first spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.

  9. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  10. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  11. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    Science.gov (United States)

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  12. Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection

    Directory of Open Access Journals (Sweden)

    Robert Behling

    2014-03-01

    Full Text Available Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (ETM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE and a high absolute accuracy of 23 m (RMSE for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.

  13. IN-SITU IONIC CHEMICAL ANALYSIS OF FRESH WATER VIA A NOVEL COMBINED MULTI-SENSOR / SIGNAL PROCESSING ARCHITECTURE

    Science.gov (United States)

    Mueller, A. V.; Hemond, H.

    2009-12-01

    The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing

  14. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    Science.gov (United States)

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km

  15. The Big Optical Array

    International Nuclear Information System (INIS)

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  16. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  17. Shock Mounting for Heavy Machines

    Science.gov (United States)

    Thompson, A. R.

    1984-01-01

    Elastomeric bearings eliminate extraneous forces. Rocket thrust transmitted from motor to load cells via support that absorbs extraneous forces so they do not affect accuracy of thrust measurements. Adapter spoked cone fits over forward end of rocket motor. Shock mounting developed for rocket engines under test used as support for heavy machines, bridges, or towers.

  18. Mount St. Helens aerosol evolution

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  19. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  20. Tension pneumocephalus: Mount Fuji sign

    Directory of Open Access Journals (Sweden)

    Pulastya Sanyal

    2015-01-01

    Full Text Available A 13-year-old male was operated for a space occupying lesion in the brain. A noncontrast computed tomography scan done in the late postoperative period showed massive subdural air collection causing compression of bilateral frontal lobes with widening of interhemispheric fissure and the frontal lobes acquiring a peak like configuration - causing tension pneumocephalus-"Mount Fuji sign." Tension pneumocephalus occurs when air enters the extradural or intradural spaces in sufficient volume to exert a mass or pressure effect on the brain, leading to brain herniation. Tension pneumocephalus is a surgical emergency, which needs immediate intervention in the form of decompression of the cranial cavity by a burr hole or needle aspiration. The Mount Fuji sign differentiates tension pneumocephalus from pneumocephalus.

  1. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  2. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    Science.gov (United States)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  3. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  4. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  5. Mounting Thin Samples For Electrical Measurements

    Science.gov (United States)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  6. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  7. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  8. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  9. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  10. Mounting and Alignment of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  11. Quasi-optical grill mounted in hyperguide

    International Nuclear Information System (INIS)

    Preinhaelter, J.

    1995-04-01

    A proposal is given of a new launcher of lower hybrid waves for the current drive in future big thermonuclear facilities operating in the 10 GHz frequency range. The principle has been combined of the quasi-optical grill with the concepts of the hyperguide and the multiinjection grill. As an example, a six rod structure model was optimized mounted in a oversized waveguide and irradiated by the oblique plane wave emerging in the form of a higher mode from an auxiliary oversized waveguide. The rods of the optimum structure have the elongated form of the cross-section with the resonant length in the direction of wave propagation equal to a multiple of the half-wavelength of the fundamental mode of the hyperguide. This row of rods forms a multiinjection grill with zero phase shift between waveguides. The second row of rods supporting the constructive superposition of the incident and doubly reflected waves enhances the efficiency of the structure. The optimum structure has a power spectrum with narrow peaks (the main N || =-2.15 and the parasitic N || =3.15), low power reflection (R tot =15%), high coupled power directivity (δ CP =70%), reasonable N || -weighted directivity (|δ CD w |=35%) and the peaking factor on the electric field equal to 3. Based on the optimization it is possible to design parameters of a big structure with tens of rods. The number of the construction elements of the structure can be reduced 20 times compared with the standard multijunction array. (author) 14 figs., 22 refs

  12. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  13. SPHARA--a generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: application to EEG.

    Science.gov (United States)

    Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens

    2015-01-01

    Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.

  14. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    Science.gov (United States)

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  15. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  16. Assessment of Bias in the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Reanalysis Radar-Only Estimate

    Science.gov (United States)

    Nelson, B. R.; Prat, O. P.; Stevens, S. E.; Seo, D. J.; Zhang, J.; Howard, K.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is nearly completed for the period covering from 2001 to 2012. Reanalysis data are available at 1-km and 5-minute resolution. An important step in generating the best possible precipitation data is to assess the bias in the radar-only product. In this work, we use data from a combination of rain gauge networks to assess the bias in the NMQ reanalysis. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network Daily (GHCN-D) are combined for use in the assessment. These rain gauge networks vary in spatial density and temporal resolution. The challenge hence is to optimally utilize them to assess the bias at the finest resolution possible. For initial assessment, we propose to subset the CONUS data in climatologically representative domains, and perform bias assessment using information in the Q2 dataset on precipitation type and phase.

  17. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  18. Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western-northwestern Black Sea coastal zone

    OpenAIRE

    Guttler, Fabio; Niculescu, Simona; Gohin, Francis

    2013-01-01

    Based on multi-sensor optical remote sensing techniques, more than 80 medium and high spatial resolution satellite images were used for studying the turbidity patterns of Danube Delta waters. During a selected 4-year temporal coverage (2006 to 2009), the turbidity gradients were simultaneously analyzed in the delta plain lakes and in the Black Sea western-northwestern coastal zone. Two distinct, but complementary, methodologies for retrieving turbidity were employed, one for the lakes and the...

  19. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  20. 49 CFR 179.10 - Tank mounting.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank mounting. 179.10 Section 179.10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car...

  1. Low-Thermal-Resistance Baseplate Mounting

    Science.gov (United States)

    Perreault, W. T.

    1984-01-01

    Low-thermal-resistance mounting achieved by preloading baseplate to slight convexity with screws threaded through beam. As mounting bolts around edge of base-place tightened, baseplate and cold plate contact first in center, with region of intimate contact spreading outward as bolts tightened.

  2. Mount Athos: Between autonomy and statehood

    Directory of Open Access Journals (Sweden)

    Avramović Dragutin

    2013-01-01

    Full Text Available Legal status of the Mount Athos is characterized by many special features that make it internationally unique legal regime. The author analyzes peculiarities of Mount Athos territorial status, legal position of residents and visitors, as well as organization of Mount Athos authorities. The author concludes that the Mount Athos is characterized by a kind of para-sovereignty. Its autonomy involves not only the internal organization, autonomous governance and religious autonomy, but it also includes many elements of secular life of their visitors. Mount Athos has its own, separate legislative, administrative and judicial powers, while the Statute of the Mount Athos has greater legal force than all the other laws of the Greek state, because the state can not unilaterally change its provisions. Having in mind that the wide self-government is vested in church authorities and that the monks have very specific way of living, the author takes a position that the Mount Athos represent 'monastic state', but without statehood. The author also states that the Mount Athos will be faced with many challenges in the context of spreading of an assimilating, universal conception of human rights.

  3. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  4. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII

  5. a Comparison among Different Optimization Levels in 3d Multi-Sensor Models. a Test Case in Emergency Context: 2016 Italian Earthquake

    Science.gov (United States)

    Chiabrando, F.; Sammartano, G.; Spanò, A.

    2017-02-01

    In sudden emergency contexts that affect urban centres and built heritage, the latest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In recent times, Unmanned Vehicle System (UAV) equipped with cameras are more and more involved in aerial survey and reconnaissance missions, and they are behaving in a very cost-effective way in the direction of 3D documentation and preliminary damage assessment. More and more UAV equipment with low-cost sensors must become, in the future, suitable in every situation of documentation, but above all in damages and uncertainty frameworks. Rapidity in acquisition times and low-cost sensors are challenging marks, and they could be taken into consideration maybe with time spending processing. The paper will analyze and try to classify the information content in 3D aerial and terrestrial models and the importance of metric and non-metric withdrawable information that should be suitable for further uses, as the structural analysis one. The test area is an experience of Team Direct from Politecnico di Torino in centre Italy, where a strong earthquake occurred in August 2016. This study is carried out on a stand-alone damaged building in Pescara del Tronto (AP), with a multi-sensor 3D survey. The aim is to evaluate the contribution of terrestrial and aerial quick documentation by a SLAM based LiDAR and a camera equipped multirotor UAV, for a first reconnaissance inspection and modelling in terms of level of details, metric and non-metric information.

  6. Towards Slow-Moving Landslide Monitoring by Integrating Multi-Sensor InSAR Time Series Datasets: The Zhouqu Case Study, China

    Directory of Open Access Journals (Sweden)

    Qian Sun

    2016-11-01

    Full Text Available Although the past few decades have witnessed the great development of Synthetic Aperture Radar Interferometry (InSAR technology in the monitoring of landslides, such applications are limited by geometric distortions and ambiguity of 1D Line-Of-Sight (LOS measurements, both of which are the fundamental weakness of InSAR. Integration of multi-sensor InSAR datasets has recently shown its great potential in breaking through the two limits. In this study, 16 ascending images from the Advanced Land Observing Satellite (ALOS and 18 descending images from the Environmental Satellite (ENVISAT have been integrated to characterize and to detect the slow-moving landslides in Zhouqu, China between 2008 and 2010. Geometric distortions are first mapped by using the imaging geometric parameters of the used SAR data and public Digital Elevation Model (DEM data of Zhouqu, which allow the determination of the most appropriate data assembly for a particular slope. Subsequently, deformation rates along respective LOS directions of ALOS ascending and ENVISAT descending tracks are estimated by conducting InSAR time series analysis with a Temporarily Coherent Point (TCP-InSAR algorithm. As indicated by the geometric distortion results, 3D deformation rates of the Xieliupo slope at the east bank of the Pai-lung River are finally reconstructed by joint exploiting of the LOS deformation rates from cross-heading datasets based on the surface–parallel flow assumption. It is revealed that the synergistic results of ALOS and ENVISAT datasets provide a more comprehensive understanding and monitoring of the slow-moving landslides in Zhouqu.

  7. An improved loopless mounting method for cryocrystallography

    International Nuclear Information System (INIS)

    Jian-Xun, Qi; Fan, Jiang

    2010-01-01

    Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments. (general)

  8. An improved loopless mounting method for cryocrystallography

    Science.gov (United States)

    Qi, Jian-Xun; Jiang, Fan

    2010-01-01

    Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.

  9. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...

  10. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  11. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  12. Biodiversity of the flora of Mount Papa

    International Nuclear Information System (INIS)

    Yin-Yin-Kyi

    1995-07-01

    Even though Mount Papa is in the dry zone area, it is almost evergreen, due to its elevation of 4981 feet above the sea level and its fertile soil conditions. A has a rich biodiversity with vegetation of many types

  13. May 1980 Mount Saint Helens, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake occurred at 15 32 UT, only seconds before the explosion that began the eruption of Mount St. Helens volcano. This eruption and blast blew off the top...

  14. Photoelectric panel with equatorial mounting of drive

    Science.gov (United States)

    Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.

    2018-03-01

    The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.

  15. Isolation Mounting for Charge-Coupled Devices

    Science.gov (United States)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  16. "Split Cast Mounting: Review and New Technique".

    Science.gov (United States)

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  17. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics.

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Lu, Lihua

    2014-01-10

    Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

  18. An electromagnetic spherical phased array thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Okress, E.C.

    1983-01-01

    Discussed are salient physics aspects of a microwave singly reentrant spherical periodic phased array of uniformally distributed identical coaxial radiation elements in an essentially simulated infinite array environment. The array is capable of maintaining coherence or phase control (to the limit of the order of 300 GHz) of its spherically converging electromagnetic transverse magnetic mode radiation field, for confinement (and heating) of thermonuclear plasma in steady-state or inertial thermonuclear fusion. The array also incorporates capability for coaxial directional coupler extraction of fusionpower. The radiation elements of the array are shielded against DT Thermonuclear plasma emissions (i.e., neutrons and bremsstrahlung) by either sufficiently (available) low less tangent and cooled, spherically concentric shield (e.g., Titanium oxide); or alternately by identical material dome windows mounted on each radiation element's aperture of the array. The pump microwave power required for thermonuclear fusion feasibility comprises an array of phase-locked available klystron amplifiers (comparable gyratron amplifiers remain to be developed)

  19. Variable mounting assembly for transducers employed in nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Elsner, H.J.; Antol, R.F.; Castner, R.P.

    1979-01-01

    A positionally variable mounting assembly for transducers used to interrogate a nuclear reactor vessel is disclosed. Means are provided for clamping each transducer of an array about its flange in a central restraining block. The central restraining block is, in turn, pivotally mounted in a yoke. The yoke is movable secured to bars or rails bolted to the transducer plate and, by loosening appropriate bolts, can be moved along the ways or pivoted about one of them. Further, the restraining block can be removed from the yoke and pivotally clamped in a different orientation to upstanding brackets attached to the transducer array plate, or rotated through 90 0 and then secured again in the yoke

  20. Technical preparation of the Yuzhteploehnergomontazh trust for technological equipment mounting

    International Nuclear Information System (INIS)

    Zayats, A.I.

    1982-01-01

    Measures of technical preparation for equipment mounting at the Zaporozhe NPP developed with the Yuzhteploehnergomontazh trust experts are considered. These measures envisage the construction of mounting base of heat facilities, calculation of labour contents and determination of necessary quantity of mounters, development of optimal flowsheet of mounting control, improvement of mounting qualification and creation of stable collective body, improvement of technical level of mounting and welding works, organizational-technical measures on mounting logistics. Factors affecting negatively technical preparation quality of equipment mounting at the Zaporozhe NPP are discussed. The flowsheet of mounting control is presented

  1. A multidisciplinary and multi-sensor assessment of continuous degassing at Turrialba volcano, Costa Rica; insights and their application to hazard management

    Science.gov (United States)

    van Manen, S. M.; Tortini, R.; Burson, B.; Carn, S. A.

    2013-12-01

    Turrialba is an active stratovolcano located in the Central Cordillera of Costa Rica with an elevation of 3,340 m. Located just 35 km northeast of Costa Rica's capital city San Jose it looms over Costa Rica's Central Valley, the social and economic hub of the country. After more than 100 years of quiescence Turrialba resumed activity in 1996, marked by progressive increases in degassing and seismic activity with gas emissions becoming continuous in 2007. Intermittent phreatic explosions accompanied by ash emissions that have reached the capital have been occurring since 2010. The activity has resulted in the evacuation of two villages, closure of the National Park that comprises the summit region of the volcano and devastation of the local ecosystem. In this work we present a multi-disciplinary and multi-sensor assessment of the persistent degassing and its impacts on the local ecosystem. Combining a variety of high temporal and high spatial resolution satellite-based time series with ground-based measurements of ambient gas concentrations, element deposition and surveys of species richness, enables a comprehensive assessment of SO2 emissions and changes in vegetation. Satellite-based time-series were obtained from Landsat TM and ETM+, Terra ASTER and MODIS, Aqua MODIS, EO-1 and Aura OMI, with some of the data dating back to 2000. Preliminary results show exposure to the volcanic plume results in high soil acidity and significant uptake of certain heavy metals (e.g. Cd, Co, Cu, Hg and Pb) by vegetation, in contrast other elements such as Ba, Ca and Sr are leached from the soil as a result of the acid deposition. These factors are likely to be responsible for decreased species richness and physiological damage observed downwind of Turrialba. Ambient SO2 concentrations that exceed WHO guideline values have been recorded, which has potentially important consequences for human health in the area. Analyzing and relating the remote observations to conditions and impacts

  2. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    lower than 7%. Despite some inaccuracies in ρw retrieval, we demonstrate that the SPM concentration can be reliably estimated using OLI, MODIS and VIIRS, regardless of their differences in spatial and spectral resolutions. Match-ups between the OLI-derived SPM concentration and autonomous field measurements from the Loire and Gironde estuaries’ monitoring networks provided satisfactory results. The multi-sensor approach together with the multi-conditional algorithm presented here can be applied to the latest generation of ocean color sensors (namely Sentinel2/MSI and Sentinel3/OLCI to study SPM dynamics in the coastal ocean at higher spatial and temporal resolutions.

  3. EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    Directory of Open Access Journals (Sweden)

    Z. Su

    2009-06-01

    Full Text Available EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006. However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland. As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and

  4. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling AGENCY... proposed action is to approve two Plans of Operations for exploratory uranium drilling on the Cibola... San Mateo. In total, there are up to 279 drill holes that would be drilled over a period not to exceed...

  5. Ball mounting fixture for a roundness gage

    Science.gov (United States)

    Gauler, Allen L.; Pasieka, Donald F.

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  6. Mounting system for optical frequency reference cavities

    Science.gov (United States)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  7. 14 CFR 33.23 - Engine mounting attachments and structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine mounting attachments and structure... mounting attachments and structure. (a) The maximum allowable limit and ultimate loads for engine mounting attachments and related engine structure must be specified. (b) The engine mounting attachments and related...

  8. Robotic mounting of ATLAS barrel SCT modules

    International Nuclear Information System (INIS)

    Nickerson, R.B.; Viehhauser, G.; Wastie, R.; Terada, S.; Unno, Y.; Kohriki, T.; Ikegami, Y.; Hara, K.; Kobayashi, H.; Barbier, G.; Clark, A.G.; Perrin, E.; Carter, A.A.; Mistry, J.; Morris, J.

    2006-01-01

    The 2112 silicon detector modules of the barrel part of the ATLAS SemiConductor Tracker (SCT) have been mounted on their carbon fibre support structure. Module insertion, placement and fixing were performed by robotic assembly tooling. We report on our experience with this assembly method. Part of the mounting sequence involves a partial survey of elements of the support structure which is needed to align the modules properly during insertion. An analysis of these data is used to estimate the positional accuracy of the robots

  9. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  10. A Multi-Data Source and Multi-Sensor Approach for the 3D Reconstruction and Web Visualization of a Complex Archaelogical Site: The Case Study of “Tolmo De Minateda”

    Directory of Open Access Journals (Sweden)

    Jose Alberto Torres-Martínez

    2016-06-01

    Full Text Available The complexity of archaeological sites hinders creation of an integral model using the current Geomatic techniques (i.e., aerial, close-range photogrammetry and terrestrial laser scanner individually. A multi-sensor approach is therefore proposed as the optimal solution to provide a 3D reconstruction and visualization of these complex sites. Sensor registration represents a riveting milestone when automation is required and when aerial and terrestrial datasets must be integrated. To this end, several problems must be solved: coordinate system definition, geo-referencing, co-registration of point clouds, geometric and radiometric homogeneity, etc. The proposed multi-data source and multi-sensor approach is applied to the study case of the “Tolmo de Minateda” archaeological site. A total extension of 9 ha is reconstructed, with an adapted level of detail, by an ultralight aerial platform (paratrike, an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial photogrammetry. Finally, a mobile device (e.g., tablet or smartphone has been used to integrate, optimize and visualize all this information, providing added value to archaeologists and heritage managers who want to use an efficient tool for their works at the site, and even for non-expert users who just want to know more about the archaeological settlement.

  11. Multi-Sensor Approach for the Monitoring of Halitosis Treatment via Lactobacillus brevis (CD2—Containing Lozenges—A Randomized, Double-Blind Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Enrico Marchetti

    2015-08-01

    Full Text Available The aim of this randomized clinical trial was to evaluate whether a recently described multi-sensor approach called BIONOTE® is accurate enough to verify the efficacy of treatment of patients with halitosis. A treatment with Lactobacillus brevis (CD2–containing lozenges, compared with placebo was tested. The BIONOTE® was compared with traditional techniques used to detect halitosis: OralChroma™ and two calibrated odor judges enrolled for the organoleptic assessments. Twenty patients (10 treated and 10 placebo, suffering from active phase halitosis were included in the study. Treatment consisted of Lactobacillus brevis (CD2—containing lozenges or placebo, 4 tablets/day for 14 days. t0 was before the beginning of the study; t1 was day 7 and t2 was day 14. The effectiveness of treatment was assessed through: (1 Rosenberg score; (2 Winkel tongue coating index (WTCI anterior and posterior; (2 OralChroma™; (3 the new developed multi-sensor approach, called BIONOTE® (test technique. Only the WTCI anterior revealed statistically significant changes between t0 and t2 data (p = 0.014 in the treated group. Except for the WTCI anterior, all diagnostic methods revealed the lack of effectiveness for halitosis of a 14-days treatment with Lactobacillus brevis (CD2–containing lozenges. The BIONOTE® multisensor system seems accurate in addition to OralChroma™ to assess the initial condition of halitosis and its mitigation during treatment.

  12. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  13. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  14. Fixture For Mounting A Pressure Sensor

    Science.gov (United States)

    Cagle, Christopher M.

    1995-01-01

    Fixture for mounting pressure sensor in aerodynamic model simplifies task of removal and replacement of sensor in event sensor becomes damaged. Makes it unnecessary to dismantle model. Also minimizes any change in aerodynamic characteristics of model in event of replacement. Removable pressure sensor installed in fixture in wall of model. Wires from sensor pass through channel under surface.

  15. Creating Gaze Annotations in Head Mounted Displays

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Qvarfordt, Pernilla

    2015-01-01

    To facilitate distributed communication in mobile settings, we developed GazeNote for creating and sharing gaze annotations in head mounted displays (HMDs). With gaze annotations it possible to point out objects of interest within an image and add a verbal description. To create an annota- tion...

  16. Flush-mounting technique for composite beams

    Science.gov (United States)

    Harman, T. C.; Kay, B. F.

    1980-01-01

    Procedure permits mounting of heavy parts to surface of composite beams without appreciably weakening beam web. Web is split and held apart in region where attachment is to be made by lightweight precast foam filler. Bolt hole penetrates foam rather than web, and is secured by barrelnut in transverse bushing through web.

  17. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  18. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  19. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  20. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  1. Solidly Mounted Resonator with Optimized Acoustic Reflector

    NARCIS (Netherlands)

    Jose, Sumy; Jansman, Andreas; Hueting, Raymond Josephus Engelbart

    2009-01-01

    The quality factor (Q) of the Solidly Mounted Resonator is limited by acoustic losses caused by waves leaking through the mirror stack. Traditionally employed acoustic mirror reflects only longitudinal waves and not shear waves. Starting with the stop-band theory and the principle of spacer layers

  2. Dynamic characteristics of mirrors' kinematic mount

    International Nuclear Information System (INIS)

    Wu Wenkai; Du Qiang; Li Jingze; Chen Gang; Chen Xiaojuan; Xu Yuanli

    2002-01-01

    Applying exact constrain design principles, kinematic mount for precision positioning large aperture mirrors is designed; theoretical method is introduced to analyze its dynamic characteristics and the result of the experiment for mirrors, stability; accordingly, the methods to improve design are put forward

  3. Making sense of Mount St. Helens

    Science.gov (United States)

    Steve Nash

    2010-01-01

    The eruption of Mount St. Helens in 1980 resulted in "a grand experiment that you could never have gotten anybody to fund," says Forest Service ecologist Charles Crisafulli. "Everything's new. It's a new landform." Unlike most misbehaving volcanoes, this one provided an accessible laboratory right along the Interstate-5 corridor, with the...

  4. June 1992 Mount Spurr, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following 39 years of inactivity, Crater Peak vent on the south flank of Mount Spurr volcano burst into eruption at 7:04 a.m. Alaska daylight time (ADT) on June 27,...

  5. 49 CFR 587.19 - Mounting.

    Science.gov (United States)

    2010-10-01

    ... Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.19 Mounting. (a) The deformable face is rigidly attached to the edge of the fixed rigid barrier or to some rigid...

  6. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  7. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    Science.gov (United States)

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  8. Systems and methods for mirror mounting with minimized distortion

    Science.gov (United States)

    Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)

    2012-01-01

    A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.

  9. A Multimode Equivalent Network Approach for the Analysis of a 'Realistic' Finite Array of Open Ended Waveguides

    NARCIS (Netherlands)

    Neto, A.; Bolt, R.; Gerini, G.; Schmitt, D.

    2003-01-01

    In this contribution we present a theoretical model for the analysis of finite arrays of open-ended waveguides mounted on finite mounting platforms or having radome coverages. This model is based on a Multimode Equivalent Network (MEN) [1] representation of the radiating waveguides complete with

  10. Long-Term Large-Scale Bias-Adjusted Precipitation Estimates at High Spatial and Temporal Resolution Derived from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Precipitation Reanalysis over CONUS

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar

  11. Remote observations with FLUOR and the CHARA Array

    Science.gov (United States)

    Merand, Antoine; Birlan, Mirel; Lelu de Brach, Remi; Coudé du Foresto, Vincent

    2004-10-01

    Two years ago, the FLUOR interferometric beam combiner moved from IOTA (Infrared Optical Telescopes Array, Mount Hopkins, AZ) to the Center for High Angular Resolution Astronomy (CHARA) Array (Mount Wilson, CA). Apart from offering the largest baselines in the northern hemisphere, this array can be fully operated remotely to allow observations from a distant place. We present here the automations added to the FLUOR hardware, as well as software modifications made in order to allow us to observe from Paris Observatory. We required the remote service to be as reactive as local observations, implying frequent communications between the instrument and the remote observer. We took particular attention to the available bandwidth and reactivity imposed by the secured connection (Virtual Private Network). The first tests are presented.

  12. Increased earthquake safety through optimised mounting concept

    International Nuclear Information System (INIS)

    Kollmann, Dieter; Senechal, Holger

    2013-01-01

    Since Fukushima, there has been intensive work on earthquake safety in all nuclear power plants. A large part of these efforts aim at the earthquake safety of safety-relevant pipeline systems. The problem with earthquake safety here is not the pipeline system itself but rather its mountings and connections to components. This is precisely the topic that the KAE dealt with in years of research and development work. It has developed an algorithm that determines the optimal mounting concept with a few iteration steps depending on arbitrary combinations of loading conditions whilst maintaining compliance with relevant regulations for any pipeline systems. With this tool at hand, we are now in a position to plan and realise remedial measures accurately with minimum time and hardware expenditure, and so distinctly improve the earthquake safety of safety-relevant systems. (orig.)

  13. Micro-inverter solar panel mounting

    Science.gov (United States)

    Morris, John; Gilchrist, Phillip Charles

    2016-02-02

    Processes, systems, devices, and articles of manufacture are provided. Each may include adapting micro-inverters initially configured for frame-mounting to mounting on a frameless solar panel. This securement may include using an adaptive clamp or several adaptive clamps secured to a micro-inverter or its components, and using compressive forces applied directly to the solar panel to secure the adaptive clamp and the components to the solar panel. The clamps can also include compressive spacers and safeties for managing the compressive forces exerted on the solar panels. Friction zones may also be used for managing slipping between the clamp and the solar panel during or after installation. Adjustments to the clamps may be carried out through various means and by changing the physical size of the clamps themselves.

  14. Mapping the Spread of Mounted Warfare

    Directory of Open Access Journals (Sweden)

    Peter Turchin

    2016-12-01

    Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.

  15. Customer Satisfaction Level in Mount Sherpa Restaurant

    OpenAIRE

    Shrestha, Sameer

    2015-01-01

    Customer satisfaction is the key to every successful business in the sense of profit motive, as well as in the long run. It is the desire of every business to be able to understand their customers’ need. Many businesses, especially related with the service industry, carry out different surveys and conduct research in order to know what their customers really want. This research was carried out to measure the customer satisfaction level in Mount Sherpa restaurant. The results and findings ...

  16. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  17. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  18. Ceramic ball grid array package stress analysis

    Science.gov (United States)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  19. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  20. Mounting apparatus for a nozzle guide vane assembly

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.

  1. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires to...

  2. Organization and processes of the BN-600 reactor mounting

    International Nuclear Information System (INIS)

    Dubrovin, E.Z.; Karpenko, V.N.; Takhtaulov, V.M.

    1982-01-01

    Structural peculiarities of the BN-600 reactor plant are considered. Experience of metal structure mounting inside the reactor vessel has been analysed. Recommendations on the improvements on the organization of the thermal mechanical equipment mounting are given. It is concluded that the consideration of these recommendations will permit to reduce expenditures of labour by 10-40% for the mounting

  3. [The controversy of routine articulator mounting in orthodontics].

    Science.gov (United States)

    Wang, Li; Han, Xianglong; Bai, Ding

    2013-06-01

    Articulators have been widely used by clinicians of dentistry. But routine articulator mounting is still controversial in orthodontics. Orthodontists oriented by gnathology approve routine articulator mounting while nongnathologic orthodontists disapprove it. This article reviews the thoughts of orthodontist that they agree or disagree with routine articulator mounting based on the considerations of biting, temporomandibular disorder (TMD), periodontitis, and so on.

  4. 49 CFR 571.212 - Standard No. 212; Windshield mounting.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 212; Windshield mounting. 571.212... Motor Vehicle Safety Standards § 571.212 Standard No. 212; Windshield mounting. S1. Scope. This standard..., under the conditions of S6, the windshield mounting of the vehicle shall retain not less than the...

  5. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    Science.gov (United States)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  6. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  7. A trolley mounted magazine for reactor maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P.J.; Madani, M.; Ridgway, G.H. [GE Hitachi Nuclear Energy Canada, Peterborough, Ontario (Canada)], E-mail: patrick1.brennan@ge.com, mehdi.madani@ge.com, guy.ridgway@ge.com; Lundy, E.; Knight, D. [IM and CS (Inspection, Maintenance and Commerical Services), Ontario Power Generation, Ajax, Ontario (Canada)], E-mail: erroll.lundy@opg.com, david.knight@opg.com

    2009-03-15

    This paper describes the design of a mechanism incorporating a rotary magazine to be mounted on a fuelling machine transport trolley for use at a Darlington reactor during a feeder replacement or maintenance outage. The magazine stores reactor channel maintenance components, such as channel isolation plugs and vented closure plugs, in twelve available magazine channels. Use of the magazine rather than a fuelling machine reduces the time required to transfer such components between the Central Service Area and reactor channels. Component transfers are accomplished by locking the fuelling machine onto one of the magazine channels and using a local controller to execute commands received from the fuel handling control system. (author)

  8. A trolley mounted magazine for reactor maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, P.J.; Madani, M.; Ridgway, G.H., E-mail: patrick1.brennan@ge.com, E-mail: mehdi.madani@ge.com, E-mail: guy.ridgway@ge.com [GE Hitachi Nuclear Energy Canada, Peterborough, Ontario (Canada); Lundy, E.; Knight, D., E-mail: erroll.lundy@opg.com, E-mail: david.knight@opg.com [Ontario Power Generation, Inspection, Maintenance and Commercial Services, Ajax, Ontario (Canada)

    2008-07-01

    This paper describes the design of a mechanism incorporating a rotary magazine to be mounted on a fuelling machine transport trolley for use at a Darlington reactor during a feeder replacement or maintenance outage. The magazine stores reactor channel maintenance components, such as channel isolation plugs and vented closure plugs, in twelve available magazine channels. Use of the magazine rather than a fuelling machine reduces the time required to transfer such components between the Central Service Area and reactor channels. Component transfers are accomplished by locking the fuelling machine onto one of the magazine channels and using a local controller to execute commands received from the fuel handling control system. (author)

  9. A trolley mounted magazine for reactor maintenance

    International Nuclear Information System (INIS)

    Brennan, P.J.; Madani, M.; Ridgway, G.H.; Lundy, E.; Knight, D.

    2009-01-01

    This paper describes the design of a mechanism incorporating a rotary magazine to be mounted on a fuelling machine transport trolley for use at a Darlington reactor during a feeder replacement or maintenance outage. The magazine stores reactor channel maintenance components, such as channel isolation plugs and vented closure plugs, in twelve available magazine channels. Use of the magazine rather than a fuelling machine reduces the time required to transfer such components between the Central Service Area and reactor channels. Component transfers are accomplished by locking the fuelling machine onto one of the magazine channels and using a local controller to execute commands received from the fuel handling control system. (author)

  10. Mount Zirkel Wilderness and vicinity, Colorado

    International Nuclear Information System (INIS)

    Snyder, G.L.; Patten, L.L.

    1984-01-01

    Several areas of metallic and nonmetallic mineralization have been identified from surface occurrences within the Mount Zirkel Wilderness and vicinity, Colorado. Three areas of probable copper-lead-zinc-silver-gold resource potential, two areas of probable chrome-platinum resource potential, four areas of probable uranium-thorium resource potential, two areas of probable molybdenum resource potential, and one area of probable fluorspar potential were identified by studies in 1965-1973 by the USGS and USBM. No potential for fossil fuel or geothermal resources was identified

  11. A trolley mounted magazine for reactor maintenance

    International Nuclear Information System (INIS)

    Brennan, P.J.; Madani, M.; Ridgway, G.H.; Lundy, E.; Knight, D.

    2008-01-01

    This paper describes the design of a mechanism incorporating a rotary magazine to be mounted on a fuelling machine transport trolley for use at a Darlington reactor during a feeder replacement or maintenance outage. The magazine stores reactor channel maintenance components, such as channel isolation plugs and vented closure plugs, in twelve available magazine channels. Use of the magazine rather than a fuelling machine reduces the time required to transfer such components between the Central Service Area and reactor channels. Component transfers are accomplished by locking the fuelling machine onto one of the magazine channels and using a local controller to execute commands received from the fuel handling control system. (author)

  12. Radial microstrip slotline feed network for circular mobile communications array

    Science.gov (United States)

    Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.

    1994-01-01

    In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.

  13. Research on LQR optimal control method of active engine mount

    Science.gov (United States)

    Huan, Xie; Yu, Duan

    2018-04-01

    In this paper, the LQR control method is applied to the active mount of the engine, and a six-cylinder engine excitation model is established. Through the joint simulation of AMESim and MATLAB, the vibration isolation performance of the active mount system and the passive mount system is analyzed. Excited by the multi-engine operation, the simulation results of the vertical displacement, acceleration and dynamic deflection of the vehicle body show that the vibration isolation capability of the active mount system is superior to that of the passive mount system. It shows that compared with the passive mount, LQR active mount can greatly improve the vibration isolation performance, which proves the feasibility and effectiveness of the LQR control method.

  14. A novel single-step procedure for the calibration of the mounting parameters of a multi-camera terrestrial mobile mapping system

    Science.gov (United States)

    Habib, A.; Kersting, P.; Bang, K.; Rau, J.

    2011-12-01

    Mobile Mapping Systems (MMS) can be defined as moving platforms which integrates a set of imaging sensors and a position and orientation system (POS) for the collection of geo-spatial information. In order to fully explore the potential accuracy of such systems and guarantee accurate multi-sensor integration, a careful system calibration must be carried out. System calibration involves individual sensor calibration as well as the estimation of the inter-sensor geometric relationship. This paper tackles a specific component of the system calibration process of a multi-camera MMS - the estimation of the relative orientation parameters among the cameras, i.e., the inter-camera geometric relationship (lever-arm offsets and boresight angles among the cameras). For that purpose, a novel single step procedure, which is easy to implement and not computationally intensive, will be introduced. The proposed method is implemented in such a way that it can also be used for the estimation of the mounting parameters among the cameras and the IMU body frame, in case of directly georeferenced systems. The performance of the proposed method is evaluated through experimental results using simulated data. A comparative analysis between the proposed single-step and the two-step, which makes use of the traditional bundle adjustment procedure, is demonstrated.

  15. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  16. Experience with HEP analysis on mounted filesystems

    International Nuclear Information System (INIS)

    Fuhrmann, Patrick; Gasthuber, Martin; Kemp, Yves; Ozerov, Dmitry

    2012-01-01

    We present results on different approaches on mounted filesystems in use or under investigation at DESY. dCache, established since long as a storage system for physics data has implemented the NFS v4.1/pNFS protocol. New performance results will be shown with the most current version of the dCache server. In addition to the native usage of the mounted filesystem in a LAN environment, the results are given for the performance of the dCache NFS v4.1/pNFS in WAN case. Several commercial vendors are currently in alpha or beta phase of adding the NFS v4.1/pNFS protocol to their storage appliances. We will test some of these vendor solutions for their readiness for HEP analysis. DESY has recently purchased an IBM Sonas system. We will present the result of a thorough performance evaluation using the native protocols NFS (v3 or v4) and GPFS. As the emphasis is on the usability for end user analysis, we will use latest ROOT versions and current end user analysis code for benchmark scenarios.

  17. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  18. The eddy performance: Contemporary ethnography of Mount Tlaloc

    Directory of Open Access Journals (Sweden)

    Lorente Fernández, David

    2010-12-01

    Full Text Available Mount Tlaloc was a very important religious place in the prehispanic age: it was the place where request ceremonies for rain took place on the Mexica Empire. This is the reason for the increasing interest in this place among archaeologists and ethnohistorians. However, systematic ethnography in the region is almost inexistent and the accurate meaning of the offerings and rituals which are still being carried out nowadays is unknown. The article shows the conclusions of a long fieldwork on the region which describes a therapeutic ceremony where the offering consists in the performing of an eddy —an identification with the water spirits to copy their behavior. Such eddy is related to another array of offerings which includes the donation of seeds or their smell as food. With the analysis of the ritual, the complex contemporary cosmology is explored showing a link between Mount Tlaloc and the local irrigation system: their irrigation channels and the springs are a whole from a conceptual and geographic point of view.

    El Monte Tláloc constituyó un importante sitio ceremonial regional en la época prehispánica: era el lugar en el que se realizaban los ritos petitorios de lluvia del Imperio mexica. Por ello ha despertado el interés creciente de arqueólogos y etnohistoriadores. Sin embargo, la etnografía sistemática de la zona es prácticamente inexistente, al grado de que desconocemos exactamente el sentido de las ofrendas y los rituales que continúan realizándose allí. En este sentido, el artículo presenta las conclusiones de un prolongado trabajo de campo en el área y describe un rito terapéutico en el que la ofrenda es la teatralización de un «remolino actuado», es decir, una identificación con los espíritus del agua por el recurso de imitar sus acciones. Dicho remolino se asocia también con otra variedad de ofrendas que incluyen la donación de semillas o sus aromas como alimento. A partir de un análisis del rito se

  19. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  20. Eruptive history of Mount Katmai, Alaska

    Science.gov (United States)

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Mount Katmai has long been recognized for its caldera collapse during the great pyroclastic eruption of 1912 (which vented 10 km away at Novarupta in the Valley of Ten Thousand Smokes), but little has previously been reported about the geology of the remote ice-clad stratovolcano itself. Over several seasons, we reconnoitered all parts of the edifice and sampled most of the lava flows exposed on its flanks and caldera rim. The precipitous inner walls of the 1912 caldera remain too unstable for systematic sampling; so we provide instead a photographic and interpretive record of the wall sequences exposed. In contrast to the several andesite-dacite stratovolcanoes nearby, products of Mount Katmai range from basalt to rhyolite. Before collapse in 1912, there were two overlapping cones with separate vent complexes and craters; their products are here divided into eight sequences of lava flows, agglutinates, and phreatomagmatic ejecta. Latest Pleistocene and Holocene eruptive units include rhyodacite and rhyolite lava flows along the south rim; a major 22.8-ka rhyolitic plinian fall and ignimbrite deposit; a dacite-andesite zoned scoria fall; a thick sheet of dacite agglutinate that filled a paleocrater and draped the west side of the edifice; unglaciated leveed dacite lava flows on the southeast slope; and the Horseshoe Island dacite dome that extruded on the caldera floor after collapse. Pre-collapse volume of the glaciated Katmai edifice was ∼30 km3, and eruptive volume is estimated to have been 57±13 km3. The latter figure includes ∼40±6 km3 for the edifice, 5±2 km3 for off-edifice dacite pyroclastic deposits, and 12±5 km3 for the 22.8-ka rhyolitic pyroclastic deposits. To these can be added 13.5 km3 of magma that erupted at Novarupta in 1912, all or much of which is inferred to have been withdrawn from beneath Mount Katmai. The oldest part of the edifice exposed is a basaltic cone, which gave a 40Ar/39Ar plateau age of 89 ± 25 ka.

  1. Push plate, mounting assembly, circuit board, and method of assembling thereof for ball grid array packages

    Science.gov (United States)

    Vaughn, Mark R.; Montague, Stephen

    2017-05-16

    A push plate that includes springs in the form of cantilever flexures and an inspection window is disclosed. The push plate provides a known, uniform, down force and minimal torque to a package to be tested. The cantilevers have a known, calculable down force producing stiffness. The window provides for viewing of the package during testing.

  2. Ambient noise tomography across Mount St. Helens using a dense seismic array

    KAUST Repository

    Wang, Yadong; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie

    2017-01-01

    fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used

  3. Rack assembly for mounting solar modules

    Science.gov (United States)

    Plaisted, Joshua Reed; West, Brian

    2010-12-28

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  4. Article mounting and position adjustment stage

    Science.gov (United States)

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  5. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    Science.gov (United States)

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  6. Insectivore Plants Nepenthes sp. at Mount Merbabu

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2000-07-01

    Full Text Available The aims of the research were to know the existence of the Nepenthes at mount Merbabu, variations of its morphology, associated plants, and ecological conditions. Nepenthes are one of plants that were categorized as conserved plant by Indonesian government as indicated in PPRI No. 7/1999. Many researchers attracted to study this unique plant since it’s distinct feature and the way to get nutrient by trapping insects at its sac. Samples were taken randomly along the path for climbing from Selo, Boyolali to the top of the mountain between April to May 2000. The results show that the plants were found at the altitude of around 1500 to 2000 tsl. There were two forms of the sacs, long and short at the same individual plants. The plants grow coiling on Myristica trees and shrubs of Thunbergia fragrans Roxb., and also could grow at the stoned-soil.

  7. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  8. MOUNT PELE, AN ECOCLIMATIC GRADIENT GENERATOR

    Directory of Open Access Journals (Sweden)

    PHILIPPE JOSEPH

    2013-05-01

    Full Text Available Generally, mountains determine the characteristics of particular areas, because of the island phenomenon they cause. However, the geological origins of mountains are multiple and they are located in different climatic regions. Nevertheless, in all aspects they reflect the basic elements of the local biologic unit. The shapes, climates, diverse water resources, biocenoses and the generated soils are the different components that determine, through their dynamic interaction, the “Mountain” ecosystem. Tectonic subduction processes lead to the development of islands such as Martinique, whose basic structure consists of a series of mountains (among them Mount Pele. Like the topographic divisions, the local micro-climates, water courses, different soils (themselves the consequences of the presence of the mountain itself and successive volcanic eruptions determine, over time, the organization of the diverse vegetal entities.

  9. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  10. Photovoltaic array with minimally penetrating rooftop support system

    Science.gov (United States)

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  11. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    Science.gov (United States)

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  12. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    Science.gov (United States)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  13. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  14. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  15. Initial solar observations with Prototype Brazilian Decimetric Array

    Science.gov (United States)

    Fernandes, F. C. R.; Ramesh, R.; Cecatto, J. R.; Faria, C.; Andrade, M. C.; Subramanian, K. R.; Rajan, M. S. Sundara; Sawant, H. S.

    The Prototype Brazilian Decimetre Array (PBDA) consists of 5 element alt-azimuth mounted parabolic dishes of 4-m diameter, having baselines up to 216 m in East-West direction. We present initial solar observations carried out with the PBDA during the period 22nd November to 11th December, 2004. The frequency of observation was 1.6 GHz. The temporal and spatial resolution were 100 ms and 3 arcmin, respectively.

  16. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    Science.gov (United States)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Moritz, Jr., Joel A. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  17. Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

    Directory of Open Access Journals (Sweden)

    Pierozynski Boguslaw

    2017-12-01

    Full Text Available This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

  18. Local Community Entrepreneurship in Mount Agung Trekking

    Science.gov (United States)

    Mudana, I. G.; Sutama, I. K.; Widhari, C. I. S.

    2018-01-01

    Since its last major eruption in 1963, Mount Agung in Selat District, Karangasem Regency, the highest mountain in Bali Province began to be visited by tourists climbers. Because of the informal obligation that every climbing/trekking should be guided by local guides, since the 1990s, there have been initiatives from a number of local community members to serve climbing tourists who were keen to climb the volcano/mountain. This study was conducted to understand and describe the entrepreneurial practices which appeared in the local surrounding community. Specifically, Selat Village, in guiding the climbing/trekking. This study used qualitative data analysis and its theories were adapted to data needed in the field. The results of study showed that Mount Agung was considered attractive by climbing tourists not only because of the exotic beauty and challenges of difficulty (as well as the level of danger) to conquer it, but also because it kept certain myths from its status as a holy/sacred mountain to Balinese Hindus. In fact, a number of tourists who did the climbing/trekking without being guided very often got lost, harmed in an accident, or fell to their death. As a direct result, all climbing activities require guidance. Especially guides from local community organizations who really understand the intricacies of climbing and the curvature of the mountain. The entrepreneurial practices of Selat Village community had arisen not only to serve usual climbing activities, but also to preserve the environment of the mountain and the safety of the climbing tourists with the many taboos related to the climb. These facts could be seen clearly from descriptions of local experts and local climbing guides who have been doing their work for years. As a form of entrepreneurship, they basically did their work for the main purpose of seeking livelihoods (or making money) but their responsibility as local people made them commit to guarding the sanctity of the mountain. This was

  19. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  20. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  1. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  2. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    Science.gov (United States)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  3. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  4. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  5. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  6. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  7. Flush mounting of thin film sensors

    Science.gov (United States)

    Moore, Thomas C., Sr. (Inventor)

    1992-01-01

    Flush mounting of a sensor on a surface is provided by first forming a recessed area on the surface. Next, an adhesive bonding mixture is introduced into the recessed area. The adhesive bonding mixture is chosen to provide thermal expansion matching with the surface surrounding the recessed area. A strip of high performance polymeric tape is provided, with the sensor attached to the underside thereof, and the tape is positioned over the recessed area so that it acts as a carrier of the sensor. A shim having flexibility so that it will conform to the surface surrounding the recessed area is placed over the tape, and a vacuum pad is placed over the shim. The area above the surface is then evacuated while holding the sensor flush with the surface during curing of the adhesive bonding mixture. After such curing, the pad, shim, and tape are removed from the sensor, electrical connections for the sensor are provided, after which the remaining space in the recessed area is filled with a polymeric foam.

  8. Virtual sine arm kinematic mount system

    International Nuclear Information System (INIS)

    Xu, Z.; Randall, K.J.

    1997-01-01

    A novel kinematic mount system for a vertical focusing mirror of the soft x-ray spectroscopy beamline at the Advanced Photon Source is described. The system contains three points in a horizontal plane. Each point consists of two horizontal linear precision stages, a spherical ball bearing, and a vertical precision stage. The horizontal linear stages are aligned orthogonally and are conjoined by a spherical ball bearing, supported by the vertical linear stage at each point. The position of each confined horizontal stage is controlled by a motorized micrometer head by spring-loading the flat tip of the micrometer head onto a tooling ball fixing on the carriage of the stage. A virtual sine arm is formed by tilting the upstream horizontal stage down and the two downstream horizontal stages up by a small angle. The fine pitch motion is achieved by adjusting the upstream stage. This supporting structure is extremely steady due to a relatively large span across the supporting points and yields extremely high resolution on the pitch motion. With a one degree tilt and a microstepping motor, the authors achieved a 0.4 nanoradian resolution on the mirror pitch motion

  9. Alternative mounting media for preservation of some protozoa.

    Science.gov (United States)

    Criado-Fornelio, A; Heredero-Bermejo, I; Pérez-Serrano, J

    2014-10-01

    Protozoa resistant stages are disintegrated when mounted in toluene-based media. To overcome such problem, three toluene-free mountants were tested on preserve Acanthamoeba spp and gregarines. Two commercial glues based on cyanoacrylate or trimethoxysilane were suitable for preserving both cysts and trophozoites. Hoyer's medium showed good results for mounting gregarine oocysts. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  11. Solar electricity potentials and optimal angles for mounting solar ...

    African Journals Online (AJOL)

    The need for harnessing solar energy using solar panels mounted at optimal inclination angles in the six geopolitical zones of Nigeria is presented. The optimal angle for mounting solar panels as presented by Photovoltaic Geographic Information System (PVGIS) ranges from 11º to 14º in the Southern zone and 13º to 16º ...

  12. Wind instrument mountings for above-the-cab lookout exposure

    Science.gov (United States)

    Owen P. Cramer; Ralph H. Moltzau

    1968-01-01

    The lookout tower offers a ready-made platform from which the speed of true unobstructed wind can be measured, then reduced to equivalent of 20-foot wind. Tower-mounted instruments must meet the requirements of a lightning conductor system, but should also be easily installed and removed for storage and maintenance. Lightweight aluminum mountings for catwalk or flat-...

  13. The alpine flora of Mount Wilhelm (New Guinea)

    NARCIS (Netherlands)

    Hoogland, R.D.

    1958-01-01

    The flora of the higher mountains of New Guinea has been the object of several extensive collecting trips in the past forty years. Until quite recently, however, a serious gap in our knowledge was the very scanty information available from the area between Mount Wilhelmina in the West and Mount

  14. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  15. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  16. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  17. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  18. Perspective with Landsat Overlay, Mount Kilimanjaro, Tanzania

    Science.gov (United States)

    2002-01-01

    Mount Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili), the highest point in Africa, reaches 5,895 meters (19,340 feet) above sea level, tall enough to maintain a permanent snow cap despite being just 330 kilometers (210 miles) south of the equator. It is the tallest free-standing mountain on the Earth's land surface world, rising about 4,600 meters (15,000 feet) above the surrounding plain. Kilimanjaro is a triple volcano (has three peaks) that last erupted perhaps more than 100,000 years ago but still exudes volcanic gases. It is accompanied by about 20 other nearby volcanoes, some of which are seen to the west (left) in this view, prominently including Mount Meru, which last erupted only about a century ago. The volcanic mountain slopes are commonly fertile and support thick forests, while the much drier grasslands of the plains are home to elephants, lions, and other savanna wildlife.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 7 satellite image, and a false sky. Topographic expression is vertically exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and

  19. Banner clouds observed at Mount Zugspitze

    Directory of Open Access Journals (Sweden)

    V. Wirth

    2012-04-01

    Full Text Available Systematic observations of banner clouds at Mount Zugspitze in the Bavarian Alps are presented and discussed. One set of observations draws on daily time lapse movies, which were taken over several years at this mountain. Identifying banner clouds with the help of these movies and using simultaneous observations of standard variables at the summit of the mountain provides climatological information regarding the banner clouds. In addition, a week-long measurement campaign with an entire suite of instruments was carried through yielding a comprehensive set of data for two specific banner cloud events.

    The duration of banner cloud events has a long-tailed distribution with a mean of about 40 min. The probability of occurrence has both a distinct diurnal and a distinct seasonal cycle, with a maximum in the afternoon and in the warm season, respectively. These cycles appear to correspond closely to analogous cycles of relative humidity, which maximize in the late afternoon and during the warm season. In addition, the dependence of banner cloud occurrence on wind speed is weak. Both results suggest that moisture conditions are a key factor for banner cloud occurrence. The distribution of wind direction during banner cloud events slightly deviates from climatology, suggesting an influence from the specific Zugspitz orography.

    The two banner cloud events during the campaign have a number of common features: the windward and the leeward side are characterized by different wind regimes, however, with mean upward flow on both sides; the leeward air is both moister and warmer than the windward air; the background atmosphere has an inversion just above the summit of Mt. Zugspitze; the lifting condensation level increases with altitude. The results are discussed, and it is argued that they are consistent with previous Large Eddy Simulations using idealized orography.

  20. Gravity Probe B Detector Mount Assembly

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) detector mount assembly is shown in comparison to the size of a dime. The assembly is used to detect exactly how much starlight is coming through different beams from the beam splitter in the telescope. The measurements from the tiny chips inside are what keeps GP-B aimed at the guide star. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Paul Ehrensberger, Stanford University.)

  1. Installation of a Roof Mounted Photovoltaic System

    Science.gov (United States)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  2. A new ion detector array and digital-signal-processor-based interface

    International Nuclear Information System (INIS)

    Langstaff, D.P.; McGinnity, T.M.; Forbes, D.M.; Birkinshaw, K.; Lawton, M.W.

    1994-01-01

    A new one-dimensional ion detector array on a silicon chip has been developed for use in mass spectrometry. It is much smaller and simpler than electro-optical arrays currently in use and in addition has a higher resolution and a zero noise level. The array consists of a one-dimensional array of metal strips (electrodes) with a pitch of 25 μm on the top surface of a silicon chip, each electrode having its own charge pulse sensor, 8-bit counter and control/interface circuitry. The chip is mounted on a ceramic substrate and is preceded by a micro-channel plate electron multiplier. Chips are butted to give a longer array. Test results show a stable operating region. A digital-signal-processor-based interface is described, which controls the mode of operation and reads the accumulated array data at the maximum rate to avoid counter overflow. (author)

  3. A new ion detector array and digital-signal-processor-based interface

    Energy Technology Data Exchange (ETDEWEB)

    Langstaff, D.P.; McGinnity, T.M.; Forbes, D.M.; Birkinshaw, K. (University Coll. of Wales, Aberystwyth (United Kingdom). Dept. of Physics); Lawton, M.W. (University of Wales Aberystwyth (United Kingdom). Dept. of Computer Science)

    1994-04-01

    A new one-dimensional ion detector array on a silicon chip has been developed for use in mass spectrometry. It is much smaller and simpler than electro-optical arrays currently in use and in addition has a higher resolution and a zero noise level. The array consists of a one-dimensional array of metal strips (electrodes) with a pitch of 25 [mu]m on the top surface of a silicon chip, each electrode having its own charge pulse sensor, 8-bit counter and control/interface circuitry. The chip is mounted on a ceramic substrate and is preceded by a micro-channel plate electron multiplier. Chips are butted to give a longer array. Test results show a stable operating region. A digital-signal-processor-based interface is described, which controls the mode of operation and reads the accumulated array data at the maximum rate to avoid counter overflow. (author).

  4. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  5. Theoretical study of 2χ2 element planar array of equilateral ...

    Indian Academy of Sciences (India)

    Microstrip planar array antennas mounted on such aerospace vehicles encounter plasma medium during their travel in space, as a result of which radiation prop- ... and Eφt are the components of total electric field vectors for EM-mode, Ept is the total electric field vector for P-mode, Fx and Fy are the vector electric potentials.

  6. Towards an enhanced performance of uniform circular arrays at low frequencies

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2013-01-01

    are mounted on a scatterer such as a rigid cylinder or a sphere. The beamforming output improves with increasing frequency, up to a certain frequency where spatial aliasing occurs. At low frequencies the performance is limited by the radius of the array; in other words, given a certain number of microphones...

  7. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, Bernardus J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier–Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  8. Flow through a cylindrical pipe with a periodic array of fractal orifices

    NARCIS (Netherlands)

    van Melick, P.A.J.; Geurts, B.J.

    2013-01-01

    We apply direct numerical simulation (DNS) of the incompressible Navier-Stokes equations to predict flow through a cylindrical pipe in which a periodic array of orifice plates with a fractal perimeter is mounted. The flow is simulated using a volume penalization immersed boundary method with which

  9. Apparent Brecciation Gradient, Mount Desert Island, Maine

    Science.gov (United States)

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic

  10. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  11. Scattering cross section of unequal length dipole arrays

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a detailed and systematic analytical treatment of scattering by an arbitrary dipole array configuration with unequal-length dipoles, different inter-element spacing and load impedance. It provides a physical interpretation of the scattering phenomena within the phased array system. The antenna radar cross section (RCS) depends on the field scattered by the antenna towards the receiver. It has two components, viz. structural RCS and antenna mode RCS. The latter component dominates the former, especially if the antenna is mounted on a low observable platform. The reduction in the scattering due to the presence of antennas on the surface is one of the concerns towards stealth technology. In order to achieve this objective, a detailed and accurate analysis of antenna mode scattering is required. In practical phased array, one cannot ignore the finite dimensions of antenna elements, coupling effect and the role of feed network while estimating the antenna RCS. This book presents the RCS estimati...

  12. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  13. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  14. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  15. PECULIARITIES OF ASSIGNMENT OF ROLLING BEARING MOUNTING AND PARAMETERS OF GEOMETRIC ACCURACY OF MOUNTING SURFACES OF SHAFTS AND FRAMES

    Directory of Open Access Journals (Sweden)

    Adamenko Yu. І.

    2017-04-01

    Full Text Available The standards and methods concerning assignment of rolling bearing fit with shafts and frames via example of bearing 6-208 are analyzed. We set certain differences of recommendations according to GOST 3325-85, "Rolling bearings. Tolerance zones and technical requirements to mounting surfaces of shafts and frames. Attachment" and by reference of rolling bearing manufacturers. The following factors should be taken into consideration when assigning the mounting with the tension the internal ring of the bearing with shaft and mounting with a gap in the outer ring with a housing bore. The methods of achieving accuracy of mounting surfaces of shafts and frames via form tolerance assignment: roundness tolerance, profile of longitudinal cut, cross section, cylindricity and others. It is possible to limit the bearing rings in different ways, for example appointing the cylindrical mounting surfaces and bead end surfaces the appropriate tolerances, namely: coaxiality tolerance or full radial beat of mounting surfaces, and also perpendicularity tolerance, butt beats and full butt beats of mounting end surfaces. We suggest to expand methods of achieving the accuracy of shafts and frames depending on seriation of production and production operations metrology support.

  16. PHASED ARRAY FEED CALIBRATION, BEAMFORMING, AND IMAGING

    International Nuclear Information System (INIS)

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.

    2010-01-01

    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  17. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  18. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  19. Mechanical Design of an Omni-Directional Sensor Mount

    National Research Council Canada - National Science Library

    Rosheim, Mark

    2002-01-01

    This effort has been directed to development and demonstration of a gimbal mount capable of 180 degree singularity- free pitch and yaw motion about a two-axis center, avoiding the common problem of gimbal lock...

  20. Application of Evolutionary Computation in Automotive Powertrain Mount Tuning

    Directory of Open Access Journals (Sweden)

    Anab Akanda

    2006-01-01

    Full Text Available Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and power-train noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management.

  1. A vehicle mounted scintillation ratemeter for environmental survey

    International Nuclear Information System (INIS)

    Cavell, I.W.

    1960-01-01

    An improved method of mounting an existing environmental gamma survey equipment in a vehicle is described. Performance data for the equipment is given and some typical radiometric traces obtained at A.E.E. Winfrith given. (author)

  2. Low radioactivity material for use in mounting radiation detectors

    Science.gov (United States)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  3. How Mount Stromlo Observatory shed its imperial beginnings

    Science.gov (United States)

    Bhathal, Ragbir

    2014-12-01

    In the 90 years since its foundation in 1924, Mount Stromlo Observatory in Australia has changed from an outpost of empire to an international research institution. Ragbir Bhathal examines how the British influence waxed and waned.

  4. Fathead minnow whole-mount in situ hybridization (WISH)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR)...

  5. A Surface-Mounted Rotor State Sensing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  6. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    CERN Document Server

    Batchelder, J C; Bingham, C R; Carter, H K; Cole, J D; Fong, D; Garrett, P E; Grzywacz, R; Hamilton, J H; Hartley, D J; Hwang, J K; Krolas, W; Kulp, D C; Larochelle, Y; Piechaczek, A; Ramayya, A V; Rykaczewski, K; Spejewski, E H; Stracener, D W; Tantawy, M N; Winger, J A; Wood, J; Zganjar, E F

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (approx 1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection.

  7. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    International Nuclear Information System (INIS)

    Batchelder, J.C.; Bilheux, J.-C.; Bingham, C.R.; Carter, H.K.; Cole, J.D.; Fong, D.; Garrett, P.E.; Grzywacz, R.; Hamilton, J.H.; Hartley, D.J.; Hwang, J.K.; Krolas, W.; Kulp, D.; Larochelle, Y.; Piechaczek, A.; Ramayya, A.V.; Rykaczewski, K.P.; Spejewski, E.H.; Stracener, D.W.; Tantawy, M.N.; Winger, J.A.; Wood, J.; Zganjar, E.F.

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (∼1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection

  8. Taking Charge: Walter Sydney Adams and the Mount Wilson Observatory

    Science.gov (United States)

    Brashear, R.

    2004-12-01

    The growing preeminence of American observational astronomy in the first half of the 20th century is a well-known story and much credit is given to George Ellery Hale and his skill as an observatory-building entrepreneur. But a key figure who has yet to be discussed in great detail is Walter Sydney Adams (1876-1956), Hale's Assistant Director at Mount Wilson Observatory. Due to Hale's illnesses, Adams was Acting Director for much of Hale's tenure, and he became the second Director of Mount Wilson from 1923 to 1946. Behind his New England reserve Adams was instrumental in the growth of Mount Wilson and thus American astronomy in general. Adams was hand-picked by Hale to take charge of stellar spectroscopy work at Yerkes and Mount Wilson and the younger astronomer showed tremendous loyalty to Hale and Hale's vision throughout his career. As Adams assumed the leadership role at Mount Wilson he concentrated on making the observatory a place where researchers worked with great freedom but maintain a high level of cooperation. This paper will concentrate on Adams's early years and look at his growing relationship with Hale and how he came to be the central figure in the early history of Mount Wilson as both a solar and stellar observatory. His education, his years at Dartmouth and Yerkes (including his unfortunate encounter with epsilon Leonis), and his formative years on Mount Wilson are all important in learning how he shaped the direction of Mount Wilson and the development of American astronomy in the first half of the 20th century. This latter history cannot be complete until we bring Adams into better focus.

  9. Some technical solutions on organization and technology of reactor room component mounting

    International Nuclear Information System (INIS)

    Romanovskij, V.I.

    1982-01-01

    Design of the production equipment for mounting sites of heat facilities of the Zaporozhe NPP is considered. Plan of the production equipment for mounting sites of heat facilities and flowsheet of mounting of supporting truss of the reactor are presented

  10. National Ingition Facility subsystem design requirements optical mounts SSDR 1.4.4

    International Nuclear Information System (INIS)

    Richardson, M.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for NIF Beam Transport Optomechanical Subsystems. optomechanical Subsystems includes the mounts for the beam transport mirrors, LMl - LM8, the polarizer mount, and the spatial filter lens mounts

  11. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  12. New active machine tool drive mounting on the frame

    Directory of Open Access Journals (Sweden)

    Švéda J.

    2007-10-01

    Full Text Available The paper deals with the new active mounting of the machine tool drives. The commonly used machine tools are at this time mainly equipped with fix-mounting of the feed drives. This structure causes full transmission of the force shocks to the machine bed and thereby restricts the dynamic properties of the motion axis and the whole machine. The spring-mounting of the feed drives is one of the possibilities how to partially suppress the vibrations. The force that reacts to the machine tool bed is transformed thereby the vibrations are lightly reduced. Unfortunately the transformation is not fully controlled. The new active mounting of the machine tool drives allows to fully control the force behaviour that react to the machine body. Thereby the number of excited frequencies on the machine tool bed is significantly reduced. The active variant of the feed drive mounting is characterized by the synergistic cooperation between two series-connected actuators (“motor on motor”. The paper briefly describes design, control techniques and optimization of the feed drives with the new active mounting conception.

  13. Multi sensor national cyber security data fusion

    CSIR Research Space (South Africa)

    Swart, I

    2015-03-01

    Full Text Available in a real world system. The data examined will then be applied to a case study that will show the results of applying available open source security information against the model to relate to the current South African cyber landscape....

  14. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  15. UHV mirror mounts for photophysics beamline at Indus-I

    International Nuclear Information System (INIS)

    Meenakshi Raja Rao, P.; Bhattacharya, S.S.; Das, N.C.; Rajasekhar, B.N.; Roy, A.P.

    1995-01-01

    Photophysics beamline makes use of a combination of two toroidal mirrors and one meter Seya-Namioka Monochromator in its fore optics. The fore optics monochromatises and steers the synchrotron radiation source (SRS) beam from its tangent point to the sample situated at a distance of about five meters. Slit widths of the monochromator are of the order of 100μ and the sample size is one mm 2 . Hence it is essential to impart precision rotational and translational movements of the same order of magnitude to the mirrors with the use of appropriate mirror mounts. Since Indus-1 operates at a pressure -9 mbar, the mirror mounts should be UHV compatible and the movements should be actuated under UHV. The mirrors along with the mirror mounts are enclosed in UHV chambers. The mirror chambers have been fabricated at Centre for Advanced Technology (CAT) workshops and tested up to a pressure of 10 -9 mbar. The mirror mounts are designed, fabricated and leak checked (He leak rate -10 std cc/s) The precision movements are achieved with the help of bellow sealed shaft mechanism and adjustable screws provided with the kinematic mount of the mirror frame. The performance of the mirror mount was tested at atmospheric pressure by using a laser beam and found to be good. The minimum displacement of the laser beam at slit and sample positions is ∼ 70μ which is quite adequate for optical alignment. The performance of the mirror mount under UHV conditions is being evaluated. (author). 4 refs., 3 figs

  16. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  17. Locating noise sources with a microphone array

    International Nuclear Information System (INIS)

    Bale, A.; Johnson, D.

    2010-01-01

    Noise pollution is one of the contributors to the public opposition of wind farms. Most of the noise produced by turbines is caused by the aerodynamic interactions between the turbine blades and the surrounding air. This poster presentation discussed a series of aeroacoustic tests conducted to account for the different in vortical structures caused by the rotation of the blades. Microphone arrays were used measure and locate the source of noise. A beam forming technique was used to measure the noise using an algorithm that identified a scanning grid on a plane where the source was thought to be located. It delayed each microphone's signal by the length of time required for the sound to travel from the scan position to each microphone, and accounted for the amplitudes according to the distance from the scan position to each microphone. Demonstration test cases were conducted using piezo buzzers attached to aluminum bars and mounted to the shaft of a DC motor that produced a rotational diameter of 0.95 meter. The buzzers were placed 1 meter from the array. Multiple sound sources at the same frequency were identified, and the moving sources were accurately measured and located. tabs., figs.

  18. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam.

    Science.gov (United States)

    Vangala, Manogna Rl; Rudraraju, Amrutha; Subramanyam, R V

    2016-01-01

    Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin - transmitted light (P < 0.00001), sclerotic dentin - polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections.

  19. Mirror boxes and mirror mounts for photophysics beamline

    International Nuclear Information System (INIS)

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  20. Multi-Mounted X-Ray Computed Tomography.

    Science.gov (United States)

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  1. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  2. Solar observations with the prototype of the Brazilian Decimetric Array

    Science.gov (United States)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  3. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  4. Inverse axial mounting stiffness design for lithographic projection lenses.

    Science.gov (United States)

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  5. Solar rotation measurements at Mount Wilson. Pt. 2

    International Nuclear Information System (INIS)

    Labonte, B.J.; Howard, R.; Carnegie Institution of Washington, Pasadena

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect. (orig.)

  6. Linear and/or curvilinear rail mount system

    Science.gov (United States)

    Thomas, Jackie D. (Inventor); Harris, Lawanna L. (Inventor)

    2012-01-01

    One or more linear and/or curvilinear mounting rails are coupled to a structure. Each mounting rail defines a channel and at least one cartridge assembly is engaged in the channel. Each cartridge assembly includes a housing that slides within the channel. The housing defines a curvilinearly-shaped recess longitudinally aligned with the channel when the housing is in engagement therewith. The cartridge assembly also includes a cleat fitted in the recess for sliding engagement therealong. The cleat can be coupled to a fastener that passes through the mounting rail and the housing when the housing is so-engaged in the channel. The cleat is positioned in the recess by a position of the fastener.

  7. Detector array and method

    International Nuclear Information System (INIS)

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  8. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  9. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  10. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  11. Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in Stator Vanes: Part III Results

    Science.gov (United States)

    Sutliff, Daniel L.; Remington, Paul J.; Walker, Bruce E.

    2003-01-01

    A test program to demonstrate simplification of Active Noise Control (ANC) systems relative to standard techniques was performed on the NASA Glenn Active Noise Control Fan from May through September 2001. The target mode was the m = 2 circumferential mode generated by the rotor-stator interaction at 2BPF. Seven radials (combined inlet and exhaust) were present at this condition. Several different error-sensing strategies were implemented. Integration of the error-sensors with passive treatment was investigated. These were: (i) an in-duct linear axial array, (ii) an induct steering array, (iii) a pylon-mounted array, and (iv) a near-field boom array. The effect of incorporating passive treatment was investigated as well as reducing the actuator count. These simplified systems were compared to a fully ANC specified system. Modal data acquired using the Rotating Rake are presented for a range of corrected fan rpm. Simplified control has been demonstrated to be possible but requires a well-known and dominant mode signature. The documented results here in are part III of a three-part series of reports with the same base title. Part I and II document the control system and error-sensing design and implementation.

  12. Square Van Atta reflector with conducting mounting flame

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø

    1970-01-01

    A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs by transmiss......A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs...

  13. Experimental study of some mounting brackets to support fuel elements

    International Nuclear Information System (INIS)

    Aubert, M.; Poglia, S.; Roche, R.

    1958-09-01

    In an atomic pile with vertical channels, fuel elements are stacked on one another. According to a possible assembly, fuel element can be contained by a graphite sleeve and be supported by a mounting bracket in this sleeve. Sleeves are then stacked on one another. The authors report the investigation of different designs for these mounting brackets. They describe their mechanical role and their mechanical, aerodynamic, neutronic and test conditions. They report tests performed on brackets made in graphite and on brackets made in stainless steel and graphite, and discuss the obtained results

  14. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    Science.gov (United States)

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  15. Mount Sinai Hospital's approach to Ontario's Health System Funding Reform.

    Science.gov (United States)

    Chalk, Tyler; Lau, Davina; Morgan, Matthew; Dietrich, Sandra; Beduz, Mary Agnes; Bell, Chaim M

    2014-01-01

    In April 2012, the Ontario government introduced Health System Funding Reform (HSFR), a transformational shift in how hospitals are funded. Mount Sinai Hospital recognized that moving from global funding to a "patient-based" model would have substantial operational and clinical implications. Adjusting to the new funding environment was set as a top corporate priority, serving as the strategic basis for re-examining and redesigning operations to further improve both quality and efficiency. Two years into HSFR, this article outlines Mount Sinai Hospital's approach and highlights key lessons learned. Copyright © 2014 Longwoods Publishing.

  16. [Does the mounting of gastrointestinal biopsies on millipore filter contribute to an improved section quality?

    DEFF Research Database (Denmark)

    Asmussen, L.; Bernstein, I.; Matzen, P.

    2009-01-01

    orientation, GIB is occasionally mounted on millipore filter (MF) in an attempt to place the deep cut side onto the MF. The importance of this technique for section quality is evaluated in this study. MATERIAL AND METHOD: The material comprised three consecutive series of GIB (60 gastric, duodenal......, and colorectal GIB, respectively). Sections were grouped in MF-mounted versus non-mounted GIB, the proportion of fully acceptable sections among mounted versus non-mounted GIB was recorded. RESULTS: 77.2% of all GIBs were MF-mounted. 33.1% of mounted GIBs versus 48.8% of non-mounted GIBs were assessed as fully...... acceptable sections. The differences between these figures are not statistically significant. 41.7% of the mounted GIBs were placed with the mucosal surface facing the MF, which entails a risk of damaging the tissue. CONCLUSION: MF-mounting of GIB did not contribute to section quality. Since the handling...

  17. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  18. seasonal population dynamics of rodents of mount chilalo, arsi ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A study on seasonal population dynamics of rodents was carried out on Mount. Chilalo from .... vegetation growth, availability of food and water, and ... vegetation (3,300–4,200 masl) (Alemayehu. Mengistu, 1975; APEDO and ABRDP, 2004). The mountain is one of the Afrotropical biodiversity hotspots areas.

  19. Vegetation types on Mount Akiki, Northern Luzon, Philippines

    NARCIS (Netherlands)

    Bout, I.E.

    2002-01-01

    Mount Akiki (16° 37’ N, 120° 53’ E, c. 2760 m alt.) is one of the highest mountain peaks in the Cordillera mountain range, Luzon Island, Philippines. It is situated in the municipality of Benguet, north-east of Baguio City (a world famous tourist city in the region) and is north-west of Mt Pulog,

  20. Kuidas koostada meeskonda - Mount Everesti ainetel / Marii Karell

    Index Scriptorium Estoniae

    Karell, Marii, 1980-

    2003-01-01

    Eesti meeskonna Mount Everesti tippu juhtinud Tõivo Sarmet selgitab toimunud ekspeditsiooni näitel, miks tema peab meeskonna komplekteerimisel oluliseimaks inimeste iseloomuomadusi. Ekstreemoludes hakkama saamiseks tuleb meeles pidada, et eesmärk on ühine ja kellegi ego ei tohi seda nurjata, rõhutab Sarmet. Kommenteerib Alar Sikk

  1. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  2. Parallax error in the monocular head-mounted eye trackers

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2012-01-01

    each parameter affects the error. The optimum distribution of the error (magnitude and direction) in the field of view varies for different applications. However, the results can be used for finding the optimum parameters that are needed for designing a head-mounted gaze tracker. It has been shown...

  3. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    Science.gov (United States)

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  4. Evaluation of HOPG mounting possibilities for multiplexing spectrometers

    DEFF Research Database (Denmark)

    Groitl, Felix; Bartkowiak, Marek; Bergmann, Ryan M.

    2017-01-01

    Four different methods for mounting HOPG analyzer crystals on Si holders have been evaluated in the design process of the new multiplexing spectrometer CAMEA. Contrary to neutron optics used in standard spectrometers, the new instrument concept employs a series of analyzer segments behind each...

  5. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  6. Adjustable bipod flexures for mounting mirrors in a space telescope.

    Science.gov (United States)

    Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo

    2012-11-10

    A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.

  7. Vertically mounted bifacial photovoltaic modules: A global analysis

    International Nuclear Information System (INIS)

    Guo, Siyu; Walsh, Timothy Michael; Peters, Marius

    2013-01-01

    Bifacial PV (photovoltaic) modules have recently come to increasing attention and various system designs have been investigated. In this paper, a global comparison is made between vertically mounted bifacial modules facing East–West and conventionally mounted mono-facial modules. An analytical method is used to calculate the radiation received by these two module configurations. It is found that the answer to the question which of these two module configurations performs better strongly depends on three factors: (i) the latitude, (ii) the local diffuse fraction and (iii) the albedo. In a subsequent part of the paper, the minimum albedo required to result in a better performance for vertically mounted bifacial modules is calculated for every place in the world. The calculation is based on measured data of the diffuse light fraction and the results are shown in the form of a global map. Finally, the albedo requirements are compared with the measured global albedo distribution. The calculation allows a distinct decision which module configuration is more suitable for a certain place in the world. The result is also shown as a map defining the corresponding areas. - Highlights: • Vertically mounted bifacial module and conventionally monofacial module are compared. • The key factors affecting the performance of the two configurations are investigated. • Which module configuration is more suitable for each place is shown in a world map. • The minimum albedo for bifacial modules to have a better performance is calculated

  8. Birds of Mount Kisingiri, Nyanza Province, including a preliminary ...

    African Journals Online (AJOL)

    Mount Kisingiri comprises a much overlooked highland massif in southern Nyanza. Province with a hitherto ..... This imbalance in relative species abundance within a defined ecological niche could .... Hills is unsuitable for foraging or breeding but there is extensive savanna grassland and suitable ..... Columba guinea nf.

  9. Biogeographic patterns of forest diversity at mount Kasigau, Kenya ...

    African Journals Online (AJOL)

    The study reports 140 species, 46 were measured in only one plot, and affinities for 75 species to the Somalia-Masai (43%), Afromontane (29%), and Zanzibar- Inhambane (Coastal, 28%) floristic regions. Cluster and Indicator Species Analyses identified eight community types. Mount Kasigau uniquely conserves much ...

  10. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Klein, Jákup; Kraus, Martin

    2017-01-01

    Light field displays have advantages over traditional stereoscopic head mounted displays, for example, because they can overcome the vergence-accommodation conflict. However, rendering light fields can be a heavy task for computers due to the number of images that have to be rendered. Since much ...

  11. Improved resolution by mounting of tissue sections for laser microdissection.

    NARCIS (Netherlands)

    Dijk, M.C.R.F. van; Rombout, P.D.M.; Dijkman, H.B.P.M.; Ruiter, D.J.; Bernsen, M.R.

    2003-01-01

    BACKGROUND: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. AIMS: To develop a mounting method that greatly

  12. Rollin' in Style!: Students Design Bike Mounted Skateboard Racks

    Science.gov (United States)

    Massey, Rick

    2008-01-01

    Recognizing the increasing popularity of skateboarding, the author has found a project that teaches design and manufacturing concepts--and, of equal importance, really gets his students motivated. He challenges them to design and build a skateboard rack that mounts easily on a bicycle. The project benefits students by teaching creativity, the…

  13. The mount Cameroon height determined from ground gravity data ...

    African Journals Online (AJOL)

    Abstract This paper deals with the accurate determination of mount Cameroon orthometric height, by combining ground gravity data, global navigation satellite system (GNSS) observations and global geopotential models. The elevation of the highest point (Fako) is computed above the WGS84 reference ellipsoid.

  14. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Science.gov (United States)

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  15. Mount St. Helens 30 years later: a landscape reconfigured.

    Science.gov (United States)

    Rhonda Mazza

    2010-01-01

    On May 18, 1980, after two months of tremors, Mount St. Helens erupted spectacularly and profoundly changed a vast area surrounding the volcano. The north slope of the mountain catastrophically failed, forming the largest landslide witnessed in modern times. The largest lobe of this debris avalanche raced 14 miles down the Toutle River...

  16. Mount St. Helens: Still erupting lessons 31 years later

    Science.gov (United States)

    Rhonda Mazza; Charlie Crisafulli; Fred Swanson

    2011-01-01

    The massive volcanic eruption of Mount St. Helens 31 years ago provided the perfect backdrop for studying the earliest stages of forest development. Immediately after the eruption, some areas of the blast area were devoid of life. On other parts of the volcanic landscape, many species survived, although their numbers were greatly reduced. Reassembly began at many...

  17. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  18. Ethnobotanical survey of \\'wild\\' woody plant resources at Mount ...

    African Journals Online (AJOL)

    This paper focuses on the naming and use of plants by Taita who live at Mount Kasigau in Kenya's Eastern Arc Mountains. Plant vouchers and ethnobotanical data were compiled from transects and within 55 ecological plots, and during participant observations, home surveys, and semi-structured interviews with residents.

  19. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  20. Astrophotography on the go using short exposures with light mounts

    CERN Document Server

    Ashley, Joseph

    2015-01-01

    No longer are heavy, sturdy, expensive mounts and tripods required to photograph deep space. With today's advances in technology, all that is required is an entry-DSLR and an entry level GoTo telescope. Here is all of the information needed to start photographing the night sky without buying expensive tracking mounts. By using multiple short exposures and combining them with mostly ‘freeware’ computer programs, the effect of image rotation can be minimized to a point where it is undetectable in normal astrophotography, even for a deep-sky object such as a galaxy or nebula. All the processes, techniques, and equipment needed to use inexpensive, lightweight altazimuth and equatorial mounts and very short exposures photography to image deep space objects are explained, step-by-step, in full detail, supported by clear, easy to understand graphics and photographs.   Currently available lightweight mounts and tripods are identified and examined from an economic versus capability perspective to help users deter...

  1. 25 years of ecological change at Mount St. Helens.

    Science.gov (United States)

    V.H. Dale; C.M. Crisafulli; F.J. Swanson

    2005-01-01

    18 May 2005 marks the 25th anniversary of the massive eruption of Mount St. Helens. This eruption involved diverse geological processes (1) that disturbed forests, meadows, lakes, an drivers (2) (see the figure). A huge landslide and searing flows of hot gases and pumic framents (pyroclastic flows) inundated 60 km2 of land, obliterating...

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  3. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  4. A 4 probe array

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  5. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  6. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  7. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  8. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  9. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  10. Exploring Virtual Worlds With Head-Mounted Displays

    Science.gov (United States)

    Chung, James C.; Harris, Mark R.; Brooks, Frederick P.; Fuchs, Henry; Kelley, Michael T.; Hughes, John W.; Ouh-Young, Ming; Cheung, Clement; Holloway, Richard L.; Pique, Michael

    1989-09-01

    For nearly a decade the University of North Carolina at Chapel Hill has been conducting research in the use of simple head-mounted displays in "real-world" applications. Such units provide the user with non-holographic true three-dimensional information, since the kinetic depth effect, stereoscopy, and other visual cues combine to immerse the user in a "virtual world" which behaves like the real world in some respects. UNC's head-mounted display was built inexpensively from commercially available off-the-shelf components. Tracking of the the user's head position and orientation is performed by a Polhemus Navigation Sciences' 3SPACE* tracker. The host computer uses the tracking information to generate updated images corresponding to the user's new left eye and right eye views. The images are broadcast to two liquid crystal television screens (220x320 pixels) mounted on a horizontal shelf at the user's forehead. The user views these color screens through half-silvered mirrors, enabling the computer-generated image to be superimposed upon the user's real physical environment. The head-mounted display has been incorporated into existing molecular modeling and architectural applications being developed at UNC. In molecular structure studies, chemists are presented with a room-sized molecule with which they can interact in a manner more intuitive than that provided by conventional two-dimensional displays and dial boxes. Walking around and through the large molecule may provide quicker understanding of its structure, and such problems as drug-enzyme docking may be approached with greater insight. In architecture, the head-mounted display enables clients to better appreciate three-dimensional designs, which may be misinterpreted in their conventional two-dimensional form by untrained eyes. The addition of a treadmill to the system provides additional kinesthetic input into the understanding of building size and scale.

  11. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  12. Lectin-Array Blotting.

    Science.gov (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  14. Blind Time-Frequency Analysis for Source Discrimination in Multisensor Array Processing

    National Research Council Canada - National Science Library

    Amin, Moeness

    2001-01-01

    .... We pioneered the development of multi-sensor receivers based on quadratic time-frequency and joint-variable distributions, and have provided the theoretical framework for solving direction finding...

  15. Remoting alternatives for a multiple phased-array antenna network

    Science.gov (United States)

    Shi, Zan; Foshee, James J.

    2001-10-01

    Significant improvements in technology have made phased array antennas an attractive alternative to the traditional dish antenna for use on wide body airplanes. These improvements have resulted in reduced size, reduced cost, reduced losses in the transmit and receive channels (simplifying the design), a significant extension in the bandwidth capability, and an increase in the functional capability. Flush mounting (thus reduced drag) and rapid beam switching are among the evolving desirable features of phased array antennas. Beam scanning of phased array antennas is limited to +/-45 degrees at best and therefore multiple phased array antennas would need to be used to insure instantaneous communications with any ground station (stations located at different geographical locations on the ground) and with other airborne stations. The exact number of phased array antennas and the specific installation location of each antenna on the wide body airplane would need to be determined by the specific communication requirements, but it is conceivable as many as five phased array antennas may need to be used to provide the required coverage. Control and switching of these antennas would need to be accomplished at a centralized location on the airplane and since these antennas would be at different locations on the airplane an efficient scheme of remoting would need to be used. To save in cost and keep the phased array antennas as small as possible the design of the phased array antennas would need to be kept simple. A dish antenna and a blade antenna (small size) could also be used to augment the system. Generating the RF signals at the central location and then using RF cables or waveguide to get the signal to any given antenna could result in significant RF losses. This paper will evaluate a number of remoting alternatives to keep the system design simple, reduce system cost, and utilize the functional capability of networking multiple phased array antennas on a wide body

  16. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    Science.gov (United States)

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  17. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization.

    Science.gov (United States)

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A

    2014-07-17

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  18. Long range heliostat target using array of normal incidence pyranometers to evaluate a beam of solar radiation

    Science.gov (United States)

    Ghanbari, Cheryl M; Ho, Clifford K; Kolb, Gregory J

    2014-03-04

    Various technologies described herein pertain to evaluating a beam reflected by a heliostat. A portable target that has an array of sensors mounted thereupon is configured to capture the beam reflected by the heliostat. The sensors in the array output measured values indicative of a characteristic of the beam reflected by the heliostat. Moreover, a computing device can generate and output data corresponding to the beam reflected by the heliostat based on the measured values indicative of the characteristic of the beam received from the sensors in the array.

  19. Thermal crosstalk in arrays of III-N-based Lasers

    International Nuclear Information System (INIS)

    Kuc, Maciej; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-01-01

    This paper presents a 3D comprehensive thermal-electrical self-consistent model of the continuous-wave (CW) operation of one-dimensional arrays of III-N-based laser diodes at room-temperature (RT). Their performance is mostly limited by thermal processes, in particular by thermal crosstalk between array emitters. Based on data collected from a range of secondary sources, the temperature dependence of the thermal and electrical conductivities of III-N materials used to manufacture nitride-based devices is shown to be a function of the thickness, aluminum mole fractions and Si- and Mg-doping levels of the nitride layers. The impact of substrate width and thickness on increasing the efficiency of heat-flux transport and reducing thermal crosstalk is investigated. As expected, the application of a top-mounted diamond heat spreader was found to have considerable influence on the thermal crosstalk between array emitters, enabling the RT CW operation of laser diode arrays with additional emitters

  20. The VERITAS Prototype and the Upcoming VERITAS Array

    Science.gov (United States)

    VERITAS Collaboration; Badran, H. M.; Blaylock, G.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Byrum, K.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; de La Calle Perez, I.; Dowkontt, P.; Duke, C.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Guiterrez, K. J.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Hughes, S.; Humensky, T. B.; Jung, I.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Mendoza, D.; Merriman, A.; Milovanovic, A.; Moriarty, P.; Nagai, T.; Olevitch, M.; Ong, R. A.; Pallassini, R.; Perkins, J.; Petry, D.; Pizlo, F.; Pohl, M.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarcel, L.; Vassiliev, V. V.; Wagner, R.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R. J.; Zweerink, J.

    2005-02-01

    The prototype for the VERITAS imaging atmospheric Cherenkov telescope array was successfully operated in southern Arizona between September 2003 and April 2004. The prototype consisted of 86 mirror facets mounted centrally on a 12-meter dish, which was built to accommodate up to 350 facets when converted to a complete VERITAS telescope. The camera consisted of half of the full 499 pixel camera. The signal and trigger electronics were nearly identical to those that will be used for the individual VERITAS array telescopes. By observing the Crab and Mrk421, as well as performing a variety of tests, the characteristics of the instrument were evaluated. The prototype met all performance expectations and served as a valuable test bed for the current design, as well as for the construction and operation of VERITAS. This prototype instrument is now being upgraded to a complete VERITAS telescope that will be operated during the construction of the full VERITAS array. The array is expected to be operational by November 2006.