WorldWideScience

Sample records for mounted multi-sensor array

  1. Multi-Sensor Arrays for Online Monitoring of Cell Dynamics in in vitro Studies with Choroid Plexus Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Soledad García Gómez de las Heras

    2012-02-01

    Full Text Available Sensors and multi-sensor arrays are the basis of new technologies for the non-label monitoring of cell activity. In this paper we show that choroid plexus cells can be cultured on silicon chips and that sensors register in real time changes in their activity, constituting an interesting experimental paradigm for cell biology and medical research. To validate the signals recorded (metabolism = peri-cellular acidification, oxygen consumption = respiration; impedance = adhesion, cell shape and motility we performed experiments with compounds that act in a well-known way on cells, influencing these parameters. Our in vitro model demonstrates the advantages of multi-sensor arrays in assessment and experimental characterization of dynamic cellular events—in this case in choroid plexus functions, however with applicability to other cell types as well.

  2. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-07-12

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  3. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    2013-07-01

    Full Text Available This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  4. The Multi-sensor Airborne Radiation Survey (MARS) Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aalseth, Craig E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asner, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Day, Anthony R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dorow, Kevin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fuller, Erin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hyronimus, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Jeffrey L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, David V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morgen, Gerald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, O Dennis [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myers, Allan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitts, W. Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rohrer, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seifert, Allen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shergur, Jason M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tatishvili, Gocha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thompson, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Todd, Lindsay C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warren, Glen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Willett, Jesse A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Lynn S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-11

    The Multi-sensor Airborne Radiation Survey (MARS) project has developed a new single cryostat detector array design for high purity germanium (HPGe) gama ray spectrometers that achieves the high detection efficiency required for stand-off detection and actionable characterization of radiological threats. This approach, we found, is necessary since a high efficiency HPGe detector can only be built as an array due to limitations in growing large germanium crystals. Moreover, the system is ruggedized and shock mounted for use in a variety of field applications, including airborne and maritime operations.

  5. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  6. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  7. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V [School of Electrical and Electronic Engineering, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)

    2007-07-15

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  8. Characterizing the Propagation of Uterine Electrophysiological Signals Recorded with a Multi-Sensor Abdominal Array in Term Pregnancies.

    Science.gov (United States)

    Escalona-Vargas, Diana; Govindan, Rathinaswamy B; Furdea, Adrian; Murphy, Pam; Lowery, Curtis L; Eswaran, Hari

    2015-01-01

    The objective of this study was to quantify the number of segments that have contractile activity and determine the propagation speed from uterine electrophysiological signals recorded over the abdomen. The uterine magnetomyographic (MMG) signals were recorded with a 151 channel SARA (SQUID Array for Reproductive Assessment) system from 36 pregnant women between 37 and 40 weeks of gestational age. The MMG signals were scored and segments were classified based on presence of uterine contractile burst activity. The sensor space was then split into four quadrants and in each quadrant signal strength at each sample was calculated using center-of-gravity (COG). To this end, the cross-correlation analysis of the COG was performed to calculate the delay between pairwise combinations of quadrants. The relationship in propagation across the quadrants was quantified and propagation speeds were calculated from the delays. MMG recordings were successfully processed from 25 subjects and the average values of propagation speeds ranged from 1.3-9.5 cm/s, which was within the physiological range. The propagation was observed between both vertical and horizontal quadrants confirming multidirectional propagation. After the multiple pairwise test (99% CI), significant differences in speeds can be observed between certain vertical or horizontal combinations and the crossed pair combinations. The number of segments containing contractile activity in any given quadrant pair with a detectable delay was significantly higher in the lower abdominal pairwise combination as compared to all others. The quadrant-based approach using MMG signals provided us with high spatial-temporal information of the uterine contractile activity and will help us in the future to optimize abdominal electromyographic (EMG) recordings that are practical in a clinical setting.

  9. An infrasound array study of Mount St. Helens

    Science.gov (United States)

    Matoza, Robin S.; Hedlin, Michael A. H.; Garcés, Milton A.

    2007-02-01

    The ongoing activity of Mount St. Helens provides an opportunity to study the infrasonic wavefield produced by an active, silica-rich volcano. In late October 2004, as a pilot experiment for the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, we deployed two infrasound arrays, each co-located with a broadband seismometer and weather station, to continuously record seismo-acoustic signals from Mount St. Helens. The nearest array, Coldwater, was deployed on the northern flank of the volcano, ˜ 13 km from the summit. The second array, Sacajawea, was deployed ˜ 250 km east of the volcano, at a distance where stratospherically ducted acoustic waves may be expected during the winter. This paper presents an overview of the experimental setup, and preliminary results from this unique data set. Eruptions on January 16th 2005 and March 9th 2005 produced strong infrasonic signals. The aseismic January 16th eruption signal lasted ˜ 9.4 min beginning at ˜ 11:20:44 01/16/05 UTC, while the March 9th eruption signal lasted ˜ 52.8 min beginning at ˜ 01:26:17 03/09/05 UTC, with the main steam and ash venting stage probably lasting ˜ 7.2 min. The March 9th signal was an order of magnitude larger than the January 16th signal, and was clearly recorded 250 km east at the Sacajawea array. Infrasonic expressions of long period (LP) seismic events ('drumbeats') have also been intermittently observed, and are recorded as acoustic waves mimicking the waveform and temporal sequence of their seismic counterparts. These acoustic observations provide important constraints for source models of long period events and eruptions.

  10. Multi-sensor fusion development

    Science.gov (United States)

    Bish, Sheldon; Rohrer, Matthew; Scheffel, Peter; Bennett, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) and McQ Inc. are developing a generic sensor fusion architecture that involves several diverse processes working in combination to create a dynamic task-oriented, real-time informational capability. Processes include sensor data collection, persistent and observational data storage, and multimodal and multisensor fusion that includes the flexibility to modify the fusion program rules for each mission. Such a fusion engine lends itself to a diverse set of sensing applications and architectures while using open-source software technologies. In this paper, we describe a fusion engine architecture that combines multimodal and multi-sensor fusion within an Open Standard for Unattended Sensors (OSUS) framework. The modular, plug-and-play architecture of OSUS allows future fusion plugin methodologies to have seamless integration into the fusion architecture at the conceptual and implementation level. Although beyond the scope of this paper, this architecture allows for data and information manipulation and filtering for an array of applications.

  11. Multi-sensor magnetoencephalography with atomic magnetometers

    Science.gov (United States)

    Johnson, Cort N.; Schwindt, P. D. D.; Weisend, M.

    2013-09-01

    The authors have detected magnetic fields from the human brain with two independent, simultaneously operating rubidium spin-exchange-relaxation-free magnetometers. Evoked responses from auditory stimulation were recorded from multiple subjects with two multi-channel magnetometers located on opposite sides of the head. Signal processing techniques enabled by multi-channel measurements were used to improve signal quality. This is the first demonstration of multi-sensor atomic magnetometer magnetoencephalography and provides a framework for developing a non-cryogenic, whole-head magnetoencephalography array for source localization.

  12. Beamforming with a circular array of microphones mounted on a rigid sphere (L)

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Jacobsen, Finn; Fernandez Grande, Efren

    2011-01-01

    Beamforming with uniform circular microphone arrays can be used for localizing sound sources over 360. Typically, the array microphones are suspended in free space or they are mounted on a solid cylinder. However, the cylinder is often considered to be infinitely long because the scattering problem...... has no exact solution for a finite cylinder. Alternatively one can use a solid sphere. This investigation compares the performance of a circular array mounded on a rigid sphere with that of such an array in free space and mounted on an infinite cylinder, using computer simulations. The examined...

  13. 多路数据融合在光伏电池组件监控系统中的应用研究%Research on Applying Multi-Sensor Data Fusion in Photovoltaic Array Monitoring System

    Institute of Scientific and Technical Information of China (English)

    胡涛; 谭建军; 黄勇; 孙先波; 易金桥

    2012-01-01

    为了提高光伏电站的使用效率,根据光伏电站的特点,本文设计了一种基于无线传感器网络和多路数据融合技术的光伏电池组件监控系统.通过传感器节点采集单块电池组件的瞬间电压、电流和温度,并对这三类数据实现初级数据融合;然后将初级数据融合数据包通过由ZigBee协议实现的无线传感器网络传输到中心节点;中线节点对所有初级数据融合数据包实现二级数据融合并通过串口传输至服务器;服务器通过基于残差值的数据包解析算法分析各块电池组件的运行数据,以判断电池组件是否正常工作,为光伏电站的维护和管理提供有效的信息.%According to the features of photovoltaic power station,we design a photovoltaic array monitoring system based on wireless sensor network and multi-sensor data fusion in order to improve the u-tilization efficiency of photovoltaic power station. Sensor nodes capture the instantaneous voltage, current and temperature of each photovoltaic array. Then the system is responsible for junior fusion of those data and transmitting junior data packets to the central node through wireless sensor network based on ZigBee. The central node is in charge of senior fusion of all junior data packets and transmitting senior data packets to the server through serial port. Through the data packet residual value parsing algorithm, the server analyzes each photovoltaic array state to determine whether photovoltaic array work correctly or not,providing the useful information for managing and maintaining photovoltaic power station.

  14. A Wideband End-Fire Conformal Vivaldi Antenna Array Mounted on a Dielectric Cone

    Directory of Open Access Journals (Sweden)

    Zengrui Li

    2016-01-01

    Full Text Available The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dB S11 with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.

  15. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  16. A multi-sensor scenario for coastal surveillance

    Science.gov (United States)

    van den Broek, A. C.; van den Broek, S. P.; van den Heuvel, J. C.; Schwering, P. B. W.; van Heijningen, A. W. P.

    2007-10-01

    Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the coastal environment. We present a study on improving classification results for small sea surface targets using an advanced sensor suite and a scenario in which a small boat is approaching the coast. A next generation sensor suite mounted on a tower has been defined consisting of a maritime surveillance and tracking radar system, capable of producing range profiles and ISAR imagery of ships, an advanced infrared camera and a laser range profiler. For this suite we have developed a multi-sensor classification procedure, which is used to evaluate the capabilities for recognizing and identifying non-cooperative ships in coastal waters. We have found that the different sensors give complementary information. Each sensor has its own specific distance range in which it contributes most. A multi-sensor approach reduces the number of misclassifications and reliable classification results are obtained earlier compared to a single sensor approach.

  17. Ambient noise tomography across Mount St. Helens using a dense seismic array

    Science.gov (United States)

    Wang, Yadong; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie

    2017-06-01

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an 10-15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  18. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    Science.gov (United States)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  19. Multi-Sensor Mud Detection

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  20. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Science.gov (United States)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  1. Fusion of Noisy Multi-sensor Imagery

    Directory of Open Access Journals (Sweden)

    Anima Mishra

    2008-01-01

    Full Text Available Interest in fusing multiple sensor data for both military and civil applications has beengrowing. Some of the important applications integrate image information from multiple sensorsto aid in navigation guidance, object detection and recognition, medical diagnosis, datacompression, etc. While, human beings may visually inspect various images and integrateinformation, it is of interest to develop algorithms that can fuse various input imagery to producea composite image. Fusion of images from various sensor modalities is expected to produce anoutput that captures all the relevant information in the input. The standard multi-resolution-based edge fusion scheme has been reviewed in this paper. A theoretical framework is given forthis edge fusion method by showing how edge fusion can be framed as information maximisation.However, the presence of noise complicates the situation. The framework developed is used toshow that for noisy images, all edges no longer correspond to information. In this paper, varioustechniques have been presented for fusion of noisy multi-sensor images.  These techniques aredeveloped for a single resolution as well as using multi-resolution decomposition. Some of thetechniques are based on modifying edge maps by filtering images, while others depend onalternate definition of information maps. Both these approaches can also be combined.Experiments show that the proposed algorithms work well for various kinds of noisy multi-sensor images.

  2. Monitoring of Reinforced Concrete Corrosion and Deterioration by Periodic Multi-Sensor Non-Destructive Evaluation

    Science.gov (United States)

    Arndt, R. W.; Cui, J.; Huston, D. R.

    2011-06-01

    The paper showcases a collaborative benchmark project evaluating NDE methods for deterioration monitoring of laboratory bridge decks. The focus of this effort is to design and build concrete test specimens, artificially induce and monitor corrosion, periodically perform multi-sensor NDE inspections, followed by 3D imaging and destructive validations. NDE methods used include ultrasonic echo array, ground penetrating radar (GPR), active infrared thermography with induction heating, and time-resolved thermography with induction heating.

  3. Subsurface Imaging at Mount St. Helens with a Large-N Geophone Array

    Science.gov (United States)

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Moran, S. C.

    2015-12-01

    The 900-instrument Mount St. Helens nodal array recorded continuous data for approximately two weeks in the summer of 2014 and provides a remarkable opportunity to interrogate the structure beneath an active arc volcano. Two separate imaging techniques are applied to constrain both the distribution of microseismicity and subsurface velocity structure. Reverse-time source imaging is applied to the 10 km3 region beneath the volcanic edifice where most of cataloged seismicity occurred during the experiment. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity that extends from the surface to 4 km depth directly beneath the summit crater, consistent with the historical event distribution of Waite and Moran[2009]. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface. Moho imaging is achieved using the near-offset (PmP phase generated by the iMUSH active source shots that occurred during the deployment. The PmP arrivals are enhanced using short-term-average over long-term-average processing and then migrated using a 3D velocity model. The observed Moho depths range from 35-40 km with a slight eastward deepening across the Mt St Helens fracture zone. Significant variations are observed in the Moho reflectivity. Large amplitude PmP energy is observed in shots originating from the north and east whereas shots from the south-west display little-to-no PmP energy. The region above the reflective Moho is approximately coincident with areas displaying reduced lower-crustal velocities in the initial iMUSH tomography models and may therefore contain fluids and/or partial melt. Additional evidence for lower crustal fluids in this region is provided by deep-long-period (DLP) events which have historically been observed

  4. Multi-sensor integration for unmanned terrain modeling

    Science.gov (United States)

    Sukumar, Sreenivas R.; Yu, Sijie; Page, David L.; Koschan, Andreas F.; Abidi, Mongi A.

    2006-05-01

    State-of-the-art unmanned ground vehicles are capable of understanding and adapting to arbitrary road terrain for navigation. The robotic mobility platforms mounted with sensors detect and report security concerns for subsequent action. Often, the information based on the localization of the unmanned vehicle is not sufficient for deploying army resources. In such a scenario, a three dimensional (3D) map of the area that the ground vehicle has surveyed in its trajectory would provide a priori spatial knowledge for directing resources in an efficient manner. To that end, we propose a mobile, modular imaging system that incorporates multi-modal sensors for mapping unstructured arbitrary terrain. Our proposed system leverages 3D laser-range sensors, video cameras, global positioning systems (GPS) and inertial measurement units (IMU) towards the generation of photo-realistic, geometrically accurate, geo-referenced 3D terrain models. Based on the summary of the state-of-the-art systems, we address the need and hence several challenges in the real-time deployment, integration and visualization of data from multiple sensors. We document design issues concerning each of these sensors and present a simple temporal alignment method to integrate multi-sensor data into textured 3D models. These 3D models, in addition to serving as a priori for path planning, can also be used in simulators that study vehicle-terrain interaction. Furthermore, we show our 3D models possessing the required accuracy even for crack detection towards road surface inspection in airfields and highways.

  5. Multi-sensor for measuring erythemally weighted irradiance in various directions simultaneously

    Science.gov (United States)

    Appelbaum, J.; Peleg, I.; Peled, A.

    2016-10-01

    Estimating the ultraviolet-B (UV-B) solar irradiance and its angular distribution is a matter of interest to both research and commercial institutes. A static multi-sensor instrument is developed in this paper for a simultaneous measuring of the sky and the reflected erythemally weighted UV-B irradiance on multiple inclined surfaces. The instrument employs a pre-developed simple solar irradiance model and a minimum mean square error method to estimate the various irradiance parameters. The multi-sensor instrument comprises a spherical shaped apparatus with the UV-B sensors mounted as follows: seven sky-facing sensors to measure the hemispherical sky irradiance and six sensors facing downwards to measure the reflection from ground. This work aims to devise and outline an elementary, low-cost multi-sensor instrument. The sensor may usefully serve research, commercial, and medical institutes to sample and measure the UV-B irradiance on horizontal as well as on inclined surfaces. The various UV-B calculations for inclined surfaces are aided by the sensor's integrated software.

  6. A controlled source seismic attenuation study of the crust beneath Mount St. Helens with a dense array

    Science.gov (United States)

    Hupp, K.; Schmandt, B.; Kiser, E.; Hansen, S. M.; Levander, A.

    2016-12-01

    Crustal properties beneath Mount St. Helens are investigated using attenuation measurements from an array of 904 cable-free seismographs, referred to as nodes, located within 15 km of the summit crater. Measurements of P wave attenuation were made using 23 controlled explosion sources located 0 - 80 km outside the node array, which provides a well-balanced distribution of source-receiver azimuths and distances. The 500-1000 kg explosive sources were observed regionally, and all explosions produced P waves recorded with signal-to-noise power ratios of >3 dB for >90% of the node array. We estimate relative variations in the path-integrated attenuation parameter, t*, using 2 - 25 Hz spectral ratios of individual node spectra relative to the array median spectrum for each explosion source. For small source-receiver distances (>100). An exception to the previously mentioned trends is that for distances <30 km a ring of 150 nodes closest to the summit crater surrounding the base of the volcanic edifice yield low relative t* estimates ( -0.1s) and high mean envelope amplitudes at all frequencies from 2-25 Hz. The anomalous amplification of these "inner ring" recordings for small offsets could arise from very low impedance in the shallow crust beneath the edifice possibly enhanced by resonance within the edifice. Longer offset measurements will be used for 3D relative attenuation (dQ-1) tomography. We hypothesize that high attenuation (low Q) volumes may be observed at 5-15 km beneath Mount St. Helens where recent controlled source velocity tomography indicates high Vp/Vs. Adding attenuation constraints to recent seismic velocity results will aid estimating properties such as the melt fraction in the upper crustal magma reservoir.

  7. Multi-Sensor Aerosol Products Sampling System

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  8. Multi Sensor Approach to Address Sustainable Development

    Science.gov (United States)

    Habib, Shahid

    2007-01-01

    The main objectives of Earth Science research are many folds: to understand how does this planet operates, can we model her operation and eventually develop the capability to predict such changes. However, the underlying goals of this work are to eventually serve the humanity in providing societal benefits. This requires continuous, and detailed observations from many sources in situ, airborne and space. By and large, the space observations are the way to comprehend the global phenomena across continental boundaries and provide credible boundary conditions for the mesoscale studies. This requires a multiple sensors, look angles and measurements over the same spot in accurately solving many problems that may be related to air quality, multi hazard disasters, public health, hydrology and more. Therefore, there are many ways to address these issues and develop joint implementation, data sharing and operating strategies for the benefit of the world community. This is because for large geographical areas or regions and a diverse population, some sound observations, scientific facts and analytical models must support the decision making. This is crucial for the sustainability of vital resources of the world and at the same time to protect the inhabitants, endangered species and the ecology. Needless to say, there is no single sensor, which can answer all such questions effectively. Due to multi sensor approach, it puts a tremendous burden on any single implementing entity in terms of information, knowledge, budget, technology readiness and computational power. And, more importantly, the health of planet Earth and its ability to sustain life is not governed by a single country, but in reality, is everyone's business on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to bear this colossal responsibility. So far, each developed country within their means has proceeded along satisfactorily in implementing

  9. Multi Sensor Approach to Address Sustainable Development

    Science.gov (United States)

    Habib, Shahid

    2007-01-01

    The main objectives of Earth Science research are many folds: to understand how does this planet operates, can we model her operation and eventually develop the capability to predict such changes. However, the underlying goals of this work are to eventually serve the humanity in providing societal benefits. This requires continuous, and detailed observations from many sources in situ, airborne and space. By and large, the space observations are the way to comprehend the global phenomena across continental boundaries and provide credible boundary conditions for the mesoscale studies. This requires a multiple sensors, look angles and measurements over the same spot in accurately solving many problems that may be related to air quality, multi hazard disasters, public health, hydrology and more. Therefore, there are many ways to address these issues and develop joint implementation, data sharing and operating strategies for the benefit of the world community. This is because for large geographical areas or regions and a diverse population, some sound observations, scientific facts and analytical models must support the decision making. This is crucial for the sustainability of vital resources of the world and at the same time to protect the inhabitants, endangered species and the ecology. Needless to say, there is no single sensor, which can answer all such questions effectively. Due to multi sensor approach, it puts a tremendous burden on any single implementing entity in terms of information, knowledge, budget, technology readiness and computational power. And, more importantly, the health of planet Earth and its ability to sustain life is not governed by a single country, but in reality, is everyone's business on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to bear this colossal responsibility. So far, each developed country within their means has proceeded along satisfactorily in implementing

  10. High resolution velocity structure beneath Mount Vesuvius from seismic array data

    Science.gov (United States)

    Scarpa, Roberto; Tronca, Fabrizio; Bianco, Francesca; Del Pezzo, Edoardo

    2002-11-01

    A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.

  11. Electrochemical multi sensors for biomedical applications

    OpenAIRE

    Tahirbegi, Islam Bogachan

    2013-01-01

    In this thesis, pH and potassium all-solid-state ISE based on potentiometry and bioimpedance sensors were designed, fabricated and integrated in a miniaturized array for its application in endoscopic surgery for in vivo ischemia detection inside the stomach. To achieve this goal, the developed array withstood the low pH and corrosive condition in the gastric juice of the stomach, by modifying the surface with a conductive Ag/AgCl ink containing hydrophilic and hydrophobic groups. That create...

  12. Vehicle passes detector based on multi-sensor analysis

    Science.gov (United States)

    Bocharov, D.; Sidorchuk, D.; Konovalenko, I.; Koptelov, I.

    2015-02-01

    The study concerned deals with a new approach to the problem of detecting vehicle passes in vision-based automatic vehicle classification system. Essential non-affinity image variations and signals from induction loop are the events that can be considered as detectors of an object presence. We propose several vehicle detection techniques based on image processing and induction loop signal analysis. Also we suggest a combined method based on multi-sensor analysis to improve vehicle detection performance. Experimental results in complex outdoor environments show that the proposed multi-sensor algorithm is effective for vehicles detection.

  13. Design of a 7m Davies-Cotton Cherenkov telescope mount for the high energy section of the Cherenkov Telescope Array

    CERN Document Server

    Rovero, A C; Vallejo, G; Supanitsky, A D; Actis, M; Botani, A; Ochoa, I; Hughes, G

    2013-01-01

    The Cherenkov Telescope Array is the next generation ground-based observatory for the study of very-high-energy gamma-rays. It will provide an order of magnitude more sensitivity and greater angular resolution than present systems as well as an increased energy range (20 GeV to 300 TeV). For the high energy portion of this range, a relatively large area has to be covered by the array. For this, the construction of ~7 m diameter Cherenkov telescopes is an option under study. We have proposed an innovative design of a Davies-Cotton mount for such a telescope, within Cherenkov Telescope Array specifications, and evaluated its mechanical and optical performance. The mount is a reticulated-type structure with steel tubes and tensioned wires, designed in three main parts to be assembled on site. In this work we show the structural characteristics of the mount and the optical aberrations at the focal plane for three options of mirror facet size caused by mount deformations due to wind and gravity.

  14. A multi-sensor scenario for coastal surveillance

    NARCIS (Netherlands)

    Broek, A.C. van den; Broek, S.P. van den; Heuvel, J.C. van den; Schwering, P.B.W.; Heijningen, A.W.P. van

    2007-01-01

    Maritime borders and coastal zones are susceptible to threats such as drug trafficking, piracy, undermining economical activities. At TNO Defence, Security and Safety various studies aim at improving situational awareness in a coastal zone. In this study we focus on multi-sensor surveillance of the

  15. Multi-Sensor Detection of Obscured and Buried Objects

    Science.gov (United States)

    2014-12-22

    land mine detection algorithms which use different sensors (GPR and EMI), features, and different classification methods (Frigui et al, 2010). The...implementation. We demonstrate the efficacy of the method on real-world mine classification ; in which, training robust mine classification ...15. SUBJECT TERMS Landmine detection, University of Florida, pattern recognition, image processing, multi-sensor fusion, classifier development

  16. Vehicle-Mounted Alcohol Test System Based on Multi-Sensor Data Fusion and Fuzzy Logic Reasoning%基于模糊推理原则的车载多传感器全方位酒精检测系统

    Institute of Scientific and Technical Information of China (English)

    申林杰; 肖凯; 刘晓东

    2014-01-01

    In view of the problems of single mode ,modelization and great errors in the current vehicle-mount-ed alcohol detecting system for information collection ,focusing on characteristics of various alcohol signals , depending on the sensor ,signal processing and pattern recognition technology ,with 51 series microcontroller as the core ,vehicle-mounted alcohol test system was designed .Basic functions of the system was to judge whether the driver drank and drinking degree ,which was beneficial to causing good reactions and preventing drunk driving accident .Designed system was based on multiple sensors of different forms of comprehensive in-formation collection ,realizing unified data treatment with fuzzy inference principle and improving vehicle alco-hol detecting system ,so as to significantly improve the accuracy of vehicle-mounted alcohol detecting system . The results show that ,alcohol detection system with multiple sensors information acquisition can effectively improve the accuracy of real-time judgment and provide pre-judgment information for driving assistance .%针对当前车载酒精检测系统信息采集单一化、模式化以及误差过大的问题,根据酒精测量信号的特点,采用传感、信号处理和模式识别等技术,以51系列单片机为核心,进行了车载酒精测试系统设计。该系统基础功能为判断驾驶员是否饮酒以及饮酒程度,其次能辅助做出相应的有益反应,系统旨在防止酒驾事故的发生。系统采用多传感器进行不同形式的全方位的信息采集,运用模糊推理原则进行编程实现数据的统一处理,对现有的车载酒精检测系统进行了改进,使车载酒精检测系统的判断准确性得以显著提高。对比分析表明:采用多传感器进行信息采集的酒精检测系统能有效提高实时判断的准确性,并能为辅助驾驶提供预判信息。

  17. Advances in multi-sensor data fusion: algorithms and applications.

    Science.gov (United States)

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.

  18. Multi Sensor and Platforms Setups for Various Airborne Applications

    Science.gov (United States)

    Kemper, G.; Vasel, R.

    2016-06-01

    To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  19. Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    Directory of Open Access Journals (Sweden)

    Jingying Fu

    2009-09-01

    Full Text Available With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1 Improvements of fusion algorithms; (2 Development of “algorithm fusion” methods; (3 Establishment of an automatic quality assessment scheme.

  20. Robust Multi Sensor Classification via Jointly Sparse Representation

    Science.gov (United States)

    2016-03-14

    relevant to this project: ultra wideband synthetic aperture radar data sets, hyperspectral data sets, and multi-sensor acoustic data sets. We are...two of our own novel ideas – optimization with class-specific priors and modeling structured noise / interference with a low- rank model. Our expertise...in dictionary design, compressed sensors design, and optimization in sparse recovery also helps. We are able to advance the state of the art

  1. Data Fusion in Distributed Multi-sensor System

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; YU Min

    2004-01-01

    This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors' data processing. First, a residual χ2-test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real-time data. A pseudolite (PL) simulation example is given.

  2. LD2000 System with 3S and Multi-sensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces a car-borne road information collecting and updating system (LD2000) developed by Wuhan Technical University of Surveying and Mapping.This system is capable of collecting road network information and creating digital road network effectively by means of GPS,GIS and multi-sensor integration.The design and development of LD2000 system are also presented in this paper.

  3. Multi-sensor control for precise assembly of optical components

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Rong Weibin; Sun Lining

    2014-01-01

    In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT) is designed to adjust the relation of position and attitude between the spher-ical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.

  4. Multi-sensor control for precise assembly of optical components

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-06-01

    Full Text Available In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT is designed to adjust the relation of position and attitude between the spherical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.

  5. Oil exploration oriented multi-sensor image fusion algorithm

    Science.gov (United States)

    Xiaobing, Zhang; Wei, Zhou; Mengfei, Song

    2017-04-01

    In order to accurately forecast the fracture and fracture dominance direction in oil exploration, in this paper, we propose a novel multi-sensor image fusion algorithm. The main innovations of this paper lie in that we introduce Dual-tree complex wavelet transform (DTCWT) in data fusion and divide an image to several regions before image fusion. DTCWT refers to a new type of wavelet transform, and it is designed to solve the problem of signal decomposition and reconstruction based on two parallel transforms of real wavelet. We utilize DTCWT to segment the features of the input images and generate a region map, and then exploit normalized Shannon entropy of a region to design the priority function. To test the effectiveness of our proposed multi-sensor image fusion algorithm, four standard pairs of images are used to construct the dataset. Experimental results demonstrate that the proposed algorithm can achieve high accuracy in multi-sensor image fusion, especially for images of oil exploration.

  6. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  7. RadMAP: The Radiological Multi-sensor Analysis Platform

    Science.gov (United States)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  8. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  9. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be

  10. A multi-sensor approach to monitor slope displacement

    Science.gov (United States)

    Bouali, E. H. Y.; Oommen, T.; Escobar-Wolf, R. P.

    2015-12-01

    The use of remote sensing toward slope monitoring and landslide detection has been widespread. Common techniques include interferometric synthetic aperture radar (InSAR), light detection and ranging (LiDAR) and optical photogrammetric methods. Each technique can measure ground motion when data over the same region are acquired through multiple acquisitions, with typical data outputs displayed in spatial form (e.g., displacement/velocity maps or two- and three-dimensional change detection models) or in temporal form (e.g., displacement time series). The authors apply a multi-sensor approach - combining satellite-based InSAR, terrestrial LiDAR, and aerial optical photogrammetry - in order to optimize these remote sensing techniques based on their advantages and limitations. This application is conducted over a railroad corridor in southeastern Nevada. InSAR results include the calculation of displacement rates across many slopes over a long period of time. Two slopes, identified as potentially hazardous, are further analyzed in greater detail using LiDAR and optical photogrammetry. Slope displacements are measured using a point-cloud change detection analysis; the potential for stacking acquisitions to create displacement time-series is also explored. Overall, the goal is to illustrate the benefits of using a multi-sensor, remote sensing approach towards the monitoring of slope instability.

  11. Multi-sensor image fusion using discrete wavelet frame transform

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Li(李振华); Zhongliang Jing(敬忠良); Shaoyuan Sun(孙韶媛)

    2004-01-01

    An algorithm is presented for multi-sensor image fusion using discrete wavelet frame transform (DWFT).The source images to be fused are firstly decomposed by DWFT. The fusion process is the combining of the source coefficients. Before the image fusion process, image segmentation is performed on each source image in order to obtain the region representation of each source image. For each source image, the salience of each region in its region representation is calculated. By overlapping all these region representations of all the source images, we produce a shared region representation to label all the input images. The fusion process is guided by these region representations. Region match measure of the source images is calculated for each region in the shared region representation. When fusing the similar regions, weighted averaging mode is performed; otherwise selection mode is performed. Experimental results using real data show that the proposed algorithm outperforms the traditional pyramid transform based or discrete wavelet transform (DWT) based algorithms in multi-sensor image fusion.

  12. View and sensor planning for multi-sensor surface inspection

    Science.gov (United States)

    Gronle, Marc; Osten, Wolfgang

    2016-06-01

    Modern manufacturing processes enable the precise fabrication of high-value parts with high precision and performance. At the same time, the demand for flexible on-demand production of individual objects is continuously increasing. These requirements can only be met if inspection systems provide appropriate answers. One solution is the use of flexible, multi-sensor setups where multiple optical sensors with different fields of application are combined in one system. However, the challenge is then to assist the user in planning the inspection for individual parts. A manual planning requires an expert knowledge of the performance and functionality of every sensor. Therefore, software assistant systems help the user to objectively select the right sensors for a given inspection task. The planning step becomes still more difficult if the manufactured part has a complex form. The implication is that a sensor’s position must also be part of the planning process since it significantly influences the quality of the inspection. This paper describes a view and sensor planning approach for a multi-sensor surface inspection system in the context of optical topography measurements in the micro- and meso-scale range. In order to realize an online processing of the assistant system, a significant part of the calculations are done on the graphics processing unit (GPU).

  13. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    Science.gov (United States)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  14. MIST Final Report: Multi-sensor Imaging Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Michael A.; Medvick, Patricia A.; Foley, Michael G.; Foote, Harlan P.; Heasler, Patrick G.; Thompson, Sandra E.; Nuffer, Lisa L.; Mackey, Patrick S.; Barr, Jonathan L.; Renholds, Andrea S.

    2008-03-15

    The Multi-sensor Imaging Science and Technology (MIST) program was undertaken to advance exploitation tools for Long Wavelength Infra Red (LWIR) hyper-spectral imaging (HSI) analysis as applied to the discovery and quantification of nuclear proliferation signatures. The program focused on mitigating LWIR image background clutter to ease the analyst burden and enable a) faster more accurate analysis of large volumes of high clutter data, b) greater detection sensitivity of nuclear proliferation signatures (primarily released gasses) , and c) quantify confidence estimates of the signature materials detected. To this end the program investigated fundamental limits and logical modifications of the more traditional statistical discovery and analysis tools applied to hyperspectral imaging and other disciplines, developed and tested new software incorporating advanced mathematical tools and physics based analysis, and demonstrated the strength and weaknesses of the new codes on relevant hyperspectral data sets from various campaigns. This final report describes the content of the program and the outlines the significant results.

  15. Assimilation of Multi-Sensor Synoptic and Mesoscale Datasets: An Approach Based on Statistic, Dynamic, Physical and Synoptic Considerations

    Science.gov (United States)

    2016-06-13

    Assimilation of Multi- Sensor Synoptic and Mesoscale Datasets: An Approach Based on Statistic, Dynamic, Physical and Synoptic Considerations Xiaolei...Assimilation of Multi- Sensor Synoptic and Mesoscale Datasets: An Approach Based on Statistic, Dynamic, Physical and Synoptic Considerations 5a

  16. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  17. Large-Scale, Parallel, Multi-Sensor Atmospheric Data Fusion Using Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2013-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the 'A-Train' platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration analyses of important climate variables presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (MERRA), stratify the comparisons using a classification of the 'cloud scenes' from CloudSat, and repeat the entire analysis over 10 years of data. To efficiently assemble such datasets, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. However, these problems are Data Intensive computing so the data transfer times and storage costs (for caching) are key issues. SciReduce is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Figure 1 shows the architecture of the full computational system, with SciReduce at the core. Multi-year datasets are automatically 'sharded' by time and space across a cluster of nodes so that years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the cached input and intermediate datasets. We are using SciReduce to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a NASA MEASURES grant. We will

  18. Multi-sensor Testing for Automated Rendezvous and Docking

    Science.gov (United States)

    Howard, Richard T.; Carrington, Connie K.

    2008-01-01

    During the past two years, many sensors have been tested in an open-loop fashion in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL) to both determine their suitability for use in Automated Rendezvous and Docking (AR&D) systems and to ensure the test facility is prepared for future multi-sensor testing. The primary focus of this work was in support of the CEV AR&D system, because the AR&D sensor technology area was identified as one of the top risks in the program. In 2006, four different sensors were tested individually or in a pair in the MSFC FRL. In 2007, four sensors, two each of two different types, were tested simultaneously. In each set of tests, the target was moved through a series of pre-planned trajectories while the sensor tracked it. In addition, a laser tracker "truth" sensor also measured the target motion. The tests demonstrated the functionality of testing four sensors simultaneously as well as the capabilities (both good and bad) of all of the different sensors tested. This paper outlines the test setup and conditions, briefly describes the facility, summarizes the earlier results of the individual sensor tests, and describes in some detail the results of the four-sensor testing. Post-test analysis includes data fusion by minimum variance estimation and sequential Kalman filtering. This Sensor Technology Project work was funded by NASA's Exploration Technology Development Program.

  19. Integrated multi-sensor package (IMSP) for unmanned vehicle operations

    Science.gov (United States)

    Crow, Eddie C.; Reichard, Karl; Rogan, Chris; Callen, Jeff; Seifert, Elwood

    2007-10-01

    This paper describes recent efforts to develop integrated multi-sensor payloads for small robotic platforms for improved operator situational awareness and ultimately for greater robot autonomy. The focus is on enhancements to perception through integration of electro-optic, acoustic, and other sensors for navigation and inspection. The goals are to provide easier control and operation of the robot through fusion of multiple sensor outputs, to improve interoperability of the sensor payload package across multiple platforms through the use of open standards and architectures, and to reduce integration costs by embedded sensor data processing and fusion within the sensor payload package. The solutions investigated in this project to be discussed include: improved capture, processing and display of sensor data from multiple, non-commensurate sensors; an extensible architecture to support plug and play of integrated sensor packages; built-in health, power and system status monitoring using embedded diagnostics/prognostics; sensor payload integration into standard product forms for optimized size, weight and power; and the use of the open Joint Architecture for Unmanned Systems (JAUS)/ Society of Automotive Engineers (SAE) AS-4 interoperability standard. This project is in its first of three years. This paper will discuss the applicability of each of the solutions in terms of its projected impact to reducing operational time for the robot and teleoperator.

  20. A fault tolerant model for multi-sensor measurement

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-06-01

    Full Text Available Multi-sensor systems are very powerful in the complex environments. The cointegration theory and the vector error correction model, the statistic methods which widely applied in economic analysis, are utilized to create a fitting model for homogeneous sensors measurements. An algorithm is applied to implement the model for error correction, in which the signal of any sensor can be estimated from those of others. The model divides a signal series into two parts, the training part and the estimated part. By comparing the estimated part with the actual one, the proposed method can identify a sensor with possible faults and repair its signal. With a small amount of training data, the right parameters for the model in real time could be found by the algorithm. When applied in data analysis for aero engine testing, the model works well. Therefore, it is not only an effective method to detect any sensor failure or abnormality, but also a useful approach to correct possible errors.

  1. Multi-sensor Aerosol Products Sampling System (MAPSS

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2012-05-01

    Full Text Available Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS, which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient of aerosol products from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  2. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  3. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  4. Design and implementation of two concurrent multi-sensor integration algorithms for mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.P.; Beckerman, M.; Mann, R.C.

    1989-01-01

    Two multi-sensor integration algorithms useful in mobile robotics applications are reviewed. A minimal set of utilities are then developed which enable implementation of these algorithms on a distributed memory concurrent computer. 14 refs., 3 figs.

  5. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  6. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  7. Saharan dust detection using multi-sensor satellite measurements.

    Science.gov (United States)

    Madhavan, Sriharsha; Qu, John J; Hao, X

    2017-02-01

    Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T) and Aqua (A) MODerate-resolution Imaging Spectroradiometer (MODIS), fusing with Ozone Monitoring Instrument (OMI). Previous work by Hao and Qu (2007) had considered a limited number of thermal infrared channels which led to a correlation coefficient R(2) value of 0.765 between the Aerosol Optical Thickness (AOT) at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R(2) value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  8. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  9. Performance evaluation of multi-sensor data-fusion systems in launch vehicles

    Indian Academy of Sciences (India)

    B N Suresh; K Sivan

    2004-04-01

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included. The role of an integrated system level-test bed for evaluating multi-sensors and mission performance in a typical launch vehicle mission is described. Some of the typical simulation results to evaluate the effect of the sensors on the overall system are highlighted.

  10. Autonomous navigation vehicle system based on robot vision and multi-sensor fusion

    Science.gov (United States)

    Wu, Lihong; Chen, Yingsong; Cui, Zhouping

    2011-12-01

    The architecture of autonomous navigation vehicle based on robot vision and multi-sensor fusion technology is expatiated in this paper. In order to acquire more intelligence and robustness, accurate real-time collection and processing of information are realized by using this technology. The method to achieve robot vision and multi-sensor fusion is discussed in detail. The results simulated in several operating modes show that this intelligent vehicle has better effects in barrier identification and avoidance and path planning. And this can provide higher reliability during vehicle running.

  11. CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Crl7Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal.

  12. Joint-FACET: The Canada-Netherlands initiative to study multi-sensor data fusion systems

    NARCIS (Netherlands)

    Bossee, E.; Theil, A.; Huizing, A.G.; Aartsen, C.S. van

    1998-01-01

    This paper presents the progress of a collaborative effort between Canada and The Netherlands in analyzing multi-sensor data fusion systems, e.g. for potential application to their respective frigates. In view of the overlapping interest in studying and comparing applicability and performance and ad

  13. LOTUS field demonstration of integrated multi-sensor mine-detection system in Bosnia

    NARCIS (Netherlands)

    Schavemaker, J.G.M.; Breejen, E. den; Benoist, K.W.; Schutte, K.; Tettelaar, P.; Bijl, M. de; Fritz, P.J.; Cohen, L.H.; Mark, W. van der; Chignell, R.

    2003-01-01

    The successful demonstration of the LOTUS landmine detection system was discussed. The demonstration of the integrated multi-sensor mine-detection system took place in August 2002 near the village of Vidovice, in the northeast of Bosnia and Herzegovina. The system consisted of a metal detector (MD)

  14. A composite hydrogels-based photonic crystal multi-sensor

    Science.gov (United States)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  15. Portable multi-sensor system for gas detection using the temporal window technique; Systeme multicapteurs de detection de gaz, portable, utilisant la technique du fenetrage temporel

    Energy Technology Data Exchange (ETDEWEB)

    Cazaubon, Ch. [Bordeaux-1 Univ., CRED, 33 - Talence (France); Levi, H.; Bordieu, Ch.; Rebiere, D.; Pistre, J. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France)

    1999-07-01

    An autonomous and portable multi-sensor system was constructed. It can drive four gas sensors (surface acoustic waves. SAW. for examples) and four voltage output gas sensors (semiconductor metal oxide sensors, for example). Two micro-controllers. MC68HC11F1 and MC68HC711E9, used as master and slave respectively, are mounted on two cards. The first card contains the signal processing treatment algorithm using a neural network and a shifting temporal window technique: it allows real time gas selection. The second card insure the overall temperature control by an auto-adaptive PID. GB gas SAW responses were applied to the device in order to test his performances. (authors)

  16. Autonomous collection of dynamically-cued multi-sensor imagery

    Science.gov (United States)

    Daniel, Brian; Wilson, Michael L.; Edelberg, Jason; Jensen, Mark; Johnson, Troy; Anderson, Scott

    2011-05-01

    The availability of imagery simultaneously collected from sensors of disparate modalities enhances an image analyst's situational awareness and expands the overall detection capability to a larger array of target classes. Dynamic cooperation between sensors is increasingly important for the collection of coincident data from multiple sensors either on the same or on different platforms suitable for UAV deployment. Of particular interest is autonomous collaboration between wide area survey detection, high-resolution inspection, and RF sensors that span large segments of the electromagnetic spectrum. The Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) is building sensors with such networked communications capability and is conducting field tests to demonstrate the feasibility of collaborative sensor data collection and exploitation. Example survey / detection sensors include: NuSAR (NRL Unmanned SAR), a UAV compatible synthetic aperture radar system; microHSI, an NRL developed lightweight hyper-spectral imager; RASAR (Real-time Autonomous SAR), a lightweight podded synthetic aperture radar; and N-WAPSS-16 (Nighttime Wide-Area Persistent Surveillance Sensor-16Mpix), a MWIR large array gimbaled system. From these sensors, detected target cues are automatically sent to the NRL/SDL developed EyePod, a high-resolution, narrow FOV EO/IR sensor, for target inspection. In addition to this cooperative data collection, EyePod's real-time, autonomous target tracking capabilities will be demonstrated. Preliminary results and target analysis will be presented.

  17. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  18. Development of subminiature multi-sensor hot-wire probes

    Science.gov (United States)

    Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.

    1988-01-01

    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.

  19. A Vision for an International Multi-Sensor Snow Observing Mission

    Science.gov (United States)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  20. Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Hyeon; Chong, Kil To [Chon-bok National University, Jeonju (Korea, Republic of); Park, Jong Ho [Seonam University, Namwon (Korea, Republic of); Ryu, Ji Hyoung [ETRI, Daejeon (Korea, Republic of)

    2015-05-15

    This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications . We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

  1. A passive wireless multi-sensor SAW technology device and system perspectives.

    Science.gov (United States)

    Malocha, Donald C; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai

    2013-05-10

    This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown.

  2. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives

    Directory of Open Access Journals (Sweden)

    Nikolai Kozlovski

    2013-05-01

    Full Text Available This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown.

  3. Multi-Sensor Consensus Estimation of State, Sensor Biases and Unknown Input.

    Science.gov (United States)

    Zhou, Jie; Liang, Yan; Yang, Feng; Xu, Linfeng; Pan, Quan

    2016-09-01

    This paper addresses the problem of the joint estimation of system state and generalized sensor bias (GSB) under a common unknown input (UI) in the case of bias evolution in a heterogeneous sensor network. First, the equivalent UI-free GSB dynamic model is derived and the local optimal estimates of system state and sensor bias are obtained in each sensor node; Second, based on the state and bias estimates obtained by each node from its neighbors, the UI is estimated via the least-squares method, and then the state estimates are fused via consensus processing; Finally, the multi-sensor bias estimates are further refined based on the consensus estimate of the UI. A numerical example of distributed multi-sensor target tracking is presented to illustrate the proposed filter.

  4. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-07-01

    Full Text Available This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors’ data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  5. Application of Multi-Sensors Information Fusion for Self-protection System of Robot

    Directory of Open Access Journals (Sweden)

    Qiuhong Gao

    2013-01-01

    Full Text Available This paper developed a kind of robot self-protection system using the multi-sensors information fusion technology. This system used five groups of photoelectric sensor and ultrasonic sensor which were installed in different direction of the robot. In this study, signals were gathered by using the complement of ranging of photoelectric sensor and ultrasonic sensor. Then the signals were sent to MCU to achieve multi-sensors information fusion.Core fusion technology was the adaptive weighted fusion estimation algorithm, which can make measurement data more accurate. With such technology, an accurate robot self-protection command was made as to avoid obstacles, to judge narrow highland and to prevent dropping. The experiment results validated its good self-protection function.

  6. Multi-sensor Data Processing and Fusing Based on Kalman Filtering

    OpenAIRE

    Bian Guangrong; Li Hongsheng; He Ninghui

    2013-01-01

    The background of this paper is the warehouse target localization and tracking system which is composed of a number of wireless sensor nodes. Firstly this paper established a model of warehouse target localization and tracking system, then a model of multi-sensor data preprocessing and data fusion was established, and self-adaptive linear recursive method was used to eliminate outliers of the original measured data. Then least squares fitting filter was used to do filtering and denoising for ...

  7. Integration of multi-sensor manipulator actuator information for robust robot control systems

    OpenAIRE

    Hashimoto, Minoru; PAUL, Richard P.; ハシモト, ミノル; 橋本, 稔

    1989-01-01

    Robot manipulator joints with only a single state sensor (either in position or in velocity) are limited in their ability to determine both state variables (in position and in velocity). Also, if the single sensor fails, the robot becomes uncontrollable. In the present paper, we propose a method which efficiently uses multi-sensor information to obtain a more precise description of joint position and velocity, and such a method allows for a robust control system free from the affects of spuri...

  8. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    OpenAIRE

    Felipe Cid; Jose Moreno; Pablo Bustos; Pedro Núñez

    2014-01-01

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, inclu...

  9. Optimal multi-sensor Kalman smoothing fusion for discrete multichannel ARMA signals

    Institute of Scientific and Technical Information of China (English)

    Shuli SUN

    2005-01-01

    Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense,using white noise estimators,an optimal fusion distributed Kalman smoother is given for discrete multi-channel ARMA (autoregressive moving average) signals.The smoothing error cross-covariance matrices between any two sensors are given for measurement noises.Furthermore,the fusion smoother gives higher precision than any local smoother does.

  10. Multi-sensor Data Processing and Fusing Based on Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Bian Guangrong

    2013-01-01

    Full Text Available The background of this paper is the warehouse target localization and tracking system which is composed of a number of wireless sensor nodes. Firstly this paper established a model of warehouse target localization and tracking system, then a model of multi-sensor data preprocessing and data fusion was established, and self-adaptive linear recursive method was used to eliminate outliers of the original measured data. Then least squares fitting filter was used to do filtering and denoising for the measured data. In the end, the data which were measured by multi-sensor can be fused by Kalman Filtering algorithm. Data simulation analysis shows that the use of kalman filtering algorithm for the fusion of the data measured by multi-sensor is to obtain more accurate warehouse target location data, so as to increase the positioning and tracking accuracy of the warehouse target localization and tracking system. Key Words:Wireless Sensor Network,Data Fusion,Kalman Filtering

  11. Enhancement of greenhouse gases associated with Canadian forest fire using multi sensor data

    Science.gov (United States)

    Singh, Rachita; Singh, Rachita; Chaturvedi, Ritu

    Forest fire is a common natural hazard that takes lives of people and billion dollar loss of properties almost every year. In the recent past frequency of forest fires have increased in Canada and throughout the world that is associated with the changes in land use and land cover practice. Multi sensor satellites are now capable in providing information about the land cover, atmosphere and meteorological parameters. The present paper deals with the multi sensor data (AIRS, MODIS, OMI AURA, TOMS) to study the changes in greenhouse and other gases (NOx, O3, CO, water vapor) and aerosol parameters. The detailed analysis of multi sensor data have shown elevated amount of greenhouse gases, total ozone column and aerosol optical depth during summer of 2004 at the time of Canadian forest fire compared to other years. The spatial distribution of greenhouse gas, aerosol optical depth and meteorological conditions are found to change after the onset of forest fire that shows the dynamic nature of the greenhouse gas and associated releases with the dispersion of the plume and smoke from the forest fire. The maximum changes are found from the surface up to a pressure level height 500 hPa, the change occur is found to be very much dependent on the distance from the source (forest fire location) and also on the meteorological conditions.

  12. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-07-01

    Full Text Available In this work, an asynchronous multi-sensor micro control unit (MCU core is proposed for wireless body sensor networks (WBSNs. It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE, and an error correct coder (ECC. To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.

  13. An Enhanced Data Visualization Method for Diesel Engine Malfunction Classification Using Multi-Sensor Signals

    Directory of Open Access Journals (Sweden)

    Yiqing Li

    2015-10-01

    Full Text Available The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE, provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  14. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    Science.gov (United States)

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  15. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Kyeonghwan Park

    2017-04-01

    Full Text Available This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  16. Distinctive Order Based Self-Similarity descriptor for multi-sensor remote sensing image matching

    Science.gov (United States)

    Sedaghat, Amin; Ebadi, Hamid

    2015-10-01

    Robust, well-distributed and accurate feature matching in multi-sensor remote sensing image is a difficult task duo to significant geometric and illumination differences. In this paper, a robust and effective image matching approach is presented for multi-sensor remote sensing images. The proposed approach consists of three main steps. In the first step, UR-SIFT (Uniform robust scale invariant feature transform) algorithm is applied for uniform and dense local feature extraction. In the second step, a novel descriptor namely Distinctive Order Based Self Similarity descriptor, DOBSS descriptor, is computed for each extracted feature. Finally, a cross matching process followed by a consistency check in the projective transformation model is performed for feature correspondence and mismatch elimination. The proposed method was successfully applied for matching various multi-sensor satellite images as: ETM+, SPOT 4, SPOT 5, ASTER, IRS, SPOT 6, QuickBird, GeoEye and Worldview sensors, and the results demonstrate its robustness and capability compared to common image matching techniques such as SIFT, PIIFD, GLOH, LIOP and LSS.

  17. Multi-sensor data fusion for measurement of complex freeform surfaces

    Science.gov (United States)

    Ren, M. J.; Liu, M. Y.; Cheung, C. F.; Yin, Y. H.

    2016-01-01

    Along with the rapid development of the science and technology in fields such as space optics, multi-scale enriched freeform surfaces are widely used to enhance the performance of the optical systems in both functionality and size reduction. Multi-sensor technology is considered as one of the promising methods to measure and characterize these surfaces at multiple scales. This paper presents a multi-sensor data fusion based measurement method to purposely extract the geometric information of the components with different scales which is used to establish a holistic geometry of the surface via data fusion. To address the key problems of multi-sensor data fusion, an intrinsic feature pattern based surface registration method is developed to transform the measured datasets to a common coordinate frame. Gaussian zero-order regression filter is then used to separate each measured data in different scales, and the datasets are fused based on an edge intensity data fusion algorithm within the same wavelength. The fused data at different scales is then merged to form a new surface with holistic multiscale information. Experimental study is presented to verify the effectiveness of the proposed method.

  18. A Knowledge-Based Step Length Estimation Method Based on Fuzzy Logic and Multi-Sensor Fusion Algorithms for a Pedestrian Dead Reckoning System

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lai

    2016-05-01

    Full Text Available The demand for pedestrian navigation has increased along with the rapid progress in mobile and wearable devices. This study develops an accurate and usable Step Length Estimation (SLE method for a Pedestrian Dead Reckoning (PDR system with features including a wide range of step lengths, a self-contained system, and real-time computing, based on the multi-sensor fusion and Fuzzy Logic (FL algorithms. The wide-range SLE developed in this study was achieved by using a knowledge-based method to model the walking patterns of the user. The input variables of the FL are step strength and frequency, and the output is the estimated step length. Moreover, a waist-mounted sensor module has been developed using low-cost inertial sensors. Since low-cost sensors suffer from various errors, a calibration procedure has been utilized to improve accuracy. The proposed PDR scheme in this study demonstrates its ability to be implemented on waist-mounted devices in real time and is suitable for the indoor and outdoor environments considered in this study without the need for map information or any pre-installed infrastructure. The experiment results show that the maximum distance error was within 1.2% of 116.51 m in an indoor environment and was 1.78% of 385.2 m in an outdoor environment.

  19. Observability considerations for multi-sensor and product fusion: Bias, information content, and validation (Invited)

    Science.gov (United States)

    Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.

    2009-12-01

    With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of

  20. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)(-0.1) in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  1. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications

    Directory of Open Access Journals (Sweden)

    Mohtashim Mansoor

    2016-11-01

    Full Text Available An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors, a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  2. Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Birkelund, Karen; Janting, Jakob;

    2008-01-01

    A packaging concept for Data Storage Tags is presented. A potted-tube packaging concept, using a polystyrene tube and different epoxies as filling material that allows for direct sensor exposure is investigated. The curing temperature, water uptake and the diffusion coefficient for water in the f......-sensor is described and effectiveness of the packaging is demonstrated with the precise measurement of water conductivity using the packaged multi-sensor. The packaging concept is very promising for high accuracy measurements in harsh environments....

  3. Autonomous multi-sensor micro-system for measurement of ocean water salinity

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Mortensen, Dennis; Birkelund, Karen

    2008-01-01

    This paper describes the design, fabrication and application of a micro-fabricated salinity sensor system. The theoretical electrochemical behaviour is described using electrical equivalent diagrams and simple scaling properties are investigated analytically and numerically using finite element...... method (FEM). The chip design and fabrication is described and measurement results of two different electrode designs are presented. The 4 mm x 4 mm multi-sensor allows for salinity determination with an accuracy of +/- 0.5 psu through determination of the electrical conductivity, temperature...

  4. Multi-sensor system for simultaneous ultra-low-field MRI and MEG

    CERN Document Server

    Zotev, V S; Matlachov, A N; Mosher, J C; Newman, S G; Sandin, H J; Urbaitis, A V; Volegov, P L

    2006-01-01

    Magnetoencephalography (MEG) and magnetic resonance imaging at ultra-low fields (ULF MRI) are two methods based on the ability of SQUID (superconducting quantum interference device) sensors to detect femtotesla magnetic fields. Combination of these methods will allow simultaneous functional (MEG) and structural (ULF MRI) imaging of the human brain. In this paper, we report the first implementation of a multi-sensor SQUID system designed for both MEG and ULF MRI. We present a multi-channel image of a human hand obtained at 46 microtesla field, as well as results of auditory MEG measurements with the new system.

  5. Real-time multi-sensor based vehicle detection using MINACE filters

    Science.gov (United States)

    Topiwala, Pankaj; Nehemiah, Avinash

    2007-04-01

    A system to detect vehicles (cars, trucks etc) in electro-optic (EO) and infrared (IR) imagery is presented. We present the use of the minimum noise and correlation (MINACE) distortion invariant filter (DIF) for this problem. The selection of the MINACE filter parameter c is automated using a training and validation set. A new set of correlation plane post processing methods that improve detection accuracies and reduce false alarms are presented. The system is tested on real life imagery of traffic in parking lots and roads obtained using a multi-sensor EO/IR platform.

  6. Coal blending scheduling in coal preparation plant based on multi-sensor information fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, L.; Yu, H.; Wang, Y. [CUMT, Xuzhou (China). School of Information and Electrical Engineering

    2004-01-01

    It is important to research on a reasonable blending schedule according to the customer requirement and the practice of products in coal preparation plant. In order to solve this problem, a mathematic model was set up on the basis of analysing coal blending schedule. Multi-sensors information fusion was used to monitor the density and the amount of coal. The genetic algorithm was used to solve the nonlinear function in the maths model. A satisfied result was obtained by simulating test. 8 refs., 2 figs.

  7. Comparing Metabolic Energy Expenditure Estimation Using Wearable Multi-Sensor Network and Single Accelerometer

    Science.gov (United States)

    Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin

    2014-01-01

    This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sensor network outperforms the single sensor solution in terms of energy expenditure estimation. PMID:24110325

  8. Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array.

    Science.gov (United States)

    Lee, Dongkyu; Jin, Yusung; Jung, Namchul; Lee, Jaehyuk; Lee, Jinwoo; Jeong, Yong Shik; Jeon, Sangmin

    2011-07-01

    The kinetics of CO(2) adsorption and desorption over amine-functionalized mesoporous silica were investigated using silicon microcantilever arrays. Three types of mesoporous silica with different pore sizes were synthesized and functionalized with a variety of amine molecules. After depositing the silica sorbents onto the free end of each cantilever in an array, mass changes due to the adsorption and desorption of CO(2) were determined in situ with picogram sensitivity by measuring variations in the cantilever frequencies. The adsorption and desorption kinetics were found to be diffusion-controlled, and the kinetics were accelerated by increasing the temperature and pore size. The activation energies for adsorption and desorption of CO(2) were determined from Arrhenius plots.

  9. Mounting and performance measurements of a PV array addition to an existing small wind-power installation for greenhouse electric supply in Patagonia

    Directory of Open Access Journals (Sweden)

    Rafael Oliva

    2016-08-01

    Full Text Available A small wind-power system intended for electric supply of a research greenhouse at the local University facilities in San Julian region incorporates a photovoltaic (PV array and regulator, which is described in this report together with its data-acquisition system. The main application is control and lighting. The Alternative Energy Group at the University seeks through this project to acquire knowledge and practical experience in the combination of renewable energy sources for optimal electrical supply of isolated systems, their associated measurements and processing of resulting data

  10. RheoStim: Development of an Adaptive Multi-Sensor to Prevent Venous Stasis

    Directory of Open Access Journals (Sweden)

    Sören Weyer

    2016-03-01

    Full Text Available Chronic venous insufficiency of the lower limbs is often underestimated and, in the absence of therapy, results in increasingly severe complications, including therapy-resistant tissue defects. Therefore, early diagnosis and adequate therapy is of particular importance. External counter pulsation (ECP therapy is a method used to assist the venous system. The main principle of ECP is to squeeze the inner leg vessels by muscle contractions, which are evoked by functional electrical stimulation. A new adaptive trigger method is proposed, which improves and supplements the current therapeutic options by means of pulse synchronous electro-stimulation of the muscle pump. For this purpose, blood flow is determined by multi-sensor plethysmography. The hardware design and signal processing of this novel multi-sensor plethysmography device are introduced. The merged signal is used to determine the phase of the cardiac cycle, to ensure stimulation of the muscle pump during the filling phase of the heart. The pulse detection of the system is validated against a gold standard and provides a sensitivity of 98% and a false-negative rate of 2% after physical exertion. Furthermore, flow enhancement of the system has been validated by duplex ultrasonography. The results show a highly increased blood flow in the popliteal vein at the knee.

  11. On Optimal Multi-Sensor Network Configuration for 3D Registration

    Directory of Open Access Journals (Sweden)

    Hadi Aliakbarpour

    2015-11-01

    Full Text Available Multi-sensor networks provide complementary information for various taskslike object detection, movement analysis and tracking. One of the important ingredientsfor efficient multi-sensor network actualization is the optimal configuration of sensors.In this work, we consider the problem of optimal configuration of a network of coupledcamera-inertial sensors for 3D data registration and reconstruction to determine humanmovement analysis. For this purpose, we utilize a genetic algorithm (GA based optimizationwhich involves geometric visibility constraints. Our approach obtains optimal configurationmaximizing visibility in smart sensor networks, and we provide a systematic study usingedge visibility criteria, a GA for optimal placement, and extension from 2D to 3D.Experimental results on both simulated data and real camera-inertial fused data indicate weobtain promising results. The method is scalable and can also be applied to other smartnetwork of sensors. We provide an application in distributed coupled video-inertial sensorbased 3D reconstruction for human movement analysis in real time.

  12. Multi-sensor image registration using multi-resolution shape analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour's chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally,the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.

  13. A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion.

    Science.gov (United States)

    Tang, Yongchuan; Zhou, Deyun; Xu, Shuai; He, Zichang

    2017-04-22

    In real applications, how to measure the uncertain degree of sensor reports before applying sensor data fusion is a big challenge. In this paper, in the frame of Dempster-Shafer evidence theory, a weighted belief entropy based on Deng entropy is proposed to quantify the uncertainty of uncertain information. The weight of the proposed belief entropy is based on the relative scale of a proposition with regard to the frame of discernment (FOD). Compared with some other uncertainty measures in Dempster-Shafer framework, the new measure focuses on the uncertain information represented by not only the mass function, but also the scale of the FOD, which means less information loss in information processing. After that, a new multi-sensor data fusion approach based on the weighted belief entropy is proposed. The rationality and superiority of the new multi-sensor data fusion method is verified according to an experiment on artificial data and an application on fault diagnosis of a motor rotor.

  14. Extending lifetime of wireless sensor networks using multi-sensor data fusion

    Indian Academy of Sciences (India)

    SOUMITRA DAS; S BARANI; SANJEEV WAGH; S S SONAVANE

    2017-07-01

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony optimization techniques has been proposed. In this method, each node is equipped with multiple sensors (i.e., temperature and humidity). Use of more than one sensor provides additional information about the environmental conditions. The data fusion approach based on the competitive-type hierarchical processing is considered for experimentation. Initially the data are collected by the sensors placed in the sensing fields and then the data fusion probabilities are computed on the sensed data. In this proposed methodology, the collected temperature tand humidity data are processed by multi-sensor data fusion techniques, which help in decreasing the energy consumption as well as communication cost by fusing the redundant data. The multipledata fusion process improves the reliability and accuracy of the sensed information and simultaneously saves energy, which was our primary objective. The proposed algorithms were simulated using Matlab. The executions of proposed arnd low-energy adaptive clustering hierarchy algorithms were carried out and the results show that the proposed algorithms could efficiently reduce the use of energy and were able to save more energy, thus increasing the overall network lifetime.

  15. Using GPU-generated virtual video stream for multi-sensor system

    Science.gov (United States)

    Liao, Dezhi; Hennessey, Brian

    2006-05-01

    Security and intelligence services are increasingly turning toward multi-sensor video surveillance which requires human ability to successfully fuse and comprehend the information provided by videos. A training system using the same front end as real multi-sensor system for users can significantly increase such human ability. The training system always needs scenarios replicating stressful situations which are videotaped in advance and played later. This not only puts a limitation on the training scenarios but also brings a high cost. This paper introduces a new framework, virtual video capture device for such training system. Using the latest graphics processing units (GPUs) technology, multiple video streams composed of computer graphics (CG) are generated on one high-end PC and ublished to a video stream server. Thus users can be trained using both real video streams and virtual video streams on one system. It also enables the training system to use real video streams incorporating augmented reality to improve situation awareness of the human.

  16. STUDY ON THE COAL-ROCK INTER-FACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Ren Fang; Yang Zhaojian; Xiong Shibo

    2003-01-01

    The coal-rock interface recognition method based on multi-sensor data fusion technique is put forward because of the localization of single type sensor recognition method. The measuring theory based on multi-sensor data fusion technique is analyzed, and hereby the test platform of recognition system is manufactured. The advantage of data fusion with the fuzzy neural network (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carried out. The experiments show that in various conditions the method can always acquire a much higher recognition rate than normal ones.

  17. Pose Estimation of Unmanned Aerial Vehicles Based on a Vision-Aided Multi-Sensor Fusion

    Science.gov (United States)

    Abdi, G.; Samadzadegan, F.; Kurz, F.

    2016-06-01

    GNSS/IMU navigation systems offer low-cost and robust solution to navigate UAVs. Since redundant measurements greatly improve the reliability of navigation systems, extensive researches have been made to enhance the efficiency and robustness of GNSS/IMU by additional sensors. This paper presents a method for integrating reference data, images taken from UAVs, barometric height data and GNSS/IMU data to estimate accurate and reliable pose parameters of UAVs. We provide improved pose estimations by integrating multi-sensor observations in an EKF algorithm with IMU motion model. The implemented methodology has demonstrated to be very efficient and reliable for automatic pose estimation. The calculated position and attitude of the UAV especially when we removed the GNSS from the working cycle clearly indicate the ability of the purposed methodology.

  18. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  19. Multi-sensor millimeter-wave system for hidden objects detection by non-collaborative screening

    Science.gov (United States)

    Zouaoui, Rhalem; Czarny, Romain; Diaz, Frédéric; Khy, Antoine; Lamarque, Thierry

    2011-05-01

    In this work, we present the development of a multi-sensor system for the detection of objects concealed under clothes using passive and active millimeter-wave (mmW) technologies. This study concerns both the optimization of a commercial passive mmW imager at 94 GHz using a phase mask and the development of an active mmW detector at 77 GHz based on synthetic aperture radar (SAR). A first wide-field inspection is done by the passive imager while the person is walking. If a suspicious area is detected, the active imager is switched-on and focused on this area in order to obtain more accurate data (shape of the object, nature of the material ...).

  20. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    CERN Document Server

    Davis, John R; Vetter, Kai

    2016-01-01

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the backg...

  1. Botnet Detection Architecture Based on Heterogeneous Multi-sensor Information Fusion

    Directory of Open Access Journals (Sweden)

    HaiLong Wang

    2011-12-01

    Full Text Available As technology has been developed rapidly, botnet threats to the global cyber community are also increasing. And the botnet detection has recently become a major research topic in the field of network security. Most of the current detection approaches work only on the evidence from single information source, which can not hold all the traces of botnet and hardly achieve high accuracy. In this paper, a novel botnet detection architecture based on heterogeneous multi-sensor information fusion is proposed. The architecture is designed to carry out information integration in the three fusion levels of data, feature, and decision. As the core component, a feature extraction module is also elaborately designed. And an extended algorithm of the Dempster-Shafer (D-S theory is proved and adopted in decision fusion. Furthermore, a representative case is provided to illustrate that the detection architecture can effectively fuse the complicated information from various sensors, thus to achieve better detection effect.

  2. ZigBee-based wireless multi-sensor system for physical activity assessment.

    Science.gov (United States)

    Mo, Lingfei; Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John; Freedson, Patty

    2011-01-01

    Physical activity (PA) is important for assessing human exposure to the environment. This paper presents a ZigBee-based Wireless wearable multi-sensor Integrated Measurement System (WIMS) for in-situ PA measurement. Two accelerometers, a piezoelectric displacement sensor, and an ultraviolet (UV) sensor have been used for the physical activity assessment. Detailed analysis was performed for the hardware design and embedded program control, enabling efficient data sampling and transmission, compact design, and extended battery life to meet requirements for PA assessment under free-living conditions. Preliminary testing of the WIMS has demonstrated the functionality of the design, while performance comparison of the WIMS with a wired version on an electromagnetic shaker has demonstrated the signal validity.

  3. Sparse representation discretization errors in multi-sensor radar target motion estimation

    Science.gov (United States)

    Azodi, Hossein; Siart, Uwe; Eibert, Thomas F.

    2017-09-01

    In a multi-sensor radar for the estimation of the targets motion states, more than one module of transmitter and receiver are utilized to estimate the positions and velocities of targets, also known as motion states. By applying the compressed sensing (CS) reconstruction algorithms, the surveillance space needs to be discretized. The effect of the additive errors due to the discretization are studied in this paper. The errors are considered as an additive noise in the well-known under-determined CS problem. By employing properties of these errors, analytical models for its average and variance are derived. Numerous simulations are carried out to verify the analytical model empirically. Furthermore, the probability density functions of discretization errors are estimated. The analytical model is useful for the optimization of the performance, the efficiency and the success rate in CS reconstruction for radar as well as many other applications.

  4. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    Science.gov (United States)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  5. POSE ESTIMATION OF UNMANNED AERIAL VEHICLES BASED ON A VISION-AIDED MULTI-SENSOR FUSION

    Directory of Open Access Journals (Sweden)

    G. Abdi

    2016-06-01

    Full Text Available GNSS/IMU navigation systems offer low-cost and robust solution to navigate UAVs. Since redundant measurements greatly improve the reliability of navigation systems, extensive researches have been made to enhance the efficiency and robustness of GNSS/IMU by additional sensors. This paper presents a method for integrating reference data, images taken from UAVs, barometric height data and GNSS/IMU data to estimate accurate and reliable pose parameters of UAVs. We provide improved pose estimations by integrating multi-sensor observations in an EKF algorithm with IMU motion model. The implemented methodology has demonstrated to be very efficient and reliable for automatic pose estimation. The calculated position and attitude of the UAV especially when we removed the GNSS from the working cycle clearly indicate the ability of the purposed methodology.

  6. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    Science.gov (United States)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  7. Multi-sensor Information Processing using Prediction Market-based Belief Aggregation

    CERN Document Server

    Jumadinova, Janyl

    2012-01-01

    We consider the problem of information fusion from multiple sensors of different types with the objective of improving the confidence of inference tasks, such as object classification, performed from the data collected by the sensors. We propose a novel technique based on distributed belief aggregation using a multi-agent prediction market to solve this information fusion problem. To monitor the improvement in the confidence of the object classification as well as to dis-incentivize agents from misreporting information, we have introduced a market maker that rewards the agents instantaneously as well as at the end of the inference task, based on the quality of the submitted reports. We have implemented the market maker's reward calculation in the form of a scoring rule and have shown analytically that it incentivizes truthful revelation or accurate reporting by each agent. We have experimentally verified our technique for multi-sensor information fusion for an automated landmine detection scenario. Our experi...

  8. Design and testing of a multi-sensor pedestrian location and navigation platform.

    Science.gov (United States)

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  9. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    Science.gov (United States)

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the

  10. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    Directory of Open Access Journals (Sweden)

    Xuebing Yuan

    2015-05-01

    Full Text Available Inertial navigation based on micro-electromechanical system (MEMS inertial measurement units (IMUs has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path.

  11. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition m...

  12. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  13. Study of land surface temperature and spectral emissivity using multi-sensor satellite data

    Indian Academy of Sciences (India)

    P K Srivastava; T J Majumdar; Amit K Bhattacharya

    2010-02-01

    In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum–Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show

  14. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  15. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    Science.gov (United States)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  16. Depth-area-duration characteristics of storm rainfall in Texas using Multi-Sensor Precipitation Estimates

    Science.gov (United States)

    McEnery, J. A.; Jitkajornwanich, K.

    2012-12-01

    This presentation will describe the methodology and overall system development by which a benchmark dataset of precipitation information has been used to characterize the depth-area-duration relations in heavy rain storms occurring over regions of Texas. Over the past two years project investigators along with the National Weather Service (NWS) West Gulf River Forecast Center (WGRFC) have developed and operated a gateway data system to ingest, store, and disseminate NWS multi-sensor precipitation estimates (MPE). As a pilot project of the Integrated Water Resources Science and Services (IWRSS) initiative, this testbed uses a Standard Query Language (SQL) server to maintain a full archive of current and historic MPE values within the WGRFC service area. These time series values are made available for public access as web services in the standard WaterML format. Having this volume of information maintained in a comprehensive database now allows the use of relational analysis capabilities within SQL to leverage these multi-sensor precipitation values and produce a valuable derivative product. The area of focus for this study is North Texas and will utilize values that originated from the West Gulf River Forecast Center (WGRFC); one of three River Forecast Centers currently represented in the holdings of this data system. Over the past two decades, NEXRAD radar has dramatically improved the ability to record rainfall. The resulting hourly MPE values, distributed over an approximate 4 km by 4 km grid, are considered by the NWS to be the "best estimate" of rainfall. The data server provides an accepted standard interface for internet access to the largest time-series dataset of NEXRAD based MPE values ever assembled. An automated script has been written to search and extract storms over the 18 year period of record from the contents of this massive historical precipitation database. Not only can it extract site-specific storms, but also duration-specific storms and

  17. Vaginitis test - wet mount

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003916.htm Vaginitis test - wet mount To use the sharing features on this page, please enable JavaScript. The vaginitis wet mount test is a test to detect ...

  18. Multi-sensors data and information fusion algorithm for indoor localization

    Directory of Open Access Journals (Sweden)

    XIA Jun

    2015-02-01

    Full Text Available The localization algorithm of based on IMU is one of autonomous localization methods while it possesses the disadvantage of drift error and accumulated error,so this paper proposes a multi-sensors including wearable multi-IMUs and IWSN data and information fusion algorithm for indoor localization.On the one hand,almost all indoor localization algorithms based on IMU use only one IMU while this single-IMU-based algorithm can′t judge the posture of person precisely,one appropriate solution is that we can utilize multi-IMUs to cooperate in localization process,besides,we can fuse position information of multi-IMUs by fuzzy voting scheme.On the other hand,in order to overcome the disadvantage of drift error and accumulate error,combining with IWSN in indoor and fusing the position information calculated by IWSN and multi-IMUs via Kalman Filter algorithm.Experiment results show that the proposed indoor localization algorithm possesses good property in judging posture of person and decreasing drift error and accumulate error comparing with traditional IMU-based indoor localization algorithm.

  19. Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    Science.gov (United States)

    Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.

    2011-01-01

    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.

  20. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    Science.gov (United States)

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    2017-06-01

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.

  1. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Directory of Open Access Journals (Sweden)

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  2. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Science.gov (United States)

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  3. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Directory of Open Access Journals (Sweden)

    Inigo de Loyola Ortiz-Vigon Uriarte

    2015-03-01

    Full Text Available This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG and galvanic skin resistance (GSR. An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS, a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio.

  4. Multi-Sensor Documentation of Metric and Qualitative Information of Historic Stone Structures

    Science.gov (United States)

    Adamopoulos, E.; Tsilimantou, E.; Keramidas, V.; Apostolopoulou, M.; Karoglou, M.; Tapinaki, S.; Ioannidis, C.; Georgopoulos, A.; Moropoulou, A.

    2017-08-01

    This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.

  5. Multi-sensor fusion techniques for state estimation of micro air vehicles

    Science.gov (United States)

    Donavanik, Daniel; Hardt-Stremayr, Alexander; Gremillion, Gregory; Weiss, Stephan; Nothwang, William

    2016-05-01

    Aggressive flight of micro air vehicles (MAVs) in unstructured, GPS-denied environments poses unique challenges for estimation of vehicle pose and velocity due to the noise, delay, and drift in individual sensor measurements. Maneuvering flight at speeds in excess of 5 m/s poses additional challenges even for active range sensors; in the case of LIDAR, an assembled scan of the vehicles environment will in most cases be obsolete by the time it is processed. Multi-sensor fusion techniques which combine inertial measurements with passive vision techniques and/or LIDAR have achieved breakthroughs in the ability to maintain accurate state estimates without the use of external positioning sensors. In this paper, we survey algorithmic approaches to exploiting sensors with a wide range of nonlinear dynamics using filter and bundle-adjustment based approaches for state estimation and optimal control. From this foundation, we propose a biologically-inspired framework for incorporating the human operator in the loop as a privileged sensor in a combined human/autonomy paradigm.

  6. Adaptive Multi-sensor Perception for Driving Automation in Outdoor Contexts

    Directory of Open Access Journals (Sweden)

    Annalisa Milella

    2014-08-01

    Full Text Available In this research, adaptive perception for driving automation is discussed so as to enable a vehicle to automatically detect driveable areas and obstacles in the scene. It is especially designed for outdoor contexts where conventional perception systems that rely on a priori knowledge of the terrain’s geometric properties, appearance properties, or both, is prone to fail, due to the variability in the terrain properties and environmental conditions. In contrast, the proposed framework uses a self-learning approach to build a model of the ground class that is continuously adjusted online to reflect the latest ground appearance. The system also features high flexibility, as it can work using a single sensor modality or a multi-sensor combination. In the context of this research, different embodiments have been demonstrated using range data coming from either a radar or a stereo camera, and adopting self-supervised strategies where monocular vision is automatically trained by radar or stereo vision. A comprehensive set of experimental results, obtained with different ground vehicles operating in the field, are presented to validate and assess the performance of the system.

  7. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings

    Directory of Open Access Journals (Sweden)

    Julia Armesto

    2016-05-01

    Full Text Available Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU, given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  8. Atmospheric Signals Associated with Major Earthquakes. A Multi-Sensor Approach. Chapter 9

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We are studying the possibility of a connection between atmospheric observation recorded by several ground and satellites as earthquakes precursors. Our main goal is to search for the existence and cause of physical phenomenon related to prior earthquake activity and to gain a better understanding of the physics of earthquake and earthquake cycles. The recent catastrophic earthquake in Japan in March 2011 has provided a renewed interest in the important question of the existence of precursory signals preceding strong earthquakes. We will demonstrate our approach based on integration and analysis of several atmospheric and environmental parameters that were found associated with earthquakes. These observations include: thermal infrared radiation, radon! ion activities; air temperature and humidity and a concentration of electrons in the ionosphere. We describe a possible physical link between atmospheric observations with earthquake precursors using the latest Lithosphere-Atmosphere-Ionosphere Coupling model, one of several paradigms used to explain our observations. Initial results for the period of2003-2009 are presented from our systematic hind-cast validation studies. We present our findings of multi-sensor atmospheric precursory signals for two major earthquakes in Japan, M6.7 Niigata-ken Chuetsu-oki of July16, 2007 and the latest M9.0 great Tohoku earthquakes of March 11,2011

  9. Methodology, Algorithms, and Emerging Tool for Automated Design of Intelligent Integrated Multi-Sensor Systems

    Directory of Open Access Journals (Sweden)

    Andreas König

    2009-11-01

    Full Text Available The emergence of novel sensing elements, computing nodes, wireless communication and integration technology provides unprecedented possibilities for the design and application of intelligent systems. Each new application system must be designed from scratch, employing sophisticated methods ranging from conventional signal processing to computational intelligence. Currently, a significant part of this overall algorithmic chain of the computational system model still has to be assembled manually by experienced designers in a time and labor consuming process. In this research work, this challenge is picked up and a methodology and algorithms for automated design of intelligent integrated and resource-aware multi-sensor systems employing multi-objective evolutionary computation are introduced. The proposed methodology tackles the challenge of rapid-prototyping of such systems under realization constraints and, additionally, includes features of system instance specific self-correction for sustained operation of a large volume and in a dynamically changing environment. The extension of these concepts to the reconfigurable hardware platform renders so called self-x sensor systems, which stands, e.g., for self-monitoring, -calibrating, -trimming, and -repairing/-healing systems. Selected experimental results prove the applicability and effectiveness of our proposed methodology and emerging tool. By our approach, competitive results were achieved with regard to classification accuracy, flexibility, and design speed under additional design constraints.

  10. Game Design to Measure Reflexes and Attention Based on Biofeedback Multi-Sensor Interaction

    Science.gov (United States)

    Ortiz-Vigon Uriarte, Inigo de Loyola; Garcia-Zapirain, Begonya; Garcia-Chimeno, Yolanda

    2015-01-01

    This paper presents a multi-sensor system for implementing biofeedback as a human-computer interaction technique in a game involving driving cars in risky situations. The sensors used are: Eye Tracker, Kinect, pulsometer, respirometer, electromiography (EMG) and galvanic skin resistance (GSR). An algorithm has been designed which gives rise to an interaction logic with the game according to the set of physiological constants obtained from the sensors. The results reflect a 72.333 response to the System Usability Scale (SUS), a significant difference of p = 0.026 in GSR values in terms of the difference between the start and end of the game, and an r = 0.659 and p = 0.008 correlation while playing with the Kinect between the breathing level and the energy and joy factor. All the sensors used had an impact on the end results, whereby none of them should be disregarded in future lines of research, even though it would be interesting to obtain separate breathing values from that of the cardio. PMID:25789493

  11. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    Science.gov (United States)

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-05-28

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  12. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar

    Science.gov (United States)

    Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan

    2016-09-01

    A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.

  13. Design and Testing of a Multi-Sensor Pedestrian Location and Navigation Platform

    Directory of Open Access Journals (Sweden)

    Valérie Renaudin

    2012-03-01

    Full Text Available avigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs such as the Global Positioning System (GPS with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  14. a Meteorological Risk Assessment Method for Power Lines Based on GIS and Multi-Sensor Integration

    Science.gov (United States)

    Lin, Zhiyong; Xu, Zhimin

    2016-06-01

    Power lines, exposed in the natural environment, are vulnerable to various kinds of meteorological factors. Traditional research mainly deals with the influence of a single meteorological condition on the power line, which lacks of comprehensive effects evaluation and analysis of the multiple meteorological factors. In this paper, we use multiple meteorological monitoring data obtained by multi-sensors to implement the meteorological risk assessment and early warning of power lines. Firstly, we generate meteorological raster map from discrete meteorological monitoring data using spatial interpolation. Secondly, the expert scoring based analytic hierarchy process is used to compute the power line risk index of all kinds of meteorological conditions and establish the mathematical model of meteorological risk. By adopting this model in raster calculator of ArcGIS, we will have a raster map showing overall meteorological risks for power line. Finally, by overlaying the power line buffer layer to that raster map, we will get to know the exact risk index around a certain part of power line, which will provide significant guidance for power line risk management. In the experiment, based on five kinds of observation data gathered from meteorological stations in Guizhou Province of China, including wind, lightning, rain, ice, temperature, we carry on the meteorological risk analysis for the real power lines, and experimental results have proved the feasibility and validity of our proposed method.

  15. Towards a social and context-aware multi-sensor fall detection and risk assessment platform.

    Science.gov (United States)

    De Backere, F; Ongenae, F; Van den Abeele, F; Nelis, J; Bonte, P; Clement, E; Philpott, M; Hoebeke, J; Verstichel, S; Ackaert, A; De Turck, F

    2015-09-01

    For elderly people fall incidents are life-changing events that lead to degradation or even loss of autonomy. Current fall detection systems are not integrated and often associated with undetected falls and/or false alarms. In this paper, a social- and context-aware multi-sensor platform is presented, which integrates information gathered by a plethora of fall detection systems and sensors at the home of the elderly, by using a cloud-based solution, making use of an ontology. Within the ontology, both static and dynamic information is captured to model the situation of a specific patient and his/her (in)formal caregivers. This integrated contextual information allows to automatically and continuously assess the fall risk of the elderly, to more accurately detect falls and identify false alarms and to automatically notify the appropriate caregiver, e.g., based on location or their current task. The main advantage of the proposed platform is that multiple fall detection systems and sensors can be integrated, as they can be easily plugged in, this can be done based on the specific needs of the patient. The combination of several systems and sensors leads to a more reliable system, with better accuracy. The proof of concept was tested with the use of the visualizer, which enables a better way to analyze the data flow within the back-end and with the use of the portable testbed, which is equipped with several different sensors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Persistent maritime surveillance using multi-sensor feature association and classification

    Science.gov (United States)

    van den Broek, Sebastiaan P.; Schwering, Piet B. W.; Liem, Kwan D.; Schleijpen, Ric

    2012-06-01

    In maritime operational scenarios, such as smuggling, piracy, or terrorist threats, it is not only relevant who or what an observed object is, but also where it is now and in the past in relation to other (geographical) objects. In situation and impact assessment, this information is used to determine whether an object is a threat. Single platform (ship, harbor) or single sensor information will not provide all this information. The work presented in this paper focuses on the sensor and object levels that provide a description of currently observed objects to situation assessment. For use of information of objects at higher information levels, it is necessary to have not only a good description of observed objects at this moment, but also from its past. Therefore, currently observed objects have to be linked to previous occurrences. Kinematic features, as used in tracking, are of limited use, as uncertainties over longer time intervals are so large that no unique associations can be made. Features extracted from different sensors (e.g., ESM, EO/IR) can be used for both association and classification. Features and classifications are used to associate current objects to previous object descriptions, allowing objects to be described better, and provide position history. In this paper a description of a high level architecture in which such a multi-sensor association is used is described. Results of an assessment of the usability of several features from ESM (from spectrum), EO and IR (shape, contour, keypoints) data for association and classification are shown.

  17. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  18. A NOVEL ALGORITHM OF MULTI-SENSOR IMAGE FUSION BASED ON WAVELET PACKET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to enhance the image information from multi-sensor and to improve the abilities of theinformation analysis and the feature extraction, this letter proposed a new fusion approach in pixel level bymeans of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequencyband and high frequency band in higher scale. It offers a more precise method for image analysis than Wave-let Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform toobtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. ThenWPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observationde la Therre ) image into low frequency band and high frequency band in three levels. Next, two high fre-quency coefficients and low frequency coefficients of the images are combined by linear weighting strategies.Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approachcan fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM(Histogram Matched)-based fusion algorithm and WT-based fusion approach.

  19. Design and implementation of information acquisition system architecture for multi-sensor robots

    Institute of Scientific and Technical Information of China (English)

    Chen Guoliang; Huang Xinhan; Wang Min

    2007-01-01

    A multi-layer controller architecture based on digital signal processor(DSP)and on-chip MCU was proposed for multi-sensor information acquisition system;it consisted of a data acquisition unit and a data fusion unit,and used a host controller to connect the two units into all integrated system.Compared with architectures of traditional acquisition system,this architecture had good openness and goad adaptability of algorithms in hardware.To validate its feasibility,a small-scale prototype was cleverly designed,which adopted ADuC812.tMS320F206 and 89C51 as controllers,and had 16-channel ADC and 12-channel DAC with high accuracy of 12-bit.The Interfaces between different controllers were introduced in detail.Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems.The prototype Was employed to provide on-line state measurement,parameter estimation and decision-making for trajectory tracking of wheeled mobile robot.Experimental results show that the prototype achieves the goals of data acquisition,fusion and control perfectly.

  20. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    Directory of Open Access Journals (Sweden)

    Sandro Barone

    2012-12-01

    Full Text Available Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface.

  1. Adaptive Multi-Sensor Perception for Driving Automation in Outdoor Contexts

    Directory of Open Access Journals (Sweden)

    Annalisa Milella

    2014-08-01

    Full Text Available In this research, adaptive perception for driving automation is discussed so as to enable a vehicle to automatically detect driveable areas and obstacles in the scene. It is especially designed for outdoor contexts where conventional perception systems that rely on a priori knowledge of the terrain's geometric properties, appearance properties, or both, is prone to fail, due to the variability in the terrain properties and environmental conditions. In contrast, the proposed framework uses a self-learning approach to build a model of the ground class that is continuously adjusted online to reflect the latest ground appearance. The system also features high flexibility, as it can work using a single sensor modality or a multi-sensor combination. In the context of this research, different embodiments have been demonstrated using range data coming from either a radar or a stereo camera, and adopting self-supervised strategies where monocular vision is automatically trained by radar or stereo vision. A comprehensive set of experimental results, obtained with different ground vehicles operating in the field, are presented to validate and assess the performance of the system.

  2. Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness

    Science.gov (United States)

    Leptoukh, Gregory; Zubko, V.; Gopalan, A.

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.

  3. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  4. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Baojun Chen

    2014-07-01

    Full Text Available Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers.

  5. MULTI-SENSOR DOCUMENTATION OF METRIC AND QUALITATIVE INFORMATION OF HISTORIC STONE STRUCTURES

    Directory of Open Access Journals (Sweden)

    E. Adamopoulos

    2017-08-01

    Full Text Available This paper focuses on the integration of multi-sensor techniques regarding the acquisition, processing, visualisation and management of data regarding historic stone structures. The interdisciplinary methodology that is carried out here comprises of two parts. In the first part, the acquisition of qualitative and quantitative data concerning the geometry, the materials and the degradation of the tangible heritage asset each time, is discussed. The second part, refers to the analysis, management and visualization of the interrelated data by using spatial information technologies. Through the paradigm of the surveying of the ancient temple of Pythian Apollo at Acropolis of Rhodes, Rhodes Island, Greece, it is aimed to highlight the issues deriving from the separate application of documentation procedures and how the fusion of these methods can contribute effectively to ensure the completeness of the measurements for complex structures. The surveying results are further processed to be compatible and integrated with GIS. Also, the geometric documentation derivatives are combined with environmental data and the results of the application of non-destructive testing and evaluation techniques in situ and analytical techniques in lab after sampling. GIS operations are utilized to document the building materials but also to model and to analyse the decay extent and patterns. Detailed surface measurements and geo-processing analysis are executed. This integrated approach, helps the assessment of past interventions on the monument, identify main causes of damage and decay, and finally assist the decision making on the most compatible materials and techniques for protection and restoration works.

  6. Design of Liquid Level Measurement System Using Multi Sensor Data Fusion for Improved Characteristics and Fault Detection

    Directory of Open Access Journals (Sweden)

    SANTHOSH K V Shashank Kumar

    2016-10-01

    Full Text Available Online validation of multi sensor data fusion based liquid level measurement technique using capacitance level sensor and ultrasonic level sensor is implemented in this work. The objectives of the proposed work is to calibrate level measurement system by fusing the outputs of fuzzy sets of Capacitive Level Sensor (CLS and Ultrasonic Level Sensor (ULS such that (i sensitivity and linearity should be improved as compared to ULS, (ii reduction of nonlinear characteristics like offset and saturation which persists in CLS, and (iii detection and identification of faults in sensors if any. These objectives are achieved by using the Joint Directors of Laboratories (JDL multi sensor data fusion framework in cascade to the outputs of both the sensor. The proposed liquid level measurement technique was subjected to testing with practical data and results show successful implementation of liquid level measurement system.

  7. Design of Liquid Level Measurement System Using Multi Sensor Data Fusion for Improved Characteristics and Fault Detection

    OpenAIRE

    SANTHOSH K V Shashank Kumar

    2016-01-01

    Online validation of multi sensor data fusion based liquid level measurement technique using capacitance level sensor and ultrasonic level sensor is implemented in this work. The objectives of the proposed work is to calibrate level measurement system by fusing the outputs of fuzzy sets of Capacitive Level Sensor (CLS) and Ultrasonic Level Sensor (ULS) such that (i) sensitivity and linearity should be improved as compared to ULS, (ii) reduction of nonlinear characteristics like offset and sat...

  8. Image-Based Multi-Sensor Data Representation and Fusion Via 2D Non-Linear Convolution

    OpenAIRE

    Aaron R. Rababaah

    2012-01-01

    Sensor data fusion is the process of combining data collected from multi sensors of homogeneous or heterogeneous modalities to perform inferences that may not be possible using a single sensor. This process encompasses several stages to arrive at a sound reliable decision making end result. These stages include: senor-signal preprocessing, sub-object refinement, object refinement, situation refinement, threat refinement and process refinement. Every stage draws from different domains to achie...

  9. Geometric calibration of multi-sensor image fusion system with thermal infrared and low-light camera

    Science.gov (United States)

    Peric, Dragana; Lukic, Vojislav; Spanovic, Milana; Sekulic, Radmila; Kocic, Jelena

    2014-10-01

    A calibration platform for geometric calibration of multi-sensor image fusion system is presented in this paper. The accurate geometric calibration of the extrinsic geometric parameters of cameras that uses planar calibration pattern is applied. For calibration procedure specific software is made. Patterns used in geometric calibration are prepared with aim to obtain maximum contrast in both visible and infrared spectral range - using chessboards which fields are made of different emissivity materials. Experiments were held in both indoor and outdoor scenarios. Important results of geometric calibration for multi-sensor image fusion system are extrinsic parameters in form of homography matrices used for homography transformation of the object plane to the image plane. For each camera a corresponding homography matrix is calculated. These matrices can be used for image registration of images from thermal and low light camera. We implemented such image registration algorithm to confirm accuracy of geometric calibration procedure in multi-sensor image fusion system. Results are given for selected patterns - chessboard with fields made of different emissivity materials. For the final image registration algorithm in surveillance system for object tracking we have chosen multi-resolution image registration algorithm which naturally combines with a pyramidal fusion scheme. The image pyramids which are generated at each time step of image registration algorithm may be reused at the fusion stage so that overall number of calculations that must be performed is greatly reduced.

  10. Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System

    Science.gov (United States)

    Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.

    2009-04-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the Viz

  11. Muecas: a multi-sensor robotic head for affective human robot interaction and imitation.

    Science.gov (United States)

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-04-28

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  12. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  13. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  14. Characterization of water bodies for mosquito habitat using a multi-sensor approach

    Science.gov (United States)

    Midekisa, A.; Wimberly, M. C.; Senay, G. B.

    2012-12-01

    Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are

  15. Demonstration of Helicopter Multi-sensor Towed Array Detection System (MTADS) Magnetometry at Former Camp Beale, California

    Science.gov (United States)

    2008-10-01

    SkyNet is an ASCII xyz file that can then be imported into the Geosoft Oasis Montaj geophysical processing environment. Oasis is used to visualize...the data and apply advanced processing where required. The SkyNET/ Montaj combination facilitates data review, merging, correction, filtering

  16. Temporal Pattern Recognition: A Network Architecture For Multi-Sensor Fusion

    Science.gov (United States)

    Priebe, C. E.; Marchette, D. J.

    1989-03-01

    A self-organizing network architecture for the learning and recognition of temporal patterns is proposed. This multi-layered architecture has as its focal point a layer of multi-dimensional Gaussian classification nodes, and the learning scheme employed is based on standard statistical moving mean and moving covariance calculations. The nodes are implemented in the network architecture by using a Gaussian, rather than sigmoidal, transfer function acting on the input from numerous connections. Each connection is analogous to a separate dimension for the Gaussian function. The learning scheme is a one-pass method, eliminating the need for repetitive presentation of the teaching stimuli. The Gaussian classes developed are representative of the statistics of the teaching data and act as templates in classifying novel inputs. The input layer employs a time-based decay to develop a time-ordered representation of the input stimuli. This temporal pattern recognition architecture is used to perform multi-sensor fusion and scene analysis for ROBART II, an autonomous sentry robot employing heterogeneous and homogeneous binary (on / off) sensors. The system receives sensor packets from ROBART indicating which sensors are active. The packets from various sensors are integrated in the input layer. As time progresses these sensor outputs become ordered, allowing the system to recognize activities which are dependent, not only on the individual events which make up the activity, but also on the order in which these events occur and their relative spacing throughout time. Each Gaussian classification node, representing a learned activity as an ordered sequence of sensor outputs, calculates its activation value independently, based on the activity in the input layer. These Gaussian activation values are then used to determine which, if any, of the learned sequences are present and with what confidence. The classification system is capable of recognizing activities despite missing

  17. Multi-sensor detection of glacial lake outburst floods in Greenland from space

    Science.gov (United States)

    Citterio, M.

    2015-12-01

    GLOFs cause substantial erosion, transport and delivery of sediment along the river system from the glaciated parts of the hydrologic catchment to the sea, and have been found to control the riverine export dynamics of some pollutants like mercury in NE Greenland. GLOFs also pose a risk to human presence and infrastracture. Ice-dammed lakes at the margin of the ice sheet and of local glaciers and ice caps are common features of Greenland's landscape. The occasional or periodic emptying of some of these lakes have been described as early as the 18thcentury. Thinning glaciers in a warming climate are already changing the behaviour of some of these lakes. However, little is known of the frequency and seasonality of glacier lake outburst floods (GLOF) outside of the relatively more densely populated parts of West and South Greenland. This contribution demonstrates automatic multi-sensor detection of ice-dammed lake emptying events from space for three test regions in West, South and Northeast Greenland, using visible imagery from Landsat, ASTER, PROBA-V and MODIS. The current detection algorithm relies on prior knowledge of lakes location and approximate shape from a topographic map at the scale of 1:250.000, and it is meant as a prototype for a future operational product. For the well documented case of the glacier-dammed lake of A.P. Olsen Ice Cap (NE Greenland), where GLOF's observations at Zackenberg Research Station started in 1996, the remote sensing and in situ records are compared, showing good agreement. ICESat altimetry, MODIS and AVHRR thermal imagery, and the ENVISAR ASAR signature of two detected GLOFs that took place late autumn and winter are also discussed to demonstrate the potential for successful retrievals during the polar night. The upcoming Sentinel-3 missions will alleviate what is currently the major drawback of implementing this prototype into an operational service, namely the limited availability of high resolution imagery. This is of special

  18. Optoelectronic Mounting Structure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gene R. (Albuquerque, NM); Armendariz, Marcelino G. (Albuquerque, NM); Baca, Johnny R. F. (Albuquerque, NM); Bryan, Robert P. (Albuquerque, NM); Carson, Richard F. (Albuquerque, NM); Chu, Dahwey (Albuquerque, NM); Duckett, III, Edwin B. (Albuquerque, NM); McCormick, Frederick B. (Albuquerque, NM); Peterson, David W. (Sandia Park, NM); Peterson, Gary D. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM); Reysen, Bill H. (Lafayette, CO)

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  19. MetalMapper: A Multi-Sensor TEM System for UXO Detection and Classification

    Science.gov (United States)

    2011-04-01

    7 The instrumentation package includes two external modules that provide real-time kinematic ( RTK ) global positioning system ( GPS ) and...MM system. MM Component Name Cost Antenna platform and DAQ system $65K RTK GPS system $30K Platform attitude sensor $5K Vehicle deployment $5K...deployed as-is as a human-powered cart. The instrument containing the DAQ can be mounted on a pack-frame and carried by an operator. RTK GPS SystemCThe

  20. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Torsten [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Ginsterweg 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany); Molina, Roberto [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Ginsterweg 1, 52428 Juelich (Germany); Yoshinobu, Tatsuo [Tohoku University, Department of Electronic Engineering, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kloock, Joachim P. [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Ginsterweg 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany); Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Ginsterweg 1, 52428 Juelich (Germany); Schoening, Michael J. [Aachen University of Applied Sciences, Juelich Campus, Institute of Nano- and Biotechnologies, Ginsterweg 1, 52428 Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, 52425 Juelich (Germany)], E-mail: m.j.schoening@fz-juelich.de

    2007-12-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd{sup 2+}-selective chalcogenide-glass layer together with a pH-sensitive Ta{sub 2}O{sub 5} layer validates the use of the LAPS for chemical multi-sensor applications.

  1. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    Science.gov (United States)

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  2. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    Science.gov (United States)

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-01-01

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767

  3. Multi-sensor Evolution Analysis system: how WCS/WCPS technology supports real time exploitation of geospatial data

    Science.gov (United States)

    Natali, Stefano; Mantovani, Simone; Folegani, Marco; Barboni, Damiano

    2014-05-01

    EarthServer is a European Framework Program project that aims at developing and demonstrating the usability of open standards (OGC and W3C) in the management of multi-source, any-size, multi-dimensional spatio-temporal data - in short: "Big Earth Data Analytics". In the third and last year of EarthServer project, the Climate Data Service lighthouse application has been released in its full / consolidated mode. The Multi-sensor Evolution Analysis (MEA) system, the geospatial data analysis tool empowered with OGC standard, has been adopted to handle data manipulation and visualization; Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) are used to access and process ESA, NASA and third party products. Tenth of Terabytes of full-mission, multi-sensor, multi-resolution, multi-projection and cross-domain coverages are already available to user interest groups belonging Land, Ocean and Atmosphere products. The MEA system is available at https://mea.eo.esa.int. During the live demo, typical test cases implemented by User interest Groups within EarthServer and ESA Image Information Mining projects will be showed with special emphasis on the comparison of MACC Reanalysis and ESA CCI products.

  4. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    first results of an extended global study of worldwide trends in lake temperatures, indicating that the majority of lakes studied has been warming significantly over the last few decades. We further discuss distinct regional patterns in these trends and how they relate to spatial patterns in recently observed global air temperature increase. Using a multi-sensor archive of thermal infrared imagery, the research performed within the framework of this study for the first time allows a unique, global-scale, and consistent perspective on the temporal thermal properties of large inland water bodies worldwide, in particular for the vast majority of lakes for which no in situ data is available. This facilitates the construction of continuous surface temperature time series for the last few decades as well as the detection of trends in the lakes' temporal thermal behavior. As such, the results of this study are important with respect to ongoing research on the impact of global climate change on lake ecosystems as well as the interaction between large lakes and regional climate.

  5. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  6. Recognizing frequency characteristics of gas sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel method based on independent component analyzing (ICA) in frequency domain to distinguish the frequency characteristics of multi-sensor system is presented. The conditions of this type of ICA are considered and each step of resolving the problem is discussed. For a two gas sensor array, the frequency characteristics including amplitude-frequency and phase-frequency are recognized by this method, and cross-sensitivity between them is also eliminated. From the principle of similarity, the recognition mean square error is no more than 0.085.

  7. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  8. Multi Sensor Evolution Analysis (MEA): Land Use and Land Cover Analysis Applied to (A)ATSR Time Series

    Science.gov (United States)

    Beccati, Alan; Folegani, Marco; D'Elia, Sergio; Barboni, Damiano; Selmi, Stefano

    2010-12-01

    The problem of (better) exploiting long-term satellite image databases is not yet resolved. Meanwhile the continuous growth of satellite data is generating an unprecedented increase in data types and volume. All this makes unrealistic to proceed with the current, mainly manual, image processing. Therefore the upcoming challenge is to find new methods permitting in near real-time to store and access large data volumes and to simplify or even automate the extraction of meaningful information for application domains, such as Land Use / Land Cover Change (LU/LCC) mapping. In the framework of the ESA Support by Pre-classification to Specific Applications (SPA) project [1] a fully automatic LU/LCC application (initially named (A)ATSR Land Classification System (ALCS)) known as Multi sensor Evolution Analysis (MEA) system [2], has been implemented and tested. MEA data store is built using 15 years of ATSR2-AATSR data (C1P 4713, C1P 5016).

  9. A High Performance Computing Study of a Scalable FISST-Based Approach to Multi-Target, Multi-Sensor Tracking

    Science.gov (United States)

    Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.

    2016-09-01

    Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.

  10. On the Design of a Wearable Multi-sensor System for Recognizing Motion Modes and Sit-to-stand Transition

    Directory of Open Access Journals (Sweden)

    Enhao Zheng

    2014-02-01

    Full Text Available Locomotion mode recognition is one of the key aspects of control of intelligent prostheses. This paper presents a wireless wearable multi-sensor system for locomotion mode recognition. The sensor suit of the system includes three inertial measurement units (IMUs and eight force sensors. The system was built to measure both kinematic (tilt angles and dynamic (ground contact forces signals of human gaits. To evaluate the recognition performance of the system, seven motion modes and sit-to-stand transition were monitored. With a linear discriminant analysis (LDA classifier, the proposed system can accurately classify the current states. The overall motion mode recognition accuracy was 99.9% during the stance phase and 98.5% during the swing phase. For sit-to-stand transition recognition, the average accuracy was 99.9%. These promising results show the potential of the designed system for the control of intelligent prostheses.

  11. Studi Awal Teknologi WIFI Untuk Diimplementasikan Pada Pembuatan Prototipe Sistem Remote Terminal Unit Multi Sensor Dengan Energi Mandiri

    Directory of Open Access Journals (Sweden)

    Asep Insani

    2012-09-01

    Full Text Available Dalam makalah ini dipaparkan tentang hasil studi awal teknologi wifi dalam rangka perancangan dan pembuatan prototipe sistem remote terminal unit (RTU multi sensor dengan energi mandiri untuk mercusuar di wilayah pulau-pulau kecil dan perbatasan yang akan digunakan untuk pengukuran dan komunikasi data serta pemantauan lingkungan. Dalam rangka pembuatan prototipe tersebut terlebih dahulu dibuat model sistem skala laboratorium, kemudian disempurnakan dan dikembangkan menjadi prototipe sistem. Seiring dengan pembuatan model skala laboratorium telah dilakukan pecobaan-percobaan meliputi mode operasi wireless, analisa dan pengamatan karakteristik teknologi wifi, mengetahui jarak optimal jaringan kabel di beberapa tempat dan jarak yang berbeda dengan menggunakan laptop. Dari penelitian ini didapat hasil percobaan yang terkait dengan posisi dan jarak yang optimal untuk mengakses jaringan nirkabel yang digunakan sebagai masukan atau bahan pertimbangan untuk penempatan suatu akses point dari RTU.  Dengan demikian  pengguna jaringan nirkabel dapat dengan mudah mendapatkan signal dan transfer rate yang paling optimum disetiap lokasi disekitar mercusuar.

  12. Daily Life Event Segmentation for Lifestyle Evaluation Based on Multi-Sensor Data Recorded by a Wearable Device*

    Science.gov (United States)

    Li, Zhen; Wei, Zhiqiang; Jia, Wenyan; Sun, Mingui

    2013-01-01

    In order to evaluate people’s lifestyle for health maintenance, this paper presents a segmentation method based on multi-sensor data recorded by a wearable computer called eButton. This device is capable of recording more than ten hours of data continuously each day in multimedia forms. Automatic processing of the recorded data is a significant task. We have developed a two-step summarization method to segment large datasets automatically. At the first step, motion sensor signals are utilized to obtain candidate boundaries between different daily activities in the data. Then, visual features are extracted from images to determine final activity boundaries. It was found that some simple signal measures such as the combination of a standard deviation measure of the gyroscope sensor data at the first step and an image HSV histogram feature at the second step produces satisfactory results in automatic daily life event segmentation. This finding was verified by our experimental results. PMID:24110323

  13. On the Design of a Wearable Multi-sensor System for Recognizing Motion Modes and Sit-to-stand Transition

    Directory of Open Access Journals (Sweden)

    Enhao Zheng

    2014-02-01

    Full Text Available Locomotion mode recognition is one of the key aspects of control of intelligent prostheses. This paper presents a wireless wearable multi-sensor system for locomotion mode recognition. The sensor suit of the system includes three inertial measurement units (IMUs and eight force sensors. The system was built to measure both kinematic (tilt angles and dynamic (ground contact forces signals of human gaits. To evaluate the recognition performance of the system, seven motion modes and sit-to-stand transition were monitored. With a linear discriminant analysis (LDA classifier, the proposed system can accurately classify the current states. The overall motion mode recognition accuracy was 99.9% during the stance phase and 98.5% during the swing phase. For sit-to-stand transition recognition, the average accuracy was 99.9%. These promising results show the potential of the designed system for the control of intelligent prostheses.

  14. Applications of state estimation in multi-sensor information fusion for the monitoring of open pit mine slope deformation

    Institute of Scientific and Technical Information of China (English)

    FU Hua; LIU Yin-ping; XIAO Jian

    2008-01-01

    The traditional open pit mine slope deformation monitoring system can not use the monitoring information coming from many monitoring points at the same time,can only using the monitoring data coming from a key monitoring point, and that is to say it can only handle one-dimensional time series. Given this shortage in the monitoring,the multi-sensor information fusion in the state estimation techniques would be introduced to the slope deformation monitoring system, and by the dynamic characteristics of deformation slope, the open pit slope would be regarded as a dynamic goal, the condition monitoring of which would be regarded as a dynamic target tracking. Distributed Information fusion technology with feedback was used to process the monitoring data and on this basis Klman filtering algorithms was introduced, and the simulation examples was used to prove its effectivenes.

  15. BreedVision — A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding

    Science.gov (United States)

    Busemeyer, Lucas; Mentrup, Daniel; Möller, Kim; Wunder, Erik; Alheit, Katharina; Hahn, Volker; Maurer, Hans Peter; Reif, Jochen C.; Würschum, Tobias; Müller, Joachim; Rahe, Florian; Ruckelshausen, Arno

    2013-01-01

    To achieve the food and energy security of an increasing World population likely to exceed nine billion by 2050 represents a major challenge for plant breeding. Our ability to measure traits under field conditions has improved little over the last decades and currently constitutes a major bottleneck in crop improvement. This work describes the development of a tractor-pulled multi-sensor phenotyping platform for small grain cereals with a focus on the technological development of the system. Various optical sensors like light curtain imaging, 3D Time-of-Flight cameras, laser distance sensors, hyperspectral imaging as well as color imaging are integrated into the system to collect spectral and morphological information of the plants. The study specifies: the mechanical design, the system architecture for data collection and data processing, the phenotyping procedure of the integrated system, results from field trials for data quality evaluation, as well as calibration results for plant height determination as a quantified example for a platform application. Repeated measurements were taken at three developmental stages of the plants in the years 2011 and 2012 employing triticale (×Triticosecale Wittmack L.) as a model species. The technical repeatability of measurement results was high for nearly all different types of sensors which confirmed the high suitability of the platform under field conditions. The developed platform constitutes a robust basis for the development and calibration of further sensor and multi-sensor fusion models to measure various agronomic traits like plant moisture content, lodging, tiller density or biomass yield, and thus, represents a major step towards widening the bottleneck of non-destructive phenotyping for crop improvement and plant genetic studies. PMID:23447014

  16. A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible silicon for IoT applications

    KAUST Repository

    Nassar, Joanna M.

    2017-02-07

    We report CMOS technology enabled fabrication and system level integration of flexible bulk silicon (100) based multi-sensors platform which can simultaneously sense pressure, temperature, strain and humidity under various physical deformations. We also show an advanced wearable version for body vital monitoring which can enable advanced healthcare for IoT applications.

  17. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  18. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    Science.gov (United States)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  19. Horizontally mounted solar collector

    Science.gov (United States)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  20. The research of auto-focusing method for the image mosaic and fusion system with multi-sensor

    Science.gov (United States)

    Pang, Ke; Yao, Suying; Shi, Zaifeng; Xu, Jiangtao; Liu, Jiangming

    2013-09-01

    In modern image processing, due to the development of digital image processing, the focus of the sensor can be automatically set by the digital processing system through computation. In the other hand, the auto-focusing synchronously and consistently is one of the most important factors for image mosaic and fusion processing, especially for the system with multi-sensor which are put on one line in order to gain the wide angle video information. Different images sampled by the sensors with different focal length values will always increase the complexity of the affine matrix of the image mosaic and fusion in next, which potentially reducing the efficiency of the system and consuming more power. Here, a new fast evaluation method based on the gray value variance of the image pixel is proposed to find the common focal length value for all sensors to achieve the better image sharpness. For the multi-frame pictures that are sampled from different sensors that have been adjusted and been regarded as time synchronization, the gray value variances of the adjacent pixels are determined to generate one curve. This curve is the focus measure function which describes the relationship between the image sharpness and the focal length value of the sensor. On the basis of all focus measure functions of all sensors in the image processing system, this paper uses least square method to carry out the data fitting to imitate the disperse curves and give one objective function for the multi-sensor system, and then find the optimal solution corresponding to the extreme value of the image sharpness according to the evaluation of the objective function. This optimal focal length value is the common parameter for all sensors in this system. By setting the common focal length value, in the premise of ensuring the image sharpness, the computing of the affine matrix which is the core processing of the image mosaic and fusion which stitching all those pictures into one wide angle image will be

  1. A multi-sensor upper tropospheric ozone product (MUTOP based on TES Ozone and GOES water vapor: derivation

    Directory of Open Access Journals (Sweden)

    S. R. Felker

    2011-07-01

    Full Text Available The Tropospheric Emission Spectrometer (TES, a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with geostationary imagery describing synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT ozone through the integration of TES ozone measurements with two synoptic dynamic tracers of stratospheric influence: specific humidity derived from the GOES Imager water vapor absorption channel, and potential vorticity (PV from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP.

    Our results suggest that 72 % of TES-observed UT ozone variability can be explained by its correlation with dry air and high PV. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE of 18 ppbv (part per billion by volume. There are several advantages to this multi-sensor derived product approach: (1 it is calculated from two operational fields (GOES specific humidity and GFS PV, so maps of layer-average ozone can be created and used in near real-time; (2 the product provides the spatial resolution and coverage of a geostationary image as it depicts the variable distribution of ozone in the UT; and (3 the 6 h temporal resolution of the derived

  2. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP based on TES ozone and GOES water vapor: derivation

    Directory of Open Access Journals (Sweden)

    S. R. Felker

    2010-12-01

    Full Text Available The Tropospheric Emission Spectrometer (TES, a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with information about synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT ozone through the integration of TES ozone measurements with two synoptic dynamical tracers of stratospheric influence: specific humidity derived from the GOES Imager, and potential vorticity from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in-situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP.

    Our approach results in the temporal and spatial coverage of a geostationary platform, a major improvement over individual polar overpasses, while retaining TES's ability to characterize UT ozone. Results suggest that over 70% of TES-observed UT ozone variability can be explained by correlation with the two dynamical tracers. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE of 19.2 ppbv. There are several advantages to this multi-sensor derived product approach: (1 it is calculated from 2 operational fields (GOES specific humidity and GFS PV, so the layer-average ozone can be created and used in near real-time; (2 the product provides the spatial resolution and coverage of a geostationary

  3. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  4. Evaluating Multi-Sensor Nighttime Earth Observation Data for Identification of Mixed vs. Residential Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Christoph Aubrecht

    2016-02-01

    Full Text Available This paper introduces a novel top-down approach to geospatially identify and distinguish areas of mixed use from predominantly residential areas within urban agglomerations. Under the framework of the World Bank’s Central American Country Disaster Risk Profiles (CDRP initiative, a disaggregated property stock exposure model has been developed as one of the key elements for disaster risk and loss estimation. Global spatial datasets are therefore used consistently to ensure wide-scale applicability and transferability. Residential and mixed use areas need to be identified in order to spatially link accordingly compiled property stock information. In the presented study, multi-sensor nighttime Earth Observation data and derivative products are evaluated as proxies to identify areas of peak human activity. Intense artificial night lighting in that context is associated with a high likelihood of commercial and/or industrial presence. Areas of low light intensity, in turn, can be considered more likely residential. Iterative intensity thresholding is tested for Cuenca City, Ecuador, in order to best match a given reference situation based on cadastral land use data. The results and findings are considered highly relevant for the CDRP initiative, but more generally underline the relevance of remote sensing data for top-down modeling approaches at a wide spatial scale.

  5. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    Science.gov (United States)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  6. A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements

    Science.gov (United States)

    Tannous, Halim; Istrate, Dan; Benlarbi-Delai, Aziz; Sarrazin, Julien; Gamet, Didier; Ho Ba Tho, Marie Christine; Dao, Tien Tuan

    2016-01-01

    Exergames have been proposed as a potential tool to improve the current practice of musculoskeletal rehabilitation. Inertial or optical motion capture sensors are commonly used to track the subject’s movements. However, the use of these motion capture tools suffers from the lack of accuracy in estimating joint angles, which could lead to wrong data interpretation. In this study, we proposed a real time quaternion-based fusion scheme, based on the extended Kalman filter, between inertial and visual motion capture sensors, to improve the estimation accuracy of joint angles. The fusion outcome was compared to angles measured using a goniometer. The fusion output shows a better estimation, when compared to inertial measurement units and Kinect outputs. We noted a smaller error (3.96°) compared to the one obtained using inertial sensors (5.04°). The proposed multi-sensor fusion system is therefore accurate enough to be applied, in future works, to our serious game for musculoskeletal rehabilitation. PMID:27854288

  7. Predictive modelling of savannah woody cover: A multi-temporal and multi-sensor machine learning investigation

    Science.gov (United States)

    Higginbottom, Thomas; Symeonakis, Elias

    2016-04-01

    Effective monitoring of the Earth's ecosystems requires the availability of methods for quantifying the structural composition and cover of vegetation. This is especially important in heterogeneous environments, such as semi-arid savannahs which are naturally comprised of a dynamic mix of tree, shrub, and grass components. The fractional coverage of woody vegetation is a key ecosystem attribute in savannahs, particularly given current concerns over the invasion of grasslands by shrub species (shrub encroachment), or the over-exploitation of woody biomass for fuelwood. Remote sensing has a clear role to play in monitoring semi-arid environments, and in recent years the number of both spacebourne sensors and collected scenes has increased dramatically allowing for multi-temporal and multi-sensor investigations. Here we employ a statistical learning framework to assess the potential of optical and radar imagery for predicting fractional woody cover. We test a number of different model combinations in the Kruger National Park, South Africa. Our results show that combining Landsat and PALSAR data produces the most accurate predictions (R2 =0.65, P fractional cover prediction.

  8. Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network.

    Science.gov (United States)

    Kuo, R J.; Cohen, P H.

    1999-03-01

    On-line tool wear estimation plays a very critical role in industry automation for higher productivity and product quality. In addition, appropriate and timely decision for tool change is significantly required in the machining systems. Thus, this paper is dedicated to develop an estimation system through integration of two promising technologies, artificial neural networks (ANN) and fuzzy logic. An on-line estimation system consisting of five components: (1) data collection; (2) feature extraction; (3) pattern recognition; (4) multi-sensor integration; and (5) tool/work distance compensation for tool flank wear, is proposed herein. For each sensor, a radial basis function (RBF) network is employed to recognize the extracted features. Thereafter, the decisions from multiple sensors are integrated through a proposed fuzzy neural network (FNN) model. Such a model is self-organizing and self-adjusting, and is able to learn from the experience. Physical experiments for the metal cutting process are implemented to evaluate the proposed system. The results show that the proposed system can significantly increase the accuracy of the product profile.

  9. Multi-sensor analysis of convective activity in Central Italy during the HyMeX SOP 1.1

    Directory of Open Access Journals (Sweden)

    N. Roberto

    2015-09-01

    Full Text Available A multi-sensor analysis of convective precipitation events that occurred in central Italy, in autumn 2012 during the HyMeX (Hydrological cycle in the Mediterranean eXperiment Special Observation Period (SOP 1.1 is presented. Various microphysical properties of liquid and solid hydrometeors were examined to assess their relationship with lightning activity. The instrumentation used consisted of a C-band dual-polarization weather radar, a 2-D video disdrometer, and a lightning network. A fuzzy logic based hydrometeor classification algorithm was tuned and optimized for the detection of graupel from C-band dual-polarization radar measurements. Graupel ice water content was then retrieved and related to lightning activity. A linear correlation was found between the total mass of graupel above the 0° isothermal and the number of strokes detected by the lightning network in agreement with model outputs, which confirms the importance of ice in the electrical charging of convective clouds, although differences were noticed among events. Parameters of the gamma raindrop size distribution measured by a 2-D video disdrometer, revealed the transition from convective to stratiform regime during the event and where related. However, lightning activity was not always recorded when the precipitation regime was classified as convective. More robust relationships were found relating lightning activity to graupel.

  10. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  11. Spectral and spatial resolution analysis of multi sensor satellite data for coral reef mapping: Tioman Island, Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet; Kabiri, Keivan

    2012-07-01

    This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island

  12. Evaluation of performance of multi-sensors hot-wire probes using Neural-Networks in-situ calibration

    Science.gov (United States)

    Liberzon, Dan; Kit, Eliezer

    2015-11-01

    Neural Networks (NN) based in-situ calibration of hot-wire anemometers was recently successfully implemented in field measurements. Although proving feasibility of field measurements using this, relatively new, calibration method the acquired field data also revealed some significant ambiguities in use of combined two- or three-sensor probes. A clearly better behavior of the probe comprised of four sensors (a pair of X shaped probes) has motivated the presented here work, aimed to investigate the NN based procedure performance dependence on the number of wires in the probe. Hypothesizing that the main reason for performance differences is in the fact that a 3-wire probe lacks any special features to withstand the noise in the signal due to temperature fluctuations and sensors' contamination, series of wind tunnel experiments with grid generated turbulence were designed and performed. Performance of a various multi-sensor probes' geometries was examined using the NN based method, while standard calibration data sets were also obtained prior to each set of measurements serving as a reference and as alternative training sets for the NN. The obtained results clearly indicated an advantage in using a symmetrical geometry, and especially using the four-sensor probe to obtain a reasonable description of the 3D velocity field. This is argued to be a result of redundant information on one or several velocity components present in four-sensor probes and serving as an efficient tool for noise reduction.

  13. Multi-Sensor Data Fusion Using a Relevance Vector Machine Based on an Ant Colony for Gearbox Fault Detection

    Directory of Open Access Journals (Sweden)

    Zhiwen Liu

    2015-08-01

    Full Text Available Sensors play an important role in the modern manufacturing and industrial processes. Their reliability is vital to ensure reliable and accurate information for condition based maintenance. For the gearbox, the critical machine component in the rotating machinery, the vibration signals collected by sensors are usually noisy. At the same time, the fault detection results based on the vibration signals from a single sensor may be unreliable and unstable. To solve this problem, this paper proposes an intelligent multi-sensor data fusion method using the relevance vector machine (RVM based on an ant colony optimization algorithm (ACO-RVM for gearboxes’ fault detection. RVM is a sparse probability model based on support vector machine (SVM. RVM not only has higher detection accuracy, but also better real-time accuracy compared with SVM. The ACO algorithm is used to determine kernel parameters of RVM. Moreover, the ensemble empirical mode decomposition (EEMD is applied to preprocess the raw vibration signals to eliminate the influence caused by noise and other unrelated signals. The distance evaluation technique (DET is employed to select dominant features as input of the ACO-RVM, so that the redundancy and inference in a large amount of features can be removed. Two gearboxes are used to demonstrate the performance of the proposed method. The experimental results show that the ACO-RVM has higher fault detection accuracy than the RVM with normal the cross-validation (CV.

  14. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network

    OpenAIRE

    2016-01-01

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO2, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment w...

  15. Progressing from 1D to 2-3D near surface airborne electromagnetic mapping: Development of MAiSIE, a Multi-Sensor, Airborne Sea Ice Explorer

    OpenAIRE

    Pfaffhuber, Andreas; Hendricks, Stefan; Kvistedal, Yme

    2012-01-01

    The polar oceans’ sea ice cover is an unconventional and challenging geophysical target to map. Current state of ractice helicopter-electromagnetic (HEM) ice thickness apping is limited to 1D interpretation due to common rocedures and systems that are mainly sensitive to layered tructures. We present a new generation Multi-sensor, irborne Sea Ice Explorer (MAiSIE) to overcome these imitations. As the actual sea ice structure is 3D and in parts heterogeneous, errors up to 50% are observe...

  16. Multi-Sensor Core Logger (MSCL) P-wave velocity, gamma-ray density, and magnetic susceptibility whole-core logs of sediment cores collected in 2009 offshore from Palos Verdes, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release includes Multi-Sensor Core Logger (MSCL) P-wave velocity, gamma-ray density, and magnetic susceptibility whole-core logs of sediment...

  17. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  18. Photovoltaic array loss mechanisms

    Science.gov (United States)

    Gonzalez, Charles

    1986-10-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  19. Chemometric analysis of multi-sensor hyperspectral images of coarse mode aerosol particles for the image-based investigation on aerosol particles

    Science.gov (United States)

    Ofner, Johannes; Kamilli, Katharina A.; Eitenberger, Elisabeth; Friedbacher, Gernot; Lendl, Bernhard; Held, Andreas; Lohninger, Hans

    2015-04-01

    Multi-sensor hyperspectral imaging is a novel technique, which allows the determination of composition, chemical structure and pure components of laterally resolved samples by chemometric analysis of different hyperspectral datasets. These hyperspectral datasets are obtained by different imaging methods, analysing the same sample spot and superimposing the hyperspectral data to create a single multi-sensor dataset. Within this study, scanning electron microscopy (SEM), Raman and energy-dispersive X-ray spectroscopy (EDX) images were obtained from size-segregated aerosol particles, sampled above Western Australian salt lakes. The particles were collected on aluminum foils inside a 2350 L Teflon chamber using a Sioutas impactor, sampling aerosol particles of sizes between 250 nm and 10 µm. The complex composition of the coarse-mode particles can be linked to primary emissions of inorganic species as well as to oxidized volatile organic carbon (VOC) emissions. The oxidation products of VOC emissions are supposed to form an ultra-fine nucleation mode, which was observed during several field campaigns between 2006 and 2013. The aluminum foils were analysed using chemical imaging and electron microscopy. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the foils at a resolution of about 1 µm. The same area was analysed using a Quanta FEI 200 electron microscope (about 250 nm resolution). In addition to the high-resolution image, the elemental composition could be investigated using energy-dispersive X-ray spectroscopy. The obtained hyperspectral images were combined into a multi-sensor dataset using the software package Imagelab (Epina Software Labs, www.imagelab.at). After pre-processing of the images, the multi-sensor hyperspectral dataset was analysed using several chemometric methods such as principal component analysis (PCA), hierarchical cluster analysis (HCA) and other multivariate methods. Vertex

  20. Mount Vesuvius, Italy

    Science.gov (United States)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  1. Mount Vesuvius, Italy

    Science.gov (United States)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  2. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  3. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  4. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  5. The Impact of Multi-Sensor Data Assimilation on Plant Parameter Retrieval and Yield Estimation for Sugar Beet

    Science.gov (United States)

    Hodrius, M.; Migdall, S.; Bach, H.; Hank, T.

    2015-04-01

    Yield Maps are a basic information source for site-specific farming. For sugar beet they are not available as in-situ measurements. This gap of information can be filled with Earth Observation (EO) data in combination with a plant growth model (PROMET) to improve farming and harvest management. The estimation of yield based on optical satellite imagery and crop growth modelling is more challenging for sugar beet than for other crop types since the plants' roots are harvested. These are not directly visible from EO. In this study, the impact of multi-sensor data assimilation on the yield estimation for sugar beet is evaluated. Yield and plant growth are modelled with PROMET. This multi-physics, raster-based model calculates photosynthesis and crop growth based on the physiological processes in the plant, including the distribution of biomass into the different plant organs (roots, stem, leaves and fruit) at different phenological stages. The crop variable used in the assimilation is the green (photosynthetically active) leaf area, which is derived as spatially heterogeneous input from optical satellite imagery with the radiative transfer model SLC (Soil-Leaf-Canopy). Leaf area index was retrieved from RapidEye, Landsat 8 OLI and Landsat 7 ETM+ data. It could be shown that the used methods are very suitable to derive plant parameters time-series with different sensors. The LAI retrievals from different sensors are quantitatively compared to each other. Results for sugar beet yield estimation are shown for a test-site in Southern Germany. The validation of the yield estimation for the years 2012 to 2014 shows that the approach reproduced the measured yield on field level with high accuracy. Finally, it is demonstrated through comparison of different spatial resolutions that small-scale in-field variety is modelled with adequate results at 20 m raster size, but the results could be improved by recalculating the assimilation at a finer spatial resolution of 5 m.

  6. Establishment of Stereo Multi-sensor Network for Giant Landslide Monitoring and its Deploy in Xishan landslide, Sichuan, China.

    Science.gov (United States)

    Liu, C.; Lu, P.; WU, H.

    2015-12-01

    Landslide is one of the most destructive natural disasters, which severely affects human lives as well as the safety of personal properties and public infrastructures. Monitoring and predicting landslide movements can keep an adequate safety level for human beings in those situations. This paper indicated a newly developed Stereo Multi-sensor Landslide Monitoring Network (SMSLMN) based on a uniform temporal geo-reference. Actually, early in 2003, SAMOA (Surveillance et Auscultation des Mouvements de Terrain Alpins, French) project was put forwarded as a plan for landslide movements monitoring. However, SAMOA project did not establish a stereo observation network to fully cover the surface and internal part of landslide. SMSLMN integrated various sensors, including space-borne, airborne, in-situ and underground sensors, which can quantitatively monitor the slide-body and obtain portent information of movement in high frequency with high resolution. The whole network has been deployed at the Xishan landslide, Sichuan, P.R.China. According to various characteristic of stereo monitoring sensors, observation capabilities indicators for different sensors were proposed in order to obtain the optimal sensors combination groups and observation strategy. Meanwhile, adaptive networking and reliable data communication methods were developed to apply intelligent observation and sensor data transmission. Some key technologies, such as signal amplification and intelligence extraction technology, data access frequency adaptive adjustment technology, different sensor synchronization control technology were developed to overcome the problems in complex observation environment. The collaboratively observation data have been transferred to the remote data center where is thousands miles away from the giant landslide spot. These data were introduced into the landslide stability analysis model, and some primary conclusion will be achieved at the end of paper.

  7. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River

    Science.gov (United States)

    Li, Zhe; Yang, Dawen; Hong, Yang

    2013-09-01

    In the present study, four high-resolution multi-sensor blended precipitation products, TRMM Multisatellite Precipitation Analysis (TMPA) research product (3B42 V7) and near real-time product (3B42 RT), Climate Prediction Center MORPHing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), are evaluated over the Yangtze River basin from April 2008 to March 2012 using the gauge data. This regional evaluation is performed at temporal scales ranging from annual to daily, based on a number of diagnostic statistics. Gauge adjustment greatly reduces the bias in 3B42 V7, a post real-time research product. Additionally, it helps the product maintain a stable skill level in winter. When additional indicators such as spatial correlation, Root Mean Square Error (RMSE), and Probability of Detection (POD) are considered, 3B42 V7 is not always superior to other products (especially CMORPH) at the daily scale. Among the near real-time datasets, 3B42 RT overestimates annual rainfall over the basin; CMORPH and PERSIANN underestimate it. In particular, the upper Yangtze always suffers from positive bias (>1 mm day-1) in the 3B42 RT dataset and negative bias (-0.2 to -1 mm day-1) in the CMORPH dataset. When seasonal scales are considered, CMORPH exhibits negative bias, mainly introduced during cold periods. The correlation between CMORPH and gauge data is the highest. On the contrary, the correlation between 3B42 RT and gauge data is more scattered; statistically, this results in lower bias. Finally, investigation of the probability distribution functions (PDFs) suggests that 3B42 V7 and 3B42 RT are consistently better at retrieving the PDFs in high-intensity events. Overall, this study provides useful information about the error characteristics associated with the four mainstream satellite precipitation products and their implications regarding hydrological applications over the Yangtze River basin.

  8. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Chun-Chang Wu

    2017-03-01

    Full Text Available A self-sustained multi-sensor platform for indoor environmental monitoring is proposed in this paper. To reduce the cost and power consumption of the sensing platform, in the developed platform, organic materials of PEDOT:PSS and PEDOT:PSS/EB-PANI are used as the sensing films for humidity and CO2 detection, respectively. Different from traditional gas sensors, these organic sensing films can operate at room temperature without heating processes or infrared transceivers so that the power consumption of the developed humidity and the CO2 sensors can be as low as 10 μW and 5 μW, respectively. To cooperate with these low-power sensors, a Complementary Metal-Oxide-Semiconductor (CMOS system-on-chip (SoC is designed to amplify and to read out multiple sensor signals with low power consumption. The developed SoC includes an analog-front-end interface circuit (AFE, an analog-to-digital convertor (ADC, a digital controller and a power management unit (PMU. Scheduled by the digital controller, the sensing circuits are power gated with a small duty-cycle to reduce the average power consumption to 3.2 μW. The designed PMU converts the power scavenged from a dye sensitized solar cell (DSSC module into required supply voltages for SoC circuits operation under typical indoor illuminance conditions. To our knowledge, this is the first multiple environmental parameters (Temperature/CO2/Humidity sensing platform that demonstrates a true self-powering functionality for long-term operations.

  9. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Daniel Scheffler

    2017-07-01

    Full Text Available Geospatial co-registration is a mandatory prerequisite when dealing with remote sensing data. Inter- or intra-sensoral misregistration will negatively affect any subsequent image analysis, specifically when processing multi-sensoral or multi-temporal data. In recent decades, many algorithms have been developed to enable manual, semi- or fully automatic displacement correction. Especially in the context of big data processing and the development of automated processing chains that aim to be applicable to different remote sensing systems, there is a strong need for efficient, accurate and generally usable co-registration. Here, we present AROSICS (Automated and Robust Open-Source Image Co-Registration Software, a Python-based open-source software including an easy-to-use user interface for automatic detection and correction of sub-pixel misalignments between various remote sensing datasets. It is independent of spatial or spectral characteristics and robust against high degrees of cloud coverage and spectral and temporal land cover dynamics. The co-registration is based on phase correlation for sub-pixel shift estimation in the frequency domain utilizing the Fourier shift theorem in a moving-window manner. A dense grid of spatial shift vectors can be created and automatically filtered by combining various validation and quality estimation metrics. Additionally, the software supports the masking of, e.g., clouds and cloud shadows to exclude such areas from spatial shift detection. The software has been tested on more than 9000 satellite images acquired by different sensors. The results are evaluated exemplarily for two inter-sensoral and two intra-sensoral use cases and show registration results in the sub-pixel range with root mean square error fits around 0.3 pixels and better.

  10. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    Science.gov (United States)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge

  11. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    Science.gov (United States)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  12. A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering.

    Science.gov (United States)

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-12-12

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  13. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2014-12-01

    Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  14. A novel space-based observation strategy for GEO objects based on daily pointing adjustment of multi-sensors

    Science.gov (United States)

    Hu, Yun-peng; Li, Ke-bo; Xu, Wei; Chen, Lei; Huang, Jian-yu

    2016-08-01

    Space-based visible (SBV) program has been proved to be with a large advantage to observe geosynchronous earth orbit (GEO) objects. With the development of SBV observation started from 1996, many strategies have come out for the purpose of observing GEO objects more efficiently. However it is a big challenge to visit all the GEO objects in a relatively short time because of the distribution characteristics of GEO belt and limited field of view (FOV) of sensor. And it's also difficult to keep a high coverage of the GEO belt every day in a whole year. In this paper, a space-based observation strategy for GEO objects is designed based on the characteristics of the GEO belt. The mathematical formula of GEO belt is deduced and the evolvement of GEO objects is illustrated. There are basically two kinds of orientation strategies for most observation satellites, i.e., earth-oriented and inertia-directional. Influences of both strategies to their own observation regions are analyzed and compared with each other. A passive optical instrument with daily attitude-adjusting strategies is proposed to increase the daily coverage rate of GEO objects in a whole year. Furthermore, in order to observe more GEO objects in a relatively short time, the strategy of a satellite with multi-sensors is proposed. The installation parameters between different sensors are optimized, more than 98% of GEO satellites can be observed every day and almost all the GEO satellites can be observed every two days with 3 sensors (FOV: 6° × 6°) on the satellite under the strategy of daily pointing adjustment in a whole year.

  15. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  16. Concept for an airborne real-time ISR system with multi-sensor 3D data acquisition

    Science.gov (United States)

    Haraké, Laura; Schilling, Hendrik; Blohm, Christian; Hillemann, Markus; Lenz, Andreas; Becker, Merlin; Keskin, Göksu; Middelmann, Wolfgang

    2016-10-01

    In modern aerial Intelligence, Surveillance and Reconnaissance operations, precise 3D information becomes inevitable for increased situation awareness. In particular, object geometries represented by texturized digital surface models constitute an alternative to a pure evaluation of radiometric measurements. Besides the 3D data's level of detail aspect, its availability is time-relevant in order to make quick decisions. Expanding the concept of our preceding remote sensing platform developed together with OHB System AG and Geosystems GmbH, in this paper we present an airborne multi-sensor system based on a motor glider equipped with two wing pods; one carries the sensors, whereas the second pod downlinks sensor data to a connected ground control station by using the Aerial Reconnaissance Data System of OHB. An uplink is created to receive remote commands from the manned mobile ground control station, which on its part processes and evaluates incoming sensor data. The system allows the integration of efficient image processing and machine learning algorithms. In this work, we introduce a near real-time approach for the acquisition of a texturized 3D data model with the help of an airborne laser scanner and four high-resolution multi-spectral (RGB, near-infrared) cameras. Image sequences from nadir and off-nadir cameras permit to generate dense point clouds and to texturize also facades of buildings. The ground control station distributes processed 3D data over a linked geoinformation system with web capabilities to off-site decision-makers. As the accurate acquisition of sensor data requires boresight calibrated sensors, we additionally examine the first steps of a camera calibration workflow.

  17. Multi-sensor analysis of convective activity in central Italy during the HyMeX SOP 1.1

    Science.gov (United States)

    Roberto, N.; Adirosi, E.; Baldini, L.; Casella, D.; Dietrich, S.; Gatlin, P.; Panegrossi, G.; Petracca, M.; Sanò, P.; Tokay, A.

    2016-02-01

    A multi-sensor analysis of convective precipitation events that occurred in central Italy in autumn 2012 during the HyMeX (Hydrological cycle in the Mediterranean experiment) Special Observation Period (SOP) 1.1 is presented. Various microphysical properties of liquid and solid hydrometeors are examined to assess their relationship with lightning activity. The instrumentation used consisted of a C-band dual-polarization weather radar, a 2-D video disdrometer, and the LINET lightning network. Results of T-matrix simulation for graupel were used to (i) tune a fuzzy logic hydrometeor classification algorithm based on Liu and Chandrasekar (2000) for the detection of graupel from C-band dual-polarization radar measurements and (ii) to retrieve graupel ice water content. Graupel mass from radar measurements was related to lightning activity. Three significant case studies were analyzed and linear relations between the total mass of graupel and number of LINET strokes were found with different slopes depending on the nature of the convective event (such as updraft strength and freezing level height) and the radar observational geometry. A high coefficient of determination (R2 = 0.856) and a slope in agreement with satellite measurements and model results for one of the case studies (15 October 2012) were found. Results confirm that one of the key features in the electrical charging of convective clouds is the ice content, although it is not the only one. Parameters of the gamma raindrop size distribution measured by a 2-D video disdrometer revealed the transition from a convective to a stratiform regime. The raindrop size spectra measured by a 2-D video disdrometer were used to partition rain into stratiform and convective classes. These results are further analyzed in relation to radar measurements and to the number of strokes. Lightning activity was not always recorded when the precipitation regime was classified as convective rain. High statistical scores were found

  18. A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain

    Directory of Open Access Journals (Sweden)

    Stefano Corradini

    2016-01-01

    Full Text Available Volcanic activity is observed worldwide with a variety of ground and space-based remote sensing instruments, each with advantages and drawbacks. No single system can give a comprehensive description of eruptive activity, and so, a multi-sensor approach is required. This work integrates infrared and microwave volcanic ash retrievals obtained from the geostationary Meteosat Second Generation (MSG-Spinning Enhanced Visible and Infrared Imager (SEVIRI, the polar-orbiting Aqua-MODIS and ground-based weather radar. The expected outcomes are improvements in satellite volcanic ash cloud retrieval (altitude, mass, aerosol optical depth and effective radius, the generation of new satellite products (ash concentration and particle number density in the thermal infrared and better characterization of volcanic eruptions (plume altitude, total ash mass erupted and particle number density from thermal infrared to microwave. This approach is the core of the multi-platform volcanic ash cloud estimation procedure being developed within the European FP7-APhoRISM project. The Mt. Etna (Sicily, Italy volcano lava fountaining event of 23 November 2013 was considered as a test case. The results of the integration show the presence of two volcanic cloud layers at different altitudes. The improvement of the volcanic ash cloud altitude leads to a mean difference between the SEVIRI ash mass estimations, before and after the integration, of about the 30%. Moreover, the percentage of the airborne “fine” ash retrieved from the satellite is estimated to be about 1%–2% of the total ash emitted during the eruption. Finally, all of the estimated parameters (volcanic ash cloud altitude, thickness and total mass were also validated with ground-based visible camera measurements, HYSPLIT forward trajectories, Infrared Atmospheric Sounding Interferometer (IASI satellite data and tephra deposits.

  19. Helmet-Mounted Displays (HMD)

    Data.gov (United States)

    Federal Laboratory Consortium — The Helmet-Mounted Display labis responsible for monocular HMD day display evaluations; monocular HMD night vision performance processes; binocular HMD day display...

  20. The Mount Rainier Lahar Detection System

    Science.gov (United States)

    Lockhart, A. B.; Murray, T. L.

    2003-12-01

    To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.

  1. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target type......, size) into the association logic. This requires a more general association logic, in which both the physical position parameters and the target attributes can be used simultaneously. Although, the data fusion from a number of sensors could provide better and reliable estimation but abundance...... processing units for same type of multiple sensors, typically radar in our case....

  2. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  3. Mount Rainier National Park

    Science.gov (United States)

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  4. Quantifying Post-Fire Forest Biomass Recovery in Northeastern Siberia using Hierarchical Multi-Sensor Satellite Imagery and Field Measurements

    Science.gov (United States)

    Berner, L.; Beck, P. S.; Loranty, M. M.; Alexander, H. D.; Mack, M. C.; Goetz, S. J.

    2011-12-01

    distribution and regrowth patterns. These results provide a basis for assessing regrowth trajectories in the region using a combination of field measurements and multi-sensor imagery, with the ultimate objective of better capturing forest carbon sequestration under changing fire disturbance regime.

  5. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP based on TES ozone and GOES water vapor: validation with ozonesondes

    Directory of Open Access Journals (Sweden)

    J. L. Moody

    2011-11-01

    Full Text Available Accurate representation of ozone in the extratropical upper troposphere (UT remains a challenge. However, the implementation of hyper-spectral remote sensing using satellite instruments such as the Tropospheric Emission Spectrometer (TES provides an avenue for mapping ozone in this region, from 500 to 300 hPa. As a polar orbiting satellite TES observations are limited, but in this paper they are combined with geostationary satellite observations of water vapor. This paper describes a validation of the Multi-sensor UT Ozone Product (MUTOP. MUTOP is statistical retrieval method, a derived product image based on the correlation of two remotely sensed quantities, TES ozone, against geostationary (GOES specific humidity and modeled potential vorticity, a dynamical tracer in the UT. These TES-derived UT ozone mixing ratios are compared to coincident ozonesonde measurements of layer-average UT ozone mixing ratios made during the NASA INTEX/B field campaign in the spring of 2006; the region for this study is effectively the GOES west domain covering the Eastern North Pacific Ocean and the Western United States. This intercomparison evaluates MUTOP skill at representing ozone magnitude and variability in this region of complex dynamics. In total, 11 ozonesonde launch sites were available for this study, providing 127 individual sondes for comparison; the overall mean ozone of the 500–300 hPa layer for these sondes was 78.0 ppbv. MUTOP reproduces in-situ measurements reasonably well, producing an UT mean of 82.3 ppbv, with a mean absolute error of 12.2 ppbv and a root mean square error of 16.4 ppbv relative to ozonesondes across all sites. An overall UT mean bias of 4.3 ppbv relative to sondes was determined for MUTOP. Considered in the context of past TES validation studies, these results illustrate that MUTOP is able to maintain accuracy similar to TES while expanding coverage to the entire GOES-West satellite domain. In addition MUTOP provides six

  6. Simulation Research Framework with Embedded Intelligent Algorithms for Analysis of Multi-Target, Multi-Sensor, High-Cluttered Environments

    Science.gov (United States)

    Hanlon, Nicholas P.

    nearly identical performance metrics at orders of magnitude faster in execution. Second, a fuzzy inference system is presented that alleviates air traffic controllers from information overload by utilizing flight plan data and radar/GPS correlation values to highlight aircraft that deviate from their intended routes. Third, a genetic algorithm optimizes sensor placement that is robust and capable of handling unexpected routes in the environment. Fourth, a fuzzy CUSUM algorithm more accurately detects and corrects aircraft mode changes. Finally, all the work is packaged in a holistic simulation research framework that provides evaluation and analysis of various multi-sensor, multi-target scenarios.

  7. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Shaohong Tian

    2016-11-01

    classification by fusing multi-sensor data can retrieve better wetland landcover information than the other classifiers, which is significant for the monitoring and management of the wetland ecological resources in arid areas.

  8. Development of multivariate and multi-sensors systems for the measurement of atmospheric pollutants; Developpement de systemes multicapteurs et multivariables pour la mesure en continu de polluants atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Kamionka, M.

    2005-04-15

    The purpose of this work was to measure the concentrations of atmospheric pollutants using sensors based on a metal semiconductor, tin dioxide. These sensors were tested with two reducing gases which are carbon monoxide (0-20 ppm), a mixture of hydrocarbons (0-10 ppm) and two oxidizing gases which is ozone (0-500 ppb) and nitrogen dioxide (0-500 ppb). One of the major disadvantages of this type of sensor is their lack of selectivity. Thus the association of several different sensors in multi-sensors system can be a solution. We have developed an automated test bench able to generate the suitable gas concentrations with a controlled humidity. It is then possible to carry out the acquisition of four devices (mono or multi-sensors) with cycles of temperature. We followed the evolution with their age of the performances of various sensors worked out by serigraphy. At the end of these experiments, we showed the interest of the use of some of these sensors for the evaluation of two major components of pollution: ozone and hydrocarbons. We could not prove that the capacitive effects and the effects of electrode were useful parameters for our application. Nevertheless, the measurement with increasing temperature give additional information. Thus, two multi-sensors systems were carried out. One associates three independent sensors and the other consists of three layers deposited on the same heating substrate. These three layers are initially identical (tin dioxide) but two are covered with a thin film, platinum for one and silica for the other. Moreover, one system made up of three commercial sensors used with a constant temperature was also tested. For each studied system, we built behavior models using a Neural Network algorithm. Whereas the models carried out using synthetic gas mixtures appeared unusable for measurements in real pollution, it was shown that a model calibrated directly with air bled in urban environment appears effective for the measurement of

  9. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  10. Fast Picometer Mirror Mount Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a 6DOF controllable mirror mount with high dynamic range and fast tip/tilt capability for space based applications. It will enable the...

  11. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  12. Mount Rainier: A decade volcano

    Science.gov (United States)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  13. Dry tilt network at Mount Rainier, Washington

    Science.gov (United States)

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  14. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  15. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaofei Yan

    2016-08-01

    Full Text Available Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN-based multi-sensor system and artificial neural network (ANN. Sensors (CO, CO2, smoke, air temperature and relative humidity were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO2 and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5% than single-sensor input (50.9%–92.5%. Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  16. Multi-Sensor Approach for the Monitoring of Halitosis Treatment via Lactobacillus brevis (CD2)-Containing Lozenges--A Randomized, Double-Blind Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Marchetti, Enrico; Tecco, Simona; Santonico, Marco; Vernile, Chiara; Ciciarelli, Daniele; Tarantino, Ester; Marzo, Giuseppe; Pennazza, Giorgio

    2015-08-10

    The aim of this randomized clinical trial was to evaluate whether a recently described multi-sensor approach called BIONOTE(®) is accurate enough to verify the efficacy of treatment of patients with halitosis. A treatment with Lactobacillus brevis (CD2)-containing lozenges, compared with placebo was tested. The BIONOTE(®) was compared with traditional techniques used to detect halitosis: OralChroma™ and two calibrated odor judges enrolled for the organoleptic assessments. Twenty patients (10 treated and 10 placebo), suffering from active phase halitosis were included in the study. Treatment consisted of Lactobacillus brevis (CD2)-containing lozenges or placebo, 4 tablets/day for 14 days. t0 was before the beginning of the study; t1 was day 7 and t2 was day 14. The effectiveness of treatment was assessed through: (1) Rosenberg score; (2) Winkel tongue coating index (WTCI) anterior and posterior; (2) OralChroma™; (3) the new developed multi-sensor approach, called BIONOTE(®) (test technique). Only the WTCI anterior revealed statistically significant changes between t0 and t2 data (p = 0.014) in the treated group. Except for the WTCI anterior, all diagnostic methods revealed the lack of effectiveness for halitosis of a 14-days treatment with Lactobacillus brevis (CD2)-containing lozenges. The BIONOTE(®) multisensor system seems accurate in addition to OralChroma™ to assess the initial condition of halitosis and its mitigation during treatment.

  17. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  18. An AUV-SLAM algorithm with multi-sensor update%一种多传感器更新的AUV—SLAM算法

    Institute of Scientific and Technical Information of China (English)

    李超; 徐东勋; 袁昌斌

    2012-01-01

    Aiming at the limitations of the information provided by single sensor which is easily affected by surroundings and its characteristics restrict in SLAM (Simultaneous Localization and Mapping), multi-sensor update SLAM algorithm based on only sonar update SLAM is proposed, which can improve the accuracy of SLAM for AUV (Autonomous Underwater Vehicle). Finally, experimental results indicate that the multi-sensor update SLAM algorithm is valid.%针对同步定位与地图、构建SLAM(Simultaneous Localization and Mapping)算法中,单个传感器提供的信息受到传感器本身特性和周围环境制约的局限性,提出了在仅声纳更新的SLAM算法同时,引入航向和速度的多传感器更新,使得自主式水下机器人AUV(Autonomous Underwater Vehicle)的定位和构图更精确。通过对实验结果的分析验证了多传感器更新的SLAM算法的有效性。

  19. Multi-sensor integration using neural networks for predicting quality characteristics of end-milled parts. Part 2: Interaction effects in training parameters

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, A.C.; Adetona, O. [Univ. of Missouri, Rolla, MO (United States). Dept. of Mechanical, Aerospace Engineering and Engineering Mechanics

    1994-12-31

    Artificial neural networks have been shown to have a lot of potential as a means of integrating multi-sensor signals for in-process real time monitoring of machining processes. However a lot of questions still remain to be answered on how to optimize the training parameters of neural networks during the training phase in order to optimize their subsequent performance, especially in view of the fact that the few published literature have made conflicting recommendations. This paper presents a systematic evaluation of the interaction effects of the training parameters: learning rate, momentum rate and number of hidden layer nodes on the performance of back propagation networks in predicting quality characteristics of end milled parts. Multi-sensor signatures (acoustic emission, spindle vibration, and components of the horizontal cutting force) acquired during end milling of 4140 steel and the corresponding measured quality characteristics (surface roughness and bore tolerance) were used to train the networks. The network performances were evaluated using four different criteria: maximum error, RMS error, mean error and number of training cycles. The results indicate that there are significant interaction effects between the training parameters that can adversely affect the networks performance. Optimum combinations of training parameters have been observed. The effects of various combinations of training parameters are presented.

  20. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  1. Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection

    Directory of Open Access Journals (Sweden)

    Robert Behling

    2014-03-01

    Full Text Available Reliable multi-temporal landslide detection over longer periods of time requires multi-sensor time series data characterized by high internal geometric stability, as well as high relative and absolute accuracy. For this purpose, a new methodology for fully automated co-registration has been developed allowing efficient and robust spatial alignment of standard orthorectified data products originating from a multitude of optical satellite remote sensing data of varying spatial resolution. Correlation-based co-registration uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial reference, ensuring global applicability. The developed approach has been applied to a multi-sensor time series of 592 remote sensing datasets covering an approximately 12,000 km2 area in Southern Kyrgyzstan (Central Asia strongly affected by landslides. The database contains images acquired during the last 26 years by Landsat (ETM, ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from co-registration has revealed sensor-specific alignments ranging between 5 m and more than 400 m. Overall accuracy assessment of these alignments has resulted in a high relative image-to-image accuracy of 17 m (RMSE and a high absolute accuracy of 23 m (RMSE for the whole co-registered database, making it suitable for multi-temporal landslide detection at a regional scale in Southern Kyrgyzstan.

  2. IN-SITU IONIC CHEMICAL ANALYSIS OF FRESH WATER VIA A NOVEL COMBINED MULTI-SENSOR / SIGNAL PROCESSING ARCHITECTURE

    Science.gov (United States)

    Mueller, A. V.; Hemond, H.

    2009-12-01

    The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing

  3. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  4. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  5. A microsensor array for biochemical sensing

    NARCIS (Netherlands)

    Van Steenkiste, Filip; Baert, Kris; Debruyker, Dirk; Spiering, Vincent; Schoot, van der Bart; Arquint, Philippe; Born, Reinhard; Schumann, Klaus

    1997-01-01

    A microsensor array to measure chemical properties of biological liquids is presented. A hybrid integration technique is used to mount four sensor chips on a micro flow channel: a pressure, temperature, pH, combined pO2 and pCO2 sensor chip. This results in a microsensor array which is developed to

  6. Ice Volumes on Cascade Volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta

    Science.gov (United States)

    Driedger, Carolyn L.; Kennard, Paul M.

    1986-01-01

    During the eruptions of Mount St. Helens the occurrence of floods and mudflows made apparent the need for predictive water-hazard analysis of other Cascade volcanoes. A basic requirement for such analysis is information about the volumes and distributions of snow and ice on other volcanoes. A radar unit contained in a backpack was used to make point measurements of ice thickness on major glaciers of Mount Rainier, Wash.; Mount Hood, Oreg.; the Three Sisters, Oreg.; and Mount Shasta, Calif. The measurements were corrected for slope and were used to develop subglacial contour maps from which glacier volumes were measured. These values were used to develop estimation methods for finding volumes of unmeasured glaciers. These methods require a knowledge of glacier slope, altitude, and area and require an estimation of basal shear stress, each estimate derived by using topographic maps updated by aerial photographs. The estimation methods were found to be accurate within ?20 percent on measured glaciers and to be within ?25 percent when applied to unmeasured glaciers on the Cascade volcanoes. The estimation methods may be applicable to other temperate glaciers in similar climatic settings. Areas and volumes of snow and ice are as follows: Mount Rainier, 991 million ft2, 156 billion ft3; Mount Hood, 145 million ft2, 12 billion ft3; Three Sisters, 89 million ft2, 6 billion ft3; and Mount Shasta, 74 million ft2, 5 billion ft3. The distribution of ice and firn patches within 58 glacierized basins on volcanoes is mapped and listed by altitude and by watershed to facilitate water-hazard analysis.

  7. Mounting clips for panel installation

    Energy Technology Data Exchange (ETDEWEB)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph; Valdes, Francisco

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the first spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.

  8. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  9. Mounting power cables on SOLEIL

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The power couplers are mounted on the SOLEIL cryomodule in a clean room. The cryomodule will allow superconducting technology to be used at SOLEIL, the French national synchrotron facility. This work is carried out as part of a collaboration between CERN and CEA Saclay, the French National Atomic Energy Commission.

  10. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  11. Mount Rainier active cascade volcano

    Science.gov (United States)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  12. Mount Rainier active cascade volcano

    Science.gov (United States)

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  13. 1992 Mount Spurr, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following 39 years of inactivity, Crater Peak vent on the south flank of Mount Spurr volcano burst into eruption at 7:04 a.m. Alaska daylight time (ADT) on June 27,...

  14. 基于多传感器数据融合技术的应用研究%Research Based on Multi-sensor Data Fusion Technology

    Institute of Scientific and Technical Information of China (English)

    宋强; 王爱民; 张运素

    2013-01-01

    复杂系统的多传感器数据融合是一门新兴的技术,它通过对来自多个传感器的数据进行多级别、多方面、多层次的处理从而产生出单个传感器所不能获得的更有意义的信息.数据融合在军事领域和民用领域都有很大的发展和应用前景.该文提出了一种基于神经网络融合算法的多传感器数据融合技术,对所采用的数据融合技术用于烧结终点预测进行了详细介绍.通过仿真结果证明,该方法鲁棒性强,准确性高,泛化能力广,具有很强的实用性和推广价值.%The complex system multi-sensor data fusion was an emerging technology,which based on the data from multiple sensors multiple levels,many Levels of processing in order to produce a single sensor cannot get obtain meaningful information.Data fusion in military and civil areas have great developmental and applicative prospect.Proposed a multi-sensor data fusion technology,which was based on neural network algorithm,data fusion technology for the BTP projections described in detail.The application result shows that the prediction with this method can achieve higher robust,better utility and expensive value.

  15. 航迹融合算法在多传感器融合中的应用%Application of the Track Fusion in Multi-sensor Fusion

    Institute of Scientific and Technical Information of China (English)

    田雪怡; 李一兵; 李志刚

    2012-01-01

    The track fusion is an important aspect in the multi-sensor data fusion. Because of the public noise, the track estimate errors from the different sensors are not independent in the state estimate fusion system. So the fu sion problem becomes complex. This article researched the simple fusion, adaptive track fusion and weighted covari ance fusion. The comparison of data fusion methods shows that adaptive track fusion and weighted covariance fusion is effective to multi-sensor data fusion. The simulation indicates that the algorithm has preferable fusion result.%研究寻的制导优化控制问题,针对传统单一传感器导引不能满足性能要求,提出采用多传感器复合制导.航迹融合是多传感器数据融合中一个非常重要的方面.由于公共过程噪声的原因,使在应用状态估计融合系统中,来自不同传感器的航迹估计误差未必有独立性,为了使航迹与航迹关联和融合,提出自适应航迹和协方差加权航迹融合的算法.通过仿真研究说明自适应航迹融合和协方差加权航迹融合的算法对多传感器数据融合技术有很明显的作用,数据融合效果好,为复合寻的制导优化设计提供了依据.

  16. 基于多尺度Kalman滤波的多传感器数据融合%Multi-Sensor Data Fusion Based on Multi-Scale Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    李毅; 陆百川; 李雪

    2012-01-01

    With the analysis on the multi-scale dynamic system model, a novel multi-sensor data fusion algorithm based on wavelet transform and Kalman filter is proposed. The algorithm combines real-time and recursiveness of Kalrnan filter and multi-scale characteristics of wavelet transform and it is also able to fuse the observed data of multi sensors effectively. Firstly the primal estimate from Kalman filter on the thinnest scale is decomposed by wavelet to each scale. Secondly information data on each scale is refreshed by observed data of corresponding scale using Kalman filter. Finally wavelet reconstruction is applied to integrate the estimate information. After simulation test, the accuracy of data fusion goes well.%通过分析多尺度动态系统模型,提出了一种基于小波变换的Kalman多传感器数据融合算法.该算法结合了Kalman滤波的实时性、递归性和小波变换的多尺度特性,能对多传感器的观测数据有效地融合.算法首先将最细尺度上观测数据滤波后得到的估计序列小波分解到各尺度上;然后在各尺度上,利用该尺度上的传感器观测数据对小波分解系数进行更新;最后利用小波重构,达到更新原始估计序列的目的.仿真实验表明,该算法具有很好的数据融合效果.

  17. 多传感器数据融合的多准则决策模型%Multi-criteria decision model of multi-sensor data fusion

    Institute of Scientific and Technical Information of China (English)

    周杰; 蔡世清; 朱伟娜

    2016-01-01

    A new multi-sensor data fusion method using multi-criteria decision aid is proposed,which considers several indicators to reduce the decision subjectivity and contingency. Different fusion levels in the multi-sensor target recognition system is proposed to define multiple criteria, hence to gain more information of multi-criteria qualitatively. With no information about the preference of the decision maker for each criteria, the criteria weights vector can be obtained by solving a multi-objective optimization which intends to minimize the criteria redundancy and maximize the diversity factor of every criteria. The simulation results show that the proposed method performs better in anti-risk capability and stability than the mono-criteria and decision-making level method.%在多准则下考察传感器的融合权重,提出一种新的多传感器数据融合方法。通过多个性能指标折中估计传感器权重,以降低决策的主观性和偶然性;提出从不同融合级别来定义多个准则,定性地提高了多准则的信息量;在没有决策者对各准则偏好信息的情况下,以最小化准则冗余度和最大化评价差异度为原则建立多目标优化模型对准则权重向量优化求解。仿真实验结果表明,相比于单准则和单层次的融合方法,所提出方法具有更低的决策风险和更高的稳定性。

  18. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    Science.gov (United States)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  19. Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series

    Directory of Open Access Journals (Sweden)

    François Waldner

    2015-08-01

    Full Text Available With the ever-increasing number of satellites and the availability of data free of charge, the integration of multi-sensor images in coherent time series offers new opportunities for land cover and crop type classification. This article investigates the potential of structural biophysical variables as common parameters to consistently combine multi-sensor time series and to exploit them for land/crop cover classification. Artificial neural networks were trained based on a radiative transfer model in order to retrieve high resolution LAI, FAPAR and FCOVER from Landsat-8 and SPOT-4. The correlation coefficients between field measurements and the retrieved biophysical variables were 0.83, 0.85 and 0.79 for LAI, FAPAR and FCOVER, respectively. The retrieved biophysical variables’ time series displayed consistent average temporal trajectories, even though the class variability and signal-to-noise ratio increased compared to NDVI. Six random forest classifiers were trained and applied along the season with different inputs: spectral bands, NDVI, as well as FAPAR, LAI and FCOVER, separately and jointly. Classifications with structural biophysical variables reached end-of-season overall accuracies ranging from 73%–76% when used alone and 77% when used jointly. This corresponds to 90% and 95% of the accuracy level achieved with the spectral bands and NDVI. FCOVER appears to be the most promising biophysical variable for classification. When assuming that the cropland extent is known, crop type classification reaches 89% with spectral information, 87% with the NDVI and 81%–84% with biophysical variables.

  20. Techniques for Sea Ice Characteristics Extraction and Sea Ice Monitoring Using Multi-Sensor Satellite Data in the Bohai Sea-Dragon 3 Programme Final Report (2012-2016)

    Science.gov (United States)

    Zhang, Xi; Zhang, Jie; Meng, Junmin

    2016-08-01

    The objectives of Dragon-3 programme (ID: 10501) are to develop methods for classification sea ice types and retrieving ice thickness based on multi-sensor data. In this final results paper, we give a briefly introduction for our research work and mainly results. Key words: the Bohai Sea ice, Sea ice, optical and

  1. Array imaging system for lithography

    Science.gov (United States)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  2. Sample mounts for microcrystal crystallography

    Science.gov (United States)

    Thorne, Robert E. (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  3. Polishing Your Transparencies: Mounting, Masking, Overlays.

    Science.gov (United States)

    Jobe, Holly; Cannon, Glenn

    This brief guide discusses the mounting of overhead transparencies on frames, the types of mounts, the proper masking for presentation, and the use of overlays. Numerous line drawings provide the reader with a helpful visual reference. (RAO)

  4. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  5. The Murchison Widefield Array Correlator

    CERN Document Server

    Ord, S M; Emrich, D; Pallot, D; Wayth, R B; Clark, M A; Tremblay, S E; Arcus, W; Barnes, D; Bell, M; Bernardi, G; Bhat, N D R; Bowman, J D; Briggs, F; Bunton, J D; Cappallo, R J; Corey, B E; Deshpande, A A; deSouza, L; Ewell-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Herne, D; Hewitt, J N; Hindson, L; Hurley-Walker, H; Jacobs, D; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kincaid, B B; Koenig, R; Kratzenberg, E; Kudryavtseva, N; Lenc, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Offringa, A; Pathikulangara, J; Pindor, B; Prabu, T; Procopio, P; Remillard, R A; Riding, J; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Subrahmanyan, R; Tingay, S J; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    The Murchison Widefield Array (MWA) is a Square Kilometre Array (SKA) Precursor. The telescope is located at the Murchison Radio--astronomy Observatory (MRO) in Western Australia (WA). The MWA consists of 4096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays (FPGAs), and others by Graphics Processing Units (GPUs) housed in general purpose rack mounted servers. The correlation capability required is approximately 8 TFLOPS (Tera FLoating point Operations Per Second). The MWA has commenced operations and the correlator is generating 8.3 TB/day of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper we outline the correlator design, signal path, and proce...

  6. Real-time EO/IR sensor fusion on a portable computer and head-mounted display

    Science.gov (United States)

    Yue, Zhanfeng; Topiwala, Pankaj

    2007-04-01

    Multi-sensor platforms are widely used in surveillance video systems for both military and civilian applications. The complimentary nature of different types of sensors (e.g. EO and IR sensors) makes it possible to observe the scene under almost any condition (day/night/fog/smoke). In this paper, we propose an innovative EO/IR sensor registration and fusion algorithm which runs real-time on a portable computing unit with head-mounted display. The EO/IR sensor suite is mounted on a helmet for a dismounted soldier and the fused scene is shown in the goggle display upon the processing on a portable computing unit. The linear homography transformation between images from the two sensors is precomputed for the mid-to-far scene, which reduces the computational cost for the online calibration of the sensors. The system is implemented in a highly optimized C++ code, with MMX/SSE, and performing a real-time registration. The experimental results on real captured video show the system works very well both in speed and in performance.

  7. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  8. Mount Rainier, a decade volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S.C.; Hooper, P.R. (Washington State Univ., Pullman, WA (United States). Dept. of Geology); Eggers, A.E. (Univ. of Puget Sound, Tacoma, WA (United States). Dept. of Geology)

    1993-04-01

    Mount Rainier, recently designated as a decade volcano, is a 14,410 foot landmark which towers over the heavily populated southern Puget Sound Lowland of Washington State. It last erupted in the mid-1800's and is an obvious threat to this area, yet Rainier has received little detailed study. Previous work has divided Rainier into two distinct pre-glacial eruptive episodes and one post-glacial eruptive episode. In a pilot project, the authors analyzed 253 well-located samples from the volcano for 27 major and trace elements. Their objective is to test the value of chemical compositions as a tool in mapping the stratigraphy and understanding the eruptive history of the volcano which they regard as prerequisite to determining the petrogenesis and potential hazard of the volcano. The preliminary data demonstrates that variation between flows is significantly greater than intra-flow variation -- a necessary condition for stratigraphic use. Numerous flows or groups of flows can be distinguished chemically. It is also apparent from the small variation in Zr abundances and considerable variation in such ratios as Ba/Nb that fractional crystallization plays a subordinate role to some form of mixing process in the origin of the Mount Rainier lavas.

  9. Hardware System Design Based on Multi-Sensor Intelligent Wheelchair%基于多传感器智能轮椅的硬件系统设计

    Institute of Scientific and Technical Information of China (English)

    郝敏钗

    2011-01-01

    高性能低成本的智能轮椅能够大大改善现今的老年人和残疾人使用者生活的质量,能够安全、方便的将使用人送到目的地,在运行过程中,智能轮椅能够接受用户所发出的指令,并按指定的路线行驶,因此在设计中智能轮椅对于环境的感知是必不可少的组成部分,本文主要对智能轮椅环境感知部分的多传感器进行系统构架、组件设计进行分析和阐述。%High-performance low-cost intelligent wheelchair can greatly improve today's elderly and disabled users of the quality of life,safe and convenient to use people to their destination,during operation,the smart wheelchair can accept user issued the directive,according to the designated routes,so the design of intelligent wheelchair in the perception of the environment is an integral part of this paper, the context-aware intelligent wheelchair part of the multi-sensor system architecture,component design analysis and interpretation.

  10. 多传感器数据融合的主成分方法研究%Study on principle component method for multi-sensor data fusion

    Institute of Scientific and Technical Information of China (English)

    董九英

    2009-01-01

    针对多个传感器对某一特性指标进行测量实验的数据融合问题,提出了一种基于主成分分析的融合方法.该方法把各传感器的测量数据作为一变量,定义总体的各主成分,利用测量值与主成分的复相关关系 ,给出了各传感器的综合支持程度和数据融合公式.应用实例验证了方法的有效性和精确性.%Due to data fusion of multi-sensor experiment on some characteristic index,a new fusion method is proposed based on the principle component analysis.The method views the measured data of every sensor as a variant.After defining each princi-ple components for the collectivity,the synthesis support degrees of all sensors are given according to the compound relationship between the measured value and the principle component.The formula of data fusion is obtained.The applied example proves that the method is both effective and accurate.

  11. Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System

    Science.gov (United States)

    Chen, Sheng; Hong, Yang; Kulie, Mark; Behrangi, Ali; Stepanian, Phillip M.; Cao, Qing; You, Yalei; Zhang, Jian; Hu, Junjun; Zhang, Xinhua

    2016-10-01

    The latest global snowfall product derived from the CloudSat Cloud Profiling Radar (2C-SNOW-PROFILE) is compared with NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS/Q3) system precipitation products from 2009 through 2010. The results show that: (1) Compared to Q3, CloudSat tends to observe more extremely light snowfall events (snow and 10% as certain mixed. When possible snow, possible mixed, and certain mixed precipitation categories are assumed to be snowfall events, CloudSat has a high snowfall POD (86.10%). (3) CloudSat shows less certain snow precipitation than Q3 by 26.13% with a low correlation coefficient (0.41) with Q3 and a high RMSE (0.6 mm/h). (4) With Q3 as reference, CloudSat underestimates (overestimates) certain snowfall when the bin height of detected snowfall events are below (above) 3 km, and generally overestimates light snowfall (surface snowfall events are >1 km high above the surface, whereas 76.41% of corresponding Q3 observations are low below 1 km to the near ground surface. This analysis will provide helpful reference for CloudSat snowfall estimation algorithm developers and the Global Precipitation Measurement (GPM) snowfall product developers to understand and quantify the strengths and weaknesses of remote sensing techniques and precipitation estimation products.

  12. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM System

    Directory of Open Access Journals (Sweden)

    Bo Wan

    2016-08-01

    Full Text Available The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  13. Design and Implementation of a Low-Cost Uav-Based Multi-Sensor Payload for Rapid-Response Mapping Applications

    Science.gov (United States)

    Sakr, M.; Lari, Z.; El-Sheimy, N.

    2016-06-01

    The main objective of this paper is to investigate the potential of using Unmanned Aerial Vehicles (UAVs) as a platform to collect geospatial data for rapid response applications, especially in hard-to-access and hazardous areas. The UAVs are low-cost mapping vehicles, and they are easy to handle and deploy in-field. These characteristics make UAVs ideal candidates for rapid-response and disaster mitigation scenarios. The majority of the available UAV systems are not capable of real-time/near real-time data processing. This paper introduces a low-cost UAV-based multi-sensor mapping payload which supports real-time processing and can be effectively used in rapid-response applications. The paper introduces the main components of the system, and provides an overview of the proposed payload architecture. Then, it introduces the implementation details of the major building blocks of the system. Finally, the paper presents our conclusions and the future work, in order to achieve real-time/near real-time data processing and product delivery capabilities.

  14. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System

    Science.gov (United States)

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-01-01

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects. PMID:27517935

  15. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    Science.gov (United States)

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-08-10

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.

  16. IDENTIFICATION OF OCEANOGRAPHIC PARAMETERS FOR DETERMINING PELAGIC TUNA FISHING GROUND IN THE NORTH PAPUA WATERS USING MULTI-SENSOR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    VlNCENTIUS SlREGAR

    2006-01-01

    Full Text Available The North Papua waters as one of the important fi shing grounds in the world contribute approximately 75% of world production of pelagic tunas. These fishing grounds are still determined by hunting method. This method is time consuming and costly. However, in many areas determination of fishing ground using satellited data lias been applied by detecting the important oceanographic parameter of the presence of fish schooling such as, sea surface temperature and chlorophyl. Mostly these parameters are used integrat edly. The aim of this study is to assess the important oceanographic parameters detected from mu lti-sensor satellites (NO AA/AVHRR, Seawifs and Topex Poisedon for determining fishing ground of pelagic tunas in the North Papua waters at east season. The parameters include Sea Surface Temperature (STT, chlorophyl-a and currents. The ava ilability of data from optic sensor (Seawifs: chl-a and AVHRR: Thermal is limited by the presence of cloud cover. In that case, Topex Poseidon satellite data can be used to provide the currents data. The integration of data from multi-sensors increases the availability of the oceanographic parameters for prediction of the potential fishing zones in the study area.

  17. Efficiency improvement in multi-sensor wireless network based estimation algorithms for distributed parameter systems with application at the heat transfer

    Science.gov (United States)

    Volosencu, Constantin; Curiac, Daniel-Ioan

    2013-12-01

    This paper gives a technical solution to improve the efficiency in multi-sensor wireless network based estimation for distributed parameter systems. A complex structure based on some estimation algorithms, with regression and autoregression, implemented using linear estimators, neural estimators and ANFIS estimators, is developed for this purpose. The three kinds of estimators are working with precision on different parts of the phenomenon characteristic. A comparative study of three methods - linear and nonlinear based on neural networks and adaptive neuro-fuzzy inference system - to implement these algorithms is made. The intelligent wireless sensor networks are taken in consideration as an efficient tool for measurement, data acquisition and communication. They are seen as a "distributed sensor", placed in the desired positions in the measuring field. The algorithms are based on regression using values from adjacent and also on auto-regression using past values from the same sensor. A modelling and simulation for a case study is presented. The quality of estimation is validated using a quadratic criterion. A practical implementation is made using virtual instrumentation. Applications of this complex estimation system are in fault detection and diagnosis of distributed parameter systems and discovery of malicious nodes in wireless sensor networks.

  18. Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset.

    Science.gov (United States)

    Leutheuser, Heike; Schuldhaus, Dominik; Eskofier, Bjoern M

    2013-01-01

    Insufficient physical activity is the 4th leading risk factor for mortality. Methods for assessing the individual daily life activity (DLA) are of major interest in order to monitor the current health status and to provide feedback about the individual quality of life. The conventional assessment of DLAs with self-reports induces problems like reliability, validity, and sensitivity. The assessment of DLAs with small and light-weight wearable sensors (e.g. inertial measurement units) provides a reliable and objective method. State-of-the-art human physical activity classification systems differ in e.g. the number and kind of sensors, the performed activities, and the sampling rate. Hence, it is difficult to compare newly proposed classification algorithms to existing approaches in literature and no commonly used dataset exists. We generated a publicly available benchmark dataset for the classification of DLAs. Inertial data were recorded with four sensor nodes, each consisting of a triaxial accelerometer and a triaxial gyroscope, placed on wrist, hip, chest, and ankle. Further, we developed a novel, hierarchical, multi-sensor based classification system for the distinction of a large set of DLAs. Our hierarchical classification system reached an overall mean classification rate of 89.6% and was diligently compared to existing state-of-the-art algorithms using our benchmark dataset. For future research, the dataset can be used in the evaluation process of new classification algorithms and could speed up the process of getting the best performing and most appropriate DLA classification system.

  19. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  20. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  1. SPHARA--a generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: application to EEG.

    Science.gov (United States)

    Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens

    2015-01-01

    Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.

  2. Multi-Sensor Data Fusion Identification for Shearer Cutting Conditions Based on Parallel Quasi-Newton Neural Networks and the Dempster-Shafer Theory

    Science.gov (United States)

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong

    2015-01-01

    In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system. PMID:26580620

  3. Microfabricated wire arrays for Z-pinch.

    Energy Technology Data Exchange (ETDEWEB)

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  4. Research and Analysis on Multi-sensor Data Fusion Algorithm Based on Intelligent Vehicle%基于智能车辆的多传感器数据融合算法研究与分析综述

    Institute of Scientific and Technical Information of China (English)

    宋维堂; 张鸰

    2012-01-01

    Multi-sensor data fusion is a new technology which developed in 1980s. It can be used to synthesize the intelligent vehicle data that collected by multiple sensors,and take advantage of redundancy and complementary between the multi-sensor data to arrive an accurate environmental information for ground vehicle location,vehicle tracking, vehicle navigation etc. Based on classification and summary of existing data fusion methods, this paper elaborates the research on multi-sensor data fusion algorithm and the application of data fusion technology. This paper could provide reference for research of multi-sensor data fusion on intelligent vehicles.%多传感器数据融合是20世纪80年代发展起来的一门新技术,将智能车辆中多个传感器采集的数据进行合成,并充分利用多感器数据间的冗余和互补特性,从而得出准确的环境信息用于地面车辆定位、车辆跟踪、车辆导航等。文章通过对现有的数据融合方法进行分类和归纳总结,对多传感器数据融合算法的研究和数据融合技术的应用情况进行阐述,为智能车辆多传感数据融合方面的研究提供参考。

  5. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    OpenAIRE

    2016-01-01

    A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP) with multi-sensors applied to an unmanned helicopter (UH)-based airborne power line inspection (APLI) system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from ...

  6. Variable Volumetric Stiffness Fluid Mount Design

    Directory of Open Access Journals (Sweden)

    Nader Vahdati

    2004-01-01

    Full Text Available Passive fluid mounts are commonly used in the automotive and aerospace applications to isolate the cabin from the engine noise and vibration. Due to manufacturing and material variabilities, no two identical fluid mount designs act the same. So, fluid mounts are tuned one by one before it is shipped out to customers. In some cases, for a batch of fluid mounts manufactured at the same time, one is tuned and the rest is set to the same settings. In some cases they are shipped as is with its notch frequency not being in its most optimum location. Since none of the passive fluid mount parameters are controllable, the only way to tune the mount is to redesign the mount by changing fluid, changing inertia track length or diameter, or changing rubber stiffness. This trial and error manufacturing process is very costly. To reduce the fluid mount notch frequency tuning cycle time, a new fluid mount design is proposed. In this new fluid mount design, the notch frequency can be easily modified without the need for any redesigns. In this paper, the new design concept, and its mathematical model and simulation results will be presented.

  7. Study of multi-sensor allocation based on modified Riccati equation and Kuhn-Munkres algorithm%基于修正Riccati方程与Kuhn-Munkres算法的多传感器跟踪资源分配

    Institute of Scientific and Technical Information of China (English)

    童俊; 单甘霖

    2012-01-01

    多传感器管理是对一组传感器或测量设备进行自动或半自动控制的一种处理过程,它实现了整体性能的优化和资源的有效利用.在建立多传感器管理中传感器资源分配一般数学模型的基础上,研究基于修正Riccati方程与Kuhn-Munkres算法相结合的多传感器跟踪资源分配,同时给出了目标-传感器最优分配解的求解步骤.仿真结果表明了该方法的可行性.%Multi-sensor management can be described as a process that provides automatic or semi-automatic control of a suite of sensors or measurement devices,which can improve the whole performance and gives an effective usage of resources. This paper presents a general model of multi-sensor allocation,and a study of multi-sensor allocation based on modified Riccati equation and Kuhn-Munkres algorithm is provided.And the steps of solving optimization are given.Simulation results show the feasibility of this method.

  8. Dalian’s Mounted Policewomen

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    IN the summer of 1996, the first group of mounted policewomen came into being at the coastal city of Dalian,in northern China. The cavalrywomen patrol the streets on the backs of tall horses. bringing a new sense of safety and security to Dalian. Dalian sits on the Liaodong peninsula. This summer resort features long beaches, green folliage and sprawling lawns. Since 1988. the annual Dalian International Fashion Festival. with its thriving clothing industry and colorful cultural background, has attracted many businessmen and tourists from around the world. To welcome the Eighth Dalian International Fashion Festival and satisfy the needs of Dalian’s economic and cultural development, the Dalian City Public Security Bureau selected six policewomen to form a group of cavalrywomen.

  9. Advanced centering of mounted optics

    Science.gov (United States)

    Wenzel, Christian; Winkelmann, Ralf; Klar, Rainer; Philippen, Peter; Garden, Ron; Pearlman, Sasha; Pearlman, Guy

    2016-03-01

    Camera objectives or laser focusing units consist of complex lens systems with multiple lenses. The optical performance of such complex lens systems is dependent on the correct positioning of lenses in the system. Deviations in location or angle within the system directly affect the achievable image quality. To optimize the achievable performance of lens systems, these errors can be corrected by machining the mount of the lens with respect to the optical axis. The Innolite GmbH and Opto Alignment Technology have developed a novel machine for such center turning operation. A confocal laser reflection measurement sensor determines the absolute position of the optical axis with reference to the spindle axis. As a strong advantage compared to autocollimator measurements the utilized Opto Alignment sensor is capable of performing centration and tilt measurements without changing objectives on any radius surface from 2 mm to infinity and lens diameters from 0.5 mm to 300 mm, including cylinder, aspheric, and parabolic surfaces. In addition, it performs significantly better on coated lenses. The optical axis is skewed and offset in reference to the spindle axis as determined by the measurement. Using the information about the mount and all reference surfaces, a machine program for an untrue turning process is calculated from this data in a fully automated manner. Since the optical axis is not collinear with the spindle axis, the diamond tool compensates for these linear and tilt deviations with small correction movements. This results in a simple machine setup where the control system works as an electronic alignment chuck. Remaining eccentricity of errors of < 10 sec are typical alignment results.

  10. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  11. Mounting and Alignment of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  12. Surface mount technology terms and concepts

    CERN Document Server

    Zarrow, Phil

    1997-01-01

    In today's fast-paced world of technology, keeping up with new terms and concepts can be quite a challenge. Surface Mount Technology Terms and Concepts is an invaluable reference containing over 1000 terms and definitions used in the SMT field. Each term is followed by a paragraph or two explaining the meaning and how it fits into the surface mount industry. The easy lookup and concise explanations make it ideal for those starting out in the field as well as professionals already involved in surface mount design and assembly.Glossary of over 1000 surface mount technology terms

  13. 手爪中多传感器数据融合技术的研究概况%A survey of multi-sensor integration and fusion techniques of robotics gripper

    Institute of Scientific and Technical Information of China (English)

    童利标; 徐科军; 梅涛

    2001-01-01

    多传感器数据融合技术是传感器技术、模式识别、神经网络、控制理论、人工智能和模糊理论等学科相交叉的一门新兴学科,它被美国列为20世纪90年代重点研究开发的20项关键技术之一,已被广泛地应用于军事和非军事领域中。而在机器人手爪中应用多个传感器,采用数据融合技术进行传感器信息处理,是赋予机器人更高智能的关键之一。该文介绍了日本营救机器人手爪中的多传感器集成和数据融合技术及操作控制,美国早期的多传感器手爪系统和国内机器人手爪研究的主要情况,对我国机器人的研究发展具有一定的借鉴意义。%Multi-sensor data fusion, which has been one of twenty key techniques to develop in America in 1990′s,adopts the new techniques of sensors, pattern recognition,neural network,control theory, artificial intelligence and fuzzy theory and has been applied to both military and non-military fields. Multi-sensor based robot gripper system can overcome many difficulties of uncertain models and unknown environments which limit the domain of application of current intelligent robot. This paper introduces the multi-sensor integrated and data fusion techniques and operation and control system of Japan rescue robot gripper and the early multi-sensor gripper system of U. S. A.. The main development of robot gripper system in China is also summarized. The present work is useful to the development of robot and its multi-sensor gripper system in China.

  14. Cassegrainian concentrator solar array exploratory development module

    Science.gov (United States)

    Patterson, R. E.; Crabtree, W. L.

    1982-01-01

    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  15. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII

  16. Towards Slow-Moving Landslide Monitoring by Integrating Multi-Sensor InSAR Time Series Datasets: The Zhouqu Case Study, China

    Directory of Open Access Journals (Sweden)

    Qian Sun

    2016-11-01

    Full Text Available Although the past few decades have witnessed the great development of Synthetic Aperture Radar Interferometry (InSAR technology in the monitoring of landslides, such applications are limited by geometric distortions and ambiguity of 1D Line-Of-Sight (LOS measurements, both of which are the fundamental weakness of InSAR. Integration of multi-sensor InSAR datasets has recently shown its great potential in breaking through the two limits. In this study, 16 ascending images from the Advanced Land Observing Satellite (ALOS and 18 descending images from the Environmental Satellite (ENVISAT have been integrated to characterize and to detect the slow-moving landslides in Zhouqu, China between 2008 and 2010. Geometric distortions are first mapped by using the imaging geometric parameters of the used SAR data and public Digital Elevation Model (DEM data of Zhouqu, which allow the determination of the most appropriate data assembly for a particular slope. Subsequently, deformation rates along respective LOS directions of ALOS ascending and ENVISAT descending tracks are estimated by conducting InSAR time series analysis with a Temporarily Coherent Point (TCP-InSAR algorithm. As indicated by the geometric distortion results, 3D deformation rates of the Xieliupo slope at the east bank of the Pai-lung River are finally reconstructed by joint exploiting of the LOS deformation rates from cross-heading datasets based on the surface–parallel flow assumption. It is revealed that the synergistic results of ALOS and ENVISAT datasets provide a more comprehensive understanding and monitoring of the slow-moving landslides in Zhouqu.

  17. A Multi-Sensor Approach to Examining the Distribution of Total Suspended Matter (TSM in the Albemarle-Pamlico Estuarine System, NC, USA

    Directory of Open Access Journals (Sweden)

    Richard L. Miller

    2011-05-01

    Full Text Available For many coastal waters, total suspended matter (TSM plays a major role in key biological, chemical and geological processes. Effective mapping and monitoring technologies for TSM are therefore needed to support research investigations and environmental assessment and management efforts. Although several investigators have demonstrated that TSM or suspended sediments can be successfully mapped using MODIS 250 m data for relatively large water bodies, MODIS 250 m data is of more limited use for smaller estuaries and bays or aquatic systems with complex shoreline geometry. To adequately examine TSM in the Albemarle-Pamlico Estuarine System (APES of North Carolina, the large-scale synoptic view of MODIS and the higher spatial resolution of other sensors are required. MODIS, Landsat 7 ETM+ and FORMOSAT-2 remote sensing instrument (RSI data were collected on 8 November, 24 November and 10 December, 2010. Using TSM images (mg/L derived from MODIS 250 m band 1 (620–670 nm data, Landsat 7 ETM+ 30 m band 3 (630–690 nm and FORMOSAT-2 RSI 8 m band 3 (630−690 nm atmospherically corrected images were calibrated to TSM for select areas of the APES. There was a significant linear relationship between both Landsat 7 ETM+ (r2 = 0.87, n = 599, P < 0.001 and FORMOSAT-2 RSI (r2 = 0.95, n = 583, P < 0.001 reflectance images and MODIS-derived TSM concentrations, thus providing consistent estimates of TSM at 250, 30 and 8 m pixel resolutions. This multi-sensor approach will support a broad range of investigations on the water quality of the APES and help guide sampling schemes of future field campaigns.

  18. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    Science.gov (United States)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  19. 改进的动态加权多传感器数据融合算法%Improved Dynamic Weighted Multi-sensors Data Fusion Algorithm

    Institute of Scientific and Technical Information of China (English)

    杨佳; 宫峰勋

    2011-01-01

    为采用多个传感器对某一目标特性进行多次测量,提出一种改进的动态加权多传感器数据融合算法.利用模糊集合理论中的隶属函数构造各观测值的支持度矩阵,通过增加矩阵维数度量观测数据在整个观测区间的相互支持程度,采用矩阵特征向量的稳定理论分配融合权重,得到数据融合估计的最终表达式.仿真结果表明,与同类方法相比,该方法的融合精度较高,具有较好的稳健性.%In the case of multi-sensors measurement of many times on some characteristic index, a new fusion method is proposed.A membership function in fuzzy set is used to measure the mutual support degree of observation values, and the integrated support degree of data from various sensors is measured through an augmented support degree matrix.According to this augmented matrix's maximum modulus eigenvectors,corresponding weight coefficients of all the observation values are allocated, hence, the final expression of data fusion is obtained.An example and a simulation are used to compare the proposed method with another two similar fusion methods.Result shows that this method has both higher precision and strong ability of stableness.

  20. a Comparison among Different Optimization Levels in 3d Multi-Sensor Models. a Test Case in Emergency Context: 2016 Italian Earthquake

    Science.gov (United States)

    Chiabrando, F.; Sammartano, G.; Spanò, A.

    2017-02-01

    In sudden emergency contexts that affect urban centres and built heritage, the latest Geomatics technique solutions must enable the demands of damage documentation, risk assessment, management and data sharing as efficiently as possible, in relation to the danger condition, to the accessibility constraints of areas and to the tight deadlines needs. In recent times, Unmanned Vehicle System (UAV) equipped with cameras are more and more involved in aerial survey and reconnaissance missions, and they are behaving in a very cost-effective way in the direction of 3D documentation and preliminary damage assessment. More and more UAV equipment with low-cost sensors must become, in the future, suitable in every situation of documentation, but above all in damages and uncertainty frameworks. Rapidity in acquisition times and low-cost sensors are challenging marks, and they could be taken into consideration maybe with time spending processing. The paper will analyze and try to classify the information content in 3D aerial and terrestrial models and the importance of metric and non-metric withdrawable information that should be suitable for further uses, as the structural analysis one. The test area is an experience of Team Direct from Politecnico di Torino in centre Italy, where a strong earthquake occurred in August 2016. This study is carried out on a stand-alone damaged building in Pescara del Tronto (AP), with a multi-sensor 3D survey. The aim is to evaluate the contribution of terrestrial and aerial quick documentation by a SLAM based LiDAR and a camera equipped multirotor UAV, for a first reconnaissance inspection and modelling in terms of level of details, metric and non-metric information.

  1. Tonal noise production from a wall-mounted finite airfoil

    Science.gov (United States)

    Moreau, Danielle J.; Doolan, Con J.

    2016-02-01

    This study is concerned with the flow-induced noise of a smooth wall-mounted finite airfoil with flat ended tip and natural boundary layer transition. Far-field noise measurements have been taken at a single observer location and with a microphone array in the Virginia Tech Stability Wind Tunnel for a wall-mounted finite airfoil with aspect ratios of L / C = 1 - 3, at a range of Reynolds numbers (ReC = 7.9 ×105 - 1.6 ×106, based on chord) and geometric angles of attack (α = 0 - 6 °). At these Reynolds numbers, the wall-mounted finite airfoil produces a broadband noise contribution with a number of discrete equispaced tones at non-zero angles of attack. Spectral data are also presented for the noise produced due to three-dimensional vortex flow near the airfoil tip and wall junction to show the contributions of these flow features to airfoil noise generation. Tonal noise production is linked to the presence of a transitional flow state to the trailing edge and an accompanying region of mildly separated flow on the pressure surface. The separated flow region and tonal noise source location shift along the airfoil trailing edge towards the free-end region with increasing geometric angle of attack due to the influence of the tip flow field over the airfoil span. Tonal envelopes defining the operating conditions for tonal noise production from a wall-mounted finite airfoil are derived and show that the domain of tonal noise production differs significantly from that of a two-dimensional airfoil. Tonal noise production shifts to lower Reynolds numbers and higher geometric angles of attack as airfoil aspect ratio is reduced.

  2. Mount Meager landslide flow history

    Science.gov (United States)

    Moretti, Laurent; Allstadt, Kate; Mangeney, Anne; Yann, capdeville; Eleonore, Stutzmann; François, Bouchut

    2014-05-01

    Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics. Indeed, as shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate rheological parameters. Global and regional seismic networks continuously record gravitational instabilities, so this new method will help gather new data on landslide behavior, particularly when combined with a landslide numerical modeling. Using this approach, we focus on the 6 August 2010 Mount Meager landslide: a 48.5 Mm3 rockslide-debris flow occurring in the Mount Meager Volcanic complex in the Southwest British Columbia. This landslide traveled over 12.7 km in just a few minutes time and was recorded by 25 broadband seismic stations. The time history of the forces exerted by the landslide on the ground surface was inverted from the seismic waveforms. The forcing history revealed the occurrence of a complicated initiation and showed features attributable to flow over a complicated path that included two sharp turns and runup at a valley wall barrier. To reliably interpret this signal and thus obtain detailed information about the dynamics of the landslide, we ran simulations for a range of scenarios by varying the coefficient of friction and the number, mass, and timings of subevents and compute the forces generated in each case. By comparing the results of these simulations to the

  3. Development of Magnetorheological Engine Mount Test Rig

    Directory of Open Access Journals (Sweden)

    Md Yunos Mohd Razali

    2017-01-01

    Full Text Available Ride comfort is an important factor in any road vehicle performance. Nonetheless, passenger ride comfort is sometimes affected by the vibrations resulting from the road irregularities. Vehicle ride comfort is also often compromised by engine vibration. Engine mount is one of the devices which act as vibration isolator from unwanted vibration from engine to the driver and passengers. This paper explains the development of the test rig used for laboratory testing of Magnetorheological (MR engine mount characterization. MR engine mount was developed to investigate the vibration isolation process. An engine mount test machine was designed to measure the displacement, relative velocity and damper force with respect to current supply to characterize the hysteresis behavior of the damper and as force tracking control of the MR engine mount.

  4. Mitigating the hazards of Mount Rainier

    Science.gov (United States)

    Swanson, Don; Malone, Steve; Casadevall, Tom

    Mount Rainier volcano is an ever-present reminder to the more than three million inhabitants of the Puget Sound Lowland of the potentially hazardous geologic setting of the Pacific Northwest. Increased public awareness resulting from the recent eruptions of Mount St. Helens, Nevado del Ruiz, and Mount Pinatubo, among others, and the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI)'s designation of Mount Rainier as a Decade Volcano [Swanson et al., 1992] afford an opportunity to improve our knowledge about Mount Rainier with the goal of reducing these hazards. A workshop to discuss research needs and strategies, cosponsored by the National Academy of Sciences, the U.S. Geological Survey, and the University of Washington, was held at the University of Washington in Seattle from September 18 to 20, 1992. About seventy-five Earth scientists, social scientists, and representatives of several companies and government agencies attended.

  5. The Submillimeter Array Polarimeter

    CERN Document Server

    Marrone, Daniel P

    2008-01-01

    We describe the Submillimeter Array (SMA) Polarimeter, a polarization converter and feed multiplexer installed on the SMA. The polarimeter uses narrow-band quarter-wave plates to generate circular polarization sensitivity from the linearly-polarized SMA feeds. The wave plates are mounted in rotation stages under computer control so that the polarization handedness of each antenna is rapidly selectable. Positioning of the wave plates is found to be highly repeatable, better than 0.2 degrees. Although only a single polarization is detected at any time, all four cross correlations of left- and right-circular polarization are efficiently sampled on each baseline through coordinated switching of the antenna polarizations in Walsh function patterns. The initial set of anti-reflection coated quartz and sapphire wave plates allows polarimetry near 345 GHz; these plates have been have been used in observations between 325 and 350 GHz. The frequency-dependent cross-polarization of each antenna, largely due to the varia...

  6. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  7. Near field acoustic holography with microphones mounted on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno, Guillermo; Fernandez Grande, Efren;

    2008-01-01

    . This is potentially very useful for source identification. On the other hand a rigid sphere is somewhat more practical than an open sphere, and it is possible to modify the existing spherical NAH theory so that a similar sound field reconstruction can be made with an array of microphones flush-mounted on a rigid...... sphere. Rigid spheres with flush-mounted microphones are also used for beamforming, and it is known that they are advantageous compared with open spheres for this application. However, whereas beamforming is a far field technique NAH is a near field technique, and spherical NAH based on a rigid sphere...

  8. Biconical Ring Antenna Array for Wide Band Applications

    Directory of Open Access Journals (Sweden)

    C.SUBBA RAO

    2012-02-01

    Full Text Available Circular or ring arrays are conformal to the cylindrical surfaces unlike the linear arrays and can be mounted on moving objects. Biconical antenna is simple in construction and exhibits broad band characteristics. This antenna presents broad band radiation characteristics. In this paper circular or ring array of biconical antenna is proposed and its characteristics are analyzed for frequency band of 0.1 to 1GHz range. Radiation characteristicsof the array with excitation phase change are presented. Simulated results of the radiation characteristics of the circular array are analyzed.

  9. An improved loopless mounting method for cryocrystallography

    Science.gov (United States)

    Qi, Jian-Xun; Jiang, Fan

    2010-01-01

    Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.

  10. Modeling of Wind Turbine Gearbox Mounting

    Directory of Open Access Journals (Sweden)

    Morten K. Ebbesen

    2011-10-01

    Full Text Available In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains.

  11. Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    CERN Document Server

    Tovmassian, Gagik; Ochoa, Jose Luis; Ernenwein, Jean-Pierre; Mandat, Dusan; Pech, Miroslav; Frayn, Ilse Plauchu; Colorado, Enrique; Murillo, Jose Manuel; Cesena, Urania; Garcia, Benjamin; Lee, William H; Bulik, Tomasz; Garczarczyk, Markus; Fruck, Christian; Costantini, Heide; Cieslar, Marek; Aune, Taylor; Vincent, Stephane; Carr, John; Serre, Natalia; Janecek, Petr; Haefner, Dennis

    2016-01-01

    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.

  12. Zaštita objekata i nadgledanje prostora pasivnim multisenzorskim elektronskim sistemima / Security protection and area monitoring by passive multi-sensor systems

    Directory of Open Access Journals (Sweden)

    Miodrag Vujanović

    2004-05-01

    Full Text Available Analizom savremenih borbenih dejstava uočava se više značajnih karakteristika koje predstavljaju opšte, zajedničko obeležje svih savremenih operacija. Dominantna je, svakako, karakteristika sveobuhvatnosti borbenih dejstava i po prostoru i po vremenu. To znači da za uspešno vođenje savremenih operacija treba, u svakom trenutku, raspolagati pouzdanim podacima o svim aktivnostima u prostoru (kretanje ljudstva, tehnike, njihove pozicije, meteorološki podaci, itd. Ove podatke generišu, na osnovu odgovarajućih detektovanih parametara, savremeni elektronski multisenzorski sistemi disperzirani u prostoru. U radu su izložene osnovne karakteristike sistema za zaštitu objekata i prostora koji se koriste u savremenim armijama. Dat je prikaz aktivnosti Vojnotehničkog instituta u realizaciji sistema PRESEK, koji je namenjen za perimetarsku zaštitu objekata i prostora. Izložena je i koncepcija novog multisenzorskog sistema za zaštitu objekata i prostora, čiji je osnovni uređaj univerzalna akviziciona platforma, koja treba da prihvati različite vrste pasivnih senzora i omogući pasivno ili aktivno nadgledanje prostora prenosom TV slike. / Analyzing modern low level intensity wars and crises, we find some important characteristics that are similar or same for each one. The most dominant are combat actions in whole space without time limitations which means that, if you want to be successful in predicting enemy's activities, you continually need to know about enemy's activities in battlefield (people moving, moving of armor vehicles, artilleries and their positions, meteorological data etc. That kind of data is successfully obtained by passive multi-sensor systems dispersed in space of expected battle. We will introduce the philosophy of modern systems that are in use in NATO armies, activities of Military Technical Institute in realization of such a system named PRESEK and developing of new passive multisensor system with CCTV.

  13. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    lower than 7%. Despite some inaccuracies in ρw retrieval, we demonstrate that the SPM concentration can be reliably estimated using OLI, MODIS and VIIRS, regardless of their differences in spatial and spectral resolutions. Match-ups between the OLI-derived SPM concentration and autonomous field measurements from the Loire and Gironde estuaries’ monitoring networks provided satisfactory results. The multi-sensor approach together with the multi-conditional algorithm presented here can be applied to the latest generation of ocean color sensors (namely Sentinel2/MSI and Sentinel3/OLCI to study SPM dynamics in the coastal ocean at higher spatial and temporal resolutions.

  14. Tightly-coupled multi-sensor hybrid tracking algorithm%紧耦合多传感器混合跟踪算法

    Institute of Scientific and Technical Information of China (English)

    李薪宇; 陈东义

    2011-01-01

    在增强现实应用中实现对运动目标的准确跟踪是一个具有挑战性的任务.基于混合跟踪通过对多传感器信息的融合通常比单一传感器跟踪算法更为优越的特性,提出了一种新的紧耦合混合跟踪算法实现视觉与惯性传感器信息的实时融合.该算法基于多频率的测量数据同步,通过强跟踪滤波器引入时变衰减因子自适应调整滤波预测误差协方差,实现对运动目标位置数据的准确估计.通过标示物被遮挡状态下的跟踪实验结果表明,该方法能有效改善基于扩展卡尔曼滤波器的混合跟踪算法对运动目标位置信息预测估计的准确性,提高跟踪快速移动目标的稳定性,适用于大范围移动条件下的增强现实系统.%Accurate tracking for augmented reality applications is a challenging task. Multi-sensor hybrid tracking generally provides more stable resalts than single visual tracking. A new tightly-coupled hybrid tracking approach combining vision-based systems with an inertia] sensor is presented in this paper. Based on the multi-frequency sampling theory in the measurement data synchronization, a strong tracking filter is used to smooth sensor data and estimate the position and orientation. Through adding a time-varying fading factor to adaptively adjust the prediction error covariance of the filter, this method improves the performance of tracking for fast moving targets. Experimental results with occluded markers show that proposed approach can effectively improve the prediction accuracy of location information to target motion with the hybrid tracking algorithm based on the extended Kalman filter, improve the stability of fast moving target tracking. Our approach is suitable for a large range of mobile conditions.

  15. 基于NSCT变换的多传感器图像融合算法%Multi-Sensor Image Fusion Algorithm Based on NSCT

    Institute of Scientific and Technical Information of China (English)

    童涛; 杨桄; 谭海峰; 任春颖

    2013-01-01

    Specific to the drawback that favoritism and average method are weak in maintaining the contrast of fusion image, a novel fusion algorithm based on Nonsubsampled Contourlet Transform(NSCT) is proposed. Firstly, the registered multi-sensor images from the same scene were transformed by Nonsubsampled Contourlet Transform. Then the high and low frequency coefficients are fused separately by using different fusion strategies: the low frequency coefficient is fused by adaptive regional energy, while the high frequency coefficient is fused by using regional energy matching with weighted mean and selection method. Finally, the target image is obtained by performing inverse Nonsubsampled Contourlet Transform. The algorithm has been used to merge infrared and visible images and multi-focus images. The experimental results indicate that the fused image obtained by the proposed method has a better subjective visual effect and objective evaluation criteria and performs better than traditional fusion methods.%针对多传感器图像融合中偏袒法和平均法易削减图像对比度的缺点,提出一种基于NSCT变换的图像融合算法.首先对来自同一场景配准后的多传感器图像进行NSCT变换;然后采取不同的融合策略分别对低频和高频方向子带系数进行融合:低频子带系数采用区域能量自适应加权的方法,高频方向子带系数采用局部区域能量匹配的加权平均法与选择法相结合的方案;最后通过NSCT逆变换得到融合图像.分别对红外与可见光图像和多聚焦图像融合进行实验,并对融合图像进行主客观评价,实验结果表明:该算法得到的融合图像具有较好的主观视觉效果和客观量化指标,并优于传统的融合方法.

  16. 基于多传感器融合的抓取控制研究%Research on Grasping Control Based on Multi-sensor Fusion

    Institute of Scientific and Technical Information of China (English)

    谭建豪; 宋彩霞; 张俊; 胡颖

    2012-01-01

    针对现有抓取系统中双目视觉定位精度较差,易受环境影响,使得抓取的成功率较低,鲁棒性不强的现象,本文提出采用视觉、红外测距传感器、触觉传感器和编码器等多传感器数据融合的方法,设计并实现了一种可靠的、鲁棒性强的、能自动调整抓取力的抓取系统.通过双目视觉辅以单目相机和红外测距传感器来精确定位,改善抓空情况;通过集成触觉传感器和编码器,对抓取过程中的力—位进行实时监测,减少目标物体破碎和滑落的现象,并通过实验证明了相对于单传感器,多传感器数据融合能大大改善抓取的成功率,提高系统的性能.%The location precision by binocular camera sensitive to environment is not high, thus the grasping success rate and robustness are not sound in the existing grasping system. And in order to overcome this problem, this paper proposed a method of fusing vision of infrared sensors, tactile sensors and encoders, which can realize a reliable, robust system capable of adjusting grip force automatically. In order to avoid the situation of grasping-nothing, binocular camera coupled with monocular camera and infrared sensors were used to locate precisely. By integrating tactile sensors and encoders, and adding monitoring force and position information in the process of grasping, the phenomena of broken and slippage of the object were reduced to a great extent. The experiments demonstrate that the grasping success rate and the system performance are greatly improved by fusing multi-sensor data compared with signal sensor.

  17. EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest

    Directory of Open Access Journals (Sweden)

    Z. Su

    2009-06-01

    Full Text Available EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006. However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland. As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and

  18. 1980 Mount Saint Helens, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake occurred at 15 32 UT, only seconds before the explosion that began the eruption of Mount St. Helens volcano. This eruption and blast blew off the top...

  19. Mount Pinatubo, Philippines: June 1991 Eruptions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Mount Pinatubo is an andesitic island arc volcano, located on the southern Luzon Island, Philippines. Prior to 1991 it had been dormant for more than 635 years. On...

  20. Mount Sinai Hospital's journey into TQM.

    Science.gov (United States)

    Freedman, T; Mapa, J; Droppo, L

    1994-01-01

    Toronto's Mount Sinai Hospital commenced its total quality management journey in the late 1980s as a complement to its extensive experience in quality assurance. This article focuses on Phase I--the process of setting up teams. This phase includes project nomination and selection; team membership selection and education; and the quality improvement process. The authors share the lessons they learned during the course of the journey and present the directions that TQM at Mount Sinai will take in the future.

  1. History and hazards of Mount Rainier, Washington

    Science.gov (United States)

    Sisson, Thomas W.

    1995-01-01

    Mount Rainier is an active volcano that first erupted about half a million years ago. Because of Rainier's great height (14,410 feet above sea level) and northerly location, glaciers have cut deeply into its lavas, making it appear deceptively older than it actually is. Mount Rainier is known to have erupted as recently as in the 1840s, and large eruptions took place as recently as about 1,000 and 2,300 years ago.

  2. Mount Rainier: living with perilous beauty

    Science.gov (United States)

    Scott, Kevin M.; Wolfe, Edward W.; Driedger, Carolyn L.

    1998-01-01

    Mount Rainier is an active volcano reaching more than 2.7 miles (14,410 feet) above sea level. Its majestic edifice looms over expanding suburbs in the valleys that lead to nearby Puget Sound. USGS research over the last several decades indicates that Mount Rainier has been the source of many volcanic mudflows (lahars) that buried areas now densely populated. Now the USGS is working cooperatively with local communities to help people live more safely with the volcano.

  3. Analysis of Cylindrical Dipole Arrays for Smart Antenna Application

    Institute of Scientific and Technical Information of China (English)

    CAOXiangyu; GAOJun; K.M.Luk; LIANGChanghong

    2005-01-01

    A locally Conformal finite difference time domain (CFDTD) algorithm is studied and applied to model the radiation pattern of a linear dipole arrays mounted on a finite solid conducting cylinder. The numerical result shows that is in good agreement with the moment methods. Finally, the algorithm is applied to study smart antenna used in base station antenna. Several linear arrays mounted with uniform distribution on the cylinder are analyzed. The effects of the number of linear arrays on producing reasonably omnidirectional radiation pattern in the horizontal plane are investigated. It is shown that eight column dipole arrays may be a good choice for economical and practical considerations, and the omnidirection radiation characteristic can be better if the distance from the array axis to the cylinder surface is reduced.

  4. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  5. APPLICATION OF MULTI-SENSOR DATA FUSION BASED ON FUZZY NEURAL NETWORK IN ROTATING MECHANICAL FAILURE DIAGNOSIS%基于旋转机械故障诊断模糊神经网络多传感器融合

    Institute of Scientific and Technical Information of China (English)

    周洁敏; 林刚; 宫淑丽; 陶云刚

    2001-01-01

    目前多传感器融合技术能够有效地提高精度和容错能力,所以它广泛应用于目标识别领域中。本文描述了一种基于旋转机械故障诊断多传感器融合系统,在数据融合处理中利用模糊神经网络,比较了采用基于数据融合实验结果和没有融合的原始数据,显然前者比后者更精确。%At present, multi-sensor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault tolerance. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data with that on original separate data,it is shown that the former is more accurate than the latter.

  6. Multiscale Data Fusion for Multi-Sensor Single Model Dynamic Systems%多传感器单模型动态系统多尺度数据融合

    Institute of Scientific and Technical Information of China (English)

    文成林

    2001-01-01

    Using the thought of multiscale analysis,we combine the model-based analysis method with the multiscale signal transformation method and propose a new algorithm of multiscale fusion estimation based on multi-sensor single model.At each scale we have obtained the fusion estimates by use of all sensors at finer scales,which can be effictively used for data fusion estimation for dynamic systems with multi-sensors at multirate sampling.%利用多尺度分析的思想,将基于模型的动态系统分析方法与基于统计特性的多尺度信号变换方法相结合,建立起目标状态基于多源观测信息的多尺度数据融合估计新算法,在每个尺度上获得目标状态基于全体细尺度上传感器测量信息的融合估计值,此算法可有效地应用于拥有不同采样速率的多传感器动态系统的数据融合估计.

  7. Experimental Validation of a Compound Control Scheme for a Two-Axis Inertially Stabilized Platform with Multi-Sensors in an Unmanned Helicopter-Based Airborne Power Line Inspection System

    Directory of Open Access Journals (Sweden)

    Xiangyang Zhou

    2016-03-01

    Full Text Available A compound control scheme is proposed to achieve high control performance for a two-axis inertially stabilized platform (ISP with multi-sensors applied to an unmanned helicopter (UH-based airborne power line inspection (APLI system. Compared with the traditional two closed-loop control scheme that is composed of a high-bandwidth rate loop and a lower bandwidth position loop, a new current loop inside rate loop is particularly designed to suppress the influences of voltage fluctuation from power supply and motor back electromotive force (BEMF on control precision. In this way, the stabilization accuracy of the ISP is greatly improved. The rate loop, which is the middle one, is used to improve sensor’s stability precision through compensating for various disturbances. To ensure the pointing accuracy of the line of sight (LOS of multi-sensors, the position loop is designed to be the outer one and acts as the main feedback path, by which the accurate pointing angular position is achieved. To validate the scheme, a series of experiments were carried out. The results show that the proposed compound control scheme can achieve reliable control precision and satisfy the requirements of real APLI tasks.

  8. 基于多传感器信息融合的汽车酒驾测控系统设计%The design on vehicle alcohol detection and control system based on multi-sensor data fusion

    Institute of Scientific and Technical Information of China (English)

    刘艳红; 柏逢明

    2015-01-01

    To overcome the impact of detection precision and accuracy of interior vehicle flow in traditional vehicle alcohol detection and control system with a single sensor, a vehicle alcohol detection and control system via multi-sensor fusion technologies is proposed. Based on D-S evidence theory, an information fusion structure is given. The mainly hardware modules of the system are also designed. The designing scheme of vehicle alcohol detection and control system via multi-sensor data fusion approach is finished.%针对传统单点汽车酒驾检测系统忽略了车内气流流动对检测精度和准确度的影响,文章探索性地提出了一种基于多传感器融合技术的汽车室内酒驾测控方法。基于D-S证据理论设计信息融合算法,并设计了酒驾测控系统的主要硬件系统与工作模式,完成了基于多传感器检测的汽车酒驾检测与控制系统方案设计。

  9. Multi-sensor Information Fusion Weighted Average Algorithm Based on Decision-making Distance%基于决策距离的多传感器信息融合加权平均算法

    Institute of Scientific and Technical Information of China (English)

    彭会萍; 曹晓军; 杨永旭

    2012-01-01

    This paper introduced some important concepts,such as the evidence-distance,the evidence support degree,the evidence credibility and the decision-making distance measurement.By given some rationalize processing to the trust function data of evidence,and achieved the result of the multi-sensor information fusion using the D-S evidence combination rules,then,this paper proposed a weighted average algorithm of multi-sensor information fusion based on decision-distance.Numerical example shows that the method can effectively solve the D-S conflict,and can ensure the accuracy of the information fusion.%本文引入证据间距离、证据间支持度和可信度、决策距离测量等重要概念,对证据的信任函数数据进行合理化处理,并借助D-S证据合成规则实现多传感器的信息融合,从而提出基于决策距离的多传感器信息融合加权平均算法。算例分析表明,该方法能够有效解决D-S冲突问题,确保信息融合结果的准确度。

  10. A Multi-Data Source and Multi-Sensor Approach for the 3D Reconstruction and Web Visualization of a Complex Archaelogical Site: The Case Study of “Tolmo De Minateda”

    Directory of Open Access Journals (Sweden)

    Jose Alberto Torres-Martínez

    2016-06-01

    Full Text Available The complexity of archaeological sites hinders creation of an integral model using the current Geomatic techniques (i.e., aerial, close-range photogrammetry and terrestrial laser scanner individually. A multi-sensor approach is therefore proposed as the optimal solution to provide a 3D reconstruction and visualization of these complex sites. Sensor registration represents a riveting milestone when automation is required and when aerial and terrestrial datasets must be integrated. To this end, several problems must be solved: coordinate system definition, geo-referencing, co-registration of point clouds, geometric and radiometric homogeneity, etc. The proposed multi-data source and multi-sensor approach is applied to the study case of the “Tolmo de Minateda” archaeological site. A total extension of 9 ha is reconstructed, with an adapted level of detail, by an ultralight aerial platform (paratrike, an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial photogrammetry. Finally, a mobile device (e.g., tablet or smartphone has been used to integrate, optimize and visualize all this information, providing added value to archaeologists and heritage managers who want to use an efficient tool for their works at the site, and even for non-expert users who just want to know more about the archaeological settlement.

  11. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  12. 14 CFR 23.363 - Side load on engine mount.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less...

  13. Flow distortion on boom mounted cup anemometers

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Friis Pedersen, Troels; Gottschall, Julia

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models...... are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted...... in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements...

  14. The Murchison Widefield Array Correlator

    Science.gov (United States)

    Ord, S. M.; Crosse, B.; Emrich, D.; Pallot, D.; Wayth, R. B.; Clark, M. A.; Tremblay, S. E.; Arcus, W.; Barnes, D.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; deSouza, L.; Ewell-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A.; Pathikulangara, J.; Pindor, B.; Prabu, T.; Procopio, P.; Remillard, R. A.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2015-03-01

    The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio-astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day-1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.

  15. TANGO Array. 1. The instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P. E-mail: pablo.bauleo@colostate.edu; Bonifazi, C.; Filevich, A.; Reguera, A

    2004-01-11

    TANGO Array is an air shower experiment which has been constructed in Buenos Aires, Argentina. It was commissioned during the year 2000 becoming fully operational in September, 2000. The array consists of four water Cherenkov detectors enclosing a geometrical area of {approx}30,000 m{sup 2} and its design has been optimized for the observation of Extended Air Showers produced by cosmic rays near the 'knee' energy region {approx}4x10{sup 15} eV. Three of the detectors have been constructed using 12,000-l stainless-steel tanks, and the fourth has been mounted in a smaller, 400-l plastic container. The detectors are connected by cables to the data acquisition room, where a very simple system, which takes advantage of the features of a four-channel digital oscilloscope, was set for data collection. This data collection setup allows a fully automatic experiment control which does not require operator intervention. It includes monitoring, data logging, and daily calibration of all detectors. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  16. TANGO Array.. 1. The instrument

    Science.gov (United States)

    Bauleo, P.; Bonifazi, C.; Filevich, A.; Reguera, A.

    2004-01-01

    TANGO Array is an air shower experiment which has been constructed in Buenos Aires, Argentina. It was commissioned during the year 2000 becoming fully operational in September, 2000. The array consists of four water Cherenkov detectors enclosing a geometrical area of ˜30,000 m2 and its design has been optimized for the observation of Extended Air Showers produced by cosmic rays near the "knee" energy region ˜4×10 15 eV. Three of the detectors have been constructed using 12,000-l stainless-steel tanks, and the fourth has been mounted in a smaller, 400-l plastic container. The detectors are connected by cables to the data acquisition room, where a very simple system, which takes advantage of the features of a four-channel digital oscilloscope, was set for data collection. This data collection setup allows a fully automatic experiment control which does not require operator intervention. It includes monitoring, data logging, and daily calibration of all detectors. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  17. Miniature Sensor Node with Conformal Phased Array

    Directory of Open Access Journals (Sweden)

    W. De Raedt

    2011-12-01

    Full Text Available This paper reports on the design and fabrication of a fully integrated antenna beam steering concept for wireless sensor nodes. The conformal array circumcises four cube faces with a silicon core mounted on each face. Every silicon core represents a 2 by 1 antenna array with an antenna element consisting of a dipole antenna, a balun, and a distributed MEMS phase shifter. All these components are based on a single wafer process and designed to work at 17.2 GHz. Simulations of the entire system and first results of individual devices are reported.

  18. CADICAM Design of Trunnion Mount (Short Communication

    Directory of Open Access Journals (Sweden)

    Rahul D. Basu

    2002-04-01

    Full Text Available The computer-aided design (CAD, computer-aided manufacturing (CAM of a 3-D trunnion mount located on the intercasing housing of a gas turbine engine is described. The mount carries load and thrust, hence stress-concentrating locations, like sharp edges and corners must be avoided. A program involving CAD, CAM and post-processing CAD surfaces for tool paths has been developed. Preliminary machining of a scrap aluminum piece that verified the program is described. This method is applicable to a wide variety of proprietary packages.

  19. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  20. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  1. Mount Sinai and Mount Zion: Discontinuity and continuity in the book of Hebrews

    Directory of Open Access Journals (Sweden)

    Hulisani Ramantswana

    2013-11-01

    Full Text Available The author of Hebrews draws significant contrasts between Mount Sinai and Mount Zion which both played a major role in the old covenant. For the author of Hebrews the former mountain, Mount Sinai, only had limited significance with respect to the new covenant, whereas the latter mountain, Mount Zion, continued to have significance in the new covenant. Mount Zion was viewed as a shadow of the heavenly reality, which is the true destination for the pilgrimage community. Mount Sinai as the locus of encounter or meeting between God and Israel only played a transitory role, whereas Mount Zion had perpetual significance as the destination, the dwelling place of God and his people.Berg Sinai en Berg Sion: Diskontinuïteit en kontinuïteit in die brief aan die Hebreërs. Die skrywer van Hebreërs wys op betekenisvolle teenstellings tussen Berg Sinai en Berg Sion, wat elkeen ’n beduidende rol in die ou verbond gespeel het. Vir die Hebreërskrywer het Berg Sinai egter beperkte betekenis vir die nuwe verbond, terwyl Sion nog steeds betekenis het. Berg Sion word as skaduwee van die hemelse werklikheid beskou, wat die uiteindelike bestemming van die pelgrimsgemeenskap is. Berg Sinai, as die lokus van ontmoeting tussen God en Israel, speel slegs ‘n oorgangsrol, terwyl Berg Sion steeds beduidende betekenis het as bestemming en woonplek van God en sy volk.

  2. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  3. Dish-mounted latent heat buffer storage

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  4. PC board mount corrosion sensitive sensor

    Science.gov (United States)

    Robinson, Alex L.; Casias, Adrian L.; Pfeifer, Kent B.; Laguna, George R.

    2016-03-22

    The present invention relates to surface mount structures including a capacitive element or a resistive element, where the element has a property that is responsive to an environmental condition. In particular examples, the structure can be optionally coupled to a printed circuit board. Other apparatuses, surface mountable structures, and methods of use are described herein.

  5. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  6. Photographs, Mounts, and the Tactile Archive

    Directory of Open Access Journals (Sweden)

    Elizabeth Edwards

    2014-10-01

    Full Text Available This short article considers the humble photographic mount as a site of tactile engagement. In particular, it will explore photographs that were deposited in the visual collections of public libraries as sources of local history and instruments of local identities in the late nineteenth and early twentieth centuries. Mounts were specifically designed to present information to the eye in certain ways, and enable that information to be held in the hand and manipulated. But they also served to protect photographs against the ravages of touch in the public space. I shall consider how we might understand the enormous amount of energy expended on the consideration of photographic mounts. I consider staged materialities of the institutions that constitute these objects and their haptic requirements. These were changing radically at this period as open-access libraries organized the body of the reader in new ways. I argue that photographic mounts, their storage, access, and the arrangement of information upon them constituted part of this revolution.

  7. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  8. Summit firn caves, mount rainier, washington.

    Science.gov (United States)

    Kiver, E P; Mumma, M D

    1971-07-23

    Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.

  9. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  10. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  11. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  12. Global Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  13. Simulation Application for Optimization of Solar Collector Array

    OpenAIRE

    Igor Shesho*,; Done Tashevsk

    2014-01-01

    Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of...

  14. Research on Mechanical Measurement System based on Data Fusion Technology of Multi-sensor%基于多传感器数据融合技术的力学量测量系统研究

    Institute of Scientific and Technical Information of China (English)

    东方; 刘玉波; 陈博

    2011-01-01

    多传感器的数据融合已经在系统智能检测领域得到越来越多的应用,本论文针对传统的数据融合算法未考虑传感器自身可靠性这一不足,分析了面向传感器可靠性的数据融合算法,并在多元力学参数检测系统中加以应用,给出了系统的总体框架,并对数据融合的具体应用进行了分析,这对于进一步提高力学参数的智能传感检测及数据融合的研究具有一定的借鉴意义.%Data fusion technology of multi-sensor has been used more and wider in the field of intelligent detection system. This paper aimed at the problems that the traditional data fusion algorithm did not take the reliability of sensors into consideration, the data fusion algorithm that based on reliability of multi-sensors was analyzed, and put it into application of multi-mechanical parameters detection system.The whole structure frame of mechanical parameters detection system was also pointed out, and the application of data fusion technology was discussed in detail. All this work is significative for enhancing the research level of mechanical parameters detection system and data fusion.

  15. 泥石流危险度测试模型与多传感器监测系统%Hazard Test Model for Debris Flows and Multi-sensor Monitoring System

    Institute of Scientific and Technical Information of China (English)

    李瑜芳

    2011-01-01

    To accurately predict the occurrence of debris flow, and thus prevent and weaken the disaster, this paper built a hazard test model for debris flows which combines dynamic monitoring signals perceived by multi-sensor with geological environment information. According to the formation conditions and the evolution mechanism of debris flows, the critical rainfall intensity, critical tilt angle and critical accumulation horizon of sand and mud during debris flow were quantitatively studied. Based on the model, a multi-sensor monitoring system which contains rainfall, slope, level three sensors was designed and produced. Analysis and experimental results indicate that the model and the test system can predict debris flow hazard with more comprehensive information, better timeliness and higher accuracy and confidence.%为较准确地预测泥石流的发生,达到防灾减灾的目的,建立一种将多种传感器感知的动态监测信息与地质环境信息相结合的泥石流危险度预测模型.根据泥石流的形成条件和演化机理,量化研究发生泥石流的临界降雨强度、临界倾斜角和临界泥砂堆积层高度.基于该模型,设计并制作由雨量、倾斜、物位3种传感器组成的多传感器监控系统.分析和试验结果表明:该模型和监控系统具有预测泥石流危险度的功能,摄取的信息较全面,准确性更高,时效性更强.置信度较高.

  16. Application of Multi-sensor Target Identification Based on Improved Evidence Theory%改进的证据理论在多传感器目标识别中应用

    Institute of Scientific and Technical Information of China (English)

    王力; 白静

    2016-01-01

    在多传感器目标识别中,使用经典证据理论处理冲突证据会得到错误的决策。为解决目标识别系统信息冲突的问题,通过对证据理论分析提出了改进的合成公式。新方法充分利用了证据间的冲突,根据证据关于不同目标的冲突程度将证据间的冲突进行重新分配,然后做出识别决策。新合成公式计算简洁,通过目标识别算例对比表明,处理冲突证据时,该方法能得到合理与可靠的融合结果,收敛速度快,能识别正确的目标。%In Multi- sensor Target Identification system,DS evidence theory will generate a wrong conclusion when dealing with the highly conflict evidences. In order to fuse highly conflicting multi-sensor information in the target identification system, an efficient combination rule is proposed based on the analyses of the DS evidence theory. The new theory make full use of the conflict, and the evidence ’s conflicting probability is distributed to every proposition according to its conflict degree with others, then the target is identified. The new combination rule is simple. And the numerical example shows the combination rule will get a reliable and reasonable result when dealing with conflict evidences, and it was also faster in data convergence. The new combination rule can identify the right target.

  17. 基于多传感器数据融合的机器人里程计设计与实现%Design and Implementation of Robot Odometer Based on Multi-Sensor Data Fusion

    Institute of Scientific and Technical Information of China (English)

    余翀; 高翔; 邱其文

    2012-01-01

    An high-precision odometer by using FPGA and multi-optical-mouse sensors was designed and implemented. Firstly, PS/2 optical mouse sensors were used to measure the displacement data; then PS/2 protocol was parsed and multi-sensor data fusion algorithm was implemented by FPGA to obtain the results of high-precision robot odometer. On the base of improving the classical data fusion algorithm of consistency proposed by Luo, by using the normalized eigenvalue weighted value to obtain the level of support for each sensor integrating all sensor measurements in the system,the process of multi-sensor data fusion is completed. Experimental results show that the algorithm steps are fixed and easy to implement by FPGA. In the interference of abnormal data,the robot odometer can meet the requirements of high accuracy.%设计并实现了一种基于FPGA和多光电鼠标的高精度机器人里程计.多个PS/2光电鼠标传感器测量位移数据,利用FPGA解析PS/2协议并完成数据融合,得出高精度机器人里程计结果.针对传统Luo一致性数据融合算法的缺陷进行改进,并通过归一化特征值加权法得到每个传感器测量值被系统综合支持的程度,完成多传感器测量数据融合.实验结果表明:该数据算法计算步骤固定,方便在FPGA上实现;该里程计在有异常数据干扰情况下,能够达到较高的测量精度.

  18. 国外手爪中多传感器数据融合技术的研究概况%An overseas survey of multi-sensor integration and data fusion techniques of robotics gripper

    Institute of Scientific and Technical Information of China (English)

    童利标; 徐科军; 梅涛

    2001-01-01

    近年来,多传感器数据融合技术已引起世界范围 内的普遍关注,成为一个新兴的技术方向,并已成功地应用在军事系统、交通系统和智能机 器人等研究领域。手爪是空间智能机器人的关键部件之一,它集成了视觉、触觉和力觉等多 种传感器。为了能进行灵活和自适应的操作,机器人手爪必须要采用多传感器数据融合技术 。该文介绍了机器人手爪中多传感器集成和数据融合技术的研究概况,对我国机器人的研究 发展具有一定的借鉴意义。%The multi-sensor data fusion technique, which has been applied to the research fields sucessfully such as military systems, traffic systems, intelligent robots, etc, has become a great attention all over the world and has been a new research direction in rec ent years. The gripper is one of the key components of space intelligent robot w hich integrates many sensors such as vision sensors, tactile sensors,force senso rs, etc. In order to complete the flexible and adaptive operations, the grip per must adopt sensor data fusion techniques. In this paper, a survey of multi- sensor integration and data fusion techniques is made,which may be a reference t o the development of robot in China.

  19. Obstacle Avoidance System of Multi-Sensor Fusion for Embedded Linux-Based Mobile Robot%基于嵌入式Linux多传感器融合的移动机器人避障系统

    Institute of Scientific and Technical Information of China (English)

    黄先伟; 童怀; 陈德艳

    2013-01-01

    This system uses ultrasonic sensors and a visual sensor, together with multi-sensor information fusion algorithm based on fuzzy PID control It builds ARM+Linux embedded development environment for image compression and processing and B/S network-based remote monitoring function; transports the USB camera and wireless card driver under Linux, achieves image acquisition with the Video4Linux interface, and uses the jpeglib static library to compress the images. The embedded Web server Boa and Mini GUI program are used to remote control and to send dynamic updating images. Tests show that the system can achieve multi-sensor information fits ion under Linux, can perform the obstacle avoidance algorithm, path planning and remote control with high reliability and practicality.%系统采用超声波传感器结合视觉传感器,基于模糊PID控制的多传感器信息融合算法.构建了ARM+ Linux嵌入式开发环境来进行图像压缩和处理并实现基于B/S网络的远程监控功能;移植了USB摄像头和无线网卡的驱动,配合Video4Linux接口实现图像采集,并利用jpeglib静态库对图像进行了压缩处理.利用嵌入式Web服务器Boa并配合Mini GUI程序,实现了远程监控和图像动态更新.试验表明,该系统可以实现在Linux下融合多传感器信息、完成避障算法并实现路径规划和远程控制,具有较高的可靠性和实用性.

  20. Mass properties survey of solar array technologies

    Science.gov (United States)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  1. The Geologic Story of Mount Rainier

    Science.gov (United States)

    Crandell, Dwight Raymond

    1969-01-01

    Ice-clad Mount Rainier, towering over the landscape of western Washington, ranks with Fuji-yama in Japan, Popocatepeti in Mexico, and Vesuvius in Italy among the great volcanoes of the world. At Mount Rainier, as at other inactive volcanoes, the ever-present possibility of renewed eruptions gives viewers a sense of anticipation, excitement, and apprehension not equaled by most other mountains. Even so, many of us cannot imagine the cataclysmic scale of the eruptions that were responsible for building the giant cone which now stands in silence. We accept the volcano as if it had always been there, and we appreciate only the beauty of its stark expanses of rock and ice, its flower-strewn alpine meadows, and its bordering evergreen forests. Mount Rainier owes its scenic beauty to many features. The broad cone spreads out on top of a major mountain range - the Cascades. The volcano rises about 7,000 feet above its 7,000-foot foundation, and stands in solitary splendor - the highest peak in the entire Cascade Range. Its rocky ice-mantled slopes above timberline contrast with the dense green forests and give Mount Rainier the appearance of an arctic island in a temperate sea, an island so large that you can see its full size and shape only from the air. The mountain is highly photogenic because of the contrasts it offers among bare rock, snowfields, blue sky, and the incomparable flower fields that color its lower slopes, shadows cast by the multitude of cliffs, ridges, canyons, and pinnacles change constantly from sunrise to sunset, endlessly varying the texture and mood of the mountain. The face of the mountain also varies from day to day as its broad snowfields melt during the summer. The melting of these frozen reservoirs makes Mount Rainier a natural resource in a practical as well as in an esthetic sense, for it ensures steady flows of water for hydroelectric power in the region, regardless of season. Seen from the Puget Sound country to the west, Mount Rainier has

  2. Mapping the Spread of Mounted Warfare

    Directory of Open Access Journals (Sweden)

    Peter Turchin

    2016-12-01

    Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.

  3. Conceptual design for PSP mounting bracket

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, G.; Stein, R. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Protective structural packages (PSP`s or overpacks) used to ship 2 1/2-ton UF{sub 6} product cylinders are bolted to truck trailers. All bolts penetrate two longitudinal rows of wooden planks. Removal and replacement is required at various intervals for maintenance and routine testing. A conceptual design is presented for mounting brackets which would securely attach PSP`s to trailer frames, reduce removal and replacement time, and minimize risk of personnel injury.

  4. Development of Magnetorheological Engine Mount Test Rig

    OpenAIRE

    Md Yunos Mohd Razali; Harun Mohamad Hafiz; Sariman M.Z.; Mat Yamin A.K.

    2017-01-01

    Ride comfort is an important factor in any road vehicle performance. Nonetheless, passenger ride comfort is sometimes affected by the vibrations resulting from the road irregularities. Vehicle ride comfort is also often compromised by engine vibration. Engine mount is one of the devices which act as vibration isolator from unwanted vibration from engine to the driver and passengers. This paper explains the development of the test rig used for laboratory testing of Magnetorheological (MR) engi...

  5. Indexing Mount For Rotation Of Optical Component

    Science.gov (United States)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  6. MEMS accelerometers in accurate mount positioning systems

    Science.gov (United States)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  7. Atmospheric Pb levels over Mount Qomolangma region

    Institute of Scientific and Technical Information of China (English)

    Renjian Zhang; Zhenxing Shen; Han Zou

    2009-01-01

    The Pb spectral concentration of atmospheric aerosol samples observed over Mount Qomolangma site (28°11'33"N, 86°49'59"E, 4950 m ASL) in 2002 was 13.3 ng/m3, about 4.5 times higher than that in 2000. The Pb spectral distribution showed three peaks, located at <0.25 μm, 0.5-1 μm, and 4-8 μm in diameters. The peaks for <0.25 μm and 0.25-0.5 μm may be due to long-distant transport, while that for 4-8 μm probably results from local floating dust. The atmospheric Pb concentration over Mount Qomolangma was lower than that of South Pole, most of the urban areas, and desert areas in the northem hemisphere. The enrichment factors for fine and coarse particles of atmospheric Pb in 2002 over Mount Qomolangma were 413.2 and 62.6, respectively, in support of the slight atmospheric pollution with Pb over the Qinghai-Tibetan Plateau.

  8. Flow distortion on boom mounted cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Lindeloew-Marsden, P.; Pedersen, Troels F.; Gottschall, J.; Vesth, A.; Paulsen, R.W.U.; Courtney, M.S.

    2010-08-15

    In this report we investigate on wind direction dependent errors in the measurement of the horizontal wind speed by boom mounted cup anemometers. The boom mounting on the studied lattice tower is performed according to IEC standard design rules, yet, larger deviations than predicted by flow models are observed. The errors on the measurements are likely caused by an underestimation of the flow distortions around the tower. In this paper an experimental method for deriving a correction formula and an in-field calibration is suggested. The method is based on measurements with two cup anemometers mounted with booms at the same height but pointing in 60 deg. different directions. In the examined case of a 1.9 m wide equilateral triangular lattice tower with booms protruding 4.1 m at 80 m height the measurement errors are observed to reach up to +- 2 %. Errors of this magnitude are severely problematic in the measurement of wind turbine power performance, wind resource assessment and for providing purposeful in-field comparisons between different sensors, e.g. lidar anemometers. With the proposed method, direction dependent errors can be extracted and the mast flow distortion effect on the wind measurements corrected to an uncertainty estimated to better than 0.5%. This level of uncertainty is probably acceptable for the above mentioned applications. (author)

  9. Effects of Structural Flexibility on Aircraft-Engine Mounts

    Science.gov (United States)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  10. A Multimode Equivalent Network Approach for the Analysis of a 'Realistic' Finite Array of Open Ended Waveguides

    NARCIS (Netherlands)

    Neto, A.; Bolt, R.; Gerini, G.; Schmitt, D.

    2003-01-01

    In this contribution we present a theoretical model for the analysis of finite arrays of open-ended waveguides mounted on finite mounting platforms or having radome coverages. This model is based on a Multimode Equivalent Network (MEN) [1] representation of the radiating waveguides complete with the

  11. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires...

  12. [The controversy of routine articulator mounting in orthodontics].

    Science.gov (United States)

    Wang, Li; Han, Xianglong; Bai, Ding

    2013-06-01

    Articulators have been widely used by clinicians of dentistry. But routine articulator mounting is still controversial in orthodontics. Orthodontists oriented by gnathology approve routine articulator mounting while nongnathologic orthodontists disapprove it. This article reviews the thoughts of orthodontist that they agree or disagree with routine articulator mounting based on the considerations of biting, temporomandibular disorder (TMD), periodontitis, and so on.

  13. 30 Cool Facts about Mount St. Helens

    Science.gov (United States)

    Driedger, Carolyn; Liz, Westby; Faust, Lisa; Frenzen, Peter; Bennett, Jeanne; Clynne, Michael

    2010-01-01

    Commemorating the 30th anniversary of the 1980 eruptions of Mount St. Helens 1-During the past 4,000 years, Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range. 2-Most of Mount St. Helens is younger than 3,000 years old (younger than the pyramids of Egypt). 3-Some Native American names that refer to smoke at the volcano include- Lawala Clough, Low-We- Lat-Klah, Low-We-Not- Thlat, Loowit, Loo-wit, Loo-wit Lat-kla, and Louwala-Clough. 4-3,600 years ago-Native Americans abandoned hunting grounds devastated by an enormous eruption four times larger than the May 18, 1980 eruption. 5-1792-Captain George Vancouver named the volcano for Britain's ambassador to Spain, Alleyne Fitzherbert, also known as Baron St. Helens. 6-1975-U.S. Geological Survey geologists forecasted that Mount St. Helens would erupt again, 'possibly before the end of the century.' 7-March 20, 1980-A magnitude 4.2 earthquake signaled the reawakening of the volcano after 123 years. 8-Spring 1980-Rising magma pushed the volcano's north flank outward 5 feet per day. 9-Morning of May 18, 1980- The largest terrestrial landslide in recorded history reduced the summit by 1,300 feet and triggered a lateral blast. 10-Within 3 minutes, the lateral blast, traveling at more than 300 miles per hour, blew down and scorched 230 square miles of forest. 11-Within 15 minutes, a vertical plume of volcanic ash rose over 80,000 feet. 12-Afternoon of May 18, 1980-The dense ash cloud turned daylight into darkness in eastern Washington, causing streetlights to turn on in Yakima and Ritzville. 13-The volcanic ash cloud drifted east across the United States in 3 days and encircled Earth in 15 days. 14-Lahars (volcanic mudflows) filled rivers with rocks, sand, and mud, damaging 27 bridges and 200 homes and forcing 31 ships to remain in ports upstream. 15-The May 18, 1980 eruption was the most economically destructive volcanic event in U.S. history. 16-Small plants and trees beneath winter snow

  14. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  15. Creating Gaze Annotations in Head Mounted Displays

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Qvarfordt, Pernilla

    2015-01-01

    , the user simply captures an image using the HMD’s camera, looks at an object of interest in the image, and speaks out the information to be associated with the object. The gaze location is recorded and visualized with a marker. The voice is transcribed using speech recognition. Gaze annotations can......To facilitate distributed communication in mobile settings, we developed GazeNote for creating and sharing gaze annotations in head mounted displays (HMDs). With gaze annotations it possible to point out objects of interest within an image and add a verbal description. To create an annota- tion...

  16. AO corrected satellite imaging from Mount Stromlo

    Science.gov (United States)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  17. Habitat changes: Mount Haggin Wildlife Management Area

    Science.gov (United States)

    Frisina, M.R.; Keigley, R.B.

    2004-01-01

    In 1984, a rest-rotation grazing system was established on the Mount Haggin Wildlife Management Area (MHWMA) in southwest Montana. The area is a mixture of wet and dry meadow types, grass/shrublands, and forest. Prior to implementing the grazing system, photo-monitoring points were established on the MHWMA at locations were cattle concentrate were grazing. The area consists of a three pasture rest-rotation system incorporating 20,000 acres. Photo essays revealed changes in riparian, lowland, and upland sites within the grazing system. In addition, gross changes in the amount of willow present were documented.

  18. Target tracking by multi-sensor cooperation method based on distributed Nash Q-learning%基于分布式纳什Q学习的多传感器协同目标跟踪

    Institute of Scientific and Technical Information of China (English)

    蔡佳; 黄长强; 高翔; 胡杰

    2012-01-01

    In order to solve the problem of excessive dependence on the environment model which exists in traditional target tracking algorithm, a multi-sensor cooperation target tracking method based on distributed Nash Q-learning is proposed. The reinforcement learning and distributed Nash Q-Learning theories were analyzed. The multi-sensor cooperative tracking situation was described; the nonlinear models of discrete system were established and its traditional solutions extended Kalman filtering was given. Sensor action and reward function were defined, which are crucial to the learning performance. Reward function was obtained by calculating the trace of prediction error covariance matrix. The probability statistics method based on Bayesian inference was presented to update the Q function. Simulation results of the bearing-only measurements target tracking show that this algorithm can enhance the sensors' environmental adaptiveness, realize the tracking effectiveness and improve the tracking accuracy compared with the traditional filtering algorithm.%针对传统目标跟踪算法过分依赖环境模型的问题,提出了一种基于分布式纳什Q学习的多传感器协同目标跟踪算法.分析了强化学习与分布式纳什Q学习算法的原理;描述了多传感器的协同跟踪态势,建立了离散系统的非线性模型,给出了传统的扩展卡尔曼滤波解决方法;定义了对分布式纳什Q学习性能影响至关重要的传感器行为和奖惩函数,奖惩函数通过计算预测误差方差阵的迹得到;采用基于贝叶斯推理的概率统计方法解决了Q函数的更新问题.纯方位量测信息的被动跟踪仿真结果表明,相比于传统滤波算法,该算法增强了传感器对环境变化的适应性,实现了对目标的有效跟踪,提高了跟踪精度.

  19. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    Science.gov (United States)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  20. Multi-sensor Integrated Approach of De-icing Robot to study Sensor Range%除冰机器人的多传感器高效融合障碍测距方法研究

    Institute of Scientific and Technical Information of China (English)

    宋绍楼; 王晓宗

    2012-01-01

    Obstacles ranging is one of the key technologies of the high -tension transmission line deicing robot. According to the structural features of the 220kV transmission line deicing robot, puts forward a new method of obstacles distance detection based on information integration. First of all. Design the structure of the multi- sensors detecting system of deicing robot based on the obstacles distribution. Build the model of the obstacles information integration system. According to the nonlinearity of the obstacles information state model, synchronize the asynchronous measured data of the sensors. Then, filtering and integrate the modified multi- sensors information. Compare with the results of the single sensor, the experimental results show that: This method can effectively integrate information from different sensors, with a higher range accuracy and faster convergence rate.%障碍物测距是高压输电线路自主除冰机器人的关键技术之一;针对220 kV输电线路除冰机器人的结构特点,提出了一种基于障碍物距离信息融合检测方法;首先根据障碍物分布情况设计了除冰机器人多传感器检测系统的结构,建立了障碍物信息融合系统模型.然后根据障碍物信息状态模型的非线性特点,对传感器获取的异步测量数据进行同步处理,再应用改进的多传感器信息进行滤波和融合,并与单个传感器的结果相比较,实验结果研究表明:该方法能有效地融合不同传感器的信息,具有更高的测距精度和更快的收敛速度.

  1. Volcanic hazards at Mount Rainier, Washington

    Science.gov (United States)

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  2. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... Exploratory Drilling AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact... drilling on the Cibola National Forest, Mount Taylor Ranger District. There are two areas identified for... vicinity of the town of San Mateo. In total, there are up to 279 drill holes that would be drilled over...

  3. The eddy performance: Contemporary ethnography of Mount Tlaloc

    Directory of Open Access Journals (Sweden)

    Lorente Fernández, David

    2010-12-01

    Full Text Available Mount Tlaloc was a very important religious place in the prehispanic age: it was the place where request ceremonies for rain took place on the Mexica Empire. This is the reason for the increasing interest in this place among archaeologists and ethnohistorians. However, systematic ethnography in the region is almost inexistent and the accurate meaning of the offerings and rituals which are still being carried out nowadays is unknown. The article shows the conclusions of a long fieldwork on the region which describes a therapeutic ceremony where the offering consists in the performing of an eddy —an identification with the water spirits to copy their behavior. Such eddy is related to another array of offerings which includes the donation of seeds or their smell as food. With the analysis of the ritual, the complex contemporary cosmology is explored showing a link between Mount Tlaloc and the local irrigation system: their irrigation channels and the springs are a whole from a conceptual and geographic point of view.

    El Monte Tláloc constituyó un importante sitio ceremonial regional en la época prehispánica: era el lugar en el que se realizaban los ritos petitorios de lluvia del Imperio mexica. Por ello ha despertado el interés creciente de arqueólogos y etnohistoriadores. Sin embargo, la etnografía sistemática de la zona es prácticamente inexistente, al grado de que desconocemos exactamente el sentido de las ofrendas y los rituales que continúan realizándose allí. En este sentido, el artículo presenta las conclusiones de un prolongado trabajo de campo en el área y describe un rito terapéutico en el que la ofrenda es la teatralización de un «remolino actuado», es decir, una identificación con los espíritus del agua por el recurso de imitar sus acciones. Dicho remolino se asocia también con otra variedad de ofrendas que incluyen la donación de semillas o sus aromas como alimento. A partir de un análisis del rito se

  4. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  5. The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    C. R. Subrahmanya; P. K. Manoharan; Jayaram N. Chengalur

    2017-03-01

    We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a frequency of 326.5 (or $z \\sim 3.35$ for the HI 21-cm line). The telescope has been constructed on a North–South hill slope whose gradient is equal to the latitude of the hill, making it effectively equatorially mounted. The feed consists of an array of 1056 dipoles. The key feature of this upgrade is the digitization and cross-correlation of the signals of every set of 4-dipoles. This converts the ORT into a 264 element interferometer with a field-of-view of $ 2^{\\circ} \\times 27.4^{\\circ} \\cos(\\delta)$. This upgraded instrument is called the Ooty Wide Field Array (OWFA). This paper briefly describes the salient features of the upgrade, as well as its main science drivers. There are three main science drivers viz. (1) observations of the large scale distribution of HI in the post-reionization era, (2) studies of the propagation of plasma irregularities through the inner heliosphere and (3) blind surveys for transient sources. More details on the upgrade, as well as on the expected science uses can be found in other papers in this special issue.

  6. Eruptive history of Mount Katmai, Alaska

    Science.gov (United States)

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Mount Katmai has long been recognized for its caldera collapse during the great pyroclastic eruption of 1912 (which vented 10 km away at Novarupta in the Valley of Ten Thousand Smokes), but little has previously been reported about the geology of the remote ice-clad stratovolcano itself. Over several seasons, we reconnoitered all parts of the edifice and sampled most of the lava flows exposed on its flanks and caldera rim. The precipitous inner walls of the 1912 caldera remain too unstable for systematic sampling; so we provide instead a photographic and interpretive record of the wall sequences exposed. In contrast to the several andesite-dacite stratovolcanoes nearby, products of Mount Katmai range from basalt to rhyolite. Before collapse in 1912, there were two overlapping cones with separate vent complexes and craters; their products are here divided into eight sequences of lava flows, agglutinates, and phreatomagmatic ejecta. Latest Pleistocene and Holocene eruptive units include rhyodacite and rhyolite lava flows along the south rim; a major 22.8-ka rhyolitic plinian fall and ignimbrite deposit; a dacite-andesite zoned scoria fall; a thick sheet of dacite agglutinate that filled a paleocrater and draped the west side of the edifice; unglaciated leveed dacite lava flows on the southeast slope; and the Horseshoe Island dacite dome that extruded on the caldera floor after collapse. Pre-collapse volume of the glaciated Katmai edifice was ∼30 km3, and eruptive volume is estimated to have been 57±13 km3. The latter figure includes ∼40±6 km3 for the edifice, 5±2 km3 for off-edifice dacite pyroclastic deposits, and 12±5 km3 for the 22.8-ka rhyolitic pyroclastic deposits. To these can be added 13.5 km3 of magma that erupted at Novarupta in 1912, all or much of which is inferred to have been withdrawn from beneath Mount Katmai. The oldest part of the edifice exposed is a basaltic cone, which gave a 40Ar/39Ar plateau age of 89 ± 25 ka.

  7. Silicon ball grid array chip carrier

    Science.gov (United States)

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  8. A Web-based Scalable Multi-Sensor Data Fusion System Model%一种基于Web的多传感器数据融合系统模型

    Institute of Scientific and Technical Information of China (English)

    何佳洲; 陈世福

    2002-01-01

    With the development of the broadband network technology,there is a need for information fusion anyone,any time and anywhere.The data fusion systems(DFS) based on client/server model have an ability to process real time data better with high security,but they are usually lack of usability and scalability.However,the browser/server model based Internet has a good expandability,and browser is much convenient in use.In this paper,by absorbing the merits of above two architectures,we propose a Web-based multi-sensor DFS model,which can not only process real time data,but also ensure the system''''''''s usability and scalability.Secondly,the separative mechanism of data server and Web server,which makes the fusion focus on its different resources,can guarantee the robustness of the system.Thirdly,the security troubles related to Internet are resolved via using the two-fold protections of identity authentification and informantion encryption.In the end,a dual-blackboard implementation scheme is given.

  9. The Robot Self-Localization Method based on Multi-Sensors Information Fusion%基于多传感器信息融合的机器人自定位方法

    Institute of Scientific and Technical Information of China (English)

    毛臣健

    2012-01-01

    基于现有定位方法无法满足RoboCup足球机器人比赛中的定位要求,本文提出了一种基于多传感器信息融合的场景定位方法.以全向视觉与电子罗盘作为传感器,采用基于目标与数据驱动的方式作为其融合控制结构,产生式规则作为其数据融合的方法.实验证明,在现有大场地比赛范围内,该方法可以有效地实现机器人的自定位.%According to the self-localization requirement of RoboCup soccer robot, this paper presented a new self-localization method based on multi -sensors information fusion. Hie basic sensors used omni -directional vision and compass, goal and data driven as the fusion control structure, production rule as the fusion way. The experiments showed the validity for the presented method in large game scene.

  10. Application of Multi-sensor Data Fusion in Car Obstacle Avoidance%多传感器数据融合在小车避障上的应用

    Institute of Scientific and Technical Information of China (English)

    倪瑛; 张小明

    2014-01-01

    This paper briefly introduces the basic principle of multi-sensor data fusion technology and its application in car obstacle a-voidance by autonomous detection. It presents the hardware and software design of obstacle avoidance car based on six ultrasonic detec-tion modules. The physical test shows that this scheme can meet the demand to car obstacle avoidance of and can achieve more accurate results.%介绍了多传感器数据融合技术的基本原理,研究了它在小车自主探测避障上的应用,并给出了基于六个超声波检测模块的自主探测避障小车的硬件设计以及软件设计。经过实物测试反映,该方案能够满足小车自主探测避障的需求,精准度更高。

  11. 基于神经网络的多传感器信息融合及其在机器人中的应用%Multi-sensor information fusion based on neural network and its application in mobile robots

    Institute of Scientific and Technical Information of China (English)

    司兴涛; 张新义

    2009-01-01

    Multi-sensor information fusion technology fuses the redundant , complementary and real-time information from every sensor in a system and acquires more reliable and accurate information required by system. A fusion method based on neural network is introduced in this paper, and its application in robot field is discussed. An obstacle avoidance experiment of robot is done and the results prove the feasibility of the proposed approach.%多传感器信息融合即融合多个传感器提供的冗余、互补或更实时的信息,可以获得系统所需的更准确和更精确的信息.介绍了神经网络融合方法,探讨了信息融合技术在机器人方面的应用.机器人避障实验验证了所提方法的有效性.

  12. 基于多传感器图像融合的温度场测试系统%Temperature field tset system based on multi-sensor image fusion

    Institute of Scientific and Technical Information of China (English)

    于坤林; 谢志宇

    2013-01-01

    在此通过对国内外发动机的温度场的测试方法进行分析,首次提出了一种基于多传感器图像融合的温度场测试系统。该系统通过图像传感器和图像采集卡将测试目标的示温漆温度颜色图像采集传输到计算机里进行图像融合处理和温度识别。实验证明,该系统明显地提高了航空发动机温度场的测试效率和测试精度,该方法具有非常好的应用和推广价值。%A temperature field measuring system based on multi-sensor image fusion is presented first in this paper by ana-lyzing the temperature field test methods of aero engines at home and abroad. The image sensor and image acquisition card are adopted to collect the thermopaint temperature color images of a target under test and transfer them to a computer for image fu-sion processing and temperature recognition. Experiments show that the system can obviously improve the temperature field testing efficiency and accuracy of aero engines. This method has very good values of application and popularization.

  13. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.;

    2015-01-01

    to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity......A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential...... of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent...

  14. MOUNT PELE, AN ECOCLIMATIC GRADIENT GENERATOR

    Directory of Open Access Journals (Sweden)

    PHILIPPE JOSEPH

    2013-05-01

    Full Text Available Generally, mountains determine the characteristics of particular areas, because of the island phenomenon they cause. However, the geological origins of mountains are multiple and they are located in different climatic regions. Nevertheless, in all aspects they reflect the basic elements of the local biologic unit. The shapes, climates, diverse water resources, biocenoses and the generated soils are the different components that determine, through their dynamic interaction, the “Mountain” ecosystem. Tectonic subduction processes lead to the development of islands such as Martinique, whose basic structure consists of a series of mountains (among them Mount Pele. Like the topographic divisions, the local micro-climates, water courses, different soils (themselves the consequences of the presence of the mountain itself and successive volcanic eruptions determine, over time, the organization of the diverse vegetal entities.

  15. Accurate Telescope Mount Positioning with MEMS Accelerometers

    Science.gov (United States)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  16. Renewed unrest at Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  17. Insectivore Plants Nepenthes sp. at Mount Merbabu

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2000-07-01

    Full Text Available The aims of the research were to know the existence of the Nepenthes at mount Merbabu, variations of its morphology, associated plants, and ecological conditions. Nepenthes are one of plants that were categorized as conserved plant by Indonesian government as indicated in PPRI No. 7/1999. Many researchers attracted to study this unique plant since it’s distinct feature and the way to get nutrient by trapping insects at its sac. Samples were taken randomly along the path for climbing from Selo, Boyolali to the top of the mountain between April to May 2000. The results show that the plants were found at the altitude of around 1500 to 2000 tsl. There were two forms of the sacs, long and short at the same individual plants. The plants grow coiling on Myristica trees and shrubs of Thunbergia fragrans Roxb., and also could grow at the stoned-soil.

  18. Foot mounted inertial system for pedestrian navigation

    Science.gov (United States)

    Godha, S.; Lachapelle, G.

    2008-07-01

    This paper discusses algorithmic concepts, design and testing of a system based on a low-cost MEMS-based inertial measurement unit (IMU) and high-sensitivity global positioning system (HSGPS) receivers for seamless personal navigation in a GPS signal degraded environment. The system developed here is mounted on a pedestrian shoe/foot and uses measurements based on the dynamics experienced by the inertial sensors on the user's foot. The IMU measurements are processed through a conventional inertial navigation system (INS) algorithm and are then integrated with HSGPS receiver measurements and dynamics derived constraint measurements using a tightly coupled integration strategy. The ability of INS to bridge the navigation solution is evaluated through field tests conducted indoors and in severely signal degraded forest environments. The specific focus is on evaluating system performance under challenging GPS conditions.

  19. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  20. Mount Vesuvius: 2000 years of volcanological observations

    Science.gov (United States)

    Scandone, Roberto; Giacomelli, Lisetta; Gasparini, Paolo

    1993-11-01

    Mount Vesuvius had eruptions ranging between VEI 5+ to 0-1 during the last 2000 years. Infrequent explosive eruptions are recorded during the period 79 AD to 1631. Since the violent explosive eruption of 1631, the volcano has been in persistent activity, rebuilding the morphology that it had before that eruption. A succession of explosive and effusive eruptions occurred until 1944, with a predominance of short and violent episodes until 1872 and longer effusive eruptions since that date. Two factors mainly controlled the character of volcanic activity during this period: (1) the strength of the cone, which allowed, in the earlier period, an easy fracturing, rapid drainage, and pressure release of the magma column; (2) the interaction between magma and water, which enhanced the explosivity of several eruptions. The volcano appears to have reached a stage of quiescence because it finally attained a shape of equilibrium in which the height of the mountain is sufficient to counterbalance the buoyancy of the magma.

  1. Environmental evaluation of Surface Mounted Devices (SMD)

    Energy Technology Data Exchange (ETDEWEB)

    Barr, V.C.; Andrade, A.D.

    1997-06-01

    We evaluated the comparative reliability of solder interconnections used for Leadless Chip Carriers (LCCs), Meaded, and flat-pack hybrid microcircuits mounted on FR-4 glass epoxy printed wiring boards (PWBs). The board assemblies, with solder attached microcircuits, were repeatedly thermal cycled from - 65 to +125{degrees}C. We recognize that this temperature range far exceeds most testing of assemblies. The purposes of these tests were to evaluate worst-case conditions and to obtain comparative information. Identical PWB assemblies, using these three component types, were subjected to both thermal shock testing (1 cycle every 42 minutes) and temperature cycle testing (1 cycle every 3 hours). The double testing evaluated the differences in stress application and evaluated the potential of replacing slow transition, expensive temperature cycle testing (which has been an industry standard for years) with the much more rapid thermal shock testing.

  2. Mount Isa statement on quad bike safety.

    Science.gov (United States)

    Franklin, Richard C; Knight, Sabina; Lower, Tony

    2014-01-01

    Quad bikes are the leading cause of death in Australian agriculture, with half of these deaths resulting from rollovers. Between 2001 and 2012, there were more than 160 such deaths in Australia, representing a significant burden. There is a diversity of public opinions offered about quad bike safety. The Are You Remotely Interested … in Prevention; Building a Culture of Safety conference held in Mount Isa, Queensland, in August 2012 brought together subject matter experts from across Australia to discuss a range of issues relevant to rural Australia (including quad bikes). During this conference, the Mount Isa Statement for Quad Bike Safety was produced. The intent of the Statement was to draw on existing evidence to highlight solutions and provide a direction for future efforts to reduce the burden of death and injury related to quad bike use. The conference provided an opportunity for those with an interest in quad bike safety to come together in one location, discuss the issues and develop a common direction (the Statement). The Statement is presented in three sections: a statement of the facts that were available at the time of development; a set of recommendations; and what needs to happen next. We believe to the best of our knowledge this is the first time where many potential solutions for keeping people safe while operating quad bikes in agriculture have been explored in a public forum. There are some immediate solutions that people can undertake to keep themselves and those in their care safe when using a quad bike: initially selecting safer vehicles to use; fitting quad bikes with crush protection devices; not carrying passengers or overloading the quads; and wearing helmets.

  3. Hydrothermal processes at Mount Rainier, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  4. Analysis of impact of suspension rubber mounts on ride comfort

    Science.gov (United States)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  5. Modeling change from large-scale high-dimensional spatio-temporal array data

    Science.gov (United States)

    Lu, Meng; Pebesma, Edzer

    2014-05-01

    The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?

  6. The Cabled Component of NSF's Ocean Observatories Initiative: A Distributed, Multi-Sensor, Interactive Telepresence Within Ever-Shifting Marine Ecosystems

    Science.gov (United States)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G. K.; Kawka, O. E.; Fundis, A.; Mulvihill, M.; Harkins, G.; Harrington, M.; McGuire, C.; Manalang, D.; Light, R.; Stewart, A.; Brand, B.

    2013-12-01

    the volcano, and a minor signal showing direct tidal measurements from 300 miles offshore. Sensors to be installed and connected in 2014 will provide seismic information, current velocities, inflation and deflation measurements of the volcanic caldera, high-definition video on demand, digital-still imagery, chemical data from methane seeps and vent sites using mass spectrometers, and an array of thermistors in a low-temperature vent field. Six instrumented full water-column moorings with two different types of profilers will be installed and connected to the cable in 2014.

  7. A rubber mount model. Application to automotive equipment suspension

    OpenAIRE

    Manin, Lionel; Dufour, Régis; Thomas, Benjamin; Goge, Philippe

    2010-01-01

    International audience; In order to predict the nonlinear dynamic response of automotive equipment supported by rubber mounts, it is proposed to extend the generalized Dahl model for taking into account the visco-elastic behaviour of elastomer mount and to combine it, in a next step, with the reduced dynamic equations of the equipment supposed to exhibit a linear behaviour. To this end, the parameters of the restoring force model of the mounts are identified through a series of tests accounti...

  8. Application of a circular 2D hard-sphere microphone array for higher-order Ambisonics auralization

    DEFF Research Database (Denmark)

    Weller, Tobias; Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2011-01-01

    A circular microphone array mounted on a rigid sphere was realized and its application to higherorder Ambisonics (HOA) auralization was analysed. Besides the 2D Ambisonics application this array design provides a promising basis for the development of a mixed-order Ambisonics recording system...

  9. Multi-sensor and multi-temporal data fusion for measurement of depositional features at Augustine Volcano, south-central Alaska

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.

    2012-12-01

    In this paper, optical, SAR, and InSAR data from the 2006 eruption of Augustine Volcano, are used to demonstrate how fusion of photogrammatically derived, high resolution DEMs can be used to quantify extent and volume of eruption-related depositional features; to improve the sensitivity and accuracy of differential InSAR (d-InSAR) for volcano deformation monitoring; and how coherence maps of lava, pyroclastic flow deposits, and lahars provide information on deposition history and coherence recovery time of areas disrupted by lahars. Augustine Volcano's most recent eruption occurred in December 2005 through March 2006. Post 2006-eruption data from the ALOS-PRISM satellite is available from image acquisitions on 21 September 2007, 25 May 2008, and 26 September 2009. The ALOS-PRISM instrument consists of three independent panchromatic radiometers for simultaneous imaging in nadir, forward, and backward directions. This results in along-track stereoscopy in overlapping images (triplets), with horizontal resolution at nadir of 2.5-meters. DEMs produced from these high resolution triplets are compared to pre-eruption DEMs from the Shuttle Radar Topography Mission (SRTM) to delineate depositional features and quantify their volumes. Multi-temporal DEMs are also beneficial for the generation of topography-free d-InSAR images Separate d-InSAR analyses based on DEMs from PRISM triplets and the SRTM demonstrate the improvement in deformation-estimate precision that is achieved by using high-resolution DEM information. Augustine's 2006 eruption produced significant lava flows, pyroclastic flows, and lahars, which were previously mapped in detail. Coherence mapping from pre- and post-eruption Envisat data are validated by comparison to the available detail maps, and analyzed to determine the extent to which coherence mapping can resolve the time sequence of deposition during the 2006 eruption. Additional radar data sets are available from the Phased Array type L-band Synthetic

  10. Non-Metallic Transducer Mounting Brackets (AN/BQQ-5/6 Spherical Array Transducers)

    Science.gov (United States)

    1992-06-15

    susceptible to moisture permeation into the bulk polymer phase, while moisture penetration into the glass-resin interface may be the predominant mechanism...material. These surface cracks appear to be present only in the hard liquid crystal polymer skin that forms during the molding of the Vectra material...Portsmouth Connector," NRL-USRD Letter Report No. 9464 to NAVSEA, 25 Apr 1988. 7. J.S. Thornton, R.E. Montgomery, and J.F. Cartier , "Failure Rate Model for

  11. Geology of Mount Rainier National Park, Washington

    Science.gov (United States)

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  12. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    Science.gov (United States)

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  13. Designing a Vibrotactile Head-mounted Display.

    Science.gov (United States)

    de Jesus Oliveira, Victor; Brayda, Luca; Nedel, Luciana; Maciel, Anderson

    2017-01-23

    Due to the perceptual characteristics of the head, vibrotactile Head-mounted Displays are built with low actuator density. Therefore, vibrotactile guidance is mostly assessed by pointing towards objects in the azimuthal plane. When it comes to multisensory interaction in 3D environments, it is also important to convey information about objects in the elevation plane. In this paper, we design and assess a haptic guidance technique for 3D environments. First, we explore the modulation of vibration frequency to indicate the position of objects in the elevation plane. Then, we assessed a vibrotactile HMD made to render the position of objects in a 3D space around the subject by varying both stimulus loci and vibration frequency. Results have shown that frequencies modulated with a quadratic growth function allowed a more accurate, precise, and faster target localization in an active head pointing task. The technique presented high usability and a strong learning effect for a haptic search across different scenarios in an immersive VR setup.

  14. Examiner's finger-mounted fetal tissue oximetry

    Science.gov (United States)

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.

  15. 36 CFR 7.5 - Mount Rainier National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mount Rainier National Park. 7.5 Section 7.5 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.5 Mount Rainier National Park....

  16. Maintenance Procedure Display: Head Mounted Display (HMD) Evaluations

    Science.gov (United States)

    Whitmore, Milrian; Litaker, Harry L., Jr.; Solem, Jody A.; Holden, Kritina L.; Hoffman, Ronald R.

    2007-01-01

    A viewgraph presentation describing maintenance procedures for head mounted displays is shown. The topics include: 1) Study Goals; 2) Near Eye Displays (HMDs); 3) Design; 4) Phase I-Evaluation Methods; 5) Phase 1 Results; 6) Improved HMD Mounting; 7) Phase 2 -Evaluation Methods; 8) Phase 2 Preliminary Results; and 9) Next Steps.

  17. 36 CFR 7.77 - Mount Rushmore National Memorial.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mount Rushmore National Memorial. 7.77 Section 7.77 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.77 Mount Rushmore National Memorial. (a...

  18. The CF6 jet engine performance improvement: New front mount

    Science.gov (United States)

    Fasching, W. A.

    1979-01-01

    The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.

  19. The forces and moments on airplane engine mounts

    Science.gov (United States)

    Donely, Philip

    1936-01-01

    A resume of the equations and formulas for the forces and moments on an aircraft-engine mount is presented. In addition, available experimental data have been included to permit the computation of these forces and moments. A sample calculation is made and compared with present design conditions for engine mounts.

  20. Mounting of reference surface for a transmission sphere

    Science.gov (United States)

    Peng, Wei-Jei; Ho, Cheng-Fang; Yu, Zong-Ru; Huang, Chien-Yao; Kuo, Ching-Hsiang; Hsu, Wei-Yao

    2016-09-01

    The mounting design of a reference surface for a 6-in transmission sphere is presented in this paper. To achieve highprecision measurement in interferometry, the reference wavefront error should be controlled within peak-to-valley (PV) 0.1 λ (λ=0.6328 um) for subtraction in calibration. The reference wavefront error includes the system aberration error and the irregularity of the reference surface. When a transmission sphere is well aligned, the reference wavefront error is dominated by the reference surface. The mounting of the reference surface is imperative because the surface deformation of the reference surface after mounting needs to be lower than 0.1 λ. Besides the mounting deformation, self-weight deformation is also considerable for large optics, such as 6-in reference surface in our study. Consequently, a semikinematic mounting is applied using three small contact areas to avoid over constraint. The transmission sphere in our study is vertically tested on QED aspheric stitching interferometer (ASI), and then the trefoil aberration is occurred. There are two methods to decrease surface deformation after mounting, including deformation correction using computer control optical surfacing (CCOS) and adding soft supporting between hard mounting. In this study, three soft supports are used to share the loads of three rigid supports and then to minimize surface deformation due to gravity. Mounting design and experiments are described in this paper. Finally, the reference wavefront error of the prototype is successfully restrained within 0.1 λ in measurement.

  1. Volcano seismology from around the world: Case studies from Mount Pinatubo (Philippines) Galeras (Colombia), Mount Wrangell and Mount Veniaminof (Alaska)

    Science.gov (United States)

    Sanchez-Aguilar, John Jairo

    A compilation of research papers in volcano seismology is presented: (1) to study the configuration of magma systems beneath volcanoes, (2) to describe unexpected effects of the shaking from a regional earthquake on volcanic systems, and (3) to integrate seismicity investigations into a conceptual model for the magma system of a volcano. This work was undertaken because much research in volcano seismology is needed to help in hazard assessment. The possible configuration of magma systems beneath Mount Pinatubo, Philippines, and Galeras Volcano, Colombia, is studied with b-value mapping. We suggest models for earthquake-volcanoes interactions by studying the declines in local seismicity at Mt. Wrangell and Mt. Veniaminof, Alaska, following the 3 November 2002 Denali Fault Earthquake (DFE). Finally, a model for the magmatic-hydrothermal system beneath Mt. Veniaminof is proposed by deriving a velocity model and relocating the earthquakes, and by studying the temporal changes of frequencies and attenuation (Q) at the source of long-period (LP) events. Results from b-value mapping confirm that volcanoes are characterized by localized zones of high b-values, and also indicate that the internal structure of volcanoes is variable. Analyses of the background seismicity at Mt. Veniaminof suggest that earthquakes result from locally-induced stresses and that LP events may represent the response of a shallow hydrothermal system to heat input from below. The study of declines in seismicity at Mt. Wrangell and Mt. Veniaminof volcanoes following the DFE indicates that the dynamic shaking from regional shocks can physically damage a volcano and together with the static stress changes can affect the local seismicity for extended periods. We conclude that the use of simple methods allows a better understanding of the seismicity at volcanoes in Alaska, but most importantly in developing countries where the small number of seismograph stations puts challenging limitations for research.

  2. Multi-sensor detected object classification method based on support vector machine%基于支持向量机的多传感器探测目标分类方法

    Institute of Scientific and Technical Information of China (English)

    李侃; 黄文雄; 黄忠华

    2013-01-01

    针对传感器探测的数据常含有噪声,分类算法易受噪声数据干扰、容错能力差而产生错分问题,研究对多传感器探测目标进行分类的方法.提出容噪最小二乘投影双支持向量机(NLSPTSVM),去除离群点,提高容噪性能;通过定义NLSPTSVM置信度,以样本的最小超球体距为依据,根据“越是上层分类器的分类性能对分类模型的推广性能影响越大”的思想,以置信度NLSPTSVM作为二分类器,将NLSPTSVM的降噪过程提前到生成有向图之前,提出分类精度高、容噪性和容错性强的多分类支持向量机——容噪上层择优多路支持向量机(NUMDAG-SVMs).实验表明,NUMDAG-SVMs与同类算法相比具有更优的分类准确率和更强的容噪性和容错性.采用NUMDAG-SVMs对传感器采集的真实数据进行分类,取得了很好的结果.%Multi-sensor detected data often have noise. The current multiple classification algorithms are susceptible to noise interference, have weak fault-tolerance, and can lead to data misclassification. The multi-sensor detected object classification method was proposed in order to solve the problems. Noise-tolerance least squares projection twin support vector machine (NLSPTSVM) was presented in order to remove outliers to improve noise-tolerance. NLSPTSVM with confidence-degree, based on the defined confidence-degree of NLSPTSVM and the minimal hypersphere distance, was used as binary classifier, and advanced the noise reduction process before the generation of directed graph, according to the idea that "the upper classification performance has more effects on the generalization performance of classification model". A high accuracy, noise-tolerance and fault-tolerance multiple classification support vector machine was proposed, called noise-tolerance up-preferred multiple directed acyclic graph support vector machines (NUMDAG-SVMs). Experiments were conducted to test the performance of the algorithm. Experimental

  3. Fast and accurate self-localization of mobile robot based on multi-sensor%基于多传感器信息融合的移动机器人快速精确自定位

    Institute of Scientific and Technical Information of China (English)

    张学习; 杨宜民

    2011-01-01

    通过分析全向视觉、电子罗盘和里程计等传感器的感知模型,设计并实现了一种给定环境模型下移动机器人全局自定位算法.该算法利用蒙特卡罗粒子滤波,融合多个传感器在不同观测点获取的观测数据完成机器人自定位.与传统的、采用单一传感器自定位的方法相比,它把多个同质或异质传感器所提供的不完整测量及相关联数据库中的信息加以综合,降低单个信息的不确定性,提高了自定位的精度.同时由于充分利用了全向视觉传感器的观测模型,在粒子滤波定位方法的实现过程中,粒子点的置信度通过查表的方法获得,达到了在自定位过程中,确定置信度时所要求的快速性,从而保证了定位算法较好的实时性.实验结果证明了该方法的有效性.%A method based on the fusion of multi-sensor information is proposed for self-localization of the mobile robot in known environment. It provides the configuration of the multi-sensor information fusion system and analyzes the all-forward wheel, omni-vision and electrical compass. The Monte Cario(MCL) particle filtration method combines the measured data of sensors in various observation points to achieve the fusion localization for the mobile robot. Being different from the traditional single-sensor self-localization of the mobile robot, this method synthesizes the incomplete information from heterogeneous or homogeneity sensors and the related data from the data-base, thus, reducing the uncertainty in the information from a single sensor and improving the accuracy in self-localization. Because of the use of the observation model of the omni-vision, and the employment of the lookup table for determining the confidence interval in the realization of self-localization, this method achieves the required rapidity in obtaining the confidence interval for self-localization, ensuring its application in real time. Experimental results validate the

  4. 用于电力线巡检的大型无人直升机多传感器系统集成设计%Integrated Design on Multi-sensor System of Large Unmanned Helicopter for Electric Power Inspection

    Institute of Scientific and Technical Information of China (English)

    王柯; 蔡艳辉; 彭向阳; 刘正军; 麦晓明; 张金铎

    2016-01-01

    基于电力线路安全巡检需要,设计了集可见光相机、红外热像仪、紫外成像仪、激光扫描仪和定位定姿系统等设备为一体的无人直升机多传感器系统。提出了基于全球定位系统时间系统的高精度后处理软同步方法,实现各个传感器系统的独立、协调同步工作。同时提出基于服务器–客户端软件架构,实现各个传感器控制和数据采集的相互独立,最大限度提高传感器系统工作的安全性和可靠性。多传感器集成的无人机巡检试验结果显示,该系统能够在单次飞行中同步获取多波段、多种类型的巡检数据,数据之间具有强相关性,可以用于多源数据联合诊断分析,满足电力线路安全隐患多要素自动诊断的需要。%Based on requirements for safe inspection on electric power lines,a kind of multi-sensor system of unmanned heli-copter which includes visible light camera,infrared imager,ultraviolet imager,laser scanner,positioning and orientation system (POS),and so on is designed. Meanwhile,a high-precision and post-process soft synchronization method based on global positioning system (GPS)is proposed for realizing independent,coordinate and synchronous work of each sensor sys-tem. Software structure based on server-customer is designed to realize mutual independence of each sensor control and data acquisition,and furthest improve security and reliability of the sensor system. Experimental results of inspection of the multi-sensor integrated unmanned helicopter indicate that this system could obtain multi-wave and polytype inspection data at the same time in one single flying,and there is strong correlation among data which could be used for united diagnosis and a-nalysis on multi-source data and satisfy requirement for automatic diagnosis on multi-factor in potential safe hazards of elec-tric power lines.

  5. Neutron detector array at IUAC: Design features and instrumentation developments

    Indian Academy of Sciences (India)

    P Sugathan; A Jhingan; K S Golda; T Varughese; S Venkataramanan; N Saneesh; V V Satyanarayana; S K Suman; J Antony; Ruby Shanti; K Singh; S K Saini; A Gupta; A Kothari; P Barua; Rajesh Kumar; J Zacharias; R P Singh; B R Behera; S K Mandal; I M Govil; R K Bhowmik

    2014-11-01

    The characteristics and performance of the newly commissioned neutron detector array at IUAC are described. The array consists of 100 BC501 liquid scintillators mounted in a semispherical geometry and are kept at a distance of 175 cm from the reaction point. Each detector is a 5″ × 5″ cylindrical cell coupled to 5″ diameter photomultiplier tube (PMT). Signal processing is realized using custom-designed home-made integrated electronic modules which perform neutron–gamma discrimination using zero cross timing and time-of-flight (TOF) technique. Compact custom-built high voltage power supply developed using DC–DC converters are used to bias the detector. The neutrons are recorded in coincidence with fission fragments which are detected using multi-wire proportional counters mounted inside a 1m diameter SS target chamber. The detectors and electronics have been tested off-line using radioactive sources and the results are presented.

  6. Photovoltaic array with minimally penetrating rooftop support system

    Science.gov (United States)

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  7. Optimization of Classical Hydraulic Engine Mounts Based on RMS Method

    Directory of Open Access Journals (Sweden)

    J. Christopherson

    2005-01-01

    Full Text Available Based on RMS averaging of the frequency response functions of the absolute acceleration and relative displacement transmissibility, optimal parameters describing the hydraulic engine mount are determined to explain the internal mount geometry. More specifically, it is shown that a line of minima exists to define a relationship between the absolute acceleration and relative displacement transmissibility of a sprung mass using a hydraulic mount as a means of suspension. This line of minima is used to determine several optimal systems developed on the basis of different clearance requirements, hence different relative displacement requirements, and compare them by means of their respective acceleration and displacement transmissibility functions. In addition, the transient response of the mount to a step input is also investigated to show the effects of the optimization upon the time domain response of the hydraulic mount.

  8. Air Distribution in a Room with Ceiling-Mounted Diffusers

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Heby, Thomas; Moeller-Jensen, Bertil

    2006-01-01

    Experiments with air distribution in rooms generated by a radial ceiling-mounted diffuser and a diffuser generating flow with swirl are compared with the air distribution obtained by mixing ventilation from a wall-mounted diffuser, vertical ventilation and displacement ventilation. The air....... The characteristics of the air distribution systems are addressed by analysing the acceptable conditions for the supply flow rate and the temperature difference for the different systems. The paper shows that an air distribution system with ceiling-mounted air terminal units is able to generate comfortable velocity...... and temperature conditions at the same and at slightly higher loads as can be obtained by a vertical ventilation system, a mixing ventilation system with wall-mounted diffuser and a displacement ventilation system with a low velocity wall-mounted diffuser. The comparison is extended by considering both the local...

  9. Measurements of slope distances and vertical angles at Mount Baker and Mount Rainier, Washington, Mount Hood and Crater Lake, Oregon, and Mount Shasta and Lassen Peak, California, 1980-1984

    Science.gov (United States)

    Chadwick, W.W.

    1985-01-01

    Personnel of the U.S.Geological Survey's Cascades Volcano Observatory established trilateration networks at Mount Baker, Mount Rainier, Mount Hood, Crater Lake, Mount Shasta, and Lassen Peak in 1980-1984. These networks are capable of detecting changes in slope distance of several centimeters or more. The networks were established to provide baseline information on potentially active volcanoes and were designed along guidelines found useful at Mount St. Helens. Periodic reoccupation of the networks is planned as part of the overall monitoring program of Cascades volcanoes. Methodology, slope distance and vertical angle data, maps of the networks, and benchmark descriptions are presented in this report. Written benchmark descriptions are augmented by photographs, which we have found by experience to very useful in relocating the marks. All repeat measurements at the six volcanoes are probably within measurement error.

  10. 数据分割与注册:智能化多传感训练系统范例研究%Data segmentation and registration: discussion on model of an adaptive multi-sensor training device

    Institute of Scientific and Technical Information of China (English)

    梁威; 李晓明; 何建斌

    2011-01-01

    针对多传感器系统的数据融合问题,以自适应性肢体康复训练系统为例,对数据分割与注册进行了研究.对于数据分割中的时间序列对准问题,采用三次样条拟合的方法加以解决;对于数据注册中的形式统一化问题,将实际测量参数经特征提取、适应性建模、预测及自评估,变为特征变量和相应的自评估置信概率表述,其他档案性信息和非模拟量参数则通过模糊化处理变为相同形式的表述,再进一步转换为统一的符号形式,即可解决.仿真结果证明了该融合决策方案的有效性.%For the multi-sensor system' s data fusion problem, data segmentation and registration by selfadaptive physical rehabilitation training syste m as an example was discussed. Cubic spline fitting method is used to solve the segmentation of time series data alignment problem. In order to solve the format unification ,feature extraction, adaptive modeling, prediction and self-assessment are used in characteristic variables and the corresponding confidence probability of self-assessment statements, other files of information and non-analog processing parameters are changed by the same form of expression and then into unified form. The effectiveness of the method was proved with testing results.

  11. 多传感器信息融合的水下航行器组合导航方法%Information Fusion Technology and its Application to Multi-sensor Integrated Navigation System for Autonomous Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    范欣; 张福斌; 张永清; 汪刚

    2011-01-01

    In order to enhance ability and accuracy of the autonomous underwater vehicle navigation system, in this paper, we propose a multi-sensor integrated navigation scheme based on information fusion theory. Based on the error equations of SINS, DVL, LBL and other sensor, the information fusion model for the system is build up. Meanwhile, the paper presents the structure and the algorithm of the federated filter and proposes the solution of various sensors frequency. Computer simulation was done and its result show that the model can effectively improve navigation system's precision to ability to fault detection and fully distill information from navigation sensors.%为了提高远程自主水下航行器组合导航系统的导航精度,提出了一种基于多传感器信息融合的组合导航系统方案.在建立SINS、DVL、LBL、深度计和航向传感器的误差模型的基础上,推导了多传感器信息融合模型,详细设计联邦滤波器结构,并给出各传感器输出频率不同时滤波器的解决方案.最后进行仿真试验,仿真结果表明该方法能充分融合多导航传感器信息,提高了远程自主水下航行器的导航精度.

  12. 基于H∞滤波的智能车辆多传感器组合导航研究%Multi-sensor Integrated Navigation for Intelligent Vehicles Based on H∞ Filter

    Institute of Scientific and Technical Information of China (English)

    李旭; 张为公

    2007-01-01

    为适应自主驾驶智能车辆的高精度、高频率及高可靠性与鲁棒性的导航要求,对智能车辆的多传感器组合导航进行了研究.提出了一种基于H∞滤波的双向光电测速仪和CP-DGPS共同辅助SINS的智能车辆冗余组合导航方法.详细推导并建立了组合系统的滤波模型.仿真结果表明,该组合导航系统具有100Hz的高频输出、厘米级的导航精度以及良好的鲁棒性能与可靠性.即使系统特性发生了显著的变化,组合系统仍能为智能车辆提供可靠的导航信息.%To satisfy the navigation demands such as high accuracy, high frequency and high reliability and robustness for autonomous intelligent vehicles, a new multi-sensor integrated and robust navigation technique was studied. A redundant integrated navigation method based on H∞ filter in which SINS was aided by photoelectric speedometer and CP-DGPS was proposed. The filter model of this navigation method was deduced and set up. Simulation results show that the proposed navigation method can provide enough navigation information at 100Hz with the cm-level navigation accuracy, good robustness and reliability. Even when the system features such as the noise features change largely, the integrated navigation system can still offer reliable navigation information for the intelligent vehicle control.

  13. Multi-sensor information fusion of mobile robot fast follow servo%多传感器信息融合伺服的移动机器人快速跟随

    Institute of Scientific and Technical Information of China (English)

    周霞; 何建忠; 王宝磊

    2013-01-01

    针对移动机器人快速跟随任务的需要,采取了多传感器信息融合的伺服控制,用双目摄像机对移动机器人进行视觉导航,利用激光雷达和超声波传感器完成移动机器人的避障设计,通过位于机器人轮部的光电编码器反馈信息处理实现机器人的自定位,语音交互和手势交互共同完成移动机器人的人机交互,制定了移动机器人快速跟随整体策略并提出了软硬件系统集成方案.在实验环境中通过实验和实践表明了移动机器人能够快速顺利的完成跟随任务.%For mobile robot with the needs of the rapid task,multi-sensor information fusion of servo control is taken.Mobile robot visual navigation is finished with binocular camera and the mobile robot obstacle avoidance design is completed by using the laser radar and the ultrasonic sensor.The robot self-localization is realized by the feedback information processing of photoelectric encoder located in the robot round.The mobile robot human-computer interaction is finished by the voice interactive system and gesture-based interaction system together.Fast follow overall strategy of mobile robot is made and the integrated solutions of the hardware and software system is put forward.In the experimental environment,through the experiment and practice,it proves that the mobile robot can finish the following task quickly and smoothly.

  14. Hardware circuit design of four-rotor aerial robot based on multi-sensors%基于多传感器的四旋翼飞行器硬件电路设计

    Institute of Scientific and Technical Information of China (English)

    于雅莉; 孙枫; 王元昔

    2011-01-01

    四旋翼飞行器以其优良的飞行安全性日益受到学术界的关注.为了实现对四旋翼飞行器的控制平台和硬件电路的设计,在对已有样机结构特点与飞行原理分析的基础上,采用多传感器技术对四旋翼飞行器的硬件电路进行了设计.针对陀螺仪的温漂现象,提出了以积分数据补偿和陀螺仪中点修正为核心的“互补算法”.通过仿真实验证明:该设计方法的有效性,解决了温漂问题,为新型无人四旋翼飞行器的研发提供了参考.%More attention is paid to four-rotor aerial robot for its excellent flight safety. In order to design the four-rotor aerial rotot control platform and the hardware circuit, on the basis of analyzing the prototype structure characteristics and flight principle, multi-sensor technology is used to design the four-rotor aerial robot hardware circuit. Aimed at temperature drift phenomenon of gyroscope, put forward a complementary algorithm which use integral data compensation and gyroscope raid-point amendment as core. Simulation experiment proves the effectiveness of this method,and provides reference for the research and development of new unmanned four-rotor aerial robot.

  15. 中继检测电路在多传感器数据融合中的应用%Application of relay detecting circuit in data fusion of multi-sensor

    Institute of Scientific and Technical Information of China (English)

    马胜前; 郭倩; 范满红; 杨阳

    2013-01-01

    The error of data transmission appears when the flowing is overlow in the long distance communication. To solve this problem, a relay and measurement circuit of sensors is proposed used in long distance communication. The relay circuit works according to photoelectric isolation technology and current loop method. Current loop interface can work in 5 mA current, its communication distance is more than 500 m or even further. The circuit is applied in environmental monitoring system of multi-sensor and data information fusion algorithm of fuzzy comprehensive evaluation is used to test data fusion. The experimental results show that the proposed relay detecting circuit is reliable, stable, and well realizes data transmission in long distance.%在远距离通信过程中,传输电流过低就会导致传输数据出现误差,针对此问题,提出了一种在多传感器远距离通信中应用的中继与测量电路,该电路的中继电路部分根据光电隔离技术,采用电流环的方法来实现,电流环接口完全可以在5 mA电流下正常工作,其通信距离可大于500m,甚至更远.将这种电路应用于多传感器的环境监测系统中,同时利用模糊综合评判的数据信息融合算法对检测数据进行数据融合.实验结果表明:所提出的中继检测电路稳定性高、可靠性强,很好地实现了远距离的数据传输.

  16. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  17. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  18. Clocked combustor can array

    Science.gov (United States)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  19. Taguchi Experimental Design for Cleaning PWAs with Ball Grid Arrays

    Science.gov (United States)

    Bonner, J. K.; Mehta, A.; Walton, S.

    1997-01-01

    Ball grid arrays (BGAs), and other area array packages, are becoming more prominent as a way to increase component pin count while avoiding the manufacturing difficulties inherent in processing quad flat packs (QFPs)...Cleaning printed wiring assemblies (PWAs) with BGA components mounted on the surface is problematic...Currently, a low flash point semi-aqueous material, in conjunction with a batch cleaning unit, is being used to clean PWAs. The approach taken at JPL was to investigate the use of (1) semi-aqueous materials having a high flash point and (2) aqueous cleaning involving a saponifier.

  20. Retrieval of Chlorophyll a Concentration with Multi-sensor Data by GSM01 Merging Algorithm%基于GSM01融合的多传感器数据叶绿素a浓度反演

    Institute of Scientific and Technical Information of China (English)

    陈芸芝; 郑高强; 汪小钦; 陈曦

    2013-01-01

    叶绿素a浓度是水质状况评价的一个重要指标,而遥感是大面积反演叶绿素a浓度的重要手段。由于采用基于经验模型的标准算法对二类水体叶绿素a浓度的反演值往往偏高,因此本文基于半分析模型GSM01(Garver-Siegel-Maritorena-01),在对模型参数进行调节的基础上,对东海2008年5月11日Aqua MODIS、Terra MODIS、Sea-WiFS 3种传感器各波段遥感反射率进行融合,来反演叶绿素a浓度,并将反演结果与自适应加权平均算法获得的叶绿素a浓度数据进行对比。结果表明,基于GSM01融合的多传感器叶绿素a浓度反演,拥有4个优势:(1) GSM01模型反演叶绿素a浓度值范围更符合实测结果,由于该模型考虑水体各组分的散射吸收特性对光谱反射率的影响,避免因高浓度悬浮物质影响造成的近岸水体叶绿素a浓度过高问题;(2)通过融合多传感器反射率数据,用于叶绿素a浓度反演的波段从6个增至18个,光谱信息变丰富,模型求解的自由度提高,叶绿素a浓度反演的精度提高。模型通过误差最小化准则,将不同传感器反演的差异降至最小,保证反演结果的空间连续性;(3)与自适应加权平均采用的融合策略不同,GSM01模型直接利用各传感器遥感反射率数据进行融合而不是针对叶绿素a浓度数据进行融合,避免了误差的传递;(4)GSM01模型可自由组合输入的反射率数据,具有更强的灵活性。%Chlorophyll a concentration, which can be routinely measured by ocean color remote sensing at large scale, is one of the most important indicators to evaluate water quality. The standard inversion algorithms based on empirical model, however, often overestimate chlorophyll a concentration in caseⅡwaters. After tuning key parameters of a typical semi-analytical model called GSM01 (Garver-Siegel-Maritorena-01), multi-sensor reflec-tance data of East

  1. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  2. Late Holocene Eruptions of Mount Rainier, Washington

    Science.gov (United States)

    Vallance, J. W.; Sisson, T. W.; Gardner, C. A.; McGeehin, J. P.; Champion, D. E.; Byman, J. A.

    2001-12-01

    Detailed stratigraphy, more than 20 radiocarbon ages, and paleomagnetic secular variation measurements indicate that eruptions of Mount Rainier clustered in three major periods during the past 3000 years. Products include a plinian fall deposit, several vulcanian falls, several fine ash falls that are associated with block-and-ash flows, and lahars that descended all major drainages that head on the volcano. Tephra layers are of two types: vesicle rich (chiefly pumice lapilli, scoria, and ash) and vesicle poor (chiefly fine-grained glass and lithic fragments). Pumice and glass shards in vesicle-rich deposits are microlite-poor and derive from explosive eruptions. Glass shards in vesicle-poor ashes have variable microlite contents and derive from minor explosions, or from ash clouds that billow up from block-and-ash pyroclastic flows. These findings contrast with those of previous studies that document only two eruptions, each associated with a pumiceous tephra layer, during the last 3000 years. The oldest eruptive period, called Summerland, began after 2700 cal yr BP with a vesicle-poor tephra and a collapse of hydrothermally altered rock on the west flank of the volcano that generated the Round Pass mudflow. Lava flows, fine ash falls and a pyroclastic flow erupted ca 2400 to 2500 cal yr BP. Intermittent eruptions produced more fine-grained ash falls, a possible pyroclastic flow and more lahars, then culminated in the plinian "C" fall to the NE and large lahars that flowed south, southeast, and west about 2200 cal yr BP. The Summerland period ended before 1600 cal yr BP with minor fall deposits and lahars. About 1000 cal yr BP, the Deadman Flat eruptions produced large lahars that contain distinctive prismatically-jointed glassy clasts, interpreted as juvenile components from pyroclastic flows, and co- ignimbrite ash in the headwaters of the White River. The lahars descended valleys to the NE and flowed 100 km to Puget Sound. Aggradation shortly after emplacement

  3. Installation of a Roof Mounted Photovoltaic System

    Science.gov (United States)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  4. BRYOPHYTES OF MOUNT PATUHA, WEST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    ROBBERT GRADSTEIN

    2010-11-01

    Full Text Available GRADSTEIN, R.    et al. 2010. Bryophytes of Mount Patuha, West  Java,  Indonesia.  Reinwardtia  13(2:  107–123. This  paper  presents  the  results  of  a  two–day  survey  of  the  bryophyte  flora of Mt.  Patuha  and  its  surroundings  near Bandung, West Java, carried out in the framework of the 5th regional training course on bryophyte and lichen diversity and conservation organized by SEAMEO BIOTROP, Bogor, in July 2009. A total of 159 bryophyte species were identi-fied,  including 98 mosses, 60  liverworts, and 1 hornwort, representing almost 1/6 of the  total bryophyte flora of Java. Three moss species, Bryohumbertia subcomosa (Dix. J.–P. Frahm, Fissidens gymnogynus Besch. and F. polypodioidesHedw., and one liverwort, Lejeunea pectinella Mizut., are new additions to the Javanese flora. The bryophyte diversity of Mt. Patuha is well representative of the Malesian flora and is rich in uncommon species. However, the relatively poor representation of shade epiphytes and commonness of sun epiphytes and generalists reflect disturbance of the forest by anthropogenic activities. Careful attention should be given  to conservation of  the  remaining natural  forest  in order  to prevent further losses of the rich bryophyte diversity of the area.

  5. Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes

    Science.gov (United States)

    MuñOz, O.; Volten, H.; Hovenier, J. W.; Veihelmann, B.; van der Zande, W. J.; Waters, L. B. F. M.; Rose, W. I.

    2004-08-01

    We present measurements of the whole scattering matrix as a function of the scattering angle at a wavelength of 632.8 nm in the scattering angle range 3°-174° of randomly oriented particles taken from seven samples of volcanic ashes corresponding to four different volcanic eruptions: the 18 May 1980 Mount St. Helens eruption, the 1989-1990 Redoubt eruption, and the 18 August and 17 September 1992 Mount Spurr eruptions. The samples were collected at different distances from the vent. The samples studied contain large mass fractions of fine particles and were chosen to represent ash that could remain in the atmosphere for at least hours or days. They include fine ashfall samples that fell at a variety of distances from the volcano and pyroclastic flows that retained their fine fractions. Together, they represent a range of ashes likely to remain in the atmosphere in volcanic clouds following eruptions from convergent plate boundary volcanoes, Earth's most important group of explosive sources of ash. All measured scattering matrix elements are confined to rather limited domains when plotted as functions of the scattering angle following the general trends presented by irregular mineral particles. This similarity in the scattering behavior justifies the construction of an average scattering matrix for volcanic ash particles as a function of the scattering angle. To facilitate the use of the average scattering matrix for multiple-scattering calculations with polarization included, we present a synthetic scattering matrix based on the average scattering matrix for volcanic ashes and the assumption that the diffraction forward scattering peak is the same for randomly oriented nonspherical particles and projected-surface-area-equivalent spheres. This synthetic scattering matrix is normalized so that the average of its 1-1 element over all directions equals unity. It is available in the full range from 0° to 180° and can be used, for example, for interpretation of

  6. Silicon Carbide Mounts for Fabry-Perot Interferometers

    Science.gov (United States)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  7. Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.

    Science.gov (United States)

    Comer, R S; Ayers, P D; Liu, J

    2007-04-01

    Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.

  8. Classification problems of Mount Kenya soils

    Science.gov (United States)

    Mutuma, Evans; Csorba, Ádám; Wawire, Amos; Dobos, Endre; Michéli, Erika

    2017-04-01

    Soil sampling on the agricultural lands covering 1200 square kilometers in the Eastern part of Mount Kenya was carried out to assess the status of soil organic carbon (SOC) as a soil fertility indicator, and to create an up-to-date soil classification map. The geology of the area consists of volcanic rocks and recent superficial deposits. The volcanic rocks are related to the Pliocene time; mainly: lahars, phonolites, tuffs, basalt and ashes. A total of 28 open profiles and 49 augered profiles with 269 samples were collected. The samples were analyzed for total carbon, organic carbon, particle size distribution, percent bases, cation exchange capacity and pH among other parameters. The objective of the study was to evaluate the variability of SOC in different Reference Soil Groups (RGS) and to compare the determined classification units with the KENSOTER database. Soil classification was performed based on the World Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and environmental setting, Nitisols were expected to be the dominant soils of the sampled area. However, this was not the case. The major differences to earlier survey data (KENSOTER database) are the presence of high activity clays (CEC value range 27.6 cmol/kg - 70 cmol/kg), high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) keeping these soils out of the Nitisols RSG. There was good accordance in the morphological features with the earlier survey but failed the silt/clay ratio criteria for Nitisols. This observation calls attention to set new classification criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to avoid difficulties in interpretation. To address the classification problem, this paper further discusses the taxonomic relationships between the studied soils. On the contrary most of the diagnostic elements (like the presence Umbric horizon, Vitric and Andic properties) and the some

  9. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    Science.gov (United States)

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  10. PECULIARITIES OF ASSIGNMENT OF ROLLING BEARING MOUNTING AND PARAMETERS OF GEOMETRIC ACCURACY OF MOUNTING SURFACES OF SHAFTS AND FRAMES

    Directory of Open Access Journals (Sweden)

    Adamenko Yu. І.

    2017-04-01

    Full Text Available The standards and methods concerning assignment of rolling bearing fit with shafts and frames via example of bearing 6-208 are analyzed. We set certain differences of recommendations according to GOST 3325-85, "Rolling bearings. Tolerance zones and technical requirements to mounting surfaces of shafts and frames. Attachment" and by reference of rolling bearing manufacturers. The following factors should be taken into consideration when assigning the mounting with the tension the internal ring of the bearing with shaft and mounting with a gap in the outer ring with a housing bore. The methods of achieving accuracy of mounting surfaces of shafts and frames via form tolerance assignment: roundness tolerance, profile of longitudinal cut, cross section, cylindricity and others. It is possible to limit the bearing rings in different ways, for example appointing the cylindrical mounting surfaces and bead end surfaces the appropriate tolerances, namely: coaxiality tolerance or full radial beat of mounting surfaces, and also perpendicularity tolerance, butt beats and full butt beats of mounting end surfaces. We suggest to expand methods of achieving the accuracy of shafts and frames depending on seriation of production and production operations metrology support.

  11. Electronic Switch Arrays for Managing Microbattery Arrays

    Science.gov (United States)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  12. Dielectric Resonator Antenna Mounted on Cylindrical Ground Plane for Handheld RFID Reader at 5.8 GHz

    Directory of Open Access Journals (Sweden)

    Hend Abd El-Azem Malhat

    2012-10-01

    Full Text Available Dielectric resonator antenna (DRA mounted on cylindrical ground plane is investigated for handheld RFID reader applications at 5.8 GHz. The simplicity of the structure makes it practical in terms of cost, space, and ease of fabrication. The radiation characteristics of the antenna in free space and in the presence of a proposed compact reader device model and human hand are calculated. The antenna is circularly polarized and exhibits peak gain of 7.62 dB at 5.8 GHz with high front to back ratio of 15.5 dB. Using the same reader device model, a sequentially feeding 2×2 DRA array mounted on the same cylindrical ground plane is used for RFID reader antenna at 5.8 GHz. The array introduces high gain of 9.36 dB at 5.8 GHz with high front to back ratio of 10.48 dB. The 2×2 DRA array elements exhibit circular polarization over a frequency band of 1.1 GHz. The axial ratio is 1.1 dB at 5.8 GHz. The proposed reader model is simple and has a small size compared with that in the case of planar ground plane. The results are calculated using the finite element method (FEM and compared with that calculated using the finite integral technique (FIT.

  13. Multi sensor national cyber security data fusion

    CSIR Research Space (South Africa)

    Swart, I

    2015-03-01

    Full Text Available information security posture and to improve on it. The potential attack surface of a nation is extremely large however and no single source of cyber security data provides all the required information to accurately describe the cyber security readiness of a...

  14. Multi-Sensor Aerial Intrusion Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking means to increase surveillance efficiency during mission launch operations. Launch delays are expensive, so any incremental increase in efficiency of...

  15. Multi-Sensor ELINT Development (MSED)

    Science.gov (United States)

    2012-06-01

    Position Determination ( DPD ). However, all its computation is concentrated at one computing node. We developed several methods to remedy this problem. To...position determination ( DPD ) and two-stage Classic localization methods. 15. SUBJECT TERMS Radio Frequency Geo-location, SIGINT, Detection and Geo...5 4.1.2 Approximated DPD

  16. Multi-Sensor Scene Synthesis and Analysis

    Science.gov (United States)

    1981-09-01

    vol. 8, pp. 313-333, 1978. 34. C. R. Brice and C. L. Fennema , "Scene Analysis Using Regions," Artificial Intelligence, vol. 1, pp. 205-226, 1970. 35. D...Cliffs, NJ, 1972. 85. C. R. Brice and C. L. Fennema , "Scene Analysis Using Regions," Art. Intell., vol. 1, pp. 205-226, 1970. 86. S. K. Chang, N. Donato, J

  17. Miniaturized multi-sensor for aquatic studies

    DEFF Research Database (Denmark)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis;

    2011-01-01

    that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination...

  18. NTS-2 retroreflector array

    Science.gov (United States)

    1977-01-01

    The NTS-II Laser Retroreflector consists of a honeycomb tray onto which are mounted 44 fused silica cube corners with a 50-millimeter hexagonal entrance pupil and single infrared cube. A thermal shield with a highly reflective outer surface and a black inner surface was incorporated to shroud the assembly protecting it from extreme high temperature exposure thus reducing cube corner thermal distortions to a minimum. A dummy retroreflector, utilizing simulated aluminum cube corners was fabricated and vibration tested to qualification levels to substantiate the integrity of the tray and cube mounting clips. This dummy was further used in the spacecraft spin balance test. The flight Laser Retroreflector was tested to the flight level vibration spectrum to verify that the unit will survive its expected vibration environment. During this test several GFE cube corners exhibited slight crazing at the clip support mounting holes. These cubes were reworked and retested and proved to be satisfactory.

  19. Array Antenna Limitations

    CERN Document Server

    Jonsson, B L G; Hussain, N

    2013-01-01

    This letter defines a physical bound based array figure of merit that provides a tool to compare the performance of both single and multi-band array antennas with respect to return-loss, thickness of the array over the ground-plane, and scan-range. The result is based on a sum-rule result of Rozanov-type for linear polarization. For single-band antennas it extends an existing limit for a given fixed scan-angle to include the whole scan-range of the array, as well as the unit-cell structure in the bound. The letter ends with an investigation of the array figure of merit for some wideband and/or wide-scan antennas with linear polarization. We find arrays with a figure of merit >0.6 that empirically defines high-performance antennas with respect to this measure.

  20. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  1. Fathead minnow whole-mount in situ hybridization (WISH)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR)...

  2. High Stability Optical Mount for Space Laser Applications

    Science.gov (United States)

    Mosciarello, P.; Di Carmine, E.

    2014-06-01

    In the frame of Atmospheric Lidar (ATLID) project, one of the active instruments foreseen to be boarded on the EarthCARE satellite, a high stability optical mount has been designed, developed and tested in order to fulfil the tight program requirements.A description of the design solution developed, manufactured and qualified for the most critical optical mount inside the PLH, located on the Laser Master Oscillator Plate (the laser resonance cavity), is presented. In order to minimize optical mount mass and envelope, the developed solution foresees a glued interface (I/F) between the mechanical support and the mirror.A collection of stability results obtained on the optical mount breadboards is also presented, including a description of environmental tests performed and the way to assess the mirror stability after each environmental test, as well as the acceptance criteria derived in order to establish the flight worthiness of the manufactured and assembled hardware.

  3. Low radioactivity material for use in mounting radiation detectors

    Science.gov (United States)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  4. Application of Evolutionary Computation in Automotive Powertrain Mount Tuning

    Directory of Open Access Journals (Sweden)

    Anab Akanda

    2006-01-01

    Full Text Available Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and power-train noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management.

  5. Mapping of Ecosystems in Mount Bromo Using Remote Sensing Technology

    Directory of Open Access Journals (Sweden)

    Bangun Muljo Sukojo

    2010-10-01

    Full Text Available Covered land analyses of Landsat image have been done to get ecosystem types and map in Mount Bromo region using remote sensing technology. There are nine types of   ecosystems in Mount Bromo region, i.e. primary forest, secondary forest, lake, crater, sands, uncovered land, underbrush, dry-field and residence. Distribution of rock analysis has also been done by comparing the manual image interpretation with  geological map. The results were coorelated with the digital image interpretation to find rock distribution map which can be useful to get the information about water reservation potencial in Mount Bromo region. The coorelation results together with slope, covered vegetation and rain falls can give description about absolute water reservation and buffer zone map in Mount Bromo region.

  6. Two-Mode Operation Engine Mount Design for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Reza Tikani

    2012-01-01

    Full Text Available Hydraulic engine mounts are applied to the automotive applications to isolate the chassis from the high frequency noise and vibration generated by the engine as well as to limit the engine shake motions resulting at low frequencies. In this paper, a new hydraulic engine mount with a controllable inertia track profile is proposed and its dynamic behavior is investigated. The profile of the inertia track is varied by applying a controlled force to a cylindrical rubber disk, placed in the inertia track. This design provides a hydraulic engine mount design with an adjustable notch frequency location and also damping characteristics in shake motions. By using a simple control strategy, the efficiency of the proposed hydraulic engine mount in two-mode operation meaning isolating mode in the highway driving condition and damping mode in the shock motions, is investigated.

  7. Surface-Mount Rotor Motion Sensing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  8. Eruption of Mount St. Helens, May 18, 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The May 18, 1980 eruption of Mount Saint Helens was the most destructive in the history of the United States. Mt. Saint Helens is located in southwest Washington in...

  9. A Surface-Mounted Rotor State Sensing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  10. Pacific Array (Transportable Broadband Ocean Floor Array)

    Science.gov (United States)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  11. Vibration isolation of automotive vehicle engine using periodic mounting systems

    Science.gov (United States)

    Asiri, S.

    2005-05-01

    Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of

  12. Dynamically Reconfigurable Microphone Arrays

    Science.gov (United States)

    2011-05-01

    Static + 2 Wireless Using only a standard computer sound card, a robot is limited to binaural inputs. Even when using wireless microphones, the audio...Abstract—Robotic sound localization has traditionally been restricted to either on-robot microphone arrays or embedded microphones in aware...a microphone array has a significant impact on the mathematics of sound source localization. Arrays, for instance, are commonly designed to

  13. Testing tail-mounted transmitters with Myocastor coypus (nutria)

    Science.gov (United States)

    Merino, S.; Carter, J.; Thibodeaux, G.

    2007-01-01

    We developed a tail-mounted radio-transmitter for Myocastor coypus (nutria) that offers a practical and efficient alternative to collar or implant methods. The mean retention time was 96 d (range 57-147 d, n = 7), making this a practical method for short-term studies. The tail-mounts were less injurious to animals than collars and easier for field researchers to implement than either collars or surgically implanted transmitters.

  14. Suspended Decoupler: A New Design of Hydraulic Engine Mount

    OpenAIRE

    J. Christopherson; Mahinfalah, M.; Jazar, Reza N.

    2012-01-01

    Because of the density mismatch between the decoupler and surrounding fluid, the decoupler of all hydraulic engine mounts (HEM) might float, sink, or stick to the cage bounds, assuming static conditions. The problem appears in the transient response of a bottomed-up floating decoupler hydraulic engine mount. To overcome the bottomed-up problem, a suspended decoupler design for improved decoupler control is introduced. The new design does not noticeably affect the mechanism's steady-state beha...

  15. Psychometric Assessment of Stereoscopic Head-Mounted Displays

    Science.gov (United States)

    2016-06-29

    Journal Article 3. DATES COVERED (From – To) Jan 2015 - Dec 2015 4. TITLE AND SUBTITLE PSYCHOMETRIC ASSESSMENT OF STEREOSCOPIC HEAD- MOUNTED DISPLAYS...disparity. This paper details the psychometric validation of the stereoscopic rendering of a virtual environment using game-based simulation software...mounted display, near eye display, stereo display, stereo HMD, psychometric assessment, stereoscopic performance, eye-limited stereo vision. 16

  16. Using a Head-Mounted Camera to Infer Attention Direction

    Science.gov (United States)

    Schmitow, Clara; Stenberg, Gunilla; Billard, Aude; von Hofsten, Claes

    2013-01-01

    A head-mounted camera was used to measure head direction. The camera was mounted to the forehead of 20 6- and 20 12-month-old infants while they watched an object held at 11 horizontal (-80° to + 80°) and 9 vertical (-48° to + 50°) positions. The results showed that the head always moved less than required to be on target. Below 30° in the…

  17. Two-Mode Operation Engine Mount Design for Automotive Applications

    OpenAIRE

    Reza Tikani; Nader Vahdati; Saeed Ziaei-Rad

    2012-01-01

    Hydraulic engine mounts are applied to the automotive applications to isolate the chassis from the high frequency noise and vibration generated by the engine as well as to limit the engine shake motions resulting at low frequencies. In this paper, a new hydraulic engine mount with a controllable inertia track profile is proposed and its dynamic behavior is investigated. The profile of the inertia track is varied by applying a controlled force to a cylindrical rubber disk, placed in the inerti...

  18. Techniques for deriving optimal bondlines for athermal bonded mounts

    Science.gov (United States)

    Herbert, James J.

    2006-08-01

    Deriving the optimal bondline thickness for an athermal bondline depends on many factors. An optimum bondline is defined as one that produces zero radial stress at the optic/adhesive interface. A review of the current equations in use and a new non-linear equation defined for optic mounts over larger temperature ranges is included. An assessment of sensitivities around the optimum bondline thickness is discussed. Also, guidelines for do's and don'ts in athermal optics mounts is included.

  19. Mount Rainier: learning to live with volcanic risk

    Science.gov (United States)

    Driedger, C.L.; Scott, K.M.

    2002-01-01

    Mount Rainier in Washington state is an active volcano reaching more than 2.7 miles (14,410 feet) above sea level. Its majestic edifice looms over expanding suburbs in the valleys that lead to nearby Puget Sound. USGS research over the last several decades indicates that Mount Rainier has been the source of many volcanic mudflows (lahars) that buried areas now densely populated. Now the USGS is working cooperatively with local communities to help people live more safely with the volcano.

  20. Research on Gait Recognition Based on Multi-Sensor Fusion%基于多传感器信息融合的步态识别方法研究

    Institute of Scientific and Technical Information of China (English)

    周洁

    2016-01-01

    Accurate gait phase recognition is the premise and foundation for lower extremity exoskeleton robot motion intention judging and control strategy formulating. Through the human lower limb motion information detection system, gets the lower limb joint motion angle and plan-tar distributed pressure, and extracts effective signal features based on the analysis of kinematic gait. According to the characteristics of gait's inaccurate order and limit by normal walking, puts forward a finite state machine method combined of fuzzy logic to realize gait recognition, which fusing multi-sensor information for the motion signals provided by the lower limb sensor system. Experimental results proved this algorithm can achieve effective and accurate gait recognition on the four walking rates of 2.4km/h, 3.6km/h, 4.8km/h and 6.0km/h.%准确的步态相位识别是下肢外骨骼机器人运动意图判断与控制策略制定的前提与基础。通过人体下肢运动信息检测系统,获取下肢各关节运动角度及足底分布式压力,在运动学步态分析的基础上,提取信号有效特征。针对正常步行运动中各步态存在次序及界限不精确的特性,提出加入模糊逻辑概念的有限状态机方法,对下肢传感器系统提供的运动信号进行多传感器信息融合,实现步态识别。实验结果证明该方法在2.4km/h、3.6km/h、4.8km/h 和6.0km/h 四种速率的步行模式下都可以进行有效的步态识别,具有极高的准确率。