WorldWideScience

Sample records for mountain spring water

  1. Visit to valuable water springs. 22. ; Kanazawa spring and springs at the mountain flank of Iwate volcano. Meisui wo tazunete. 22. ; Kanazawa shimizu to Iwate sanroku yusuigun

    Energy Technology Data Exchange (ETDEWEB)

    Itadera, K. (Kanagawa Hot Springs Research Institute, Kanagawa (Japan)); Shimano, Y. (Utsunomiya Bunsei Junior College, Tochigi (Japan))

    1993-06-30

    This paper describes the following matters on the springs at the mountain flank of Iwate volcano in Iwate Prefecture, with the Kanazawa spring as the main subject: The new and old Iwate volcanos have rock-bed flow deposits which resulted from mountain disintegration, distributed over their south, east and north flanks, and most of the spring water wells up in these areas; the south, east and north flanks have about 80 springs, about 30 springs, and about 10 springs, respectively; the number of springs and the water well-up scale show a trend of inverse proportion; the Kanazawa spring is a generic name of the several springs located on the north flank in the Kanazawa area; its main spring forms a spring pond with an area of about 100 m[sup 2] with a spring water temperature of about 11.5[degree]C, electric conductivity of 200 [mu] S/cm or higher, and a flow-out rate of 500 l/s or more; the Kanazawa spring is characterized by having as large total dissolved component amount as 170 mg/l or more and abundant amount of SO4[sup 2-] and Cl[sup -]; and the spring presents properties different from those in other springs. 10 refs., 5 figs., 1 tab.

  2. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  3. Heavy Metals in Spring and Bottled Drinking Waters of Sibylline Mountains National Park (Central Italy).

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2018-02-01

    Heavy metal concentrations (cadmium, lead, and copper) in spring, tap, and bottled waters of the Sibylline Mountains National Park (central Italy) were investigated using square wave anodic stripping voltammetry from 2004 to 2011. The mean (±SD) concentrations detected (1.3 ± 0.4 ng L -1 cadmium, 14 ± 6 ng L -1 lead, and 0.16 ± 0.10 μg L -1 copper) were below the limits stipulated by Italian and European legislation for drinking and natural mineral water. In the three studied areas of the park (Mount Bove north, Mount Bove south, and springs of River Nera) with very few exceptions, both mineral waters bottled in the area and aqueduct waters from public fountains had approximately the same metal concentrations as did the spring waters from which they were derived. Conversely, substantially higher metal concentrations were found at some sites in private houses, which may be due to release of metals from old metal pipes. At the time of this study, waters of Sibylline Mountains National Park were of good quality, and no influence of the bottling process on heavy metal concentrations was found.

  4. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    Science.gov (United States)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  5. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  6. A vegetation description and floristic analyses of the springs on the Kammanassie Mountain, Western Cape

    OpenAIRE

    G. Cleaver; L.R. Brown; G.J. Bredenkamp

    2004-01-01

    The Kammanassie Mountain is a declared mountain catchment area and a Cape mountain zebra Equus zebra zebra population is preserved on the mountain. The high number of springs on the mountain not only provides water for the animal species but also contributes to overall ecosystem functioning. Long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. It was therefore decided that a classification, description and mapping of the spring veg...

  7. Hydrogeology, geochemistry, and quality of water of The Basin and Oak Spring areas of the Chisos Mountains, Big Bend National Park, Texas

    Science.gov (United States)

    Baker, E.T.; Buszka, P.M.

    1993-01-01

    Test drilling near two sewage lagoons in The Basin area of the Chisos Mountains, Big Bend National Park, Texas, has shown that the alluvium and colluvium on which the lagoons are located is not saturated in the immediate vicinity of the lagoons. A shallow aquifer, therefore, does not exist in this critical area at and near the lagoons. Should seepage outflow from the lagoons occur, the effluent from the lagoons might eventually be incorporated into shallow ground water moving westward in the direction of Oak Spring. Under these conditions such water could reach the spring. Test borings that bottomed in bedrock below the alluvial and colluvial fill material are dry, indicating that no substantial leakage from the lagoons was detected. Therefore, no contaminant plume was identified. Fill material in The Basin does not contain water everywhere in its extensive outcropping area and supplies only a small quantity of ground water to Window Pouroff, which is the only natural surface outlet of The Basin.

  8. Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park (Central Italy, determined by square wave anodic stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Truzzi C.

    2013-04-01

    Full Text Available Square wave anodic stripping voltammetry (SWASV was used to determine Cd, Pb and Cu in spring waters of the Sibylline Mountains National Park, Central Italy. Samples were collected from three different areas of the Park (Mount Bove North, Mount Bove South and Springs of River Nera during the period 2004-2011. Physical-chemical parameters were also determined to obtain a general characterization of the waters. Very low metal concentrations were observed (i.e., Cd 1.3±0.4 ng L-1, Pb 13.8±5.6 ng L-1, Cu 157±95 ng L-1, well below the legal limits and also below the medians of known Italian and European data. Comparing the three areas it was noted that waters from the area of the Nera Springs are the poorest in heavy metals and the richest in minerals, that conversely the waters of Mt. Bove North are the richest in heavy metals and the poorest in mineral salts, and finally that intermediate values both for heavy metals and mineral salts were observed for the waters of Mt. Bove South.

  9. Lepini Mountains Carbonatic Ridge: try of springs recharge areas verification and water exchange quantification with Pontina Plain by use of a numerical model (Central Italy

    Directory of Open Access Journals (Sweden)

    Pamela Teoli

    2014-03-01

    Full Text Available The study area of this work is represented by the Lepini Mountains carbonatic ridge and by the Pontina Plain foothills area, on which in the past, within quantitative hydrogeological characterizations, models were developed for calculating the groundwater flow, but only referred to the ridge. The most recent studies (Teoli, 2012 have done their best, instead, to represent the underground water exchanges between the ridge and the Pontina Plain foothill area. The new model (developed using computer code MODFLOW 2005 has been implemented to simulate steady-state underground flow using equivalent porous media approach even for the ridge; attention has been particularly directed to the proper tectonic ridge schematic, which the authors had previously defined, together with others (Alimonti et al., 2010, on detailed structural-geological survey basis, integrated by hydrogeological analysis. So, it’s been possible to determine partitioning effects on groundwater flowpaths and on springs recharge areas extent, whose total average discharge is about 10m3/s. Model calibration main goal has been the recharge areas permeability definition, posing the correspondence of calculated flows with measured springs’ flows; as a consequence, it’s been possible to improve the model reliability (uncertainty reduction quantifying the flow residuals’ standard deviation offset.

  10. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  11. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction

    Science.gov (United States)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.

    2017-08-01

    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  12. A vegetation description and floristic analyses of the springs on the Kammanassie Mountain, Western Cape

    Directory of Open Access Journals (Sweden)

    G. Cleaver

    2004-12-01

    Full Text Available The Kammanassie Mountain is a declared mountain catchment area and a Cape mountain zebra Equus zebra zebra population is preserved on the mountain. The high number of springs on the mountain not only provides water for the animal species but also contributes to overall ecosystem functioning. Long-term conservation of viable ecosystems requires a broader understanding of the ecological processes involved. It was therefore decided that a classification, description and mapping of the spring vegetation of the Kammanassie Mountain be undertaken. A TWINSPAN classification, refined by Braun-Blanquet procedures, revealed 11 major plant communities that could be related to geological origin. Habitat factors associated with differences in vegetation include topography, soil type and grazing. Descriptions of the plant communities include diagnostic species as well as prominent and less conspicuous species of the tree, shrub and herbaceous layers. The results also indicate a high species richness compared to similar regions and the difference between plant communities of wet and dry springs. This data is important for long-term monitoring of the spring ecosystems as well as for the compilation of management plans.

  13. Genetic sampling of Palmer's chipmunks in the Spring Mountains, Nevada

    Science.gov (United States)

    Kevin S. McKelvey; Jennifer E. Ramirez; Kristine L. Pilgrim; Samuel A. Cushman; Michael K. Schwartz

    2013-01-01

    Palmer's chipmunk (Neotamias palmeri) is a medium-sized chipmunk whose range is limited to the higher-elevation areas of the Spring Mountain Range, Nevada. A second chipmunk species, the Panamint chipmunk (Neotamias panamintinus), is more broadly distributed and lives in lower-elevation, primarily pinyon-juniper (Pinus monophylla-Juniperus osteosperma) habitat...

  14. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  15. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  16. Hydrogeochemsitry of montane springs and their influence on streams in the Cairngorm mountains, Scotland

    Directory of Open Access Journals (Sweden)

    C. Soulsby

    1999-01-01

    Full Text Available Springs are important groundwater discharge points on the high altitude (>800m plateaux of the Cairngorm mountains, Scotland and form important wetland habitats within what is often a dry, sub-arctic landscape. The hydrogeochemistry of a typical spring in the Allt a'Mharcaidh catchment was examined between 1995-98 in order to characterise its chemical composition, identify the dominant controls on its chemical evolution and estimate groundwater residence time using 18O isotopes. Spring water, sustained by groundwater flow in shallow drift deposits and fractured bedrock, was moderately acidic (mean pH 5.89, with a very low alkalinity (mean 18 μeq l-1 and the ionic composition was dominated by sea-salts derived from atmospheric sources. Geochemical modelling using NETPATH, predicted that the dissolution of plagioclase mainly controls the release of Si, non-marine Na, Ca, K and Al into spring water. Hydrological conditions influenced seasonal variations in spring chemistry, with snowmelt associated with more rapid groundwater flows and lower weathering rates than summer discharges. Downstream of the spring, the chemistry of surface water was fundamentally different as a result of drainage from larger catchment areas, with increased soil and drift cover, and higher evaporation rates. Thus, the hydrogeochemical influence of springs on surface waters appears to be localized. Mean δ18O values in spring water were lower and more damped than those in precipitation. Nevertheless, a sinusoidal seasonal pattern was observed and used to estimate mean residence times of groundwater of around 2 years. Thus, in the high altitude plateau of the Cairngorms, shallow, coarse drift deposits from significant aquifers. At lower altitudes, deeper drift deposits, combined with larger catchment areas, increase mean groundwater residence times to >5 years. At high altitudes, the shallow, permeable nature of the drifts dictates that groundwater is vulnerable to impacts

  17. Radon-enriched spring waters in the South of Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Hetman, A.; Dorda, J.; Zipper, W.

    2001-01-01

    A method for determination of 222 Rn in natural water samples which involves a Wallac 1414 Win Spectral α/β liquid scintillation counter is described. Samples were collected from springs in health resorts in the Sudety Mountains in Poland. Half of the studied water samples were radon enriched with an activity concentration higher then 74 Bq/l. Seasonal variations of 222 Rn in these waters are under investigation. The method introduced is very convenient and elegant for radon activity measurements.

  18. Stratigraphy and paleogeographic significance of the Pennsylvanian-Permian Bird Spring Formation in the Ship Mountains, southeastern California

    Science.gov (United States)

    Stone, Paul; Stevens, Calvin H.; Howard, Keith A.; Hoisch, Thomas D.

    2013-01-01

    A thick sequence of limestone, dolomite, and minor sandstone assigned to the Pennsylvanian and lower Permian Bird Spring Formation is exposed in the Ship Mountains about 85 kilometers (km) southwest of Needles, California, in the eastern Mojave Desert. These strata provide a valuable reference section of the Bird Spring Formation in a region where rocks of this age are not extensively exposed. This section, which is about 900 meters (m) thick, is divided into five informal members. Strata of the Bird Spring Formation in the Ship Mountains originated as shallow-water marine deposits on the broad, southwest-trending continental shelf of western North America. Perpendicular to the shelf, the paleogeographic position of the Ship Mountains section is intermediate between those of the thicker, less terrigenous, more seaward section of the Bird Spring Formation in the Providence Mountains, 55 km to the northwest, and the thinner, more terrigenous, more landward sections of the Supai Group near Blythe, 100 km to the southeast. Parallel to the shelf, the Ship Mountains section is comparable in lithofacies and inferred paleogeographic position to sections assigned to the Callville Limestone and overlying Pakoon Limestone in northwestern Arizona and southeastern Nevada, 250 km to the northeast. Deposition of the Bird Spring Formation followed a major rise in eustatic sea level at about the Mississippian- Pennsylvanian boundary. The subsequent depositional history was controlled by episodic changes in eustatic sea level, shelf subsidence rates, and sediment supply. Subsidence rates could have been influenced by coeval continental-margin tectonism to the northwest.

  19. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    Science.gov (United States)

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China

    International Nuclear Information System (INIS)

    Wu Xiuchen; Liu Hongyan; Wang Yufu; Deng Minghua

    2013-01-01

    Based on radial tree growth measurements in nine plots of area 625 m 2 (369 trees in total) and climate data, we explored the possibly changing effects of climate on regional tree growth in the temperate continental semi-arid mountain forests in the Tianshan Mountains in northwest China during 1933–2005. Tree growth in our study region is generally limited by the soil water content of pre- and early growing season (February–July). Remarkably, moving correlation functions identified a clear temporal change in the relationship between tree growth and mean April temperature. Tree growth showed a significant (p < 0.05) and negative relationship to mean April temperature since approximately the beginning of the 1970s, which indicated that the semi-arid mountain forests are suffering a prolonged growth limitation in recent years accompanying spring warming. This prolonged limitation of tree growth was attributed to the effects of soil water limitation in early spring (March–April) caused by the rapid spring warming. Warming-induced prolonged drought stress contributes, to a large part, to the marked reduction of regional basal area increment (BAI) in recent years and a much slower growth rate in young trees. Our results highlight that the increasing water limitation induced by spring warming on tree growth most likely aggravated the marked reduction in tree growth. This work provides a better understanding of the effects of spring warming on tree growth in temperate continental semi-arid forests. (letter)

  1. Overexploitation of karst spring as a measure against water scarcity.

    Science.gov (United States)

    Dimkić, Dejan; Dimkić, Milan; Soro, Andjelko; Pavlović, Dusan; Jevtić, Goran; Lukić, Vladimir; Svrkota, Dragan

    2017-09-01

    Water scarcity, especially in the hydrologically critical part of the year, is a problem often present in many cities and regions, particularly in arid and sub-arid areas. Climate change and human water demand compound the problem. This paper discusses a climate change adaptation measure-the possibility of karst spring overexploitation, where there is a siphon-shaped cavity inside the mountain. The pilot area is near the city of Niš, where a decreasing precipitation trend has already been observed and is expected to continue in the future. The paper also presents some basic information related to the pilot area and undertaken investigations. The project, successfully implemented in 2004, has provided the city of Niš with an additional amount of 200 l/s of spring water during the most critical part of the year.

  2. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    Science.gov (United States)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring

  3. The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains

    Science.gov (United States)

    Heller, Katja; Hübner, Rico; Kleber, Arno

    2010-05-01

    The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.

  4. Radon measurements in well and spring water in Lebanon

    International Nuclear Information System (INIS)

    Abdallah, Samer M.; Habib, Rima R.; Nuwayhid, Rida Y.; Chatila, Malek; Katul, Gabriel

    2007-01-01

    The variation of dissolved radon ( 222 Rn) levels in water supplies remains of interest because of the radiation-induced public health hazards. A large part of the Lebanese population relies on springs and wells for their drinking water. 222 Rn measurements in spring and well water sources were conducted using the E-PERM method at sites ranging from sea level to 1200m above sea level and across several geologic formations within Lebanon. The dissolved radon concentrations ranged from a low of 0.91BqL -1 in a coastal well source to a high of 49.6BqL -1 for a spring source in a mountainous region. Of the 20 sites sampled, only five had radon levels above 11BqL -1 and these mostly occurred in areas adjacent to well-known geological fault zones. A preliminary national average radon level was determined to be about 11.4BqL -1 . In general, as all determined concentrations were well below the 100 and 146BqL -1 revised reference levels proposed in the European Union and the United States, respectively, it is concluded that there is no reason to believe these water sources pose any radon-related hazard. On the other hand, at locations where water is collected directly from the springhead, it is advisable to have a settling/piping system installed allowing for further radon decay and radon loss into the air to alleviate any possible radon problem

  5. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary)

    International Nuclear Information System (INIS)

    Freiler, Ágnes; Horváth, Ákos; Török, Kálmán; Földes, Tamás

    2016-01-01

    We examined the Csalóka Spring, which has the highest radon concentration in the Sopron Mountains (West Hungary) (, yearly average of 227 ± 10 Bq L"−"1). The main rock types here are gneiss and micaschist, formed from metamorphism of former granitic and clastic sedimentary rocks respectively. The aim of the study was to find a likely source of the high radon concentration in water. During two periods (2007–2008 and 2012–2013) water samples were taken from the Csalóka Spring to measure its radon concentration (from 153 ± 9 Bq L"−"1 to 291 ± 15 Bq L"−"1). Soil and rock samples were taken within a 10-m radius of the spring from debrish and from a deformed gneiss outcrop 500 m away from the spring. The radium activity concentration of the samples (between 24.3 ± 2.9 Bq kg"−"1 and 145 ± 6.0 Bq kg"−"1) was measured by gamma-spectroscopy, and the specific radon exhalation was determined using radon-chamber measurements (between 1.32 ± 0.5 Bq kg"−"1 and 37.1 ± 2.2 Bq kg"−"1). Based on these results a model calculation was used to determine the maximum potential radon concentration, which the soil or the rock may provide into the water. We showed that the maximum potential radon concentration of these mylonitic gneissic rocks (c_p_o_t = 2020 Bq L"−"1) is about eight times higher than the measured radon concentration in the water. However the maximum potential radon concentration for soils are significantly lower (41.3 Bq L"−"1) Based on measurements of radon exhalation and porosity of rock and soil samples we concluded that the source material can be the gneiss rock around the spring rather than the soil there. We determined the average radon concentration and the time dependence of the radon concentration over these years in the spring water. We obtained a strong negative correlation (−0.94 in period of 2007–2008 and −0.91 in 2012–2013) between precipitation and radon concentration. - Highlights: • A yearly dataset

  6. water quality evaluation of spring waters in nsukka, nigeria

    African Journals Online (AJOL)

    ES Obe

    2013-07-02

    Jul 2, 2013 ... directly from an underground formation from, which water flows naturally to the surface or from a bored ... evidence that surface runoff is readily entering the spring. This may mean the spring is contaminated with ... soil, hydrological factors that lead to runoff, and by biological processes within the aquatic.

  7. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    Science.gov (United States)

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  8. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Alisson Souza de Oliveira

    2014-09-01

    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  9. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  10. Thermal water of the Yugawara Hot Spring

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Ogino, K; Nagatsuka, Y; Hirota, S; Kokaji, F; Takahashi, S; Sugimoto, M

    1963-03-01

    The Yugawara Hot Spring is located in the bottom of the dissected creata of the Yugawara volcano. Natural hot spring water ran dry almost twenty five years ago, and thermal water is now pumped up by means of deep drill holes. The hydrorogy of the thermal water was studied from both geochemical and geophysical points of view. Two types of thermal water, sodium chloride and calcium sulfate, are recognized. Sodium chloride is predominant in the high temperature area and low in the surrounding low temperature area. Calcium sulfate predominates in the low temperature area. Sodium chloride is probably derived from deep magmatic emanations as indicated in the high Li content. Sulfate ion seems to originate from oxidation of pyrite whose impregnation took place in the ancient activity of the Yugawara volcano. The content of Ca is stoichiometrically comparable with SO/sub 4//sup 2 -/. It is suggested that sulfuric acid derived from the oxidation of pyrite attacks calcite formed during the hydrothermal alteration of rocks. Some consideration of well logging in the geothermal area is also discussed. Temperature measurement in recharging of cold water is applicable to the logging of drill holes as well as the electric logging.

  11. Strontium isotopic composition of hot spring and mineral spring waters, Japan

    International Nuclear Information System (INIS)

    Notsu, Kenji; Wakita, Hiroshi; Nakamura, Yuji

    1991-01-01

    In Japan, hot springs and mineral springs are distributed in Quaternary and Neogene volcanic regions as well as in granitic, sedimentary and metamorphic regions lacking in recent volcanic activity. The 87 Sr/ 86 Sr ratio was determined in hot spring and mineral spring waters obtained from 47 sites. The ratios of waters from Quaternary and Neogene volcanic regions were in the range 0.703-0.708, which is lower than that from granitic, sedimentary and metamorphic regions (0.706-0.712). The geographical distribution of the ratios coincides with the bedrock geology, and particularly the ratios of the waters in Quaternary volcanic regions correlate with those of surrounding volcanic rocks. These features suggest that subsurface materials control the 87 Sr/ 86 Sr ratios of soluble components in the hot spring and mineral spring waters. (author)

  12. Ground water monitoring strategies at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Meyer, K.A. Jr.

    1988-01-01

    This paper presents ground water monitoring strategies at the Weldon Spring Site in east-central Missouri. The Weldon Spring Site is a former ordnance works and uranium processing facility. In 1987, elevated levels of inorganic anions and nitroaromatics were detected in ground water beneath the site. Studies are currently underway to characterize the hydrogeologic regime and to define ground water contamination. The complex hydrogeology at the Weldon Spring Site requires innovative monitoring strategies. Combinations of fracture and conduit flow exist in the limestone bedrock. Perched zones are also present near surface impoundments. Losing streams and springs surround the site. Solving this complex combination of hydrogeologic conditions is especially challenging

  13. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  14. Cold-stenothermic spring fauna in mountainous headwaters of the National Park Kellerwald-Edersee in Germany

    Science.gov (United States)

    Reiss, Martin; Zaenker, Stefan; Chifflard, Peter

    2017-04-01

    ,9). Due to nearly unaffected ecohydrological properties, in particular: relative consistently cold water temperature with low amplitudes (cold stenothermy), mostly low flow velocity and an intermittent discharge regime a very unique and specific adapted spring fauna composition for the German low mountain ranges can be characterized. Cold stenothermic and spring related species are very frequent in relative occurrence and abundance. We analyzed a map based and representative distribution for the entire large-scale protected area of the National Park Kellerwald-Edersee according to Bythinella dunkeri (spring snail), Crenobia alpina (planarian), Crunoecia irrorata (caddisfly) and Niphargus schellenbergi (groundwater amphipod). We discuss the potential of ecohydrological research on possible climate change predictions and consequences on the distribution of cold stenothermic and spring dwelling species within the special context of research goals in National Parks. Here, an idea of a new approach for an ecohydrological assessment by indicating cold stenothermic taxa is given as an outlook. References Reiss, M., Steiner, H. & S. Zaenker (2009): The Biospeleological Register of the Hesse Federation for Cave and Karst Research (Germany). Cave and Karst Science 35(1), pp.25-34.

  15. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    Science.gov (United States)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological

  16. Radon concentration measurements in therapeutic spring water

    International Nuclear Information System (INIS)

    Deak, N.; Horvath, A.; Sajo B, L.; Marx, G.

    1996-01-01

    It is believed that people undergoing a curative cycle in a given spa, may receive a dose in the range of 400 mSv/year which is many times the average annual dose so that their risk of lung cancer may increase by 3% or more. To determine the risk due to the natural radioactivity, of the most frequented spas in Budapest (H), we selected four and some others located on the country side being of particular interest. Results of the radon concentration in spring water are presented, with the evidence that some spas have a high radon concentration. We conclude that patients receiving treatment may be exposed to an additional dose in the range of 29-76 mSv/year that at the bronchia could be between 445-1182 mSv/year. (authors). 6 refs., 2 figs., 2 tabs

  17. Spring and Autumn Phenological Variability across Environmental Gradients of Great Smoky Mountains National Park, USA

    Directory of Open Access Journals (Sweden)

    Steven P. Norman

    2017-04-01

    Full Text Available Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for cover type, topography and disturbance history, we achieved an improved understanding of the effects of seasonal weather variation on land surface phenology (LSP. Elevational effects were greatest in spring and were more important than site moisture effects. The spring and autumn NDVI of deciduous forests were found to increase in response to antecedent warm temperatures, with evidence of possible cross-seasonal lag effects, including possible accelerated green-up after cold Januarys and early brown-down following warm springs. Areas that were disturbed by the hemlock woolly adelgid and a severe tornado showed a weaker sensitivity to cross-year temperature and precipitation variation, while low severity wildland fire had no discernable effect. Use of ancillary datasets to filter for disturbance and vegetation type improves our understanding of vegetation’s phenological responsiveness to climate dynamics across complex environmental gradients.

  18. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    Energy Technology Data Exchange (ETDEWEB)

    Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

  19. Microbiological and chemical assessment of spring water from a ...

    African Journals Online (AJOL)

    Assessment of spring water from Ikare-Akoko, a rural setting in southwest, Nigeria for microbial and chemical contaminants was carried out. Total heterotrophic bacteria count of 4.0 x 106 CFU/mL was highest during the peak of the rainy season in Omi-idu spring (Igbede community) while the lowest population of 0.14 x106 ...

  20. Some geophysical and geological studies of the Tanzawa Mountains. [Nakagawa Hot Spring area, Hokizawa, and Higashizawa

    Energy Technology Data Exchange (ETDEWEB)

    Minakami, T; Matsuda, T; Hiraga, S; Horai, K I; Sugita, M

    1964-11-01

    Joints and zeolite-veins in both metamorphic rocks and quartz diorite exposed along the Nakagawa River were studied. Fractures with zeolite-veins are most developed in three areas, the Nakagawa hot spring area, Hokizawa, and Higashizawa. They follow two prevailing directions: N--S with minor right-lateral displacement and N60/sup 0/E with minor left-lateral displacement. The two fractures should represent a conjugate set that was produced by stress with maximum principal axis of N30/sup 0/E-S30/sup 0/W. Distribution and prevailing directions of fractures are illustrated. Geothermal gradients are measured in two newly opened boreholes, at the Nakagawa hot spring area and Higashizawa. The geothermal gradients are 12.60 +- 0.48/sup 0/C/100m at the Nakagawa hot spring and 5.55 +- 0.24/sup 0/C/100m at Higashizawa. Temperature-depth relationships in the two boreholes are given. Seismic observation was made at the Higashizawa. In five days 43 shocks were recorded, of which 20 are thought to have occurred 2 to 20km from the observation station, that is, in and very near the Tanzawa mountains. None have shallower hypocenters than 2 km in depth.

  1. Mineral waters from the Tanzawa Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Tajima, Y; Hirano, T; Ogino, K; Hirota, S; Takahashi, S; Kokaji, F; Moriya, M; Sugimoto, M

    1964-11-01

    Mineral waters from the depths of the Tanzawa mountains are briefly characterized as having high pH values ranging from 9.5 to 10.0. The origin of the mineral waters is discussed in relation to zeolites extensively developed along fractures and joints throughout the Tanzawa mountains. Thermal water (33/sup 0/C) of the Nakagawa spa may be regarded as evidence of past strong geothermal activity. Measurement of geothermal gradient at two locations, Nakagawa (12.6/sup 0/C/100m) and Higashi-sawa (5.55/sup 0/C/100m) also supports the presence of weak thermal activity in the depths. Chemical analysis of the mineral waters indicates that the pH of the system is chiefly controlled by the ratio of CO/sub 3//sup - -//HCO/sub 3//sup -/. The following reaction with zeolites promotes an increase of the pH: HCO/sub 3//sup -/ + (Ca/Na) zeolites reversible CO/sub 3//sup - -/ + H-type (Ca/Na) zeolites + (Ca/sup + +//Na/sup +/).

  2. Investigation of the mineral potential of the Clipper Gap, Lone Mountain-Weepah, and Pipe Spring plutons, Nevada

    International Nuclear Information System (INIS)

    Tingley, J.V.; Maldonado, F.

    1983-01-01

    The Clipper Gap pluton, composed mostly of quartz monzonite with minor granite, granodiorite, and crosscutting alaskite dikes, intrudes Paleozoic western facies strata. A narrow zone of contact metamorphism is present at the intrusive-sediment contact. No mineral production has been recorded from Clipper Gap, but quartz veins containing gold-silver-copper mineral occurrences have been prospected there from the late 1800's to the present. Areas of the Lone Mountain-Weepah plutons that were studied are located in Esmeralda County about 14 km west of Tonopah, Nevada. At Lone Mountain, a Cretaceous intrusive cuts folded Precambrian and Cambrian sediments. Lead-zinc ores have been mined from small replacement ore bodies in the Alpine district, west of Lone Mountain. Copper and molybdenum occurrences have been found along the east flank of Lone Mountain, and altered areas were noted in intrusive outcrops around the south end of Lone Mountain. Mineral occurrences are widespread and varied with mining activity dating back to the 1860's. The Pipe Spring pluton study area is flanked by two important mining districts, Manhattan to the north and Belmont to the northeast. Mining activity at Belmont dates from 1865. Activity at Manhattan was mainly between 1907 and 1947, but the district is active at the present time (1979). Four smaller mining areas, Monarch, Spanish Springs, Baxter Spring, and Willow Springs, are within the general boundary of the area. The Pipe Spring pluton study area contains numerous prospects along the northern contact zone of the pluton. Tungsten-bearing veins occur within the pluton near Spanish Springs, with potential for gold-tungsten placer in the Ralston Valley. Nickel and associated metals occur at Willow Spring and Monarch Ranch, where prospects may be associated with the margin of the Big Ten Peak Caldera

  3. Oxygen and Hydrogen Isotopes of Precipitation in a Rocky Mountainous Area of Beijing to Distinguish and Estimate Spring Recharge

    Directory of Open Access Journals (Sweden)

    Ziqiang Liu

    2018-05-01

    Full Text Available Stable isotopes of oxygen and hydrogen were used to estimate seasonal contributions of precipitation to natural spring recharge in Beijing’s mountainous area. Isotopic compositions were shown to be more positive in the dry season and more negative in the wet season, due to the seasonal patterns in the amount of precipitation. The local meteoric water line (LMWL was δ2H = 7.0 δ18O − 2.3 for the dry season and δ2H = 5.9 δ18O − 10.4 for the wet season. LMWL in the two seasons had a lower slope and intercept than the Global Meteoric Water Line (p < 0.01. The slope and intercept of the LMWL in the wet season were lower than that in the dry season because of the effect of precipitation amount during the wet season (p < 0.01. The mean precipitation effects of −15‰ and −2‰ per 100 mm change in the amount of precipitation for δ2H and δ18O, respectively, were obtained from the monthly total precipitation and its average isotopic value. The isotopic composition of precipitation decreased when precipitation duration increased. Little changes in the isotopic composition of the natural spring were found. By employing isotope conservation of mass, it could be derived that, on average, approximately 7.2% of the natural spring came from the dry season precipitation and the rest of 92.8% came from the wet season precipitation.

  4. Final Program Report for 2010-2012: Monitoring and evaluation for conserving biological resources of the Spring Mountains National Recreation Area

    Science.gov (United States)

    Stephen J. Solem; Burton K. Pendleton; Casey Giffen; Marc Coles-Ritchie; Jeri Ledbetter; Kevin S. McKelvey; Joy Berg; Jim Menlove; Carly K. Woodlief; Luke A. Boehnke

    2013-01-01

    The Spring Mountains National Recreation Area (SMNRA) includes approximately 316,000 acres of National Forest System (NFS) lands managed by the Humboldt-Toiyabe National Forest in Clark and Nye Counties, Nevada (see fig. 1-1). The Spring Mountains have long been recognized as an island of endemism, harboring flora and fauna found nowhere else in the world. Conservation...

  5. Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1991-01-01

    Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab

  6. Radioactivity measurement in spring waters of Cantabria, Spain

    International Nuclear Information System (INIS)

    Soto Torres, J.; Gomez Arozamena, J.

    1999-01-01

    A study of the radioactivity existing in a high number of springs located in Cantabria, Northern Spain, was made. The spring analyzed in three sampling campaign's, And alpha and beta total activities and 226 Ra and 222 Rn concentrations were determined for each sample. The measuring techniques employed were gamma spectrometry with Ge detector, counting with gas flow proportional counter, and counting with ZnS(Ag) scintillating detector. Results show that springs with high radon water concentration have high values respect to the national mean. The springs with the highest radium and radon levels have thermal waters and are located on two deep fault, those have historic seismicity and seismical and geomorphological evidences of recent tectonic activity

  7. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    Science.gov (United States)

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  8. Timescales for nitrate contamination of spring waters, northern Florida, USA

    Science.gov (United States)

    Katz, B.G.; Böhlke, J.K.; Hornsby, H.D.

    2001-01-01

    Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium (3H), and tritium/helium-3 (3H/3He) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997–1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20±2 years from CFC-12, CFC-113, 3H, and 3He, with evidence of partial CFC-11 degradation. The EMM gave a reasonable fit to CFC-113, CFC-12, and 3H data, but did not reproduce the observed 3He concentrations or 3H/3He ratios, nor did a combination PFM–EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had 3H concentrations not much different from modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC-113, with evidence of partial CFC-11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10–20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwanee County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio

  9. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  10. Framework for Springs Stewardship Program and proposed action development: Spring Mountains National Recreation Area, Humboldt-Toiyabe National Forest

    Science.gov (United States)

    Marc Coles-Ritchie; Stephen J. Solem; Abraham E. Springer; Burton Pendleton

    2014-01-01

    In the desert Southwest, springs are an important ecological feature and serve as a focal point for both biological and human interactions on the landscape. As a result, attention has been placed on the stewardship and protection of these important resources. Management has traditionally focused on the more accessible and heavily used eastern canyons within the Spring...

  11. Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli district, Uttarakhand

    International Nuclear Information System (INIS)

    Shivanna, K.; Tirumalesh, K.; Noble, J.; Joseph, T.B.; Singh, Gursharan; Joshi, A.P.; Khati, V.S.

    2008-01-01

    Environmental isotope techniques have been employed to identify the recharge areas of springs in India, in order to construct artificial recharge structures for rainwater harvesting and groundwater augmentation for their rejuvenation. A model project was taken up in the mountainous region of Gaucher area, Chamoli District, Uttarakhand for this purpose. The springs in this regions are seasonal and are derived from seepage waters flowing through the shallow weathered and fractured zone. The chemistry of high-altitude springs is similar to that of precipitation, whereas water-rock interactions contributes to increased mineralization in low-altitude springs. The stable isotopic variation in precipitation suggests that the altitude effect for Gaucher area is -0.55% for δ 18 O and -3.8% for δ 2 H per 100 m rise in altitude. Based on local geology, geomorphology, hydrochemistry and isotope information, the possible recharge areas inferred for valleys 1, 2 and 3 are located at altitudes of 1250, 1330 and 1020 m amsl respectively. Water conservation and recharge structures such as subsurface dykes, check bunds and contour trenches were constructed at the identified recharge areas in the respective valleys for controlling the subsurface flow, rainwater harvesting and groundwater augmentation respectively. As a result, during and after the following monsoon, the discharge rates of the springs not only increased significantly, but also did not dry up even during the dry period. The study shows that the isotope techniques can be effectively used in identifying recharge areas of springs in the Himalayan region. It also demonstrates the advantage of isotope techniques over conventional methods. (author)

  12. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  13. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  14. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a 'snapshot' or 'base case' look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future

  15. Development and utilization of spring water in small scale supply ...

    African Journals Online (AJOL)

    Development and utilization of spring water in small scale supply scheme for the Kogi State Polytechnic, Lokoja, central Nigeria. Joseph Omada. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 131-135. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  16. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  17. Quasi-linear analysis of water flow in the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Ross, B.

    1990-01-01

    Philip's method of quasi-linear approximation, applied to the fractured welded tuffs at Yucca Mountain, Nevada, USA, yields simple relations describing groundwater movement in the unsaturated zone. These relations suggest that water flux through the Topopah Spring welded tuff unit, in which a proposed high-level radioactive waste repository would be built, may be fixed at a value close to the saturated hydraulic conductivity of the unit's porous matrix by a capillary barrier at the unit's upper contact. Quasi-linear methods may also be useful for predicting whether free water will enter tunnels excavated in the tuff

  18. Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China

    Directory of Open Access Journals (Sweden)

    Lei Wei

    2017-06-01

    Full Text Available Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3% were contaminated E. faecalis. The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%, followed by source water of spring water (32.3% and source water of mineral water (6.4%. The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1, ace, cylA, gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline. Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis.

  19. LITHOSTRATIGRAPHY AND SHEAR-WAVE VELOCITY IN THE CRYSTALLIZED TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    D. BUESCH; K.H. STOKOE; M. SCHUHEN

    2006-01-01

    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties

  20. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Science.gov (United States)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  1. WATER QUALITY OF THE VRELIĆ SPRING IN DONJE DUBRAVE

    Directory of Open Access Journals (Sweden)

    Marina Trpčić

    2008-12-01

    Full Text Available In one part of the groundwater flow in the Vrelić cave (near the village Donje Dubrave, during the explorations in 2003, oil pollution was perceived. During field prospection and contact with local population, few possible pollution sources were located. There was a strong possibility that the oil traces in the cave are the result of the railway accident in 1970. Because of the railway accident on Rijeka-Zagreb railroad, tank carriage sliped off from the tracks and the content of the dangerous cargo leaked onto the nearby valley, 800 meters away from the cave entrance. A spring, used sometimes for water supply by the local population is also located nearby. Sampling of the water from the cave and the spring was carried out several times during the next period with the intention of monitoring the pollution impact on water quality in different seasonal (climatic conditions. In the course of the laboratory analysis of the samples the following parameters were determined: Total hardness; Concentrations of Calcium, Magnesium, Iron, Chlorides and Nitrates; pH-value; TOC; colony-forming unit (CFU; total Coliform; fecal Streptococus; Proteus bacteria; Salmonella bacteria and Clostridium perfringens bacteria. Several of other parameters were also measured by mobile devices: Conductivity (EC, TDS, Redox-potential, pH-value and water temperature. Water tracing with Na-fluorescine was carried out before the analysis and the connection between groundwater flow in cave and the spring water was confirmed. After the creation of a topographical (speleological map of the cave and thanks to the surface (field measurements, the distance between the place of Na-fluorescine spill in the cave and the Vrelić spring was defined (the paper is published in Croatian.

  2. Spring and surface water quality of the Cyprus ophiolites

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1 Mg-HCO3, (2 Na-SO4-Cl-HCO3, (3 Na-Ca-Cl-SO4-OH-CO3, (4 Na-Cl-SO4 and (5 Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.

  3. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  4. Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Noèlia Carbó

    2017-12-01

    Full Text Available The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L, sulfate (32–472 mg/L, fluoride (0.08–0.26 mg/L, chloride (17–190 mg/L, and sodium (11–94 mg/L as well as pH (7.3–7.8. These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC was applied in the preprocessing step. Calibration (67% and validation (33% sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.

  5. Chemical and Hydro-Geologic Analysis of Ikogosi Warm Spring Water in Nigeria

    OpenAIRE

    Akinola Ikudayisi; Folasade Adeyemo; Josiah Adeyemo

    2015-01-01

    This study focuses on the hydro-geology and chemical constituents analysis of Ikogosi Warm Spring waters in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total di...

  6. Insights into contaminant transport from unconventional oil and gas developments from analog system analysis of methane-bearing thermal springs in the northern Canadian Rocky Mountains

    Science.gov (United States)

    Ferguson, Grant; Grasby, Stephen E.

    2018-03-01

    Natural gas is currently being produced from shales of the Montney and Liard basins in western Canada. Production requires hydraulic fracturing due to the low permeability of the shales in the basins. Stratigraphically equivalent shales are present in the northern Canadian Rocky Mountains. Thermal springs with notable hydrocarbon concentrations occur where large-scale faults intersect the same shale units that are the focus of gas development, indicating that under certain circumstances, connection of deep fractured shales to the land surface is possible. To constrain these conditions, simulations were conducted for the spring with the highest hydrocarbon flux (Toad River Spring), results of which indicate that in order to supply sufficient water to a fault to support measurable advection, the effective permeability of the shales in these structurally deformed areas must be one to four orders of magnitude higher than in areas of active gas production to the east. The spatial scale of enhanced permeability is much greater than that which is achieved by hydraulic fracturing and the mechanism of maintaining high pressures at depth is more persistent in time. Examination of groundwater velocities suggests that upward migration of solutes from hydraulic fracturing may take decades to centuries. Results also indicate that any temperature anomaly will be associated with transport along a fault at such velocities. No such temperature anomaly has been documented in regions with unconventional oil and gas development to date. Such an anomaly would be diagnostic of a deep solute source.

  7. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 {times} 10{sup 5} seconds and for as long as 1.8 {times} 10{sup 6} seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress.

  8. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 x 10 5 seconds and for as long as 1.8 x 10 6 seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress

  9. Better utilization of ground water in the Piedmont and mountain region of the southeast

    Science.gov (United States)

    Heath, Ralph C.

    1979-01-01

    The development of water supplies for domestic consumption, and for those commercial and industrial uses requiring relatively pure water, has followed a pattern in the Piedmont and mountain areas of the southeast similar to that in most other humid areas. The first settlers utilized seepage springs on hillsides. Such springs occur along steep slopes where the water table intersects the land surface. As the population of the region grew, it became increasingly necessary to resort to shallow dug wells for domestic water supplies. Such wells also served as sources of water for the villages that developed, in time, around crossroad taverns. Seepage springs and dug wells are a satisfactory source of water in a virgin environment but are quickly polluted by careless waste-disposal practices. Thus disposal of domestic wastes in shallow pits resulted in epidemics of water-borne diseases as the villages grew into towns. This resulted in the third phase of water-supply development, which consisted of installing water lines and supplying water to homes from town-owned wells. In time, some of these wells became polluted and others failed to supply adequate water for the increasing needs of the larger urban areas. In the fourth phase these areas met their needs by drawing water from nearby streams. By the early years of this century it was possible to make this water palatable and relatively safe as a result of improvement in filtration methods. Streams, of course, have highly variable rates of flow and, as towns grew into small cities, the minimum flow of many streams was not adequate to meet the water-supply needs. This problem was solved in the fifth phase by building dams on the streams. We are still in this phase as we build larger and larger reservoirs to meet our growing water needs. Thus, through five phases of growth in the Piedmont and mountains we have advanced from the point where ground water was the sole source of supply to the point where it is the forgotten

  10. Cosine components in water levels at Yucca Mountain

    International Nuclear Information System (INIS)

    Rice, J.; Lehman, L.; Keen, K.

    1990-01-01

    Water-level records from wells at Yucca Mountain, Nevada are analyzed periodically to determine if they contain periodic (cosine) components. Water-level data from selected wells are input to an iterative numerical procedure that determines a best fitting cosine function. The available water-level data, with coverage of up to 5 years, appear to be representative of the natural water-level changes. From our analysis of 9 water-level records, it appears that there may be periodic components (periods of 2-3 years) in the groundwater-level fluctuations at Yucca Mountain, Nevada, although some records are fit better than others by cosine functions. It also appears that the periodic behavior has a spatial distribution. Wells west of Yucca Mountain have different periods and phase shifts from wells on and east of Yucca Mountain. Interestingly, a similar spatial distribution of groundwater chemistry at Yucca Mountain is reported by Matuska (1988). This suggests a physical cause may underlie the different physical and chemical groundwater conditions. Although a variety of natural processes could cause water-level fluctuations, hydrologic processes are the most likely, because the periodicities are only a few years. A possible cause could be periodic recharge related to a periodicity in precipitation. It is interesting that Cochran et al., (1988), show a crude two-year cycle of precipitation for 1961 to 1970 in southern Nevada. Why periods and phase shifts may differ across Yucca Mountain is unknown. Different phase shifts could indicate different lag times of response to hydrologic stimuli. Difference in periods could mean that the geologic media is heterogeneous and displays heterogeneous response to a single stimulus, or that stimuli differ in certain regions, or that a hydraulic barrier separates the groundwater system into two regions having different water chemistry and recharge areas. 13 refs., 5 figs., 1 tab

  11. ROCK TYPOLOGY IN CHOOSING SPRINGS. ANCIENT METHODS FOR DETERMINING WATER QUALITY IN THE PARMA REGION

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2011-12-01

    Full Text Available This study was a scientific validation of some ancient methods used for purifying water and selecting springs based on the nature of the soil and rocks. A historical and scientific analysis of the territory was made, with the aim of trying to identify ancient methods which might be retrieved and used again in a modern way for a comprehensive interpretation of the environment we live in. The investigation was led near Parma in the north of Italy, in mountainous and hilly areas which rise from rocky outcrops consisting of fragments of the ancient oceanic crust composed of argillaceous complexes, ultrabasic rocks from the ophiolite succession as well as flyschoid sedimentary rocks containing arenaceous, carboniferous and marly elements.

  12. Ecology, distribution, and predictive occurrence modeling of Palmers chipmunk (Tamias palmeri): a high-elevation small mammal endemic to the Spring Mountains in southern Nevada, USA

    Science.gov (United States)

    Lowrey, Chris E.; Longshore, Kathleen M.; Riddle, Brett R.; Mantooth, Stacy

    2016-01-01

    Although montane sky islands surrounded by desert scrub and shrub steppe comprise a large part of the biological diversity of the Basin and Range Province of southwestern North America, comprehensive ecological and population demographic studies for high-elevation small mammals within these areas are rare. Here, we examine the ecology and population parameters of the Palmer’s chipmunk (Tamias palmeri) in the Spring Mountains of southern Nevada, and present a predictive GIS-based distribution and probability of occurrence model at both home range and geographic spatial scales. Logistic regression analyses and Akaike Information Criterion model selection found variables of forest type, slope, and distance to water sources as predictive of chipmunk occurrence at the geographic scale. At the home range scale, increasing population density, decreasing overstory canopy cover, and decreasing understory canopy cover contributed to increased survival rates.

  13. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  14. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring

  15. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring.

  16. An assessment of the water quality of the Isinuka springs in the ...

    African Journals Online (AJOL)

    The physico-chemical properties of Isinuka springs, a "wonder" water resource in Port St Johns area of Eastern Cape Province, were investigated over three seasonal regimes. Water samples were collected from the five spring sources, along Isinuka river and from Ferry Point Cottage spring and analysed for their quality ...

  17. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  18. Seasonal effects on ground water chemistry of the Ouachita Mountains. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Steele, K.F.; Fay, W.M.; Cavendor, P.N.

    1982-08-01

    Samples from 13 ground water sites (10 springs and 3 wells) in the Ouachita Mountains were collected nine times during a 16-month period. Daily sampling of six sites was carried out over an 11-day period, with rain during this period. Finally, hourly sampling was conducted at a single site over a 7-hour period. The samples were analyzed for pH, conductivity, temperature, total alkalinity, nitrate, ammonia, sulfate, phosphate, chloride, silica, Na, K, Li, Ca, Mg, Sr, Ba, Fe, Mn, Zn, Cu, Co, Ni, Pb, Hg, Br, F, V, Al, Dy, and U. Despite the dry season during late summer, and wet seasons during late spring and late fall in the Ouachita Mountain region, there was no significant change in the ground water chemistry with season. Likewise, there was no significant change due to rain storm events (daily sampling) or hourly sampling. The report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation. 9 figures, 19 tables

  19. Future Availability of Water Supply from Karstic Springs under Probable Climate Change. The case of Aravissos, Central Macedonia, Greece.

    Science.gov (United States)

    Vafeiadis, M.; Spachos, Th.; Zampetoglou, K.; Soupilas, Th.

    2012-04-01

    The test site of Aravissos is located at 70 Km to the West (W-NW) of Thessaloniki at the south banks of mount Païko, in the north part of Central Macedonia The karstic Aravissos springs supply 40% of total volume needed for the water supply of Thessaloniki, Greece. As the water is of excellent quality, it is feed directly in the distribution network without any previous treatment. The availability of this source is therefore of high importance for the sustainable water supply of this area with almost 1000000 inhabitants. The water system of Aravissos is developed in a karstic limestone with an age of about Late Cretaceous that covers almost the entire western part of the big-anticline of Païko Mountain. The climate in this area and the water consumption area, Thessaloniki, is a typical Mediterranean climate with mild and humid winters and hot and dry summers. The total annual number of rainy days is around 110. The production of the Aravissos springs depends mostly from the annual precipitations. As the feeding catchement and the karst aquifer are not well defined, a practical empirical balance model, that contains only well known relevant terms, is applied for the simulation of the operation of the springs under normal water extraction for water supply in present time. The estimation of future weather conditions are based on GCM and RCM simulation data and the extension of trend lines of the actual data. The future evolution of the availability of adequate water quantities from the springs is finally estimated from the balance model and the simulated future climatic data. This study has been realised within the project CC-WaterS, funded by the SEE program of the European Regional Development Fund (http://www.ccwaters.eu/).

  20. Water levels in the Yucca Mountain Area, Nevada, 1996

    International Nuclear Information System (INIS)

    Graves, R.P.

    1998-01-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c number-sign 3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters

  1. Behavior of spring discharge dynamic at forest and grassland mountain catchments

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Acosta, Manuel; Janouš, Dalibor; Czerný, Radek; Tomášková, Ivana

    2007-01-01

    Roč. 1, č. 20 (2007), s. 55-60. ISBN 978-80-7375-069-5 R&D Projects: GA MŠk 1P05OC027 Institutional research plan: CEZ:AV0Z60870520 Keywords : precipitation * spring discharge * evapotranspiration * Norway spruce * grassland * roots Subject RIV: GK - Forestry

  2. Behavior of spring discharge dynamic at forest and Grassland mountain catchments

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Acosta, Manuel; Janouš, Dalibor; Czerný, Radek; Tomášková, Ivana

    2007-01-01

    Roč. 20, č. 1 (2007), s. 55-60 ISSN 1803-2451 R&D Projects: GA MŠk 1P05OC027 Institutional research plan: CEZ:AV0Z60870520 Keywords : precipitation * spring discharge * evapotranspiration * Norway spruce * grassland * roots Subject RIV: GK - Forestry

  3. Mountains in the third millennium - a decade of droughts and water scarcity?

    Science.gov (United States)

    de Jong, C.; Shaban, A.; Belete, T.

    2012-04-01

    Droughts and water scarcity have touched the Alps, Mediterranean and East African mountain chains more intensively since the beginning of the third millennium and pose a major challenge for water management. The year 2011 has been no exception, with the lowest river levels on record over the past 50 years even for alpine rivers. Although considerable climate fluctuations and persistent droughts have occurred in the past, it is quite remarkable that the five hottest summers over the past 500 years in Europe and the Alps have all been concentrated after 2002, falling far outside their normal historical distribution. In most mountain chains drought phenomena are persistent over large areas and over a variety of scales. The hydrological consequences, such as decreased rain- and snowfall, drying of springs, decreased river and groundwater discharge, lowering of lake levels and excessive evaporation etc. are considerable. Seasonality has been considerably affected, with the summer extending well into the spring and autumn. Mountain-fed rivers have experienced unusually low discharge over the last 10 years, with a decreasing trend both in summer and winter discharge. These hydrological changes have multiple impacts on availability of drinking water and the energy sector, decreasing hydroelectric production and availability of cooling water for the nuclear industry and negatively effecting river navigation, irrigation agriculture as well as winter tourism in mountains. Despite these naturally-induced shortcomings, adaptation has not always been rational. In some cases, maladaptation has led to overexploitation of water resources during drought conditions, exasperating water scarcity. For example, for the tourism sector in the Alps, water demand for drinking water and artificial snow making lies far above the available resources during the winter season for numerous resorts. This has long term environmental and socio-economic impacts such as destruction of wetlands

  4. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    Science.gov (United States)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  5. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  6. Uranium in spring water and bryophytes at Basin Creek in central Idaho

    International Nuclear Information System (INIS)

    Shacklette, H.T.; Erdman, J.A.

    1982-01-01

    Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium, but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium. These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. (Auth.)

  7. Online analysis: Deeper insights into water quality dynamics in spring water.

    Science.gov (United States)

    Page, Rebecca M; Besmer, Michael D; Epting, Jannis; Sigrist, Jürg A; Hammes, Frederik; Huggenberger, Peter

    2017-12-01

    We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail. Alongside the TCC measurements, online abiotic parameter time-series, including spring discharge, turbidity, spectral absorption coefficient at 254nm (SAC254) and electrical conductivity, were obtained. High-density sampling over an extended period of time, i.e. every 45min for 3months, allowed a detailed analysis of the dynamics in karst spring water quality. Substantial increases in both the TCC and the abiotic parameters followed precipitation events in the catchment area. Differences between the parameter fluctuations were only apparent when analyzed at a high temporal scale. Spring discharge was always the first to react to precipitation events in the catchment area. Lag times between the onset of precipitation and a change in discharge varied between 0.2 and 6.7h, depending on the spring and event. TCC mostly reacted second or approximately concurrent with turbidity and SAC254, whereby the fastest observed reaction in the TCC time series occurred after 2.3h. The methodological approach described here enables a better understanding of bacterial dynamics in karst springs, which can be used to estimate risks and management options to avoid contamination of the drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Do natural spring waters in Australia and New Zealand affect health? A systematic review.

    Science.gov (United States)

    Stanhope, Jessica; Weinstein, Philip; Cook, Angus

    2018-02-01

    Therapeutic use of spring waters has a recorded history dating back to at least 1550 BC and includes both bathing in and drinking such waters for their healing properties. In Australia and New Zealand the use of therapeutic spring waters is a much more recent phenomenon, becoming a source of health tourism from the late 1800s. We conducted a systematic review aimed at determining the potential health outcomes relating to exposure to Australian or New Zealand natural spring water. We found only low-level evidence of adverse health outcomes relating to this spring water exposure, including fatalities from hydrogen sulphide poisoning, drowning and primary amoebic meningoencephalitis. We found no studies that investigated the therapeutic use of these waters, compared with similar treatment with other types of water. From the broader literature, recommendations have been made, including fencing potentially harmful spring water, and having signage and media messages to highlight the potential harms from spring water exposure and how to mitigate the risks (e.g. not putting your head under water from geothermal springs). Sound research into the potential health benefits of Australian and New Zealand spring waters could provide an evidence base for the growing wellness tourism industry.

  9. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)

    Science.gov (United States)

    Ozdemir, Adnan

    2011-07-01

    SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model

  10. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

    Directory of Open Access Journals (Sweden)

    Jeanne A. Robert

    2016-07-01

    Full Text Available Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.

  11. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  12. Water-resources reconnaissance of the Ouachita Mountains, Arkansas

    Science.gov (United States)

    Albin, Donald R.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles in Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  13. Water geochemistry to estimate reservoir temperature of Stabio springs, Switzerland

    Science.gov (United States)

    Pera, Sebastian; Soma, Linda

    2017-04-01

    The Mendrisiotto region located in Southern Switzerland and close to the Italian border, is characterized by the presence of a thick sequence of Mesozoic limestones and dolostones above a volcanic rocks from Permian (Bernoulli, 1964). Within the carbonates, fractures and dissolution processes increased limestone permeability and favored the widespread presence of springs. The presence of few localized H2S and CH4 bearing springs is known from historical times in Stabio. Its localization is related to the faulting affecting the area (Balderer et Al., 2007). These waters were classified by Greber et Al. (1997) as Na-(Ca)-(Mg)-HCO3-Cl-(SO4) type with having a total dissolved solid content in the range of 0.8 and 1.2 gl-1. According with Balderer et Al. (2007) the stable isotopic composition deviates from the global meteoric water line (IAEA, 1984) being the values of δ18O and δ2H respectively 0.8 ‰ and 5‰ lower than the normal shallow groundwater of the area. The values of δ13C of TDIC (-1.54‰ 1.44 ) indicate exchange with CO2 of thermo - metamorphic or even Mantle origin. While 14C in TDIC (7.95, 26.0 pMC) and 3H (1.1 ±0.7, 3.1±0.7 TU) indicates uprising of deep water along faults with some mixing. To estimate reservoir temperature, a new sampling was conducted in 2015 for chemical and isotopic analysis. The sampling was carried out from the only source that allows getting water directly from the dolostone in order to avoid mixing. Although some differences are noticed respect to previous studies, the results show a substantial agreement for stable isotopic composition of water, δ13C and 14C of TDIC. Reservoir temperature was calculated by using several geothermometers. The results show a great variability ranging from 60 ˚ C using Silica to more than 500 ˚ C using cationic ( Na - Ca) geothermometers; indicating that besides mixing, exchange processes and chemical reactions along flow path affect results. This study was partially funded by Azienda

  14. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  15. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  16. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  17. Analysis of Spring Development and Gravity Flow System to Capture Water for Local Communities

    Directory of Open Access Journals (Sweden)

    Adiningrum Cita

    2017-01-01

    Full Text Available Springs as water sources are relatively inexpensive but highly susceptible to contamination since they are fed by shallow groundwater. Proper spring development helps protect the water from contamination. This study presents an analysis and design of spring development including the type of broncaptering/collecting wall, the dimension for the spring box and the conduction line. In addition, a guideline on “Springwater Construction” published by the Ministry of Public Works has been used in this design. A concentrated spring in Wates, Magelang, Central Java is used as a case study. The design calls for the collection of water from a spring using sets of broncaptering and a spring box, then piping it by gravity a distance of 5.1 kilometers to Van Lith Senior High School. Analysis was done using a manual calculation, which is subsequently compared to the result of HYDROFLO 3 software. Results show that the spring with a flow rate of 0.12 litre/s (manual and 0.17 litre/s (software will be collected into a 5 m3 volume of spring box. The spring box with a +543 m water surface elevation is being supplied to Van Lith +384 m ground elevation using a uniform PVC pipelines with a ¾ inch of diameter.

  18. Study of the water-rock interactions of spring waters in the Northern Apennines

    International Nuclear Information System (INIS)

    Venturelli, G.; Toscani, L.

    2000-01-01

    Forty three spring waters have been investigated in the Apennine area of Reggio Emilia province (Parco Regionale del Gigante, Italy). On the basis of the Langelier-Ludwig diagram, the (Na+K+Cl) vs (Ca+Mg) plot and the Cl content, the waters have been divided in five main groups. The chemical composition of the waters suggests that calcite is practically the only source of Ca and alkalinity for group D and E reflect ion exchange and calcite and minor silicate dissolution during a strong water-rock interaction at depth [it

  19. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    Science.gov (United States)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  20. Water Balance and Forest Productivity in Mediterranean Mountain Environments

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarascia-Mugnozza

    2010-06-01

    Full Text Available The availability of water resources is one of the major drivers affecting forest and agricultural productivity. The sensitivity of Mediterranean forest species to water shortage is becoming even more relevant in relation to climate changes, that for Southern Europe could lead to an increase in temperature of 2 to 3 °C, paralleled by a decrease of 5 to 15% of summer rainfall. It is then important to study the relationship between water balance and productivity of important forest tree species such as beech and mountain pines that represent the upper limit of forest vegetation in almost all the Apennines range. In the present paper, the measurements of water balance, evapotranspiration, carbon exchange and productivity in beech and pine forests of central-southern Italy (Abruzzo and Calabria regions are reported. The results are obtained in the course of several years of experimentation with innovative techniques and integrated at the canopy level.

  1. CLIMATE CHANGE AND WATER POTENTIAL OF THE PAMIR MOUNTAINS

    Directory of Open Access Journals (Sweden)

    Alexander F. Finaev

    2016-01-01

    Full Text Available The Pamir region supplies water for most countries of the Central Asia. Discussions and arguments with regard to reduction of water resources related to climate change are popular today among various governmental and international institutions being a greatconcern for modern society. Probable decrease of the Pamirs runoff will affect downstreamcountries that can face water deficiency. However, there is no scientific rationale behindsuch disputes. The Pamir region is a remote, high-mountainous and hard-to-access area with scarce observation network and no reliable data. It is not sufficiently investigated in order to perform any assessment of climate change. This article represents results of study of climate parameters change (such as temperature, precipitation and river discharge in the Pamirs. The study area covers all countries included in this mountain region (Tajikistan, China, Afghanistan and Kyrgyzstan. Observation records, remote sensing data and GIS modeling were used in the present work. Chronological data series were divided into two equal time intervals and were treated as climatic periods. Further analysis of climate change helped to estimate its influence on change of water potential in the Pamirs. The paper considers issues of liquid and solid precipitation change in the study area.

  2. Apparent CFC and 3H/ 3He age differences in water from Floridan Aquifer springs

    Science.gov (United States)

    Happell, James D.; Opsahl, Stephen; Top, Zafer; Chanton, Jeffrey P.

    2006-03-01

    The apparent CFC-11, -12 and -113 ages of Upper Floridan Aquifer water discharged from 31 springs located in Florida and Georgia ranged from 11 to 44 years when samples were collected in 2002 and 2003. Apparent 3H/ 3He ages in these springs ranged from 12 to 66 years. Some of the springs sampled did not yield valid CFC ages because one or more of the CFCs were contaminated by non-atmospheric sources. Of the 31 springs sampled, six were contaminated with all three CFCs and nine were contaminated with one or two CFCs. Of the remaining 16 springs, the CFC distributions of four could be modeled assuming a single source of water, and 11 were best modeled by assuming two sources of water, with one of the water sources >60 years old. The CFC and 3H/ 3He apparent ages and the simple mixing models applied to these ages suggest that past impacts to the water quality of water recharging the sampled springs may take anywhere from 0 to ˜60 years or more to appear in the discharging spring water. In 27 springs where both 3H/ 3He ages and CFC ages were available, five springs gave similar results between the two techniques, while in the other 22 cases the 3H/ 3He apparent ages were 8-40 years greater than the CFC ages. Large excesses of 4He were observed in many of the springs, consistent with a source of older water. This older water may also carry an additional and unaccounted for source of 3He, which may be responsible for the greater 3H/ 3He ages relative to the CFC ages. We believe that the large excess 3He and 4He values and apparent age differences are related to regional climate variations because our samples were obtained at the end of a 4-year drought.

  3. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  4. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  5. Lower Colorado River GRP Public Water System Springs, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  6. Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada

    International Nuclear Information System (INIS)

    Gue, Anita E.; Mayer, Bernhard; Grasby, Stephen E.

    2015-01-01

    Highlights: • Saline groundwater enters the Athabasca and Clearwater rivers in the AOSR via springs. • High TDS is due to subsurface dissolution of Devonian evaporites and carbonates. • Low δ 18 O values, and 3 H and 14 C data suggest some Laurentide glacial meltwater input. • Bacterial sulfate reduction, methanogenesis, and CH 4 oxidation were identified. • Metal and PAH contents are reported; bitumen does not appear to be major influence. - Abstract: The geochemistry of saline spring waters in the Athabasca oil sands region (AOSR) in Alberta (Canada) discharging from Devonian carbonate rocks into the Athabasca and Clearwater rivers was characterized for major ions, trace elements, dissolved gases, and polycyclic aromatic hydrocarbons (PAHs). In addition, stable isotope analyses of H 2 O, SO 4 , dissolved inorganic carbon (DIC), Sr, and CH 4 were used to trace the sources of spring waters and their dissolved solutes, and to identify subsurface processes affecting water chemistry. The spring waters had δ 18 O values as low as −23.5‰, suggesting they are composed of up to 75% Laurentide glacial meltwater. Tritium and radiocarbon age-dating results, analyzed for three spring waters, supported a glacial origin. The high salinity of the spring waters (TDS 7210–51,800 mg/L) was due to dissolution of Devonian evaporite and carbonate deposits in the subsurface. Spring waters were affected by bacterial (dissimilatory) sulfate reduction, methanogenesis, and methane oxidation. Trace elements were present in spring waters at varying concentrations, with only one spring containing several predominant oil sands metals (As, Fe, Mo, Ni, Se, Zn) suggesting bitumen as a source. Five springs contained elements (Al, As, B, Fe, Se) at concentrations exceeding water quality guidelines for the protection of aquatic life. Seven PAHs were detected in spring waters (total PAH concentrations ranged from 7.3 to 273.6 ng/L), but most springs contained a maximum of two PAHs

  7. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    OpenAIRE

    Vatin Nikolai; Lavrov Nikolai; Loginov Gennadi

    2016-01-01

    In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphome...

  8. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  9. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  10. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results

    International Nuclear Information System (INIS)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello; Pereira, Luiz Augusto Stuani

    2009-01-01

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  11. Effects of climate change on hydrology and water resources in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Caty F. Clifton

    2018-04-01

    Full Text Available In the semi-arid environment of the Blue Mountains, Oregon (USA, water is a critical resource for both ecosystems and human uses and will be affected by climate change in both the near- and long-term. Warmer temperatures will reduce snowpack and snow-dominated watersheds will transition to mixed rain and snow, while mixed rain and snow dominated watersheds will shift towards rain dominated. This will result in high flows occurring more commonly in late autumn and winter rather than spring, and lower low flows in summer, phenomena that may already be occurring in the Pacific Northwest. Higher peak flows are expected to increase the frequency and magnitude of flooding, which may increase erosion and scouring of the streambed and concurrent risks to roads, culverts, and bridges. Mapping of projected peak flow changes near roads gives an opportunity to mitigate these potential risks. Diminished snowpack and low summer flows are expected to cause a reduction in water supply for aquatic ecosystems, agriculture, municipal consumption, and livestock grazing, although this effect will not be as prominent in areas with substantial amounts of groundwater. Advanced planning could help reduce conflict among water users. Responding pro-actively to climate risks by improving current management practices, like road design and water management as highlighted here, may be among the most efficient and effective methods for adaptation. Keywords: Climate change, Runoff, Snow, Low flows, Peak flows, Forest roads, Water supply

  12. Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon Tuff and Topopah Spring Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Marshall, B.D.; Kwak, L.M.; Futa, Kiyoto; Mahan, S.A.

    1995-01-01

    Yucca Mountain is currently being studied as a potential site for an underground repository for high-level radioactive waste. One aspect of the site characterization studies is an evaluation o the resource potential at Yucca Mountain. Geochemical and isotopic signatures of past alteration of the welded tuffs that underlie Yucca Mountain provide a means of assessing the probability of hydrothermal ore deposits being present within Yucca Mountain. In this preliminary report, geochemical and isotopic measurements of altered Tiva Canyon Tuff and Topopah Spring Tuff collected from fault zones exposed on the east flank of Yucca Mountain and from one drill core are compared to their unaltered equivalents sampled both in outcrop and drill core. The geochemistry and isotopic compositions of unaltered Tiva Canyon Tuff and Topopah Spring Tuff (high-silica rhyolite portions) are fairly uniform; these data provide a good baseline for comparisons with the altered samples. Geochemical analyses indicate that the brecciated tuffs are characterized by addition of calcium carbonate and opaline silica; this resulted in additions of calcium and strontium,increases in oxygen-18 content, and some redistribution of trace elements. After leaching the samples to remove authigenic carbonate, no differences in strontium or lead isotope compositions between altered and unaltered sections were observed. These data show that although localized alteration of the tuffs has occurred and affected their geochemistry, there is no indication of additions of exotic components. The lack of evidence for exotic strontium and lead in the most severely altered tuff samples at Yucca Mountain strongly implies a similar lack of exotic base or precious metals

  13. Chemical composition of hot spring waters in the Oita river basins, Oita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Tamio

    1988-01-30

    The source of the water from Oita River comes from the Kuju and Yubu-Tsurumi Volcanos, pouring into Beppu Bay. Its drainage area is 646 km/sup 2/ with a total length of 55 km. Hot springs are exist throughout most of the basin of the main and branches of Oita River. The chemical components of the hot springs in the Ota River basin -Yufuin, Yunotaira, Nagayu, Shonai/Hazama, and Oita City - have been analyzed. The equivalent of magnesium exceeds that of calcium in the carbonate springs of the above. Ca+Mg has positive correlations with HCO/sub 3/ in these carbonate springs. The water from these springs flows into the rivers and pours into Beppu Bay. The flow rate and chemical component concentration were measured at Fudai bridge. The concentration of chemical components having an average flow rate (30 ton/sec) were calculated. (4 figs, 7 tabs, 10 refs)

  14. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  15. Sources of nitrate contamination and age of water in large karstic springs of Florida

    Science.gov (United States)

    Katz, B.G.

    2004-01-01

    In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge ???2.8 m3/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and ??15N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most ??15N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35 years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, 3H/3He) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and 3He data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix.

  16. Groundwater contamination and the relationship between water chemistry and biotic components in a karst system (Bihor Mountains, Romania

    Directory of Open Access Journals (Sweden)

    Laura Epure

    2014-12-01

    Full Text Available The physical and chemical characteristics, microbial contaminat ion, and meiofauna of the Ocoale-Gheţar-Dobreşti karst system (Bihor Mountains, Romania were studied in order to assess the natural water quality by an interdisciplinary study. A total of 60 water samples were collected seasonally from 7 sites. Physico-chemical results showed a typical composition of karst waters, except for one site, where Ca2+ was absent, pH was very low, and the abundance and diversity of meiofauna were highest, demonstrating life support even for the most sensitive animals. No significant chemical pollution was found, but microbial contamination occurred in all samples, according to the national water quality standards of the analyzed springs. The Canonical Correlation Analysis and the Canonical Correspondence Analysis performed showed a strong connection between pH, nitrates and faecal pollution, indicating also a direct connection between microbial contaminants and dissolved oxygen.

  17. Vibration of helical springs in cross water flow

    International Nuclear Information System (INIS)

    Axisa, F.; Brunet, G.

    1987-05-01

    The purpose of this paper is to present new experimental data on vortex-shedding induced vibration on helical springs subjected to cross-flows. Intense locked-in vibration were observed on the natural modes of axial displacement. A simplified model is tentatively proposed to interpret the experimental data which is based on an analogy with vortex-shedding as observed on straight tube rows

  18. Investigation of Natural Radioactivity in the Tap and Spring Water in Yaounde Town, Cameroon

    International Nuclear Information System (INIS)

    Lydie, R.M.; Hakam, O.K.; Choukri, A.; Lydie, R.M.; Hakam, O.K.; Choukri, A.

    2013-01-01

    The natural radionuclide concentrations in the tap and springs water in Yaounde town, capital of Cameroon with a population of 3.5 million inhabitants were estimated by gamma spectrometry, using both well calibrated Canberra NaI(Tl) and HPGe detector systems. Tap water samples were collected during the dry and the rainy seasons, respectively in December 2002 and July 2003 and spring water samples were collected in August 2010. The radionuclides observed with regularity belonged to the series decay naturally occurring radionuclides headed by 238 U and 232 Th as well as the non-series nuclide 40 K. Assuming an individual daily consumption of 1 litre of water, the average annual intake for these populations is 3821 Bq/y for tap water and 1161 Bq/y for spring water.

  19. Interrelations between the surface waters of Danube, karst waters and thermal springs of Bad Deutsch Altenburg

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, P [Bundesversuchs- und Forschungsanstalt Arsenal, Vienna (Austria)

    1987-11-15

    Full text: As part of the preliminary works for the hydropower project Hainburg on the Danube, comprehensive geological, geophysical, hydrogeological, hydrological, hydrochemical and radiohydrometrical investigations were carried out. Special attention was paid to the area of Bad Deutsch Altenburg since questions of connections between Danube water, groundwater and the sulphur-medicinal springs of Bad Deutsch Altenburg and karst waters had to be settled. Long term observations and the data from series of analysed water samples led to the following conclusions: (1) The thermal deep groundwater, the autochthonous karst water, the shallow groundwater and the Danube belong to a common system with hydraulic interactions. (2) The discharge of the thermal mineral waters in Bad Deutsch Altenburg is caused by a NW-SE striking fault zone. (3) The thermal mineral waters are overburdened by the karst waters in the area Kirchenberg and Pfaffenberg. At the contact zone mixing occurs. Owing to changing pressure conditions and to the locally different conductivity of the karst aquifer the discharges of mineral waters differ in concentration and temperature. (4) The water level of the thermal mineral waterbody is 1 to 2 m above the water level of the Danube at low flow. This difference is equalized at the Danube water level above 141.5 m a.s.l. Above the mark 142 m a.s.l. a direct influence of the observation wells situated in the Park was observed. (5) Because the Danube has eroded the karst massif (Mesozoic limestones and dolomites, Leitha limestone) down to a depth of about 132-133 m a.s.l. the level of karst water drainage was deeper than today. Currently the area is covered by highly permeable gravels. (6) It is therefore assumed that a considerable amount of thermal water drains directly into the Danube. Recharge and mixing with the shallow groundwater was proved. (7) The considerable discharge implies a catchment which extends beyond the immediate environment. (author)

  20. Water quality and geochemistry of the mountain fynbos ecosystem in the vicinity of Citrusdal, South Africa

    Science.gov (United States)

    Compton, J.; Soderberg, K.

    2003-12-01

    The water chemistry along the path of the hydrologic cycle gives clues to the complex interactions among water and the bedrock, soil, vegetation and atmosphere. This study gives a first-order estimation of the chemical composition of the recharge, discharge, and ground waters, along with the bedrock, soil, and vegetation of the Olifants River Valley around Citrusdal, South Africa. The valley occurs in a synclinal fold with the main aquifers, the Table Mountain Group (TMG) sandstones of the Peninsula Formation and the Nardouw Subgroup, folded beneath the central valley. The Peninsula aquifer is recharged in the east towards the Cedarberg Mountains and discharged at up to 43° C in the west. The headwater catchments support mountain fynbos vegetation communities, part of the Cape Floral Kingdom, which is globally significant as one of 6 floral kingdoms in the world and a biodiversity hotspot. Groundwater data for this study comes from two boreholes, one cold spring, and one warm spring. Ten surface water samples were taken to study discharge, and 14 rainwater samples for recharge (3 from Citrusdal, 11 from Cape Town). Alkalinity and acidity titrations were performed in the field to complement pH values in characterizing the acid-base status of the waters. Major ions were determined by ion chromatography, and trace elements by ICP-MS. The recharge (pH 4.8-5.8) carries roughly a seawater signature, with some deviation from rainout and washout of wind-blown dust. Rainwater composition in the study area is similar to that sampled within 5 km of the coast in Cape Town, located 170 km south of the study area. Discharge is acidic in the study area (pH 4.9-5.8) and varies from clear to light brown (DOC buffering from weathering of the quartz arenite sandstones. In addition, organic acids tend to pass through with the discharge in these clay-poor sandy soils (buffer the addition of hydroxyl ion (Base Neutralizing Capacity) in the acidity titration. The Acid Neutralizing

  1. Water chemistry and radon concentrations of thermal springs in Bastak area, south of Persia

    International Nuclear Information System (INIS)

    Mirhosseini, S.M.; Moattar, F.; Karbassi, A.R.

    2015-01-01

    Physicochemical factors, major and some minor ions and 222 Rn concentration was measured in Todruyeh, Fotuyeh and Sanguyeh thermal balneutherapy springs in Bastak, south of Iran. Water type of these springs is Na-Cl and water-mixing phenomena seem possible in them. The average of U concentration in Fatuyeh's, Sanguyeh's and Todruyeh's water are 2.2, 1.1, 0.306 ppb, respectively, and the concentration of heavy metals such as Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn varies from 1 to 10 ppb. The concentration of 222 Rn in the water of Fotuyeh, Sanguyeh and Todruyeh Springs includes 125-253, 53-104, and 7.4-134.7 kBq/m 3 , respectively. Values of mean annual effective doses for inhalation from these waters are below the reference level recommended by WHO. (author)

  2. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  3. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  4. Geological research for hot spring resources in the Kanno-kawa area, Tsukui-machi, Tanzawa mountains

    Energy Technology Data Exchange (ETDEWEB)

    1969-03-01

    The Kanno-kawa area is mainly composed of the following geological units: miocene submarine pyroclastic formation and its associated augite dolerite sheets, quartz diorite intrusive, and hornblende andesite dykes. The Miocene pyroclastic rocks mainly consist of tuff, tuff breccia, and agglomerate of basaltic, andestic, and dacitic composition intercalated with subordinate amounts of conglomerate, sandstone, and siltstone beds. These rocks were divided into two lithological facies: basaltic and andestic tuff and tuff breccia facies and a facies of dacitic pumice tuff with characteristic white or gray spots of siliceous pumice (2 to 35 mm in diameter). These pyroclastic rocks suffered metamorphism mainly related to the intrusion of quartz diorite. The metamorphic rocks can be divided into the following four zones: amphibolite, actinolite hornfels, pumpellyite-prehnite, and zeolite. Probably during the late stage of the metamorphism, hornblende andesite intruded along sheared zones running from NE or NNE toward SW or SSW. Above noted Miocene pyroclastic rocks, quartz diorite, and hornblende andesite also suffered a hydrothermal alteration by which many zeolite bearing veins or networks were formed. Mineral waters of the Tanzawa mountains are believed to be related to the intrusion of quartz diorite, hornblende andesite, and formation of zeolite veins. In this respect, mineral water of highly alkaline nature can be expected by deep drilling of 600 to 1,000 m at some places such as Choja-goya and Hikage-zawa of the Kanno-kawa area.

  5. Climate control of decadal-scale increases in apparent ages of eogenetic karst spring water

    Science.gov (United States)

    Martin, Jonathan B.; Kurz, Marie J.; Khadka, Mitra B.

    2016-09-01

    Water quantity and quality in karst aquifers may depend on decadal-scale variations in recharge or withdrawal, which we hypothesize could be assessed through time-series measurements of apparent ages of spring water. We tested this hypothesis with analyses of various age tracers (3H/3He, SF6, CFC-11, CFC-12, CFC-113) and selected solute concentrations [dissolved oxygen (DO), NO3, Mg, and SO4] from 6 springs in a single spring complex (Ichetucknee springs) in northern Florida over a 16-yr period. These springs fall into two groups that reflect shallow short (Group 1) and deep long (Group 2) flow paths. Some tracer concentrations are altered, with CFC-12 and CFC-113 concentrations yielding the most robust apparent ages. These tracers show a 10-20-yr monotonic increase in apparent age from 1997 to 2013, including the flood recession that followed Tropical Storm Debby in mid-2012. This increase in age indicates most water discharged during the study period recharged the aquifer within a few years of 1973 for Group 2 springs and 1980 for Group 1 springs. Inverse correlations between apparent age and DO and NO3 concentrations reflect reduced redox state in older water. Positive correlations between apparent age and Mg and SO4 concentrations reflect increased water-rock reactions. Concentrated recharge in the decade around 1975 resulted from nearly 2 m of rain in excess of the monthly average that fell between 1960 and 2014, followed by a nearly 4 m deficit to 2014. This excess rain coincided with two major El Niño events during the maximum cool phase in the Atlantic Multidecadal Oscillation. Although regional water withdrawal increased nearly 5-fold between 1980 and 2005, withdrawals represent only 2-5% of Ichetucknee River flow and are less important than decadal-long variations in precipitation. These results suggest that groundwater management should consider climate cycles as predictive tools for future water resources.

  6. Rise and fall of road salt contamination of water-supply springs

    Science.gov (United States)

    Werner, Eberhard; Dipretoro, Richard S.

    2006-12-01

    A storage pile of de-icing agent consisting principally of sodium chloride was placed in the recharge area of two springs, and remained there for 2 years. Water flow is through fractures in rocks with low matrix permeability, along a hydraulic gradient developed along fracture zones. Salt contamination in the springs was noticed about 1 year after the salt was placed. When the salt was removed 1 year later, chloride concentrations in the springs exceeded 500 mg/L. Monitoring for the following 5 years showed salt contamination rising for the first year, but receding to normal background after 5 years. Chloride to sodium ratios of the spring waters indicated that some sodium was initially sequestered, probably by ion exchange on clay minerals, in the early part of the monitoring period, and released during the latter part; thereby extending the period of contamination.

  7. The isotope geochemistry of hot springs gases and waters from Coromandel and Hauraki

    International Nuclear Information System (INIS)

    Lyon, G.L.; Giggenbach, W.F.

    1992-01-01

    Carbon, hydrogen and oxygen stable isotope analyses have been made on carbon dioxide,methane and water from warm and hot springs in the Coromandel Peninsula and Hauraki Plains. Most of the waters are isotopically unaltered meteoric waters. Methane δ 1 3C values vary widely, from -30%o to -72%o. Warm springs in swamps at Maketu and Kerepehi have microbial methane probably added to the water near the surface. Puriri, Okoroire and Miranda springs produce thermally derived methane, and the Hot Water Beach gas is similar to the Kaitoke gas in chemistry and isotopic composition but altered by shallow microbial oxidation. The Te Aroha gas, though, is not inconsistent with a geothermal origin and the boiling springs and oxygen-isotope altered water are further evidence for high temperatures. Other spring gases have mixtures of thermogenic and microbial methane and none are closely similar to major NZ geothermal CH 4 composition. CO 2 , which is usually present in lesser amounts than N 2 , has isotopic values which suggest a geothermal origin at Te Aroha and Maketu, but otherwise indicates a crustal origin. The dominance of N 2 implies that the fluid flows are tectonic fracture flow rather than geothermal. 3 He/ 4 He data gives further evidence of no major contribution from magmatic material except at Maketu, on the NW boundary of the TVZ. (author). 24 refs., 4 figs., 2 tabs

  8. Water beetles in mountainous regions in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    MO. Segura

    Full Text Available Inventories provide information on the state of biodiversity at a site or for a geographic region. Species inventories are the basis for systematic study and critical to ecology, biogeography and identification of biological indicators and key species. They also provide key information for assessments of environmental change, for natural resource conservation or recovery of degraded ecosystems. Thus, inventories play a key role in planning strategies for conservation and sustainable use. This study aimed to inventory the fauna of water beetles, larvae and adults, in two mountainous regions in the state of São Paulo, in Serra da Mantiqueira (Parque Estadual de Campos do Jordão and Pindamonhangaba region and in Serra do Mar (Santa Virgínia and Picinguaba Divisions as well as to generate information about the habitats used by the different genera recorded. Specimens were collected in lotic and lentic systems, between the years 2005 to 2010. In total 14,492 specimens were collected and 16 families and 50 genera of Coleoptera were identified. This study in mountainous regions showed a significant portion of the faunal composition of South America and the state of São Paulo. The composition of the fauna, in terms of richness and abundance by family, indicated the predominance of Elmidae, followed by Hydrophilidae and Dytiscidae. Despite the diversity found, the results of estimated richness indicated the need for additional sampling effort for both regions, since the curves of estimated richness did not reach an asymptote, suggesting that new species can be found in future surveys.

  9. Isotopic variation in spring water and rain water of Sikkim: a case study

    International Nuclear Information System (INIS)

    Diksha; Sinha, U.K.; Ansari, Md. Arzoo; Mendhekar, G.N.; Dash, Ashutosh; Dhakal, Deepak

    2015-01-01

    Environmental stable isotopic signatures of surface water, rainwater and groundwater provide valuable information about interconnection between them. Stable isotopes of H (δ 2 H) and O (δ 18 O) have been widely employed by many researchers to understand rainwater, surface water and groundwater inter-connections. The Global Meteoric Water Line (GMWL, δD= 8 x δ 18 O+10) the locus of precipitation water over whole of the globe, established by Craig, used to tell about the environment of water. For the objective spring water (namely Dhalay Khola, Lower Changey and Bhulkey) were collected from the study area (Sikkim) during May 2013, March 2013 and August 2014. Rainwater sample were also collected with increasing altitude. These samples were analyzed for environmental isotopes (δ 2 H, δ 18 O) by a isotope ratio mass spectrometer (IsoPrime-100) using pyrolysis mode of elemental analyzer for deuterium and gas equilibration method for 18 O. The precision (2 sigma) of (δ 2 H and δ 18 O are ±0.15 and ± 0.1‰ respectively

  10. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  11. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  12. Variation of radon levels in spring water with meteorological parameters and seismic events in Garhwal Himalayas

    International Nuclear Information System (INIS)

    Prasad, Yogesh; Prasad, Ganesh; Negi, M.S.; Ramola, R.C.; Choubey, V.M.

    2006-01-01

    Radon is being measured continuously in spring water at Badshahi Thaul Campus, Tehri Garhwal in Himalayan region by using radon emanometer since December 2002. An effort was made to correlate the variance of radon concentration in spring water with meteorological parameters and seismic events in study area. The positive correlation (coefficient = 0.79, 0.53, 0.60 and 0.70) was observed between measured radon concentration and minimum and maximum temperature, relative humidity and water discharge rate from the spring, respectively. However, no correlation was recorded between radon concentration and rain fall in the study area. Sudden increase in radon concentration in spring water were observed before the earthquakes occurred on 24 January 2003 of magnitude 3.4 on Richter scale having epicenter near Uttarkashi in Garhwal Himalaya and on 31 January 2003 of magnitude 3.1 on Richter scale having epicenter almost in same area. Similar changes in radon concentration were recorded before the earthquakes occurred on 4 April 2003 with magnitude 4.0 having epicenter near Almora in Kumaon Himalaya and on 26 May 2003 having magnitude 3.5 in Chamoli region of Garhwal Himalaya. Regular radon anomaly was recorded with micro seismic events from 5th August to 4th September 2003, which is discussed in detail. The impact of non geophysical and geophysical events on radon concentration in spring water is discussed in details. This type of study will help us to develop earthquake alarm model from radon in near future. (author)

  13. Long term consumption of mineral spring water containing natural radium-226

    International Nuclear Information System (INIS)

    Aulenbach, D.B.; Davis, R.E.

    1976-01-01

    The presence of naturally occurring 226 radium in several of the spring waters of Saratoga Springs, New York has been known for some time. However, recently the recommended maximum acceptable limit for consumption of water containing radium has been lowered to the point that the limits are now lower than the concentration of radium observed in several of the wells. A survey was made of 27 individuals who have consumed water from the Hathorn No. 1 Spring for periods varying from 5-65 years. A calculation was made of the 226 radium body burden from equations provided in the literature. The calcium concentration of the springs was determined in consideration of the still unknown comparative selectivity of the body between radium and calcium. Waters from two of the springs were analzyed for 226 radium using the radon emanation method. No adverse effects of consuming the mineral water were observed in the individuals interviewed nor were there any increased incidences of broken or brittle bones among these individuals

  14. Nitrate concentration in spring water at the Nogawa basin and its possible source

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Ogura, Norio

    1978-01-01

    Fluctuation of nitrate concentration in spring water at the Nogawa basin was studied during 1976 - 1977, and the possible source of nitrate nitrogen was discussed. Nitrate concentration in spring water at the station N-O in Kokubunji, Tokyo ranged from 360 to 574 μg at/l with an average value of 502 μg at/l. It seemed that the effluent of spring water at N-O was influenced by rainfall within a short period. A laboratory experiment on production of nitrate in soil showed that ammonium nitrogen added to fresh soil was transformed quantitatively to nitrate nitrogen during 23 days incubation. Thd sup(delta15)N value of nitrate nitrogen in spring water (+0.89%) was similar to that of ammonium nitrogen in sewage (+0.82%) discharging into the Nogawa River. In the area near N-O, domestic wastes have been discharged into the Nogawa River by simple sewers or percolated downward through the soil. These results suggest that one of the main source of nitrate nitrogen in spring water is ammonium and organic nitrogen in domestic wastes. (author)

  15. Tillage methods and mulch on water saving and yield of spring maize in Chitwan

    Directory of Open Access Journals (Sweden)

    Ishwari Prasad Upadhyay

    2016-12-01

    Full Text Available Tillage methods and mulch influences the productivity and water requirement of spring maize hence a field experiment was conducted at the National Maize Research Program, Rampur in spring seasons of 2011 and 2012 with the objectives to evaluate different tillage methods with and without mulch on water requirement and grain yield of spring maize. The experiment was laid out in two factors factorial randomized complete design with three replications. The treatments consisted of tillage methods (Permanent bed, Zero tillage and Conventional tillage and mulch (with and without. Irrigation timing was fixed as knee high stage, tasseling stage and milking/dough stage. Data on number of plants, number of ears, thousand grain weight and grain yield were recorded and analysed using GenStat. Two years combined result showed that the effect of tillage methods and mulch significant influenced grain yield and water requirement of spring maize. The maize grain yield was the highest in permanent beds with mulch (4626 kg ha-1 followed by zero tillage with mulch (3838 kg ha-1. Whereas total water applied calculated during the crop period were the highest in conventional tillage without mulch followed by conventional tillage with mulch. The permanent bed with mulch increased the yield and reduced the water requirement of spring maize in Chitwan.

  16. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    Science.gov (United States)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  17. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  18. Determination of Hot Springs Physico-Chemical Water Quality Potentially Use for Balneotherapy

    International Nuclear Information System (INIS)

    Zaini Hamzah; Nurul Latiffah Abd Rani; Ahmad Saat; Ab Khalik Wood

    2013-01-01

    Hot springs areas are attractive places for locals and foreigners either for excursion or for medical purposes such as for healing of various types of diseases. This is because the hot spring water is believed rich in salt, sulfur, and sulfate in the water body. For many thousands of years, people have used hot springs water both for cozy bathing and therapy. Balneotherapy is the term used where the patients were immersed in hot mineral water baths emerged as an important treatment in Europe around 1800s. In view of this fact, a study of hot springs water was performed with the objective to determine the concentration of Na + , K + , Ca 2+ , S, SO 4 2- and Cl - in hot springs water around the State of Selangor, Malaysia. Energy dispersive X-ray Fluorescent Spectrometry (EDXRF) was used to measure the concentrations of Na + , K + , Ca 2+ and S meanwhile for SO 4 2- and Cl - anion, Ion Chromatography (IC) was used. The concentration of Na + obtained for filtered and unfiltered samples ranged from 33.68 to 80.95 and 37.03 to 81.91 ppm respectively. Meanwhile, the corresponding concentrations of K + ranged from 1.47 to 45.72 and 1.70 to 56.81 ppm. Concentrations of Ca 2+ ranged from 2.44 to 18.45 and 3.75 to 19.77 ppm. The concentration of S obtained for filtered and unfiltered samples ranged from 1.87 to 12.41 and 6.25 to 12.86 ppm. The concentrations for SO 4 2- and Cl - obtained ranged from 0.15 to 1.51 ppm and 7.06 to 20.66 ppm for filtered samples. The data signified higher concentration of salt and other important nutrients in hot spring water. (author)

  19. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  20. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  1. Processes at Water Intake from Mountain Rivers into Hydropower and Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Vatin Nikolai

    2016-01-01

    Full Text Available In paper, researches of riverbed and hydraulic processes at the water intake from mountain rivers are observed. Classification of designs of the mountain water intake structures, based on continuity signs is offered. Perfecting of base designs of water intake structures of a mountain-foothill zone and means of their hydraulic automation is carried out. The technological, theoretical and experimental substantiation of parameters of basic elements of these designs with a glance of hydromorphometric characteristics of the mountain rivers is given. Complex hydraulic researches of kinematic characteristics and carrying ability of a two-phase stream on water intake structures are executed. Bases of a technique of engineering calculation of the offered designs of water intake structures and the recommendation of their designing and maintenance in various hydrological regimes are developed.

  2. Hydrograph monitoring and analysis for sustainable karst water management in Nyadeng Spring, East Borneo

    Science.gov (United States)

    Widyastuti, M.; Fatchurohman, H.; Fathoni, W. A.; Hakim, A. A.; Haryono, E.

    2018-04-01

    Karst aquifer stores abundant water resources within its matrix, conduits, and intergranular pores. Karst aquifer plays an important role in providing water supply, especially in the areas nearby that commonly dry and lack of surface water resources. Karst spring hydrograph analysis is very fundamental step to–assess and determines the condition of the catchment area in karst terrain. Recession curve is believed to be the most stable part in single flood hydrograph that represents the aquifer characteristics. Nyadeng is one of the most significant karst springs that located in Merabu Karst Area, East Borneo. Villagers in Merabu highly depend on Nyadeng Spring for fulfilled their freshwater need. Hydrograph monitoring has been initiated for one year in Nyadeng Spring as a preliminary action for karst water management in Merabu. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Nyadeng Spring calculated as y = 0,0102e5,8547x with r2 value = 0.8759. From the combination of several single flood events, Master Recession Curve (MRC) was generated to determine flow regime as the main consideration for karstification degree calculation. From the MRC result, flow regimes formula determined as Qt = 3.2-0.001t + 1.2(1-0.012t)+1.6(1-0.035t) indicated that one sub-regime with laminar flow and two sub-regimes with turbulent flow existed. From the MRC formula, the degree of karstification in Nyadeng Spring classified at seventh scale (developed karstification of the aquifer) based on Malik’s karstification degree (2012). The degree of karstification in Nyadeng Spring indicates that the aquifer formed by large conduit channels, fissures, and macro fissures which are able to provide significant water sources that can be utilized for multi purposes. Therefore, it is concluded that spring hydrograph monitoring provide

  3. Radiation education using local environment. Educational experiment using Misasa spring water

    International Nuclear Information System (INIS)

    Nakamura, Mariko; Esaka, Takao; Kamata, Masahiro

    2005-01-01

    Hoping that use of natural radioactivity as teaching materials helps learners to understand the existence of radiation in nature, the authors developed several kinds of safe and inexpensive experiments for elementary and junior high school education using hot spring water taken from Misasa, situated in Tottori prefecture, Japan. Here, they report the details of experimental procedure to observe the radioactive equilibrium between Rn 222 released from the hot spring water and its daughters as well as the decay after isolation from Rn 222. The experiment needs no hazardous chemicals nor Bunsen burners, and can be carried out in normal classrooms without any special apparatus. (S. Ohno)

  4. Determination of arsenic and bromine in hot spring waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Kikawada, Y.; Kawai, S.; Oi, T.

    2004-01-01

    Concentrations of arsenic and bromine dissolved in hot spring waters have been determined by neutron activation analysis using 0.5 cm 3 of sample waters without any chemical pretreatment. The samples prepared for neutron irradiation were simply pieces of filter papers which were infiltrated with samples. With the results of satisfactorily high accuracy and precision, this analytical method was found to be very convenient for the determinations of arsenic and bromine dissolved in water at ppm to sub-ppm levels. (author)

  5. Thermal neutron activation analysis of the water Zamzam at Mecca, Saudi Arabia and the water of the fourty five hot springs at Hot Springs, Arkansas, USA

    International Nuclear Information System (INIS)

    Melibary, A.R.

    1980-10-01

    Samples from the Islamic holy water Zamzam in Mecca, Saudi Arabia and the famous mineral water of Hot Springs, in Hot Springs, Arkansas were analyzed for trace elements content by thermal neutron activation analysis. For Zamzam the concentration of 37 S, 49 Ca, 38 Cl, 31 Si, 42 K, 24 Na and 82 Br were found, respectively, to be 3, 107, 11, 12, 4, 14, and 9 ppm; and that for Hot Springs Sample, replacing 82 Br with 27 Mg, are 2, 44, 2, 10, 1, 4, and 5 ppm. The experimental limit of detection for pure standards of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were found to be 8, 8x10 - 3, 6x10 - 2, and 2x10 - 4 μg, respectively. These nuclides were not detected in Zamzam, therefore, it was concluded that in Zamzam the concentration levels of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were below that of the limit of detection of pure standards. (orig./HP) [de

  6. NPDES Permit for Rocky Mountain Arsenal Recycled Water Pipeline in Colorado

    Science.gov (United States)

    Under NPDES permit CO-0035009, the U.S. Department of Interior's Fish and Wildlife Service is authorized to discharge from the Rocky Mountain Arsenal recycled water pipeline to Lower Derby Lake in Adams County, Colo.

  7. Association between body water status and acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    Full Text Available PURPOSE: The present study determined the association between body fluid variation and the development of acute mountain sickness (AMS in adults. METHODS: Forty-three healthy participants (26 males and 17 females, age: 26 ± 6 yr, height: 174 ± 9 cm, weight: 68 ± 12 kg were passively exposed at a FiO2 of 12.6% (simulated altitude hypoxia of 4500 m, PiO2 = 83.9 mmHg for 12-h. AMS severity was assessed using the Lake Louise Score (LLS. Food and drink intakes were consumed ad libitum and measured; all urine was collected. Before and after the 12-h exposure, body weight and plasma osmolality were measured and whole-body bioimpedance analysis was performed. RESULTS: The overall AMS incidence was 43% (38% males, 50% females. Participants who developed AMS showed lower fluid losses (3.0 ± 0.9 vs. 4.5 ± 2.0 ml/kg/h, p = 0.002, a higher fluid retention (1.9 ± 1.5 vs. 0.6 ± 0.8 ml/kg/h, p = 0.022, greater plasma osmolality decreases (-7 ± 7 vs. -2 ± 5 mOsm/kg, p = 0.028 and a larger plasma volume expansion (11 ± 10 vs. 1 ± 15%, p = 0.041 compared to participants not developing AMS. Net water balance (fluid intake--fluid loss and the amount of fluid loss were strong predictors whether getting sick or not (Nagelkerkes r(2 = 0.532. The LLS score was related to net water balance (r = 0.358, p = 0.018, changes in plasma osmolality (r = -0.325, p = 0.033 and sodium concentration (r = -0.305, p = 0.047. Changes in the impedance vector length were related to weight changes (r = -0.550, p<0.001, fluid intake (r = -0.533, p<0.001 and net water balance (r = -0.590, p<0.001. CONCLUSIONS: Participants developing AMS within 12 hours showed a positive net water balance due to low fluid loss. Thus measures to avoid excess fluid retention are likely to reduce AMS symptoms.

  8. Fluoride removal from rural spring water using wood ash

    CSIR Research Space (South Africa)

    Makhado, R

    2006-05-01

    Full Text Available This paper presents an overview of a report on an investigation on the use of cheap wood ash as an effective means of removing excess fluoride from drinking water used by an impoverished rural community of the Didi village in Limpopo province....

  9. Effects of climate change on spring wheat phenophase and water ...

    Indian Academy of Sciences (India)

    And temperature change further affects crop water requirement and irrigation system. In the north-west of China, one of the most important crop production bases is Heihe River basin where the observed phenological data is scarce. This study thus first adopted accumulated temperature threshold (ATT) method to define the ...

  10. Effects of climate change on spring wheat phenophase and water ...

    Indian Academy of Sciences (India)

    water sources management in Ningxia, Gansu and. Inner Mongolia. ... climate change, these studies tend to limit their ... were acquired from the China Meteorological Sci- ... (DEM) were obtained from National Topographic ... AT identified for wheat jointing stage, heading ... mended by the Food and Agriculture Organization.

  11. Mountains of the world: vulnerable water towers for the 21st century.

    Science.gov (United States)

    Messerli, Bruno; Viviroli, Daniel; Weingartner, Rolf

    2004-11-01

    Mountains as "Water Towers" play an important role for the surrounding lowlands. This is particularly true of the world's semiarid and arid zones, where the contributions of mountains to total discharge are 50-90%. Taking into account the increasing water scarcity in these regions, especially for irrigation and food production, then today's state of knowledge in mountain hydrology makes sustainable water management and an assessment of vulnerability quite difficult. Following the IPCC report, the zone of maximum temperature increase in a 2 x CO2 state extends from low elevation in the arctic and sub-arctic to high elevation in the tropics and subtropics. The planned GCOS climate stations do not reach this elevation of high temperature change, although there are many high mountain peaks with the necessary sensitive and vulnerable ecosystems. Worldwide, more than 700 million people live in mountain areas, of these, 625 million are in developing countries. Probably more than half of these 625 million people are vulnerable to food insecurity. Consequences of this insecurity can be emigration or overuse of mountain ecosystems. Overuse of the ecosystems will, ultimately, have negative effects on the environment and especially on water resources. New research initiatives and new high mountain observatories are needed in order to understand the ongoing natural and human processes and their impacts on the adjacent lowlands.

  12. Environmental Controls on Snow Cover Thickness and Water Equivalent in Two Sub-Arctic Mountain Catchments

    OpenAIRE

    Cosgrove, Christopher

    2015-01-01

    The spatial variability of snow cover characteristics (depth, density, and snow water equivalent [SWE]) has paramount importance for the management of water resources in mountain environments. Passive microwave (PM) inference of SWE from space-borne instrumentation is increasingly used but the reliability of this technique remains limited in mountainous areas. Complex topography and the transition between forest and alpine tundra vegetation zones create large spatial heterogeneities in the sn...

  13. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  14. Recharge mechanism in karstic systems investigation through the correlation of chemical and isotopic composition of rain and spring-water (case study: Figeh and Barada springs)

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2012-03-01

    Karst aquifers represents an important groundwater resources not only in Syria, but in the world-wide. The hydrological approaches for studying the karst system were developed in the last tow decade. One of the main approaches is the use of natural isotopes and hydrochemical traces for description the recharge and discharge and estimate the recharge rate of karst aquifer system. The main filed site tests are the Figeh and Barada karst aquifer, located in the carbonate rocks of the Anti-Lebanon Mountains. Environmental isotopes and chemical major ions (δ 18 Ο, δ 2 H and 3 H), in precipitation and groundwater were integrated for studying the isotope and hydrochemical characterization and the description of temporal variations of groundwater discharge from the karst springs of Figeh and Barada which are considered as the main large springs due to there huge discharge in the Anti-Lebanon Mountains. The δ 18 O values are -8.9 and -7.7. for Figeh and Barada respectively. The regression line for both precipitation and groundwater discharge from Figeh and Barada is described by the equation: δD = 7.9δ 18 O + 19.7 wish shows no evaporation during precipitation and suggest that the groundwater are mainly from direct infiltration of precipitation. The altitude gradients in the precipitation were estimated to be -0.23./100 m for δ 18 O. The main recharge areas were estimated to be 2000±50 and 1350±50 m.a.s.l for Figeh and Barada springs.The chloride mass balance (CMB) method was used to quantify recharge rates of groundwater in the Mountain karst aquifer of Figeh spring. The recharge rate varies from 192 to 825 mm year-1, which corresponds to 43 and 67% of the total annual rainfall. Recharge rates estimated by CMB were compared with values obtained from other methods and were found to be in good agreement. The tritium concentrations in groundwater are low and very close to the rainfall value 4.5 Tu for meteoric stations. Adopting a model with exponential time

  15. Status of image analysis methods to delineate stratigraphic position in the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.; Broxton, D.E.; Spaw, J.

    1989-10-01

    The Topopah Spring Member of the Paintbrush Tuff is an ash-flow cooling unit that is the candidate host rock for a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The repository workings will be mostly confined to the member's rhyolitic portion, which is chemically homogenous but texturally variable. This report describes the status of work to develop a useful internal stratigraphy for the rhyolitic portion of the member; our approach is to use an image analysis technique to map textural variations within the member as a function of stratigraphic height. Fifteen petrographic thin sections of Topopah Spring rhyolitic tuff were studied in each of two drill holes (USW GU-3 and USW G-4). Digital color images were collected in transmitted light for two scenes 1 cm on a side for each thin section. Objects within a scene were classified by color, and measurements of area, elongation, and roughness were determined for each object. Summary statistics were compiled for all measurements for each color component within a scene, and each variable was statistically examined for correlations with stratigraphic position. Our initial studies using image analysis have not yet produced a useful method for determining stratigraphic position within the Topopah Spring Member. Simplifications made in this preliminary application of image analysis may be largely responsible for these negative results. The technique deserves further investigation, and more detailed analysis of existing data is recommended. 9 refs., 11 figs., 4 tabs

  16. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    Goyette, M.L.; MacDonell, M.M.

    1992-01-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE's predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site

  17. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Directory of Open Access Journals (Sweden)

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  18. Sources of nitrate in water from springs and the Upper Floridan aquifer, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, B.G.; Hornsby, H.D.; Böhlke, John Karl

    1999-01-01

    In the Suwannee River basin of northern Florida, nitrate-N concentrations are 1.5 to 20 mg 1-1 in waters of the karstic Upper Floridan aquifer and in springs that discharge into the middle reach of the Suwannee River. During 1996-1997, fertilizers and animal wastes from farming operations in Suwannee County contributed approximately 49% and 45% of the total N input, respectively. Values of ??15N-NO3 in spring waters range from 3.9??? to 5.8???, indicating that nitrate most likely originates from a mixture of inorganic (fertilizers) and organic (animal waste) sources. In Lafayette County, animal wastes from farming operations and fertilizers contributed approximately 53% and 39% of the total N input, respectively, but groundwater near dairy and poultry farms has ??15N-NO3 values of 11.0-12.1???, indicative of an organic source of nitrate. Spring waters that discharge to the Suwannee River from Lafayette County have ??15N-NO3 values of 5.4-8.39???, which are indicative of both organic and inorganic sources. Based on analyses of CFCs, the mean residence time of shallow groundwater and spring water ranges between 8-12 years and 12-25 years, respectively.

  19. The effect of different soil uses on the quality of spring water

    Directory of Open Access Journals (Sweden)

    Lilian Vilela Andrade Pinto

    2012-09-01

    Full Text Available Several factors are known to be responsible for the degradation of water quality in our Planet’s spring sources. The goal of this study was to evaluate the impact of different anthropogenic activities on physico-chemical and biological properties of five spring water located in Inconfidentes, Minas Gerais State, Brazil. Analytical results have demonstrated that water source protected by native vegetation had the highest quality in terms of color, turbidity, biological oxygen demand (BOD5, total phosphate, nitrate, dissolved oxygen (DO, fecal coliforms and thermo-tolerant coliforms. On the other hand, the water quality was negatively impacted by the lack of adequate agricultural practices, such as the use of chemical inputs, the nonexistence of fenced livestock grazing areas and residential sewage system which are considered to be indispensable practices to minimize the environmental impact of anthropogenic activities and to protect human health.

  20. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  1. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was

  2. Changes of carbon dioxide in surface waters during spring in the Southern Ocean

    NARCIS (Netherlands)

    Bakker, D.C.E.; Baar, H.J.W. de; Bathmann, U.V.

    1997-01-01

    The fugacity of CO2 (fCO2) and the content of chlorophyll a in surface-water were determined during consecutive sections between 47° and 60°S along 6°W in austral spring, October–November 1992. In the Polar Frontal region, the fCO2 of surface-water decreased from slightly below the atmospheric value

  3. Environmental quality assessment of cold water stream spring in urban perimeter of Codo City, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana dos Santos Oliveira

    2016-12-01

    Full Text Available Lack of planning, accelerated and uncontrolled growth of Brazilian cities, has triggered a series of impacts in the aquatic ecosystems, including the degradation of springs. This study evaluated the macroscopic shape of the nascent state of cold water creek conservation in the urban area of Codo City, Maranhao State, by applying the Headwaters Environmental Impact Index (IIAN during the visit in the field. The spring is located in New Jerusalem neighborhood, with a poor degree of protection, with main macroscopic impact in degraded vegetation, easy access and the approach of urban facilities.

  4. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    Science.gov (United States)

    Jaime R. Goode; Charles H. Luce; John M. Buffington

    2012-01-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to...

  5. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    Science.gov (United States)

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  6. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    Science.gov (United States)

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  7. Risk due assessment of the intake of uranium isotopes in mineral spring waters

    International Nuclear Information System (INIS)

    Camargo, Iara M.C.; Mazzilli, Barbara

    1998-01-01

    To complement the data of a previous research concerning the evaluation of the lifetime risk of radiation-induced cancer due to the injection of 226 Ra, 228 Ra and 222 Rn in mineral spring waters from a natural highly radioactive region of Brazil. The study was performed to evaluate the lifetime risk of radiation-induced cancer due to the ingestion of 238 U and 234 U in the same spring waters. It is assumed that the risk coefficient for natural U isotopes is the same as for the 226 Ra-induced bone sarcomas and that the equilibrium for skeletal content is 25 times the daily ingestion of 226 Ra, but 11 times the daily ingestion of long-lived uranium isotopes. Waters samples were collected seasonally over a period of one year at all the spring sites used by the local population of Aguas da Prata, Sao Paulo State, Brazil. Concentrations ranging from 2.0 to 28.4 mBq/L and from 4.7 to 143 mBq/L were observed for 238 U and 234 U, respectively. Based upon the measured concentrations the lifetime risk due to the ingestion of uranium isotopes was estimated. A total of 0.3 uranium-induced cancers for 10 6 exposed persons was predicted, suggesting that chronic ingestion of uranium at the levels observed at these springs will result in an incremental increase of fatal cancers of 0.1%. (author)

  8. Characterization, Long-Range Transport and Source Identification of Carbonaceous Aerosols during Spring and Autumn Periods at a High Mountain Site in South China

    Directory of Open Access Journals (Sweden)

    Hong-yan Jia

    2016-09-01

    Full Text Available PM10 (particulate matter samples were collected at Mount Lu, a high elevation mountain site in south China (August and September of 2011; and March, April and May of 2012. Eight carbonaceous fractions of particles were analyzed to characterize the possible carbonaceous emission sources. During the sampling events, daily average concentrations of PM10 at Mount Lu were 97.87 μg/m3 and 73.40 μg/m3 in spring and autumn, respectively. The observed mean organic carbon (OC and element carbon (EC concentrations during spring in PM10 were 10.58 μg/m3 and 2.58 μg/m3, respectively, and those in autumn were 6.89 μg/m3 and 2.40 μg/m3, respectively. Secondary organic carbon concentration was 4.77 μg/m3 and 2.93 μg/m3 on average, accounting for 28.0% and 31.0% of the total OC in spring and autumn, respectively. Relationships between carbonaceous species and results of principal component analysis showed that there were multiple sources contributing to the carbonaceous aerosols at the observation site. Through back trajectory analysis, it was found that air masses in autumn were mainly transported from the south of China, and these have the highest OC but lowest EC concentrations. Air masses in spring transported from northwest China bring 7.77 μg/m3 OC and 2.28 μg/m3 EC to the site, with lower levels coming from other sites. These air mass sources were featured by the effective carbon ratio (ECR.

  9. Laser-fluorescence determination of trace uranium in hot spring water, geothermal water and tap water in Xi'an Lishan region

    International Nuclear Information System (INIS)

    Ma Wenyan; Zhou Chunlin; Han Feng; Di Yuming

    2002-01-01

    Using the Laser-Fluorescence technique, an investigation was made, adopting the standard mix method, on trace uranium concentrations in hot spring water and geothermal water from Lishan region, and in tap water from some major cities in Shanxi province. Totally 40 samples from 27 sites were investigated. Measurement showed that the tap water contains around 10 -6 g/L of uranium, whose concentrations in both hot spring water and geothermal water are 10 -5 g/L. Most of samples are at normal radioactive background level, some higher contents were determined in a few samples

  10. Sources and chronology of nitrate contamination in spring waters, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, Brian G.; Hornsby, H.D.; Bohlke, J.K.; Mokray, M.F.

    1999-01-01

    A multi-tracer approach, which consisted of analyzing water samples for n aturally occurring chemical and isotopic indicators, was used to better understand sources and chronology of nitrate contamination in spring wate rs discharging to the Suwannee and Santa Fe Rivers in northern Florida. Dur ing 1997 and 1998, as part of a cooperative study between the Suwannee River Water Management District and the U.S. Geological Survey, water samples were collected and analyzed from 24 springs and two wells for major ions, nutrients, dissolved organic carbon, and selected environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N]. To better understand when nitrate entered the ground-water system, water samples were analyzed for chlorofluorocarbons (CFCs; CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H); in this way, the apparent ages and residence times of spring waters and water from shallow zones in the Upper Floridan aquifer were determined. In addition to information obtained from the use of isotopic and other chemical tracers, information on changes in land-use activities in the basin during 1954-97 were used to estimate nitrogen inputs from nonpoint sources for five counties in the basin. Changes in nitrate concentrations in spring waters with time were compared with estimated nitrogen inputs for Lafayette and Suwannee Counties. Agricultural activities [cropland farming, animal farming operations (beef and dairy cows, poultry, and swine)] along with atmospheric deposition have contributed large quantities of nitrogen to ground water in the Suwannee River Basin in northern Florida. Changes in agricultural land use during the past 40 years in Alachua, Columbia, Gilchrist, Lafayette, and Suwannee Counties have contributed variable amounts of nitrogen to the ground-water system. During 1955-97, total estimated nitrogen from all nonpoint sources (fertilizers, animal wastes, atmospheric deposition, and septic tanks) increased continuously in Gilchrist and Lafayette Counties. In

  11. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  12. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    Science.gov (United States)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides

  13. Pilot project 'Karst water Dachstein'. Vol. 2: karst hydrology and contamination risk in springs

    International Nuclear Information System (INIS)

    Scheidleder, A.; Mandl, G.W.; Boroviczeny, F.; Hofmann, T.; Schubert, G.; Trimborn, P.; Stichler, W.; Graf, W.

    2001-01-01

    The pilot project 'Karstwasser Dachstein' aimed to ascertain the karst groundwater quality of one of the largest karst massifs in Austria, to examine and quantity the factors influencing karst groundwater quality and to gain experience in the monitoring of karst groundwater quality (Austrian Water Quality Monitoring System). The first phase of the pilot project examined comprehensively the factors influencing and the potential threats endangering karst water quality and was finished in 1994 with Vol. 1 entitled 'Karstwasserqualitaet' (HERLICSKA and LORBEER). The present study is based on the findings of the first phase of the project and aims to combine, analyze and assess the extensive quantity of data material with, special emphasis on karst hydrology and the contamination risk in springs. The interdisciplinary data analysis and the hydrogeological interpretation were carried out by the Austrian Federal Environment Agency (UBA), the Geological Survey of Austria (GBA) and the National Research Centre for Environment and Health (GSF). Their work was based on the detailed description of the geological conditions in the Dachstein area, on the thorough examination of chemical and physical spring water parameters, an isotope analyses of precipitation and spring waters as well as on the results of several tracer experiments and an investigations of the potential impacts of human activities. Investigations of the bacteriological contamination of the spring waters showed that there were only 6 out of 42 springs where there was no evidence of coliform bacteria or faecal germs. These 6 springs are all situated in the southern part of the Dachstein massif. For the analyses carried out to determine the content of chlorinated hydrocarbons, detection limits had been set very low. In all springs, evidence of chlorinated hydrocarbons was found at least once. These concentrations were all below the maximum allowable concentrations set out in the Groundwater Threshold Value

  14. Effects of Misasa hot spring water on the growth of vegetables (Joint research)

    International Nuclear Information System (INIS)

    Yamada, Satoshi; Kita, Makoto; Goto, Yukari; Ishimori, Yuu

    2011-11-01

    Tottori University and Japan Atomic Energy Agency started a joint study to investigate the effect of hot spring water on the growth of vegetable plants in 2009. The aim of the study is to examine a feasibility of producing a regionally special vegetable with considering the characteristics of the Misasa district, where radon hot springs are historically famous. This report illustrates the intermediate results obtained from the study carried out from 2009 to 2010. (1) Screening test: Eighteen plants were examined for screening. As the results, Misasa hot spring water used in the water culture enlarged the growths of 14 plants. Lastly, 9 plants were selected as candidate plants for further examinations. (2) Sample preparation: Plants sampled in the water culture were lyophilized and stored in a freezer for nutrio-physiological analyses to select the suitable plant from the 9 plants. (3) Examination in labor-saving cultivation: Preliminary examinations were performed with a large-scale system to establish a practical labor-saving water culture system. (author)

  15. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H., E-mail: cferreiraquimica@yahoo.com.br, E-mail: help@cdtn.br, E-mail: menezes@cdtn.br, E-mail: pchr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X{sup 3+} ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations (<2.3-1176 ng L{sup -1}) were below the guideline level set by Brazilian legislation (Ministry of Health 518- 03/2004). Thorium concentrations ranged from <0.39-11.0 ng L{sup -1} and the sum of the REE ranged from 6.0 to 37657 ng L{sup -1}. As there are no permissible limits related for the REE and thorium for different water quality standards in Brazil, more attention must be paid to the local residents' health risk caused by spring waters (REEs were > 1000 ng L{sup -1}) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  16. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea.

    Directory of Open Access Journals (Sweden)

    Danny Ionescu

    Full Text Available Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.

  17. Evaporation of J13 and UZ pore waters at Yucca Mountain

    International Nuclear Information System (INIS)

    Rosenberg, N D; Gdowski, G E; Knauss, K G

    2000-01-01

    This work is motivated by a need to characterize the chemistry of aqueous films that might form at elevated temperatures on engineered components at the potential high-level, nuclear-waste repository at Yucca Mountain, Nevada. Such aqueous films might form through evaporation of water that seeps into the drifts, or by water vapor absorption by hydroscopic salts directly deposited on these components (possibly from previous evaporation events or possibly from air-blown particles drawn into the drifts through a drift ventilation system). There is no consensus at this time on the chemical composition of water that might come in contact with engineered components at Yucca Mountain. Two possibilities have received the most attention: well J13 water and pore waters from the unsaturated zone (UZ) above the repository horizon. These waters represent the two major types of natural waters at Yucca Mountain. Well J13 water is a dilute Na-HCO 3 -CO 3 water, representative of regional perched water and groundwater. The UZ pore waters are Ca-Cl-SO 4 -rich waters with a higher dissolved ion content. These waters are less well-characterized. We have studied the evaporative evolution of these two major types of waters through a series of open system laboratory experiments, with and without crushed repository-horizon tuff present, conducted at sub-boiling temperatures (75 C-85 C)

  18. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    International Nuclear Information System (INIS)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H.

    2017-01-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X"3"+ ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations ( 1000 ng L"-"1) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  19. A radioecological survey of eatable organisms for natural radionuclides in hot spring water

    International Nuclear Information System (INIS)

    Zhu, H.; Huang, X.; Song, H.; Li, J.; Zhang, J.

    1993-01-01

    This paper reports a radioecological survey on some aquatic eatable organisms raised in a hot spring water, which is rich in 226 Ra, in Hubei Province; and on agricultural products irrigated with the water. The contents of 226 Ra, 210 Pb and 210 Po in the water, some aquatic organisms, rice, vegetable an some other connected environmental samples were determined. The Concentration Factor (CF) or Transfer Coefficient (TC) from environmental medium into the eatable parts of the organisms for these nuclides as well as relative Distribution Factor (DF) was calculated. (author). 6 refs, 1 fig., 9 tabs

  20. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    Science.gov (United States)

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When

  2. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  3. Climate change and mountain water resources: overview and recommendations for research, management and policy

    Directory of Open Access Journals (Sweden)

    D. Viviroli

    2011-02-01

    Full Text Available Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy.

    After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields.

    We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  4. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    OpenAIRE

    M. Mena; G. Cisniega; B. Lopez; M. A. Armienta; C. Valdés; P. Peña; N. Segovia

    2005-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration d...

  5. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  6. Spring-recharging in the Himalayas

    International Nuclear Information System (INIS)

    Joshi, Anil P.

    2009-01-01

    in the settlement of mountain villages in the Himalayas. In fact, in many places, it was the single factor that determined the location of the villages and naturally rainwater has been the source which recharge the catchments of the springs. Forest cover keeps these catchment areas alive for the slow and constant recharging of the springs. In the recent past due to continuous deforestation, the catchment areas have been drastically reduced. Eventually, these denuded lands were unable to conserve water, which has resulted in the drying-up and dying of many mountain springs. Certainly, this became a major threat to both the natural habitats of the springs, as well as to the survival of the communities. In order to meet the water needs of the villages, the government-development agencies devised a distribution system in which water was diverted from regions with an adequate supply to those deprived of water. This approach to remedy the water shortage brought about significant water conflicts, as the rights to water resources were not well defined. This system also did not adequately address water-management and distribution lines for the water resources

  7. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  8. Conceptual model for the origin of high radon levels in spring waters - The example of the St. Placidus spring, Grisons, Swiss Alps

    International Nuclear Information System (INIS)

    Gainon, F.; Goldscheider, N.; Surbeck, H.

    2007-01-01

    A variety of geological, hydrochemical and isotopic techniques were applied to explain the origin of exceptionally high radon levels in the St. Placidus spring near the city of Disentis in the Swiss Alps, where an average of 650 Bq/L 222 Rn was measured. 222 Rn is a radioactive noble gas with a half-life of 4 days, which results from the disintegration of radium ( 226 Ra). The high radon levels can neither be explained by generally increased radium content in the fractured aquifer rock (orthogneiss), nor by the radium concentration in the spring water. It was possible to show that there must be a productive radium reservoir inside the aquifer but very near to the spring. This reservoir mainly consists of iron and manganese oxides and hydroxides, which precipitate in a zone where reduced, iron-rich groundwaters mix occasionally with oxygen-rich, freshly infiltrated rainwater or meltwater. The iron, as well as the reduced and slightly acid conditions, can be attributed to pyrite oxidation in the recharge area of the spring. Radium cations strongly adsorb and accumulate on such deposits, and generate radon, which is then quickly transported to the spring with the flowing groundwater. (author)

  9. Branding Plan for Arctic Well Spring Water: Establishing a Premium Brand in China

    OpenAIRE

    Lesonen, Essi

    2015-01-01

    The Chinese middle class has been growing at a fast pace during the past years and they have more purchasing power than ever. The growing middle class is also concerned about their health and safety and they are willing to spend money on premium international water. The idea for this thesis came from a group of people in Finland and China who are interested in exporting spring water from the Finnish Lapland to China. The reason for choosing China was the enormity and potential of the mark...

  10. Determination of risk zones, due to radon : prospecting and analysis of spring water in Wallonia

    International Nuclear Information System (INIS)

    1990-01-01

    The emanation of radon from geologic formations can be detected by analyzing the ground water at the emergence of springs. Two measuring methods are described and compared : the Lucas method and the liquid scintillation method. Although more sampling has to be done, a first conclusion can be drawn from the results. The link between the radium concentration in some geologic formations and the determination of risk zones for radon contamination can be proved through radon measurements in water. 9 figs., 6 tabs., 2 charts (H.E.)

  11. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-05-18

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring-neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring-neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST.

  12. Temporal variation of tritium in spring water of East Sikkim region

    International Nuclear Information System (INIS)

    Pant, Diksha; Ansari, Md. Arzoo; Mendhekar, G.N.; Kamble, S.N; Sinha, U.K; Dash, A.; Dhakal, Deepak

    2016-01-01

    Tritium is produced in the atmosphere by the interaction of cosmic rays with the nuclei of the atmospheric gases (mainly nitrogen, σ = 0.388 barn), principally by neutron induced reactions. It is estimated from the natural abundance of tritium that the rate of production is approximately 0.2 tritium atoms/sec.cm 2 area of the earth's surface. Additionally it is possible that tritium may enter the atmosphere from anthropogenic activities like nuclear bomb testing or nuclear reactor. Tritium (T 1/2 = 4540 days) is a particularly suitable tracer for water since hydrogen is part of the water molecule. Tritium can be used for assessing the recharge characteristics of aquifers, in studying artificial recharge characteristics and in determining the 'age' of water with an upper time limit of about 50 years. The objective is to study the temporal changes of tritium content in spring's water of East Sikkim region. Tritium helps in predicting whether the contribution to spring water in rainwater or some other source

  13. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  14. Evaluation of radon in hot spring waters in Zacatecas State, Mexico

    International Nuclear Information System (INIS)

    Favila R, E.; Lopez del Rio, H.; Davila R, I.; Mireles G, F.

    2010-10-01

    It is well know that radon is a potent human carcinogen. Because of the health concern of radon exposure, concentrations of 222 Rn were determined in ten hot spring water samples from the Mexican state of Zacatecas. The thermal water is collected in pools and used mainly for recreational purposes. In addition to radon level, the water samples were characterized for temperature, conductivity, and ph. Liquid scintillation spectrometry was used to measure 222 Rn and its decay products by mixing directly an aliquot of water with a commercial liquid scintillation. All measurements were carried out using a liquid scintillation counter (Wallac 1411). The water temperature ranged from 28 to 59 C, while the ph varied from 7.2 to 9.0, and the water conductivity was between 202.4 and 1072 μS/cm. The 222 Rn concentration varied in the range 3.9-32.6 Bq/L. In addition, the risk to radon exposure was assessed by considering three -real and possible- radon exposure scenarios: 1) ingestion of bottled thermal water, 2) direct ingestion of thermal water; and 3) vapor inhalation. The annual effective dose calculated for ingestion of bottled thermal water was 0.010-0.083 mSv/yr; for ingestion of water was 0.65-5.47 mSv/yr; and for inhalation was 0.28-2.81 mSv/yr. (Author)

  15. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms.

    Science.gov (United States)

    Hoque, Enamul; Fritscher, Johannes

    2016-10-01

    Here, we report about a unique aquatic fungus Mucor hiemalisEH8 that can remove toxic ionic mercury from water by intracellular accumulation and reduction into elemental mercury (Hg 0 ). EH8 was isolated from a microbial biofilm grown in sulfidic-reducing spring water sourced at a Marching's site located downhill from hop cultivation areas with a history of mercury use. A thorough biodiversity survey and mercury-removal function analyses were undertaken in an area of about 200 km 2 in Bavaria (Germany) to find the key biofilm and microbe for mercury removal. After a systematic search using metal removal assays we identified Marching spring's biofilm out of 18 different sulfidic springs' biofilms as the only one that was capable of removing ionic Hg from water. EH8 was selected, due to its molecular biological identification as the key microorganism of this biofilm with the capability of mercury removal, and cultivated as a pure culture on solid and in liquid media to produce germinating sporangiospores. They removed 99% of mercury from water within 10-48 h after initial exposure to Hg(II). Scanning electron microscopy demonstrated occurrence of intracellular mercury in germinating sporangiospores exposed to mercury. Not only associated with intracellular components, but mercury was also found to be released and deposited as metallic-shiny nanospheres. Electron-dispersive x-ray analysis of such a nanosphere confirmed presence of mercury by the HgM α peak at 2.195 keV. Thus, a first aquatic eukaryotic microbe has been found that is able to grow even at low temperature under sulfur-reducing conditions with promising performance in mercury removal to safeguard our environment from mercury pollution. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G.; Valdes, C.; Armienta, M.A.; Mena, M.

    2004-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  17. Age and source of water in springs associated with the Jacksonville Thrust Fault Complex, Calhoun County, Alabama

    Science.gov (United States)

    Robinson, James L.

    2004-01-01

    Water from wells and springs accounts for more than 90 percent of the public water supply in Calhoun County, Alabama. Springs associated with the Jacksonville Thrust Fault Complex are used for public water supply for the cities of Anniston and Jacksonville. The largest ground-water supply is Coldwater Spring, the primary source of water for Anniston, Alabama. The average discharge of Coldwater Spring is about 32 million gallons per day, and the variability of discharge is about 75 percent. Water-quality samples were collected from 6 springs and 15 wells in Calhoun County from November 2001 to January 2003. The pH of the ground water typically was greater than 6.0, and specific conductance was less than 300 microsiemens per centimeter. The water chemistry was dominated by calcium, carbonate, and bicarbonate ions. The hydrogen and oxygen isotopic composition of the water samples indicates the occurrence of a low-temperature, water-rock weathering reaction known as silicate hydrolysis. The residence time of the ground water, or ground-water age, was estimated by using analysis of chlorofluorocarbon, sulfur hexafluoride, and regression modeling. Estimated ground-water ages ranged from less than 10 to approximately 40 years, with a median age of about 18 years. The Spearman rho test was used to identify statistically significant covariance among selected physical properties and constituents in the ground water. The alkalinity, specific conductance, and dissolved solids increased as age increased; these correlations reflect common changes in ground-water quality that occur with increasing residence time and support the accuracy of the age estimates. The concentration of sodium and chloride increased as age increased; the correlation of these constituents is interpreted to indicate natural sources for chloride and sodium. The concentration of silica increased as the concentration of potassium increased; this correlation, in addition to the isotopic data, is evidence that

  18. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    Science.gov (United States)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  19. Identification of subsurface microorganisms at Yucca Mountain. Quarterly report, July 1, 1994--September 30, 1994

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.

    1994-01-01

    Bacteria isolated from ground water samples taken from springs at Yucca Mountain during 1993 were collected and processed. Three bacterial genera commonly found in water (Pseudomonas, Hydrogenophaga, and Alteromonas) were selected for extensive review during this quarter. The presence of bacteria representative of these genera in samples from the 18 springs sampled in Ash Meadows and from 14 springs in Death Valley was reviewed. The species level of identification of the three bacterial genera in water samples from the springs were examined by cluster analysis to see how much variation existed within a given species and also to determine if a species with essentially the same FAME pattern was isolated from several springs

  20. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  1. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  2. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco)

    Science.gov (United States)

    Barakat, Ahmed; Meddah, Redouane; Afdali, Mustapha; Touhami, Fatima

    2018-04-01

    The present study was conducted to examine the water quality of karst springs located along the Piedmont of Béni-Mellal Atlas (Morocco) for drinking purposes. Twenty-five water samples were collected from seven springs in June, July, August and September 2013, and May 2016 have been analyzed for their physicochemical and microbial characteristics. The analytical data of temperature, pH, DO, TAC, TH, oxidizability and NH4+ showed that all sampled springs are suitable as drinking water according to Moroccan and the World Health Organization (WHO) standards. Nevertheless, EC, turbidity, and NO3- were sometimes noted higher than the allowable limits, what would be ascribed to erosion and leaching of soil and karstic rocks. The microbial analysis revealed the presence of fecal contamination (total coliforms, E. coli, and intestinal enterococci) in all springs at various times. The water quality index (WQI) calculated based on physicochemical and microbial data reveled that water quality categorization for all sampling springs was found to be 'medium' to 'good' for drinking uses in the National Sanitation Foundation WQI (NSF-WQI), and ''necessary treatment becoming more extensive'' to ''purification not necessary'' in the Dinius' Second Index (D-WQI). The Aine Asserdoune and Foum el Anceur springs showed the good quality of drinking water. According to Moroccan standards for water used for drinking purposes, the waters belong to category A1 that requires becoming drinkable a simple physical treatment and disinfection. From the type of parameters present in quantities exceeding drinking water limits, it is very obvious that these water resources are under the influence of anthropogenic activities such as sewage, waste disposal, deforestation and agricultural activities, caused land degradation and nonpoint pollution sources. Environmental attention, such as systematic quality control and adequate treatment before being used for drinking use and access to sewage

  3. Using Soil and Water Conservation Contests for Extension: Experiences from the Bolivian Mountain Valleys

    NARCIS (Netherlands)

    Kessler, A.; Graaff, de J.

    2007-01-01

    Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed

  4. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  5. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Science.gov (United States)

    Goldberg, Caren S; Pilliod, David S; Arkle, Robert S; Waits, Lisette P

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  6. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.

    Directory of Open Access Journals (Sweden)

    Caren S Goldberg

    Full Text Available Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus. We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  7. Projected land use changes impacts on water yields in the karst mountain areas of China

    Science.gov (United States)

    Lang, Yanqing; Song, Wei; Deng, Xiangzheng

    2018-04-01

    Human-induced land use changes over short time scales have significant impacts on water yield, especially in China because of the rapid social economic development. As the biggest developing country of the world, China's economy is expected to continuously grow with a high speed in the next few decades. Therefore, what kind of land use changes will occur in the future in China? How these changes will influence the water yields? To address this issue, we assessed the water yields in the karst mountain area of China during the periods of 1990-2010 and 2010-2030 by coupling an Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and a Conversion of Land Use and its Effects (CLUE) model. Three different land use scenarios i.e. natural growth, economic development, and ecological protection, were developed in 2030 using the CLUE model. It was concluded that, given land use changes between 1990 and 2010, total water yields in the karst mountain area are characterized by a trend towards fluctuating reduction. However, total water yields of 2030 in the economic development scenario revealed an increase of 1.25% compared to the actual water yields in 2010. The economy development in karst mountain areas of China in the future has a slight positive influence on water yields.

  8. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  9. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  10. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  11. Water Temperature, Invertebrate Drift, and the Scope for Growth for Juvenile Spring Chinook Salmon.

    Science.gov (United States)

    Lovtang, J. C.; Li, H. W.

    2005-05-01

    We present a bioenergetic assessment of habitat quality based on the concept of the scope for growth for juvenile Chinook salmon. Growth of juvenile salmonids during the freshwater phase of their life history depends on a balance between two main factors: energy intake and metabolic costs. The metabolic demands of temperature and the availability of food play integral roles in determining the scope for growth of juvenile salmonids in stream systems. We investigated differences in size of juvenile spring Chinook salmon in relation to water temperature and invertebrate drift density in six unique study reaches in the Metolius River Basin, a tributary of the Deschutes River in Central Oregon. This project was initiated to determine the relative quality and potential productivity of habitat in the Metolius Basin prior to the reintroduction of spring Chinook salmon, which were extirpated from the middle Deschutes basin in the early 1970's due to the construction of a hydroelectric dam. Variations in the growth of juvenile Chinook salmon can be described using a multiple regression model of water temperature and invertebrate drift density. We also discuss the relationships between our bioenergetic model, variations of the ideal free distribution model, and physiological growth models.

  12. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  13. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Laboratorio de Ativacao Neutronica; Uemura, George, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Meio Ambiente; Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute, Department of Environmental Sciences, Group for Radiochemistry and Radioecology, Ljubljana (Slovenia); Deschamps, Maria Eleonora, E-mail: leonora.deschamps@meioambiente.mg.gov.br [FEAM, Fundacao Estadual do Meio Ambiente. Universidade FUMEC, Belo Horizonte, MG (Brazil); Isaias, Rosy Mary; Salino, Alexandre, E-mail: rosy@icb.ufmg.br, E-mail: salino@icb.ufmg.br [Universidade Federal de Minas Gerais, Departamento de Botanica, UFMG, Belo Horizonte, MG (Brazil); Magalhaes, Fernando, E-mail: camila@bonsaimorrovelho.com.br [Instituto Superior de Ciencias da Saude, Curso Superior de Ciencias Biologicas, Belo Horizonte, MG (Brazil)

    2011-07-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k{sub 0}-method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  14. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R.; Deschamps, Maria Eleonora; Isaias, Rosy Mary; Salino, Alexandre; Magalhaes, Fernando

    2011-01-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k 0 -method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  15. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    ); storage increased by about the same amount to balance the budget. The rate and distribution of recharge throughout the Spring Creek, Nittany Creek, and Spruce Creek Basins is variable as a result of the high degree of hydrogeologic heterogeneity and karst features. The greatest amount of recharge was simulated in the carbonate-bedrock valley, near the toe slopes of Nittany and Tussey Mountains, in the Scotia Barrens, and along the area coinciding with the Gatesburg Formation. Runoff extremes were observed for water years 2001 (dry year) and 2004 (wet year). Simulated average recharge rates (water reaching the saturated zone as defined in GSFLOW) for 2001 and 2004 were 5.4 in/yr and 22.0 in/yr, respectively. Areas where simulations show large variations in annual recharge between wet and dry years are the same areas where simulated recharge was large. Those areas where rates of groundwater recharge are much higher than average, and are capable of accepting substantially greater quantities of recharge during wet years, might be considered critical for maintaining the flow of springs, stream base flow, or the source of water to supply wells. The slopes of the Bald Eagle, Tussey, and Nittany Mountains are relatively insensitive to variations in recharge, primarily because of reduced infiltration rates and steep slopes.

  16. Water levels in wells J-11 and J-12, 1989-91, Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water levels have been measured in the Yucca Mountain area, Nevada, since 1981 in order to gain a better understanding of the ground-water flow system in the area. Water levels in wells J-11 and J-12 have been periodically measured using calibrated reeled steel tapes since 1989, however, calculation of water-level altitude was not possible prior to 1993 due to missing reference elevations. These elevations were determined in 1993 by the U.S. Geological Survey. During 1989-91, water-level altitudes for well J-11 ranged from 732.09 to 732.40 meters and the mean water-level altitude was 732.19 meters. During 1989-91, water-level altitudes for well J-12 ranged from 727.84 to 728.03 meters, and the mean water-level altitude was 727.95 meters

  17. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    International Nuclear Information System (INIS)

    Imes, J.L.; Kleeschulte, M.J.

    1997-01-01

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field

  18. Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA

    Science.gov (United States)

    Keith Reinhardt; Daniel M. Johnson; William K. Smith

    2009-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its natural environment. We measured and compared photosynthetic gas exchange and water relations of understory germinant...

  19. [A norovirus-borne outbreak caused by contaminated bottled spring water in a school, Zhejiang province].

    Science.gov (United States)

    Shen, Ji-chuan; Lin, Jun-fen; Gao, Jie; Yao, Wen-ting; Wen, Dong; Liu, Guang-tao; Han, Jian-kang; Ma, Hui-lai; Zhang, Li-jie; Zhu, Bao-ping

    2011-08-01

    To study a local hospital reported acute gastroenteritis in a boarding school on its source of infection, mode of transmission and risk factors of the infection. A suspected case was defined as who had developed diarrhea (≥ 3 times/day) or vomiting among teachers or students of the school, during April 19 - 30, 2010. A confirmed case was from a probable case plus tested positive for norovirus in stool specimens by using RT-PCR. Stool specimens of cases and environmental specimens were collected for laboratory diagnosis. In a case-control study, we compared exposures to sources of bottled water, consumption of bottled water, and hygienic habits of 220 probable or confirmed cases from April 21 - 23 in the peak of the outbreak, together with another 220 controls, with frequency-matched by school grade. 20.3% of the 1536 students but none of the teachers developed the disease. 98.6% of the cases (n = 217) and 85.5% (n = 188) of the controls had drunk bottled water in the classroom (OR(M-H) = 12.3, 95%CI: 3.7 - 40.9). 47.9% (n = 104) of the cases and 41.5% (n = 78) of the controls had drunk unboiled bottled water in classroom (OR(M-H) = 3.8, 95%CI: 1.5 - 9.6). 47.9% (n = 104) of the cases and 48.4% (n = 91) of the controls had drunk bottled mixed water (boiled and unboiled) in the classroom (OR(M-H) = 2.8, 95%CI: 1.1 - 7.0). Stool specimens from 3 cases and one bottle of uncovered bottled water in classroom showed positive of having norovirus genotype II. Coliforms was cultured much higher rates than standard deviations in the bottled water. The factory making the bottled water was not licensed or having strict disinfection facilities. Bottled spring water contaminated by norovirus was responsible for this outbreak.

  20. Silicon isotope fractionation during silica precipitation from hot-spring waters

    Science.gov (United States)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  1. Effects of climate change on spring wheat phenophase and water requirement in Heihe River basin, China

    Science.gov (United States)

    Han, Dongmei; Yan, Denghua; Xu, Xinyi; Gao, Yu

    2017-02-01

    Climate change has significantly altered the temperature rhythm which is a key factor for the growth and phenophase of the crop. And temperature change further affects crop water requirement and irrigation system. In the north-west of China, one of the most important crop production bases is Heihe River basin where the observed phenological data is scarce. This study thus first adopted accumulated temperature threshold (ATT) method to define the phenological stages of the crop, and analysed the effect of climate change on phenological stages and water requirement of the crop during growing season. The results indicated the ATT was available for the determination of spring wheat phenological stages. The start dates of all phenological stages became earlier and the growing season length (days) was reduced by 7 days under climate change. During the growing season, water requirement without consideration of phenophase change has been increased by 26.1 mm, while that with consideration of phenophase change was featured in the decrease of water requirement by 50 mm. When temperature increased by 1°C on average, the changes were featured in the 2 days early start date of growing season, 2 days decrease of growing season length, and the 1.4 mm increase of water requirement, respectively.

  2. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    Science.gov (United States)

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  3. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  4. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  5. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  6. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  7. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  8. Triaxial-compression extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Turner, A.K.; Sayre, T.M.; Montazer, P.

    1988-01-01

    The purpose of this experiment was to design and validate methods for extracting uncontaminated pore water from nonwelded parts of this tuff. Pore water is needed for chemical analysis to help characterize the local hydrologic system. A standard Hoek-Franklin triaxial cell was modified to create a chemically inert pore-water-extraction system. Experimentation was designed to determine the optimum stress and duration of triaxial compression for efficient extraction of uncontaminated pore water. Experimental stress paths consisted of a series of increasing stress levels. Trial axial stress levels ranged from 41 to 190 megapascals with lateral confining stresses of 34 to 69 megapascals. The duration of compression at any given stress level lasted from 10 minutes to 15 hours. A total of 40 experimental extraction trials were made. Tuff samples used in these tests were collected from drill-hole core from the Paintbrush nonwelded unit at Yucca Mountain. Pore water was extracted from tuff samples that had a water content greater than 13 percent by weight. Two stress paths have been determined to be applicable for future pore-water extraction from nonwelded tuff at Yucca Mountain. The initial water content of a sample affects the selection of an appropriate period of compression. 39 refs., 55 figs

  9. Future water table rise at Yucca Mountain: A regulatory perspective

    International Nuclear Information System (INIS)

    Coleman, N.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission staff has developed a program of Systematic Regulatory Analysis (SRA). The purpose of this program is to ensure that important technical issues related to compliance with 10 CFR Part 60 will be identified before receipt of a license application. A plan is being developed to review the U.S. Department of Energy's (DOE's) demonstration of compliance in the license application for each part of the regulation. Under the siting criteria of NRC's Part 60, one of the potentially adverse conditions is the possibility that the water table may rise high enough to saturate a repository in the unsaturated zone. DOE must evaluate this and other conditions in a license application for a geologic repository site. DOE's evaluation must show compliance with the requirements of Part 60 with reasonable assurance. This paper describes the NRC staff's preliminary plans to review DOE's demonstration of compliance, including assumptions about a future rise of the water table

  10. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.

  11. Population demography of an endangered lizard, the Blue Mountains Water Skink

    OpenAIRE

    Dubey, Sylvain; Sinsch, Ulrich; Dehling, Maximilian J; Chevalley, Maya; Shine, Richard

    2013-01-01

    BACKGROUND: Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. RESULTS: These lizards grow rapidly, from neonatal size (30 mm snou...

  12. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  13. Variability of water properties in late spring in the northern Great South Channel

    Science.gov (United States)

    Chen, Changsheng; Beardsley, Robert C.; Limeburner, Richard

    Regional CTDIADCP surveys made in the northern Great South Channel (GSC) in late spring of 1988 and 1989 show different patterns of surface salinity in the extent of the freshwater plume east of Cape Cod. In April 1988, the surface plume was just beginning to form along the outer coast of Cape Cod, while 6 weeks later in the season in 1989, the minimum salinity was about 1.5 less, and a large pool of water fresher than 31.6 had pushed eastward over much of the northern GSC region. The difference in the amount of freshening between these two years is due primarily to the 6-week difference in the seasonal cycle and increased river discharge in 1989. The offshore spreading of the low-salinity plume was driven by the deeper circulation and upwelling-favorable winds. The distribution of Maine Intermediate Water (MIW) also significantly differed between April 1988 and June 1989. In April 1988, the seasonal thermocline was just beginning to form, and the spatial structure of MIW was relatively uniform. In June 1989, a narrow core of temperature minimum water (with T min in a range of 3.2-4.4°C) was found along the western flank of the northern GSC between 40 m and 120 m. This colder and fresher water spread to mix with the interior MIW as the core flowed southward into the central GSC. Hydrographic data plus satellite sea-surface temperature images showed a relatively permanent continuous thermal front (with a 10-km cross-isobath variation) along the eastern flank of Nantucket Shoals, across the northern shallow region of the GSC and along the northwestern flank of Georges Bank, which separated the well-mixed water over the shallow region of the GSC from stratified water in the center of the northern GSC. Comparison of the location of this front with theoretical predictions by LODER and GREENBERG [(1986) Continental Shelf Research, 6, 397-414] suggests that enhanced tidal mixing due to the spring-neap cycle is important in determining the relative balance between

  14. Isotopic Investigation of the Origin of Ammonia and Nitrate in the Mineral Spring Waters of Scuol (Lower Engadine, South Eastern Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, J.; Leuenberger, F.; Balderer, W. [Eidgenoessische Technische Hochschule Zuerich, Geological Institute, Engineering Geology, Zuerich (Switzerland); Eichinger, L. [Hydroisotop GmbH, Schweitenkirchen (Germany)

    2013-07-15

    The mineral springs of scuol-Tarasp are located in the lower Engadine Valley, Graubuenden, south eastern Switzerland. In the last century, they have been investigated with respect to their basic chemical parameters. These springs yield a highly mineralized carbon dioxide water, with large quantities of free CO{sub 2}. Some of the springs also contain high amounts of ammonia. In order to better understand the origin of the water of the different springs, 13 were investigated, focusing this study on the ammonia content and the isotopic composition of the ammonia in the waters. It results from the study that 7 of the 13 springs contain ammonia. Based on the isotope and chemical results we suggest an origin of that ammonia by natural processes as water-rock interaction within the sedimentary and mantle rocks along the water flow path resulting in the enrichment of ammonia as seen in the investigated spring waters. (author)

  15. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan.

    Science.gov (United States)

    Ishizaki, Naoto; Sogawa, Kazuyuki; Inoue, Hiroaki; Agata, Kunio; Edagawa, Akiko; Miyamoto, Hiroshi; Fukuyama, Masafumi; Furuhata, Katsunori

    2016-03-01

    Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T)  = KCTC 42799(T)). © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  16. [Characteristics of ichthyoplankton assemblages in Yangtze Estuary and adjacent waters in spring].

    Science.gov (United States)

    Liu, Shu-De; Xian, Wei-Wei; Liu, Dong

    2008-10-01

    Based on the investigation data of ichthyoplankton assemblages and environmental factors in Yangtze Estuary and adjacent waters in May 1999 and 2001, the characteristics of ichthyoplankton assemblages in these areas in spring were studied by using TWINSPAN (two-way indicator species analysis) and CCA (canonical correspondence analysis). A total of 11 540 ichthyoplankton individuals were taxonomically identified, belonging to 11 orders, 18 families and 32 species, of which, Coilia mystus, Engraulis japonicus, Chaeturichthys hexanema, Allanetta bleekeri, and Trachidermis fasciatus were the dominant species. The ichthyoplankton communities were classified into three assemblages by using TWINSPAN, i.e., estuarine assemblage dominated by C. mystus, coastal assemblage dominated by A. bleekeri and T. fasciatus; and shelf assemblage featured by E. japonicus and C. hexanema. The CCA ordination of the interrelations among the three assemblages and their correlations to the environmental variables revealed that salinity, depth, dissolved oxygen, and total suspended particulate matter were the major factors affecting the ichthyoplankton assemblages in the study areas.

  17. Water-rock interactions and the pH stability of groundwater from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ebinger, M.H.

    1992-01-01

    Titrations of acidic solutions in waters from the tuff and carbonate aquifers at Yucca Mountain were simulated using the geochemical codes PHREEQE and EQ3/6. The simulations tested pH stability of the waters in the presence of different minerals and in their absence. Two acidic solutions, 10 -4 HCl and 10 -4 M UO 2 (NO 3 ) 2 , were titrated in to the water. Little pH and/or compositional change resulted in the groundwater when the HCl solution was titrated, but significant pH and CO 2 fugacity changes were observed when UO 2 (NO 3 ) 2 was titrated. Water interactions with alkali feldspar, quartz or cristobalite, and Ca-smectite buffered the pH and compositional changes in the carbonate water and decreased the magnitude of pH and compositional changes when small volumes of UO 2 (NO 3 ) 2 added to the tuffaceous waters

  18. Recharge Area, Base-Flow and Quick-Flow Discharge Rates and Ages, and General Water Quality of Big Spring in Carter County, Missouri, 2000-04

    Science.gov (United States)

    Imes, Jeffrey L.; Plummer, Niel; Kleeschulte, Michael J.; Schumacher, John G.

    2007-01-01

    Exploration for lead deposits has occurred in a mature karst area of southeast Missouri that is highly valued for its scenic beauty and recreational opportunities. The area contains the two largest springs in Missouri (Big Spring and Greer Spring), both of which flow into federally designated scenic rivers. Concerns about potential mining effects on the area ground water and aquatic biota prompted an investigation of Big Spring. Water-level measurements made during 2000 helped define the recharge area of Big Spring, Greer Spring, Mammoth Spring, and Boze Mill Spring. The data infer two distinct potentiometric surfaces. The shallow potentiometric surface, where the depth-to-water is less than about 250 feet, tends to mimic topographic features and is strongly controlled by streams. The deep potentiometric surface, where the depth-to-water is greater than about 250 feet represents ground-water hydraulic heads within the more mature karst areas. A highly permeable zone extends about 20 mile west of Big Spring toward the upper Hurricane Creek Basin. Deeper flowing water in the Big Spring recharge area is directed toward this permeable zone. The estimated sizes of the spring recharge areas are 426 square miles for Big Spring, 352 square miles for Greer Spring, 290 square miles for Mammoth Spring, and 54 square miles for Boze Mill Spring. A discharge accumulation curve using Big Spring daily mean discharge data shows no substantial change in the discharge pattern of Big Spring during the period of record (water years 1922 through 2004). The extended periods when the spring flow deviated from the trend line can be attributed to prolonged departures from normal precipitation. The maximum possible instantaneous flow from Big Spring has not been adequately defined because of backwater effects from the Current River during high-flow conditions. Physical constraints within the spring conduit system may restrict its maximum flow. The largest discharge measured at Big Spring

  19. Report on static hydrothermal alteration studies of Topopah Spring tuff waters in J-13 water at 150{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.; Beiriger, W.B.

    1984-08-31

    This report presents the results of preliminary experimental work done to define the package environment in a potential nuclear waste repository in the Topopah Spring Member of the Paintbrush Tuff. The work is supported by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project as a part of the Waste Package task to design a package suitable for waste storage within volcanic units at the Nevada Test Site. Static hydrothermal alteration experiments were run for 4 months using polished wafers either fully submerged in an appropriate natural ground water or exposed to water-saturated air with enough excess water to allow refluxing. The aqueous results agreed favorably with similar experiments run using crushed tuff, and the use of solid polished wafers allowed us to directly evaluate the effects of reaction on the tuff. The results are preliminary in the sense that these experiments were run in Teflon-lined, static autoclaves, whereas subsequent experiments have been run in Dickson-type gold-cell rocking autoclaves. The results predict relatively minor changes in water chemistry, very minor alteration of the host rock, and the production of slight amounts of secondary minerals, when liquid water could return to the rock pores following the temperature maximum during the thermal period. 7 references, 16 figures, 10 tables.

  20. Preliminary estimates of residence times and apparent ages of ground water in the Chesapeake Bay watershed, and water-quality data from a survey of springs

    Science.gov (United States)

    Focazio, Michael J.; Plummer, Niel; Bohlke, John K.; Busenberg, Eurybiades; Bachman, L. Joseph; Powars, David S.

    1998-01-01

    Knowledge of the residence times of the ground-water systems in Chesapeake Bay watershed helps resource managers anticipate potential delays between implementation of land-management practices and any improve-ments in river and estuary water quality. This report presents preliminary estimates of ground-water residence times and apparent ages of water in the shallow aquifers of the Chesapeake Bay watershed. A simple reservoir model, published data, and analyses of spring water were used to estimate residence times and apparent ages of ground-water discharge. Ranges of aquifer hydraulic characteristics throughout the Bay watershed were derived from published literature and were used to estimate ground-water residence times on the basis of a simple reservoir model. Simple combinations of rock type and physiographic province were used to delineate hydrogeomorphic regions (HGMR?s) for the study area. The HGMR?s are used to facilitate organization and display of the data and analyses. Illustrations depicting the relation of aquifer characteristics and associated residence times as a continuum for each HGMR were developed. In this way, the natural variation of aquifer characteristics can be seen graphically by use of data from selected representative studies. Water samples collected in September and November 1996, from 46 springs throughout the watershed were analyzed for chlorofluorocarbons (CFC?s) to estimate the apparent age of ground water. For comparison purposes, apparent ages of water from springs were calculated assuming piston flow. Additi-onal data are given to estimate apparent ages assuming an exponential distribution of ages in spring discharge. Additionally, results from previous studies of CFC-dating of ground water from other springs and wells in the watershed were compiled. The CFC data, and the data on major ions, nutrients, and nitrogen isotopes in the water collected from the 46 springs are included in this report. The apparent ages of water

  1. Water Futures for Cold Mountain Ecohydrology under Climate Change - Results from the North American Cordilleran Transect

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Fang, X.; Whitfield, P. H.; Marks, D. G.; Janowicz, J. R.

    2017-12-01

    A transect comprising three intensively researched mountain headwater catchments stretching from the northern US to northern Canada provides the basis to downscale climate models outputs for mountain hydrology and insight for an assessment of water futures under changing climate and vegetation using a physically based hydrological model. Reynolds Mountain East, Idaho; Marmot Creek, Alberta and Wolf Creek, Yukon are high mountain catchments dominated by forests and alpine shrub and grass vegetation with long-term snow, hydrometric and meteorological observations and extensive ecohydrological process studies. The physically based, modular, flexible and object-oriented Cold Regions Hydrological Modelling Platform (CRHM) was used to create custom spatially distributed hydrological models for these three catchments. Model parameterisations were based on knowledge of hydrological processes, basin physiography, soils and vegetation with minimal or no calibration from streamflow measurements. The models were run over multidecadal periods using high-elevation meteorological observations to assess the recent ecohydrological functioning of these catchments. The results showed unique features in each catchment, from snowdrift-fed aspen pocket forests in Reynolds Mountain East, to deep late-lying snowdrifts at treeline larch forests in Marmot Creek, and snow-trapping shrub tundra overlying discontinuous permafrost in Wolf Creek. The meteorological observations were then perturbed using the changes in monthly temperature and precipitation predicted by the NARCCAP modelling outputs for the mid-21st C. In all catchments there is a dramatic decline in snow redistribution and sublimation by wind and of snow interception by and sublimation from evergreen canopies that is associated with warmer winters. Reduced sublimation loss only partially compensated for greater rainfall fractions of precipitation. Under climate change, snowmelt was earlier and slower and at the lowest elevations

  2. Impacts of climate change on water footprint of spring wheat production: the case of an irrigation district in China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S. K.; Wu, P. T.; Wang, Y. B.; Zhao, X. N.

    2012-07-01

    The potential impacts of climate change are expected to reshape the patterns of demand and supply of water for agriculture, therefore the assessment of the impacts of climate change on agricultural water consumption will be essential. The water footprint provides a new approach to the assessment of agricultural water consumption under climate change. This paper provides an analysis of the impacts of climate changes on the water footprint of spring wheat in Hetao Irrigation District, China during 1980-2009. Results indicate that: 1) crop evapotranspiration and irrigation water requirements of spring wheat presented a downtrend owing to the climate factors variation in the study period; 2) under the combined influence of increasing crop yield and decreasing crop evapotranspiration, the water footprint decreased during the study period, exhibiting a trend of 0.025 m3 kg{sup -}1 yr{sup -}1; 3) the total contribution rate of the climatic factors for the decline of water footprint of spring wheat during the study period was only -10.45%. These results suggest that the water footprint of a crop, to a large extent, is determined by agricultural management rather than by the regional agro-climate and its variation. Nevertheless, we should pay attention to the adaptation of effective strategies for minimizing the agricultural production risk caused by climate change. (Author) 49 refs.

  3. What's in the mud?: Water-rock-microbe interactions in thermal mudpots and springs

    Science.gov (United States)

    Dahlquist, G. R.; Cox, A. D.

    2016-12-01

    Limited aspects of mudpot geochemistry, mineralogy, and microbiology have been previously investigated in a total of 58 mudpots in Yellowstone National Park (YNP), Kamchatka, Iceland, Italy, Valles Caldera, New Mexico, Nicaragua, and the Stefanos hydrothermal crater, Greece (Allen and Day, 1935; Raymahashay, 1968; Shevenell, 1987; Bradley, 2005; Prokofeva, 2006; Bortnikova, 2007; Kaasalainen, 2012; Szynkiewicz, 2012; Hynek, 2013; Pol, 2014; Kanellopoulos, 2016). The composition of 35 mudpots was analyzed for aqueous geochemistry of filtrate and solid phase characterization. Here mudpots are defined as thermal features with viscosities between 5 and 100 centipoise at the approximate temperature of the mudpot, which was measured by an Ofite hand cranked viscometer. Analogous samples of nearby hot springs provide comparisons between mudpots and non-viscous thermal features. Aqueous geochemistry from mudpots was obtained by a novel two-step filtration process consisting of gravity prefiltration by a 100 or 50 micron trace metal cleaned polyethylene bag filter followed by syringe filtration with 0.8/0.2 Supor membrane filters. This filtered sample water was preserved and analyzed for water isotopes, major anions and cations, dissolved organic carbon, and trace metals. Mudpot meter readings show dissolved oxygen values ranging from below the detection limit of 0.156 to 22.5uM, pH values ranging from 1.41 to 6.08, and temperatures ranging from 64.8 to 92.5°C. Mudpots and turbid hot springs exhibited an inverse relationship between dissolved rare earth element concentrations and dissolved calcium concentrations (where calcium concentrations > 0.4mM). Mudpots altered existing surficial geology to form clays, primarily kaolinite, montmorillionite, and alunite. This hydrothermal alteration leaches metals, allowing mudpots to concentrate metals. DNA was extracted from mudpot solids and amplified with eukaryotic, bacterial, archaeal, and universal primers, which yielded only

  4. The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap tide tidal periods in Popoh Bay, Indonesia

    Science.gov (United States)

    Yona, D.; Febriana, R.; Handayani, M.

    2018-04-01

    This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap tides from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap tides due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap tide in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring tide, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring tide, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap tide (0.159 and 0.165 ml/L in spring tide and neap tide, respectively), but in the sediment, the concentration was a little higher during spring tide (0.09 and 0.05 mg/kg during spring and neap tide, respectively). This study shows that water movement during spring and neap tides has significant effect on the distribution of heavy metals.

  5. Effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level waste

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Bagtzoglou, A.C.; Green, R.T.; Muller, M.A.

    1999-01-01

    Numerical modeling was conducted to identify potential perched-water sites and examine the effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level nuclear waste. It is demonstrated that perched-water zones may occur at two horizons on the up-dip side of faults such as the Ghost Dance Fault (GDF): in nonwelded volcanic strata [such as the Paintbrush Tuff nonwelded (PTn) stratigraphic unit], where juxtaposition of welded strata against nonwelded may constitute a barrier to lateral flow within the nonwelded strata; and in fractured horizons of underlying welded units [such as the Topopah Spring welded (TSw) unit] because of focused infiltration fed by overlying perched zones. The potential perched zones (PPZs) may contain perched water (which would flow freely into a well or opening) if infiltration rates are high enough. At lower infiltration rates, the PPZs contain only capillary-held water at relatively high saturations. Areas of the proposed repository that lie below PPZs are likely to experience relatively high percolation flux even if the PPZ contains only capillary-held water at high saturation. As a result, PPZs that contain only capillary-held water may be as important to repository performance as those that contain perched water. Thermal loading from emplaced waste in the repository is not likely to have an effect on PPZs located on adequate distance above the repository (such as in the PTn). As a result, such PPZs may be considered as permanent features of the environment. On the other hand, PPZs close to the repository depth (such as those that may occur in the TSw rock unit) would experience an initial period of spatial growth and increased saturation following waste emplacement. Thereafter, drying would begin at the repository horizon with perched-zone growth simultaneously above and below the repository. As a result, after the initial period of expansion, PPZs close to the repository horizon

  6. Radon in waters from health resorts of the Sudety Mountains (SW Poland)

    International Nuclear Information System (INIS)

    Ciezkowski, W.; Przylibski, T.A.

    1997-01-01

    This paper discusses the geological background related to the presence of selected radon waters in the Sudety Mountains. Special attention is paid to radon waters whose chemical composition is formed within metamorphic rocks (mainly gneisses). The physical, chemical, and isotopic characteristics of the waters of Ladek Zdroj, Czerniawa Zdroj and Swieradow Zdroj are presented. The rocks at these locations are briefly characterized by their U, Th, and Ra contents. It was found that the basic role in enrichment of these waters with radon is played by the 100 m deep near-surface zone. This is related to the increased emanation coefficient in this zone as a consequence of weathering processes. It is also shown that the residence time of water in the rocks is not important for radon genesis. (author)

  7. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  8. Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts

    Science.gov (United States)

    He, Qiong; Zuo, Zhiyan; Zhang, Renhe; Zhang, Ruonan

    2018-01-01

    The spring snow water equivalent (SWE) over Eurasia plays an important role in East Asian and Indian monsoon rainfall. This study evaluates the seasonal prediction capability of NCEP Climate Forecast System version 2 (CFSv2) retrospective forecasts (1983-2010) for the Eurasian spring SWE. The results demonstrate that CFSv2 is able to represent the climatological distribution of the observed Eurasian spring SWE with a lead time of 1-3 months, with the maximum SWE occurring over western Siberia and Northeastern Europe. For a longer lead time, the SWE is exaggerated in CFSv2 because the start of snow ablation in CFSv2 lags behind that of the observation, and the simulated snowmelt rate is less than that in the observation. Generally, CFSv2 can simulate the interannual variations of the Eurasian spring SWE 1-5 months ahead of time but with an exaggerated magnitude. Additionally, the downtrend in CFSv2 is also overestimated. Because the initial conditions (ICs) are related to the corresponding simulation results significantly, the robust interannual variability and the downtrend in the ICs are most likely the causes for these biases. Moreover, CFSv2 exhibits a high potential predictability for the Eurasian spring SWE, especially the spring SWE over Siberia, with a lead time of 1-5 months. For forecasts with lead times longer than 5 months, the model predictability gradually decreases mainly due to the rapid decrease in the model signal.

  9. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  10. Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-06-01

    The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the only other parameter that is required for this inversion. In this report two methods of carrying out this inversion are presented, and are tested against a limited data set that has been collected by Flint et al. at the USGS on a set of Yucca Mountain tuffs. The absolute permeability is usually predicted by both methods to within an average error of about 0.5 - 1.0 orders of magnitude. The discrepancy appears to be due to the fact that the water retention curves have only been measured during drainage, whereas the imbibition water retention curve is the one that is relevant to sorptivity measurements. Although the inversion methods also yield predictions of the relative permeability function, there are yet no unsaturated hydraulic conductivity data against which to test these predictions

  11. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  12. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    Science.gov (United States)

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds

  13. Water quality of springs and water wells which are used in human consumption, in the Jocotitlan volcano region at State of Mexico

    International Nuclear Information System (INIS)

    Baca G, A.; Segovia, N.; Iturbe, J.L.; Martinez, V.; Armienta, M.A.; Seidel, J.L.

    1998-01-01

    In this work are presented the results of water quality of seven springs (San Antonio Enchisi, Las Fuentes, El Cerro, Pasteje, Los Reyes, Santa Cruz and Tiacaque) and two water wells (Jocotitlan No. 2 and La Providencia No. 35) which are used for human consumption and that are located surrounding area to Jocotitlan volcano, state of Mexico. It was determined the 222 Rn concentration through liquid scintillation, the 226 Ra by Gamma spectroscopy, the physical-chemical parameters (major elements) and bacteriological, using standardized methods. The minor elements and trace in solution were determined by Icp-Ms mass spectroscopy. The water quality was established in function of the standing standards. Therefore Las Fuentes, El Cerro, Santa Cruz, Tiacaque springs and the Jocotitlan No. 2 well, are drinkable water. So, Pasteje, Los Reyes, San Antonio Enchisi springs and the La Providencia No. 35 well are chemically drinkable but presenting bacteriological pollution. (Author)

  14. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1996-01-01

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006

  15. Taking the (southern) waters: science, slavery, and nationalism at the Virginia springs.

    Science.gov (United States)

    LaFauci, Lauren E

    2011-04-01

    'Taking the (southern) waters' argues that, in the pre-Civil War period, the space of Virginia's mineral water resorts and the philosophy of southern hydropathic medicine enabled--indeed, fostered--white southerners' constructions of a 'nationalist,' pro-slavery ideology. In the first half of the paper, the author explains how white southern health-seekers came to view the springs region as a medicinal resource peculiarly designed for the healing of southern diseases and for the restoration of white southern constitutions; in the second half, she shows how physical and social aspects of the resorts, such as architectural choices and political events, supported and encouraged pro-slavery ideologies. Taken together, these medical-social analyses reveal how elite white southerners in the antebellum period came to associate the health of their peculiarly 'southern' bodies with the future health of an independent southern nation, one that elided black bodily presence at the same time that its social structures and scientific apparatuses relied upon enslaved black labor.

  16. Determination of 210 Pb in mineral spring waters of Aguas da Prata city

    International Nuclear Information System (INIS)

    Moreira, S.R.D.

    1993-01-01

    Concentration levels of 210 Pb have been analyzed in 12 mineral spring waters of Aguas da Prata city. The 210 Pb concentration was determined through 210 Bi, by measuring the gross beta activity of the 210 Pb Cr O 4 precipitate after separation from interfering elements by complexation with nitrile tri acetic acid at basic pH. The 210 Bi beta activity was carried out in a low background gas flow proportional counter. Concentrations ranging from lower limit of detection to 1240 mBq/L were observed for 210 Pb. The radiochemical procedure adopted presented a chemical yield around 85% and a lower limit of detection of 4,9 mBq/L. Dose calculations were performed in order to evaluate the importance of this radionuclide to the radiation exposure due to the ingestion of these waters. Based upon measured concentrations, committed effective doses up to 1,1 mSv/y and committed doses to the bone up to 1.7 x 10 1 mSv/y were observed for 210 Pb. (author). 64 refs, 6 figs, 7 tabs

  17. The effect of acid rain and altitude on concentration, δ34S, and δ18O of sulfate in the water from Sudety Mountains, Poland

    Science.gov (United States)

    Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria

    2008-01-01

    The analyses of sulfate content, δ34S and δ18O of dissolved sulfate, and δ18O of water were carried out in a 14 km2 crystalline massif located in the Sudety Mountains (SW Poland) to 1) assess the amount of the sulfate delivered to the surface and groundwater systems by modern atmospheric precipitation, 2) determine the effect of altitude on these parameters, and 3) investigate their seasonal variations. In April and November of 2002, August 2003, and March and September of 2005, samples of water were collected from springs and streams of the massif. During these seasons, sulfate contents and δ18O(SO42−) values varied from 5.80 to 18.00 mg/l and from 3.96 to 8.23‰, respectively, showing distinctively higher values ofδ18O(SO42−) in wet seasons. The δ34S(SO42−) values had a relatively narrow range from 4.09 to 5.28‰ and were similar to those reported for organic matter in soil and the canopy throughfall in the Sudety Mountains.

  18. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  19. Effects of Spring Drought on Carbon Sequestration, Evapotranspiration and Water Use Efficiency in the Songnen Meadow Steppe in Northeast China.

    Science.gov (United States)

    Gang Dong; Jixun Guo; Jiquan Chen; Ge Sun; Song Gao; et al

    2011-01-01

    Global climate change projections suggest an increasing frequency of droughts and extreme rain events in the steppes of the Eurasian region. Using the eddy covariance method, we measured carbon and water balances of a meadow steppe ecosystem in Northeast China during 2 years which had contrasting precipitation patterns in spring seasons in 2007 and 2008. The meadow...

  20. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    Science.gov (United States)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in

  1. Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, S., E-mail: labidisalam@yahoo.f [Institut Superieur des Technologies Medicales de Tunis (ISTMT), 9 Avenue du Docteur Z.Essafi, Tunis 1006 (Tunisia); Mahjoubi, H. [Institut Superieur des Technologies Medicales de Tunis (ISTMT), 9 Avenue du Docteur Z.Essafi, Tunis 1006 (Tunisia); Essafi, F. [Faculte de Medecine de Tunis. Section de Biophysique, Tunis (Tunisia); Ben Salah, R. [Faculte de Medecine de Sousse, 270, Sahloul II, 4054 Sousse (Tunisia)

    2010-12-15

    Radioactivity measurements were carried out in 26 groundwater samples from Tunisia. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that for radium isotopes by gamma-ray spectrometry. The results show that, the concentrations in water samples range from 1.2 to 69 mBq/L.1, 1.3 to 153.4 mBq/L, 2.0 to 1630.0 mBq/L and 2.0 to 1032.0 mBq/L for {sup 238}U, {sup 234}U, {sup 226}Ra and {sup 228}Ra, respectively. The U and Ra activity concentrations are low and similar to those published for other regions in the world. The natural radioactivity levels in the investigated samples are generally increased from mineral waters through therapeutic to the spring waters. The results show that a correlation between total dissolved solids (TDS) values and the {sup 226}Ra concentrations was found to be high indicating that {sup 266}Ra has a high affinity towards the majority of mineral elements dissolved in these waters. High correlation coefficients were also observed between {sup 226}Ra content and chloride ions for Cl{sup -}Na{sup +} water types. This can be explained by the fact that radium forms a complex with chloride and in this form is more soluble. The isotopic ratio of {sup 234}U/{sup 238}U and {sup 226}Ra/{sup 234}U varies in the range from 0.8 to 2.6 and 0.6 to 360.8, respectively, in all investigated waters, which means that there is no radioactive equilibrium between the two members of the {sup 238}U series. The fractionation of isotopes of a given element may occur because of preferential leaching of one, or by the direct action of recoil during radioactive decay. The annual effective doses due to ingestion of the mineral waters have been estimated to be well below the 0.1 mSv/y reference dose level.

  2. Physical characteristics and quality of water from selected springs and wells in the Lincoln Point-Bird Island area, Utah Lake, Utah

    Science.gov (United States)

    Baskin, R.L.; Spangler, L.E.; Holmes, W.F.

    1994-01-01

    From February 1991 to October 1992, the U.S. Geological Survey, in cooperation with the Central Utah Water Conservancy District, investigated the hydrology of the Lincoln Point - Bird Island area in the southeast part of Utah Lake, Utah. The investigation included measurements of the discharge of selected springs and measurements of the physical and chemical characteristics of water from selected springs and wells in the LincolnPoint - Bird Island area. This report contains data for twenty-one distinct springs in the study area including two springs beneath the surface of Utah Lake at Bird Island. Data from this study, combined with data from previous studies, indicate that the location of springs in the Lincoln Point - Bird Island area probably is controlled by fractures that are the result of faulting. Measured discharge of springs in the Lincoln Point - Bird Island area ranged from less than 0.01 cubic foot per second to 0.84 cubic foot per second. Total discharge in the study area, including known unmeasured springs and seeps, is estimated to be about 5 cubic feet per second. Reported and measured temperatures of water from springs and wells in the Lincoln Point - Bird Island area ranged from 16.0 degrees Celsius to 36.5 degrees Celsius. Dissolved-solids con-centrations ranged from 444 milligrams per liter to 7,932 milligrams per liter, and pH ranged from 6.3 to 8.1. Physical and chemical characteristics of spring and well water from the west side of Lincoln Point were virtually identical to the physical and chemical characteristics of water from the submerged Bird Island springs, indicating a similar source for the water. Water chemistry, isotope analyses, and geothermometer calculations indicate deep circulation of water discharging from the springs and indicate that the source of recharge for the springs at Lincoln Point and Bird Island does not appear to be localized in the LincolnPoint - Bird Island area.

  3. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    Science.gov (United States)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  4. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.

    1997-01-01

    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the 87 Rb parent is billions of years, the 87 Sr/ 86 Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water

  5. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    K.M. SCOFIELD

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes

  6. EFFECTS OF FOG PRECIPITATION ON WATER RESOURCES AND DRINKING WATER TREATMENT IN THE JIZERA MOUNTAINS, THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Josef Křeček

    2015-07-01

    Full Text Available Water yield from catchments with a high evidence of fog or low clouds could be increased by the canopy fog drip. However, in areas with the acid atmospheric deposition, this process can lead to the decline of water quality. The aim of this study is to analyze fog related processes in headwater catchments of the Jizera Mountains (the Czech Republic with special attention to water quality and the drinking water treatment. In two years (2011-2012, the fog drip was observed by twelve passive fog collectors at transect of the Jizerka experimental catchment. Methods of space interpolation and extrapolation (ArcGis 10.2 were applied to approximate the areal atmospheric deposition of fog water, sulphur and nitrogen, in catchments of the drinking water reservoirs Josefův Důl and Souš. The mean annual fog drip from vegetation canopy was found between 88 and 106 mm (i.e. 7 to 9 percent of precipitation, and 11 to 13 percent of water yield, estimated by standard rain gauge monitoring. But, the mean annual load of sulphur and nitrogen by the fog drip was 1,975 and 1,080, kilograms per square kilometre, respectively (i.e. 55 and 48 percent of total deposition of sulphur and nitrogen, registered in the bulk. The acidification of surface waters leads to rising operational costs in the water treatment plants (liming, reduce of heavy metals, more frequent control of sand filters etc.. In a catchment scale, the additional precipitation, caused by the canopy fog drip, could be controlled by the effective watershed management (support of forests stands near the native composition with presence of deciduous trees: beech, mountain ash, or birch.

  7. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    Science.gov (United States)

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  8. Enabling Water-Energy–Food Nexus: A New Approach for Sustainable Agriculture and Food Security in Mountainous Landlocked Countries

    Directory of Open Access Journals (Sweden)

    Tek Bahadur Gurung

    2016-12-01

    Full Text Available Majority of landlocked mountainous countries are poorly ranked in Human Development Index (HDI, mostly due to poor per capita agriculture production, increasing population, unemployment, expensive and delayed transportation including several other factors. Generally, economy of such countries substantially relies on subsistence agriculture, tourism, hydropower and largely on remittance etc. Recently, it has been argued that to utilize scarce suitable land efficiently for food production, poor inland transport, hydropower, irrigation, drinking water in integration with other developmental infrastructures, an overarching policy linking water - energy – food nexus within a country for combating water, energy and food security would be most relevant. Thus, in present paper it has been opined that promotion of such linkage via nexus approach is the key to sustainable development of landlocked mountainous countries. Major land mass in mountainous countries like Nepal remains unsuitable for agriculture, road and other infrastructure profoundly imposing food, nutrition and energy security. However, large pristine snowy mountains function as wildlife sanctuaries, pastures, watershed, recharge areas for regional and global water, food and energy security. In return, landlocked mountainous countries are offered certain international leverages. For more judicious trade off, it is recommended that specific countries aerial coverage of mountains would be more appropriate basis for such leverages. Moreover, for sustainability of mountainous countries an integrated approach enabling water - energy – food nexus via watershed-hydropower-irrigation-aquaculture-agriculture-integrated linking policy model is proposed. This model would enable protection of watershed for pico, micro, and mega hydro power plants and tail waters to be used for aquaculture or irrigation or drinking water purposes for food and nutrition security.

  9. Seasonal variation of 226Ra and 222Rn in mineral spring waters of Aguas da Prata-Brazil

    International Nuclear Information System (INIS)

    Oliveira, J. de; Mazzilli, B.; Oliveira S, M.H de; Bernadete, S.

    1996-01-01

    Concentration levels of 226 Ra and 222 Rn have been analysed in most of the mineral spring waters available in the Aguas da Prata region, which is located in the Pocos de Caldas plateau, one of the biggest weathered alkaline intrusions of the world. In this plateau can be found many health resorts[based on springs of thermal and mineral waters. The Aguas da Prata spring waters show a large variety of composition. It has been observed bicarbonates, carbonates and sulphates salts in these mineral waters. The 226 Ra was determined by gross alpha counting of a Ba(Ra)SO 4 precipitate. The measurement was carried out in a low background gas flow proportional counter. The 222 Rn concentrations were determined by liquid scintillation method. Water samples were randomly collected at 9 spring sites over a period of one year, in order to evaluate the seasonal variation of these radionuclides. Lower concentrations were found mostly in the rainy season (summer), which presents 80% of the annual rainfall of the region (1500 mm/year). Higher concentrations up to 2223 mBq/L for 226 Ra and 131 Bq/L for 222 Rn have been observed in waters with low level of soluble salts. Waters which present high levels of carbonate and sulphate salts showed maximum values of 316 mBq/L for 226 Ra and 30 Bq/L for 222 Rn. This behaviour is mainly due to the physicochemical properties of these radionuclides in water as well as to the lithologic structure of the aquifers. (authors). 6 refs., 2 figs., 1 tab

  10. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  11. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  12. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  13. Determination of barium in natural waters by ICP-OES technique. Part II: Assessment of human exposure to barium in bottled mineral and spring waters produced in Poland.

    Science.gov (United States)

    Garboś, Sławomir; Swiecicka, Dorota

    2013-01-01

    A method of the classification of natural mineral and spring waters and maximum admissible concentration (MAC) levels of metals present in such types of waters are regulated by Commission Directive 2003/40/EC, Directive 2009/54/EC of the European Parliament and of the Council and Ordinance of Minister of Health of 30 March 2011 on the natural mineral waters, spring waters and potable waters. MAC of barium in natural mineral and spring waters was set at 1.0 mg/l, while World Health Organization determined the Ba guideline value in water intended for human consumption at the level of 0.7 mg/l. The aims of the study were: the determination of barium in natural mineral and spring waters (carbonated, non-carbonated and medium-carbonated waters) produced and bottled on the area of Poland, and assessment of human exposure to this metal presents in the above-mentioned types of waters. The study concerning barium determinations in 23 types of bottled natural mineral waters and 15 types of bottled spring waters (bought in Polish retail outlets) was conducted in 2010. The analyses were performed by validated method of determination of barium in water based on inductively coupled plasma optical emission spectrometry, using modern internal quality control scheme. Concentrations of barium determined in natural mineral and spring waters were in the ranges from 0.0136 mg/l to 1.12 mg/l and from 0.0044 mg/l to 0.43 mg/l, respectively. Only in the single case of natural mineral water the concentration of barium (1.12 mg/l), exceeded above-mentioned MAC for this metal, which is obligatory in Poland and the European Union - 1.0 mg/l. The long-term monitoring of barium concentration in another natural mineral water (2006 - 2010), in which incidental exceeding MAC was observed in 2006, was conducted. All measured barium concentrations in this water were lower than 1.0 mg/l and therefore, it is possible to state that the proper method of mixing waters taken from six independent

  14. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria

    Science.gov (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  15. Computed distributions of residual shaft drilling and construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1989-01-01

    The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository at Yucca Mountain in southwest Nevada. One activity of site characterization is the construction of two exploratory shafts. This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. In all cases the increase in rock saturation resulting from the construction water was extremely small. 11 refs., 15 figs., 1 tab

  16. Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA

    Science.gov (United States)

    Cunningham, Erin E. B.; Long, Austin; Eastoe, Chris; Bassett, R. L.

    Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams and playas within the basins and by water entering along the margins of the basins. The Tucson basin of southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (ca. 700mm/year) as does the basin itself (ca. 300mm/year). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through shallow joints and fractures. Water samples were obtained from springs and runoff in the Santa Catalina Mountains and from wells in the foothills of the Santa Catalina Mountains. Stable isotopes (δD and δ18O) and thermonuclear-bomb-produced tritium enabled qualitative characterization of flow paths and flow velocities. Stable-isotope measurements show no direct altitude effect. Tritium values indicate that although a few springs and wells discharge pre-bomb water, most springs discharge waters from the 1960s or later. Résumé La recharge des aquifères des bassins alluviaux arides du sud-ouest des États-Unis est assurée surtout à partir des lits des cours d'eau et des playas dans les bassins, ainsi que par l'eau entrant à la bordure de ces bassins. Le bassin du Tucson, dans le sud-est de l'Arizona, est l'un de ceux-ci. La chaîne montagneuse de Santa Catalina constitue la limite nord de ce bassin et reçoit plus de deux fois plus de précipitations (environ 700mm/an) que le bassin (environ 300mm/an). Dans cette étude, les isotopes du milieu ont été utilisés pour analyser le déplacement de l'eau de pluie vers le bassin au travers des fissures et des fractures proches de la surface. Des échantillons d'eau ont été prélevés dans les sources et dans l'écoulement de surface de la chaîne montagneuse et dans des puits au pied de la chaîne. Les isotopes stables (δD et δ18O) et le tritium d

  17. The effect of sliding velocity on the mechanical response of an artificial joint in Topopah Spring Member tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, W.A.

    1994-04-01

    A smooth artificial joint in Topopah Spring Member tuff was sheared at constant normal stress at velocities from 0 to 100 {mu}m/s to determine the velocity-dependence of shear strength. Two different initial conditions were used: (1) unprimed -- the joint had been shear stress-free since last application of normal stress, and before renewed shear loading; and (2) primed -- the joint had undergone a slip history after application of normal stress, but before the current shear loading. Observed steady-state rate effects were found to be about 3 times lager than for some other silicate rocks. These different initial conditions affected the character of the stress-slip curve immediately after the onset of slip. Priming the joint causes a peak in the stress-slip response followed by a transient decay to the steady-state stress, i.e., slip weakening. Slide-hold-slide tests exhibit time-dependent strengthening. When the joint was subjected to constant shear stress, no slip was observed; that is, joint creep did not occur. One set of rate data was collected from a surface submerged in tap water, the friction was higher for this surface, but the rate sensitivity was the same as that for surfaces tested in the air-dry condition.

  18. Land-cover composition, water resources and land management in the watersheds of the Luquillo Mountains, northeastern Puerto Rico.

    Science.gov (United States)

    Tamara Heartsill Scalley; Tania del M. Lopez-Marrero

    2014-01-01

    An important element of the wise use of water-related ecosystem services provided by El Yunque National Forest, located in the Luquillo Mountains in northeastern Puerto Rico, is the facilitation of a clear understanding about the composition of land cover and its relation to water resources at different scales of analysis, management, and decision making. In this study...

  19. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...

  20. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  1. Water mites (Acari, Hydrachnidia of riparian springs in a small lowland river valley: what are the key factors for species distribution?

    Directory of Open Access Journals (Sweden)

    Andrzej Zawal

    2018-05-01

    Full Text Available This paper examines the impact of disturbance factors—flooding and intermittency—on the distribution of water mites in the riparian springs situated in the valley of a small lowland river, the Krąpiel. The landscape factors and physicochemical parameters of the water were analysed in order to gain an understanding of the pattern of water mite assemblages in the riparian springs. Three limnological types of springs were examined (helocrenes, limnocrenes and rheocrenes along the whole course of the river and a total of 35 water mite species were found. Our study shows that flooding influences spring assemblages, causing a decrease in crenobiontic water mites in flooded springs. The impact of intermittency resulted in a high percentage of species typical of temporary water bodies. Surprisingly, the study revealed the positive impact of the anthropogenic transformation of the river valley: preventing the riparian springs from flooding enhances the diversity of crenobiontic species in non-flooded springs. In the conclusion, our study revealed that further conservation strategies for the protection of the riparian springs along large rivers would take into account ongoing climatic changes and possible the positive impact of the anthropogenic transformation of river valleys.

  2. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  3. Engineering evaluation/cost analysis for the proposed management of contaminated water in the Weldon Spring quarry

    International Nuclear Information System (INIS)

    MacDonell, M.M.; Peterson, J.M.; Joya, I.E.

    1989-01-01

    This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the proposed removal action for management of contaminated water in the Weldon Spring quarry, located near Weldon Spring, Missouri. The water became chemically and radioactively contaminated as a result of contact with various wastes that were disposed of in the quarry between 1942 and 1968. The US Department of Energy is responsible for cleanup activities at the Weldon Spring site, which includes the quarry, under its Surplus Facilities Management Program (SFMP). The major goals of SFMP are to eliminate potential hazards to the public and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses, to the extent possible. The objectives of the EE/CA report are to identify the cleanup as a removal action, to document the selection of response activities that will mitigate the potential for release of radioactive or chemical contaminant for the quarry water into the nearby environment, and to address environmental impacts associated with the proposed action. Pursuant to the evaluation alternatives in this report, it is proposed that the water be pumped from the quarry pond to a newly constructed treatment plant for removal of the contaminants of concern. This removal action is necessary for and consistent with the overall response action being planned to minimize potential threats to the public and the environment associated with the current contamination at the quarry. 66 refs., 15 figs., 32 tabs

  4. Transpirational water use and its regulation in the mountainous terrain of S. Korea

    Science.gov (United States)

    Otieno Dennis, O.; Eunyoung, J.; Sinkyu, K.; Tenhunen, J. D.

    2009-12-01

    Quantifying water use by forests growing on complex mountainous terrain is difficult and understanding of controls on water use by these forests a challenge. Yet mountains are crucial as water towers and better understanding of their hydrology and ecology is critical for sustainable management. Consequently, there is a growing need for new research approaches designed with attention to the particular needs and constraints of large-scale studies and that have the potential to generate reliable and accurate data. The use of a combination of different sapflow-measurement techniques provides a unique opportunity to monitor water use by the understory and canopy forest tree species at micro-scale, allowing for accurate estimation of total forest water use. The obtained data, in conjunction with intensively measured climatic variables, allow for better understanding and interpretation of transpiration results. A research initiative under the International Training Group: Complex Terrain and Ecological Heterogeneity (TERRECO) seeks to address pertinent issues related to forest water use and production in complex terrain. Stem Heat balance (SHB) and Heat Dissipation techniques have been employed to measure sapflow in the understory woody plants and tree branches and on stems of canopy trees respectively. Measurements have been stratified to account for differences in tree sizes and species diversity. To better understand the data, we are intensively monitoring soil moisture at 5, 10 and 30 cm depths, in addition to a range of micrometeorology sensors that have been set up below, within and above the canopy. These measurements have been planned, taking into account altitudinal/elevation gradient, aspect and within site differences in species composition and tree sizes and to generate data for large-scale modeling of the entire catchment. A total of 70 trees from 9 species growing in six different locations at varying elevations and aspects are being monitored. Peak daily

  5. Tularemia Associated to Drinking Mountain Water Presenting with Lymphadenopathy: a Case Report

    Directory of Open Access Journals (Sweden)

    Hakan Sarlak

    2012-04-01

    Full Text Available Tularemia is a zoonotic disease that can be passed to humans via the consumption of wild animal meat or inadequately cooked contaminated drinking water. There has been an increase in the number of observed cases in recent years. The clinical picture may vary from asymptomatic disease to septic shock. Oropharyngeal type of the disease is the most common clinical form and is associated with pharyngitis, fever and cervical lymphadenopathy (LAP. Here we present a 22-year-old female patient who developed cervical LAP after tonsillopharyngitis and was diagnosed with oropharyngeal tularemia that was determined to be related to drinking mountain water. [TAF Prev Med Bull 2012; 11(2.000: 245-247

  6. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  7. Predicting Plant-Accessible Water in the Critical Zone: Mountain Ecosystems in a Mediterranean Climate

    Science.gov (United States)

    Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.

    2017-12-01

    Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.

  8. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun

    2017-01-01

    A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T  = CPCC 204147 T ).

  9. Engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring chemical plant area

    International Nuclear Information System (INIS)

    MacDonell, M.M.; Maxey, M.L.; Peterson, J.M.; Joya, I.E.

    1990-07-01

    This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the proposed removal action for managing contaminated surface waters impounded at the chemical plant area of the Weldon Spring site, located near Weldon Spring, Missouri. The US Department of Energy is responsible for cleanup activities at the site under its Surplus Facilities Management Program (SFMP). The major goals of SFMP are to eliminate potential hazards to human health and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses, to the extent possible. The objectives of this EE/CA report are to identify the cleanup as a removal action, document the selection of a response that will mitigate the potential release of radioactive or chemical contaminants from the impounded waters into the nearby environment, and address environmental impacts associated with the proposed action. 41 refs., 8 figs., 8 tabs

  10. Effect of spring water on the radon concentration in the air at Masutomi spa in Yamanashi Prefecture, Japan

    International Nuclear Information System (INIS)

    Inagaki, Masayo; Koga, Taeko; Morishima, Hiroshige; Kimura, Shojiro; Ohta, Masatoshi

    2012-01-01

    The concentrations of 222 Rn existing in air have been studied by using a convenient and highly sensitive Pico-rad detector system at Masutomi spa in Yamanashi Prefecture, Japan. The measurements in air were carried out indoors and outdoors during the winter of 2000 and the summers of 1999 and 2005. The concentrations of 222 Rn in spring water in this region were measured by the liquid scintillation method. The concentrations of natural radionuclides contained in soils surrounding spa areas were also examined by means of the γ-ray energy spectrometry technique using a Ge diode detector to investigate the correlation between the radionuclides contents and 222 Rn concentrations in air at each point of interest. The atmospheric 222 Rn concentrations in these areas were high, ranging from 5 Bq/m 3 to 2676 Bq/m 3 . The radon concentration at each hotel was high in the order of the bath room, the dressing room, the lobby, and the outdoor area near the hotel, with averages and standard deviations of the concentration of 441 ± 79 Bq/m 3 , 351 ± 283 Bq/m 3 , 121 ± 5 Bq/m 3 , and 23 ± 1 Bq/m 3 , respectively. The source of 222 Rn in the air in the bath room is more likely to be the spring water than the soil. The spring water plays carries the radon to the atmosphere. Our measurements indicated that the 222 Rn concentration in the air was affected by the 222 Rn concentration in spring water rather than that in soil. (author)

  11. Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs.

    Science.gov (United States)

    Eller, Kirstin T; Katz, Brian G

    2017-07-01

    Nitrogen (N) from anthropogenic sources has contaminated groundwater used as drinking water in addition to impairing water quality and ecosystem health of karst springs. The Nitrogen Source Inventory and Loading Tool (NSILT) was developed as an ArcGIS and spreadsheet-based approach that provides spatial estimates of current nitrogen (N) inputs to the land surface and loads to groundwater from nonpoint and point sources within the groundwater contributing area. The NSILT involves a three-step approach where local and regional land use practices and N sources are evaluated to: (1) estimate N input to the land surface, (2) quantify subsurface environmental attenuation, and (3) assess regional recharge to the aquifer. NSILT was used to assess nitrogen loading to groundwater in two karst spring areas in west-central Florida: Rainbow Springs (RS) and Kings Bay (KB). The karstic Upper Floridan aquifer (UFA) is the source of water discharging to the springs in both areas. In the KB study area (predominantly urban land use), septic systems and urban fertilizers contribute 48% and 22%, respectively, of the estimated total annual N load to groundwater 294,400 kg-N/yr. In contrast for the RS study area (predominantly agricultural land use), livestock operations and crop fertilizers contribute 50% and 13%, respectively, of the estimated N load to groundwater. Using overall groundwater N loading rates for the KB and RS study areas, 4.4 and 3.3 kg N/ha, respectively, and spatial recharge rates, the calculated groundwater nitrate-N concentration (2.1 mg/L) agreed closely with the median nitrate-N concentration (1.7 mg/L) from groundwater samples in agricultural land use areas in the RS study area for the period 2010-2014. NSILT results provide critical information for prioritizing and designing restoration efforts for water-quality impaired springs and spring runs affected by multiple sources of nitrogen loading to groundwater. The calculated groundwater N concentration for

  12. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri

    Science.gov (United States)

    Mugel, Douglas N.; Richards, Joseph M.; Schumacher, John G.

    2009-01-01

    The Ozark National Scenic Riverways (ONSR) is a narrow corridor that stretches for approximately 134 miles along the Current River and Jacks Fork in southern Missouri. Most of the water flowing in the Current River and Jacks Fork is discharged to the rivers from springs within the ONSR, and most of the recharge area of these springs is outside the ONSR. This report describes geohydrologic investigations and landscape characteristics of areas contributing water to springs and the Current River and Jacks Fork in the ONSR. The potentiometric-surface map of the study area for 2000-07 shows that the groundwater divide extends beyond the surface-water divide in some places, notably along Logan Creek and the northeastern part of the study area, indicating interbasin transfer of groundwater between surface-water basins. A low hydraulic gradient occurs in much of the upland area west of the Current River associated with areas of high sinkhole density, which indicates the presence of a network of subsurface karst conduits. The results of a low base-flow seepage run indicate that most of the discharge in the Current River and Jacks Fork was from identified springs, and a smaller amount was from tributaries whose discharge probably originated as spring discharge, or from springs or diffuse groundwater discharge in the streambed. Results of a temperature profile conducted on an 85-mile reach of the Current River indicate that the lowest average temperatures were within or downstream from inflows of springs. A mass-balance on heat calculation of the discharge of Bass Rock Spring, a previously undescribed spring, resulted in an estimated discharge of 34.1 cubic feet per second (ft3/s), making it the sixth largest spring in the Current River Basin. The 13 springs in the study area for which recharge areas have been estimated accounted for 82 percent (867 ft3/s of 1,060 ft3/s) of the discharge of the Current River at Big Spring during the 2006 seepage run. Including discharge from

  14. Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    L.A. Neymark; J.B. Paces; S.J. Chipera; D.T. Vaniman

    2006-01-01

    Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram

  15. Water Inrush Analysis of the Longmen Mountain Tunnel Based on a 3D Simulation of the Discrete Fracture Network

    Science.gov (United States)

    Xiong, Ziming; Wang, Mingyang; Shi, ShaoShuai; Xia, YuanPu; Lu, Hao; Bu, Lin

    2017-12-01

    The construction of tunnels and underground engineering in China has developed rapidly in recent years in both the number and the length of tunnels. However, with the development of tunnel construction technology, risk assessment of the tunnels has become increasingly important. Water inrush is one of the most important causes of engineering accidents worldwide, resulting in considerable economic and environmental losses. Accordingly, water inrush prediction is important for ensuring the safety of tunnel construction. Therefore, in this study, we constructed a three-dimensional discrete network fracture model using the Monte Carlo method first with the basic data from the engineering geological map of the Longmen Mountain area, the location of the Longmen Mountain tunnel. Subsequently, we transformed the discrete fracture networks into a pipe network model. Next, the DEM of the study area was analysed and a submerged analysis was conducted to determine the water storage area. Finally, we attempted to predict the water inrush along the Longmen Mountain tunnel based on the Darcy flow equation. Based on the contrast of water inrush between the proposed approach, groundwater dynamics and precipitation infiltration method, we conclude the following: the water inflow determined using the groundwater dynamics simulation results are basically consistent with those in the D2K91+020 to D2K110+150 mileage. Specifically, in the D2K91+020 to D2K94+060, D2K96+440 to D2K98+100 and other sections of the tunnel, the simulated and measured results are in close agreement and show that this method is effective. In general, we can predict the water inflow in the area of the Longmen Mountain tunnel based on the existing fracture joint parameters and the hydrogeological data of the Longmen Mountain area, providing a water inrush simulation and guiding the tunnel excavation and construction stages.

  16. Community-based Monitoring of Water Resources in Remote Mountain Regions

    Science.gov (United States)

    Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.

    2016-12-01

    Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom

  17. Long-lived natural Ra isotopes in mineral, therapeutic and spring waters in Caxambu, Minas Gerais state, Brazil

    International Nuclear Information System (INIS)

    Negrao, Sergio Garcia; Oliveira, Joselene de

    2011-01-01

    In many countries all around the world, there is an increasing tendency to replace surface drinking water by commercially available bottled mineral water from different springs for consumption purposes. These practices involve an increased risk of finding higher activities of natural radionuclides in such waters, predominantly of the uranium-radium decay series. Naturally occurring radionuclides such as 238 U, 226 Ra, 222 Rn, 210 Po and 228 Ra are found frequently dissolved in water supplies and their concentrations vary over an extremely wide range. However, from the point of view of radiation hygiene, results of many worldwide surveys indicate that only 222 Rn, 226 Ra and 228 Ra have been found in concentrations that may be of health concern. 226 Ra and 228 Ra are the most radiotoxic isotopes of radium due to their long half-lives, 1,600 and 5.75 years, respectively. Since their chemical behavior is similar to that of calcium, radium isotopes tend to accumulate mostly in the skeleton after ingestion. For the purposes of this study, samples of mineral spring water were taken in Caxambu, a thermal resort located in the extreme south of Minas Gerais, 370 km south of Belo Horizonte. Caxambu is renowned by its waterpark, which has twelve sources of mineral water already being used in treatment of stomach, liver and kidney diseases, between others. 226 Ra activity concentrations varied from 83 to 3,599 mBq L-1, the highest value determined at Venancio spring. Activity concentrations of 228 Ra ranged from 69 to 4,481 mBq L-1. 228 Ra/ 226 Ra activity ratios varied from 0.079 to 4.2. (author)

  18. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  19. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  20. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  1. Protecting the Sacred Water Bundle: Education about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation, Turtle mountain Community College (TMCC) has provided opportunities for all interested parties to learn about fracking and why the tribe banned it.…

  2. Impacts of forest age on water use in Mountain ash forests

    Science.gov (United States)

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  3. Significance of apparent discrepanices in water ages derived from atmospheric radionuclides at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Liu, B.; Fabryka-Martin, J.; Wolfsberg, A.; Robinson, B.; Sharma, P.

    1995-01-01

    Cosmogenic 36 Cl and 14 C produced in the atmosphere are being used to estimate water residence times in the unsaturated zone at Yucca Mountain. Results thus far show a systematic discordance in that 14 C-based ages are generally one to two orders of magnitude younger than 36 Cl-based ages. This lack of concordance probably arises from one or more of the following reasons: (1) different transport mechanisms, e.g., vapor transport for 14 C; (2) different magnitudes and timing of bomb-pulse signals; (3) mixing of waters from different flow paths; and (4) possibly inadequate methods for correcting for the effect of sample contamination by carbon or chlorine from sources other than the infiltrating water. Preliminary numerical simulation results using the FEHMN code suggest that spatial variation in infiltration rates can enhance lateral flow and mixing that leads to discordance in apparent ages depending on the dating technique. Examples are presented to show that disparate radiometric ages are inevitable and to be expected where mixing of waters of markedly different ages occurs

  4. Use of natural tracers in identification and characterisation. Of water-conducting features at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Henning, R.; Patterson, R.

    1999-01-01

    Understanding rates and pathways of water movement at the potential repository site is crucial in assessing the probable performance in isolating waste from the accessible environment. Of major concern is the amount of water migrating through the mountain and entering the repository. Studies of water migration are being performed in the Exploratory Studies Facility at Yucca Mountain (ESF). The ESF is an eight-km long tunnel, which was constructed between 1995 and 1997. Samples collected in this facility were analyzed for natural tracers that may indicate water presence and movement. Some natural tracers have proven to be very useful in conjunction with other data, but others, such as tritium and stable isotopes, that can be found in gas, liquid and solid phases, have been difficult to understand and correlate to water movement. (author)

  5. PENGELOLAAN MATA AIR UNTUK PENYEDIAAN AIR RUMAHTANGGA BERKELANJUTAN DI LERENG SELATAN GUNUNGAPI MERAPI (Springs Management for Sustainability Domestic Water Supply in the South West of Merapi Volcano Slope

    Directory of Open Access Journals (Sweden)

    Sudarmadji Sudarmadji

    2016-02-01

    Full Text Available ABSTRAK Mata air merupakan pemunculan air tanah ke permukaan tanah. Pemanfaatan mata air sangat beragam, antara lain penggunaan untuk keperluan air minum, irigasi, perikanan, untuk obyek wisata. Mata air mempunyai debit terbatas, namun kualitasnya baik, penggunaannya beragam, hal tersebut sering terjadi konflik pemanfaatan. Di saat musim kemarau, beberapa mata air merupakan sumber air satu-satunya di suatu tempat, sehingga pengelolaannya harus dilakukan secara baik. Penelitian ini bertujuan untuk mempelajari pengelolaan mata air berbasis teknologi tepat guna dalam penyediaan air rumahtangga di lereng selatan Gunungapi Merapi. Penelitian dilakukan dengan survei dan observasi di lapangan terhadap mata air yang digunakan untuk penyediaan air rumahtangga. Sejumlah responden pengguna mata air dan tokoh masyarakat setempat diwawancarai secara bebas dan terstruktur untuk memperoleh data pengelolaan mata air. Hasil penelitian menunjukkan bahwa kondisi lingkungan dan karakteristik mata air, pengetahuan masyarakat dan budaya lokal yang beragam akan berpengaruh terhadap pengelolaanmata air. Perkembangan teknologi tidak dapat diabaikan dalam pengelolaan sumberdaya air. Hal ini dapat dipadukan dengan budaya masyarakat setempat dalam pengelolaan mata air, sehingga dapat diperoleh manfaat yang optimal dan kesinambungan fungsi dan manfaat mata air tersebut.   ABSTRACT Spring is the groundwater which comes out on ground surface. The use of water from springs is very diverse, varying from water for drinking, irrigation, fisheries, even for tourism. The springs usually have a limited discharge but the water quality from springs is good, therefore they are often facing some conflicts in utilization. In the dry season, in fact the springs are the only source of water supply; therefore the management of the spring should be done properly. This research aims to study the spring management based on appropriate technology in relation to household water supply in the

  6. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  7. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, R.; Miglietta, F.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)

    1999-04-01

    Variations in water relations and stomatal response of downy oak (Quercus pubescens) were analyzed under Mediterranean field conditions during two consecutive summers at two locations characterized by different atmospheric CO{sub 2} concentrations due to the presence of a CO{sub 2} spring at one of the locations. The heat-pulse velocity technique was used to estimate water use during a five-month period from June to November 1994. At the end of the sap flow measurements, the trees were harvested and foliage and sapwood area measured. The effect of elevated CO{sub 2} concentration on leaf conductance was less at high leaf-to-air water vapour pressure difference than at low leaf-to-air water vapour pressure difference. Mean and diurnal sap fluxes were consistently higher in trees at the control site than in the trees at the CO{sub 2} spring site. Results are discussed in terms of effects of elevated CO{sub 2} concentration on plant water use at the organ and whole-tree level. 76 refs., 9 figs.

  8. Evaluating Monitoring Strategies to Detect Precipitation-Induced Microbial Contamination Events in Karstic Springs Used for Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-11-01

    Full Text Available Monitoring of microbial drinking water quality is a key component for ensuring safety and understanding risk, but conventional monitoring strategies are typically based on low sampling frequencies (e.g., quarterly or monthly. This is of concern because many drinking water sources, such as karstic springs are often subject to changes in bacterial concentrations on much shorter time scales (e.g., hours to days, for example after precipitation events. Microbial contamination events are crucial from a risk assessment perspective and should therefore be targeted by monitoring strategies to establish both the frequency of their occurrence and the magnitude of bacterial peak concentrations. In this study we used monitoring data from two specific karstic springs. We assessed the performance of conventional monitoring based on historical records and tested a number of alternative strategies based on a high-resolution data set of bacterial concentrations in spring water collected with online flow cytometry (FCM. We quantified the effect of increasing sampling frequency and found that for the specific case studied, at least bi-weekly sampling would be needed to detect precipitation events with a probability of >90%. We then proposed an optimized monitoring strategy with three targeted samples per event, triggered by precipitation measurements. This approach is more effective and efficient than simply increasing overall sampling frequency. It would enable the water utility to (1 analyze any relevant event and (2 limit median underestimation of peak concentrations to approximately 10%. We conclude with a generalized perspective on sampling optimization and argue that the assessment of short-term dynamics causing microbial peak loads initially requires increased sampling/analysis efforts, but can be optimized subsequently to account for limited resources. This offers water utilities and public health authorities systematic ways to evaluate and optimize their

  9. Application of natural isotopes for water catchment estimation for springs in Cijeruk district, Bogor Regency, West Java

    International Nuclear Information System (INIS)

    Iffatul Izza Siftianida; Agus Budhie Wijatna; Bungkus Pratikno

    2016-01-01

    Spring as a source of groundwater in Cijeruk district exploited by local people and water companies. Excessive use of water causes lack of water during dry season. Conservation of recharge areas to maintain the availability of water to supply the water demand. Determination of location recharge areas and chemical analysis of groundwater needs to be done to provide required information to conserve the recharge area. Therefore, this study aims: (1) determine the origin of groundwater, (2) determine recharge area, (3) identify facies of groundwater, and (4) identify the quality of groundwater. Sampling was done in Cijeruk, groundwater samples were collected from 10 locations that were used by water companies and local people in May 2015. The ratio of isotopes δD and δ "1"8O in water samples was measured by liquid water stable isotope analyzer LGR DLT-100 to determine the genesis of groundwater and recharge area. Hydrochemical facies analysis to determine groundwater quality. Chemical parameters used are pH, electrical conductivity (EC), Total Dissolved Solid (TDS), and major ions. The results showed: (a) spring origin from several sources suck as rainwater and groundwater, (b) recharge area of CJR01, CJR02, CJR03, and CJR04 located on elevation of 1988 to 2055 m.dpl, (c) recharge area of CJR06 and CJR09 on elevation 1379 - 1430 m.dpl, (d) recharge area of CJR08 and CJR07 on elevation of 811-836 m.dpl, (e) recharge area of CJR05 and CJR10, each located on elevation of 1475 m.dpl, and 1932 m.dpl, (f) the groundwater facies is Mg-HCO_3 (magnesium bicarbonate), and (g) the quality of groundwater is fresh water. (author)

  10. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    Science.gov (United States)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying

  11. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1995-02-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN {number_sign}91 and UE-29 UZN {number_sign}92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN {number_sign}91 neutron-access borehole location and within several meters of the UE-29 UZN {number_sign}92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a{number_sign}1 and UE-29 a{number_sign}2, and one-half meter in neutron-access borehole LJE-29 UZN {number_sign}91 following the streamflows. Water level declines of 0.5 meter in UE-29 a{number_sign}1 and rises of 0.2 meter in UE-29 a{number_sign}2 and 0.1 meter in UE-29 UZN {number_sign}91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells.

  12. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water year 1992

    International Nuclear Information System (INIS)

    Savard, C.S.

    1995-01-01

    Precipitation totals of 245 and 210 mm were measured at UE-29 UZN number-sign 91 and UE-29 UZN number-sign 92 respectively, during the 1992 water year, October 1, 1991 to September 30, 1992. Approximately ninety percent of the precipitation fell during the period December 27 to April 2. Localized streamflow was generated in the Fortymile Wash drainage basin during the February 12-15, 1992 and March 31, 1992 precipitation, and infiltrated into the streambed materials. The streamflow went across the UE-29 UZN number-sign 91 neutron-access borehole location and within several meters of the UE-29 UZN number-sign 92 location. Neutron logging in these boreholes showed increases in the volumetric water content of the unsaturated alluvium and indicated streamflow infiltrated to a depth of approximately 5 meters. The volumetric water content in the upper 5 meters then gradually decreased during the remaining part of the water year. Ground-water levels rose over one meter in wells UE-29 a number-sign 1 and UE-29 a number-sign 2, and one-half meter in neutron-access borehole LJE-29 UZN number-sign 91 following the streamflows. Water level declines of 0.5 meter in UE-29 a number-sign 1 and rises of 0.2 meter in UE-29 a number-sign 2 and 0.1 meter in UE-29 UZN number-sign 91 coincided with a June 29, 1992 earthquake at the Little Skull Mountain, located approximately 27 kilometers southeast of the wells

  13. Using chloride to trace water movement in the unsaturated zone at Yucca Mountain

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.T.; Winters, S.T.; Wolfsberg, A.V.; Wolfsberg, L.E.; Roach, J.L.

    1998-01-01

    The nonwelded Paintbrush Tuff (PTn) hydrogeologic unit is postulated as playing a critical role in the redistribution of moisture in the unsaturated zone at Yucca Mountain, Nevada. Fracture-dominated flow in the overlying low-permeability, highly fractured Tiva Canyon welded (TCw) unit is expected to transition to matrix-dominated flow in the high-permeability, comparatively unfractured PTn. The transition process from fracture to matrix flow in the PTn, as well as the transition from low to high matrix storage capacity, is expected to damp out most of the seasonal, decadal, and secular variability in surface infiltration. This process should also result in the homogenization of the variable geochemical and isotopic characteristics of pore water entering the top of the PTn. In contrast, fault zones that provide continuous fracture pathways through the PTn may damp climatic and geochemical variability only slightly and may provide fast paths from the surface to the sampled depths, whether within the PTn or in underlying welded tuffs. Chloride (Cl) content and other geochemical data obtained from PTn pore-water samples can be used to independently derive infiltration rates for comparison with surface infiltration estimates, to evaluate the role of structural features as fast paths, and to assess the prevalence and extent to which water may be laterally diverted in the PTn due to contrasting hydrologic properties of its subunits

  14. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring

    Science.gov (United States)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.

    2017-06-01

    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  15. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  16. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mower, T.E.; Higgins, J.D. [Colorado School of Mines, Golden, CO (USA). Dept. of Geology and Geological Engineering; Yang, I.C. [Geological Survey, Denver, CO (USA). Water Resources Div.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions of Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.

  17. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  18. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  19. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  20. Seasonality, water quality trends and biological responses in four streams in the Cairngorm Mountains, Scotland

    Directory of Open Access Journals (Sweden)

    C. Soulsby

    2001-01-01

    Full Text Available The chemical composition and invertebrate communities found in four streams in the Cairngorms, Scotland, were monitored between 1985-1997. Stream waters were mildly acidic (mean pH ca. 6.5, with low alkalinity (mean acid neutralising capacity varying from 35-117 meq l-1 and low ionic strength. Subtle differences in the chemistry of each stream were reflected in their invertebrate faunas. Strong seasonality in water chemistry occurred, with the most acid, low alkalinity waters observed during the winter and early spring. This was particularly marked during snowmelt between January and April. In contrast, summer flows were usually groundwater dominated and characterised by higher alkalinity and higher concentrations of most other weathering-derived solutes. Seasonality was also clear in the invertebrate data, with Canonical Correspondence Analysis (CCA separating seasonal samples along axes related to water temperature and discharge characteristics. Inter-annual hydrological and chemical differences were marked, particularly with respect to the winter period. Invertebrate communities found in each of the streams also varied from year to year, with spring communities significantly more variable (PHydrochemical trends over the study period were analysed using a seasonal Kendall test, LOcally WEighted Scatterplot Smoothing (LOWESS and graphical techniques. These indicated that a reduction in sulphate concentrations in stream water is occurring, consistent with declining levels of atmospheric deposition. This may be matched by increases in pH and declining calcium concentrations, though available evidence is inconclusive. Other parameters, such as chloride, total organic carbon and zinc, reveal somewhat random patterns, probably reflecting irregular variations in climatic factors and/or atmospheric deposition. Previous studies have shown that the stream invertebrate communities have remained stable over this period (i.e. no significant linear trends

  1. Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.

    Science.gov (United States)

    Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M

    2005-01-01

    Concentrations of selected persistent organic pollutants (POPs) in air and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical exchange across the air-water interface of these lakes. Bow Lake (1,975 m above sea level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas exchange for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in air declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in air and water, nor the direction and rate of air-water gas exchange correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount exchanged across the air-water interface in these lakes.

  2. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988--1990

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the US Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suit-ability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988--90

  3. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  4. Water and chemical input via hydrometeors in central European mountains with Szrenica as an example

    Science.gov (United States)

    Błaś, M.; Sobik, M.; Polkowska, Ż.; Cichała-Kamrowska, K.

    2010-07-01

    Atmospheric pollutants are transferred to the ground by the contribution of various types of hydrometeors. These are atmospheric precipitation and non-precipitation components belonging to the atmospheric deposits (dew and hoarfrost as well as rime and liquid fog). Due to the different techniques concerning sampling and measurements, comparative analyses between them are often neglected. Hence, the main goal is to compare chemistry of different types of hydrometeors and their role in both: water balance and pollutants deposition. Precipitation, dew, hoarfrost, liquid fog and rime samples were collected daily all through the 2009 year at the Szrenica Mt. [1330 m a.s.l.]. It is situated in the western part of the main ridge of the Karkonosze Mts. which falls steeply northward on the Polish side and forms a distinct slope about 1000 m high. During typical westerly wind conditions the Karkonosze Mts. are exposed to highly polluted air from heavy industry densely situated at the distance of tens to hundreds kilometers on the windward side of the mountains. Precipitation is the main source of water flux at the Szrenica Mt. reaching 1430 mm annually, with the highest molar concentrations of ammonia, nitrates and sulphates (33%, 21% and 14% respectively). However the average TIC (Total Inorganic Ionic Content) of precipitation (273 µMoles•l-1) was the lowest when compared with other non-precipitation hydrometeors, discussed below. This results from relatively clean air in middle and/or upper parts of troposphere where atmospheric processes responsible for precipitation formation take place. This is in contrast with much more polluted atmospheric boundary layer being continuously polluted by various emission sources. Fog deposit tends to be the second important component of water flux at the Szrenica Mt., which forms even 50% of water delivered by atmospheric precipitation. Cloud water concentration of dissolved pollutants expressed by TIC was 3 times higher than in case

  5. Investigation of some trace elements in drinking water: Nuba Mountains Section, Sudan

    International Nuclear Information System (INIS)

    Elgorashe, R.E.E.

    2008-09-01

    This study was conducted to assess the extent of pollution in the drinking water from various sources at the area of the Nuba Mountains, Sudan. 42 samples were collected from hand pump stations, water yard (diesel machine) stations and surface water (lake) stations.These waters were analyzed using atomic absorption spectrophotometer. The concentrations of iron, nickel, copper, manganese, magnesium, zinc and chromium were determined using flame atomic spectroscopy, while the concentrations of cadmium and lead were determined by furnace atomic spectroscopy. The mean concentrations of iron, nickel, lead, copper, manganese, magnesium, zinc and chromium in water samples collected from hand pump stations were 1.901, 0.010, 0.1310, 0.0070, 0.0410, 20.35, 0.558 and 0.0430 mg/L respectively. And in samples collected from water yard stations were found to be 0.871, 0.013, 0.438, 0.209, 0.128, 28.41, 0.103 and 0.032 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. And in samples collected from surface water station were found to be 13.74, 0.023, 0.015, 0.017, 0.118, 7.008, 0.042 and 0.0002 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. The concentrations of cadmium were found below detection of limits. Mean concentrations of elements from different sources were compared using the Kruskal - wallis method. This study showed that there are significant different between mean concentrations for these elements. The spear man correlation method was identified between elements. Correlation study shows that there is a significant positive correlation between iron and chromium. Comparison between those data and the specific criterion specifies drinking water by the World Health Organization (WHO) showed that the concentrations of Pb are exceeding the maximum permissible levels in eighteen stations. Violations of drinking water limits were observed also for the elements Mn in six stations and Cr in

  6. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    E Reed, David; Ewers, Brent E; Pendall, Elise

    2014-01-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO 2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO 2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H 2 O m −2 s −1 . Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO 2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO 2 exchange. These results agree with an emerging consensus in the literature demonstrating CO 2 and H 2 O dynamics

  7. Investigation of some trace elements in drinking water: Nuba Mountains Section, Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Elgorashe, R E.E. [Coordination Council of Sudan Atomic Energy Commission, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-09-15

    This study was conducted to assess the extent of pollution in the drinking water from various sources at the area of the Nuba Mountains, Sudan. 42 samples were collected from hand pump stations, water yard (diesel machine) stations and surface water (lake) stations.These waters were analyzed using atomic absorption spectrophotometer. The concentrations of iron, nickel, copper, manganese, magnesium, zinc and chromium were determined using flame atomic spectroscopy, while the concentrations of cadmium and lead were determined by furnace atomic spectroscopy. The mean concentrations of iron, nickel, lead, copper, manganese, magnesium, zinc and chromium in water samples collected from hand pump stations were 1.901, 0.010, 0.1310, 0.0070, 0.0410, 20.35, 0.558 and 0.0430 mg/L respectively. And in samples collected from water yard stations were found to be 0.871, 0.013, 0.438, 0.209, 0.128, 28.41, 0.103 and 0.032 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. And in samples collected from surface water station were found to be 13.74, 0.023, 0.015, 0.017, 0.118, 7.008, 0.042 and 0.0002 mg/L for iron, nickel, lead, copper, manganese, magnesium, zinc and chromium respectively. The concentrations of cadmium were found below detection of limits. Mean concentrations of elements from different sources were compared using the Kruskal - wallis method. This study showed that there are significant different between mean concentrations for these elements. The spear man correlation method was identified between elements. Correlation study shows that there is a significant positive correlation between iron and chromium. Comparison between those data and the specific criterion specifies drinking water by the World Health Organization (WHO) showed that the concentrations of Pb are exceeding the maximum permissible levels in eighteen stations. Violations of drinking water limits were observed also for the elements Mn in six stations and Cr in

  8. Extreme fractionation of 234U 238U and 230Th 234U in spring waters, sediments, and fossils at the Pomme de Terre Valley, southwestern Missouri

    Science.gov (United States)

    Szabo, B. J.

    1982-01-01

    Isotopic fractionation as great as 1600% exists between 234U and 238U in spring waters, sediments, and fossils in the Pomme de Terre Valley, southwestern Missouri. The activity ratios of 234U 238U in five springs range from 7.2 to 16 in water which has been discharged for at least the past 30,000 years. The anomalies in 234U 238U ratio in deep water have potential usefulness in hydrologic investigations in southern Missouri. Clayey units overlying the spring bog sediments of Trolinger Spring are enriched in 230Th relative to their parent 234U by as much as 720%. The results indicate that both preferential displacement via alpha recoil ejection and the preferential emplacement via recoiling and physical entrapment are significant processes that are occurring in the geologic environment. ?? 1982.

  9. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bechtel Jacobs Company LLC

    2002-01-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone and Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to

  10. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    Science.gov (United States)

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  11. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  12. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  13. Hydrogeology and sources of water to select springs in Black Canyon, south of Hoover Dam, Lake Mead National Recreation Area, Nevada and Arizona

    Science.gov (United States)

    Moran, Michael J.; Wilson, Jon W.; Beard, L. Sue

    2015-11-03

    Springs in Black Canyon of the Colorado River, directly south of Hoover Dam in the Lake Mead National Recreation Area, Nevada and Arizona, are important hydrologic features that support a unique riparian ecosystem including habitat for endangered species. Rapid population growth in areas near and surrounding Black Canyon has caused concern among resource managers that such growth could affect the discharge from these springs. The U.S. Geological Survey studied the springs in Black Canyon between January 2008, and May 2014. The purposes of this study were to provide a baseline of discharge and hydrochemical data from selected springs in Black Canyon and to better understand the sources of water to the springs.

  14. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water years 1993--94

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1996-09-01

    The Yucca Mountain area is being evaluated by the US Department of Energy for its suitability to store high-level nuclear waste in a mined, underground repository. Hydrologic data are being collected by the US Geological Survey throughout a 150 Km{sup 2} study area about 15- Km northwest of Las Vegas in southern Nevada for site characterization studies. Ongoing hydrologic studies are investigating atmospheric precipitation, stream-flow, movement of water through the unsaturated zone, movement of water through the saturated zone, and paleohydrology. This study at Fortymile Wash involves some components of each of these studies. Fortymile Wash is an ephemeral stream near Yucca Mountain with tributaries draining the east side of Yucca Mountain and then forming a distributary system in the Amargosa Desert. An objective of the study is to determine the amount of recharge from Fortymile Wash to the ground-water flow system that has been proposed. Understanding the ground-water flow system is important because it is a possible mechanism for radionuclide migration from the repository to the accessible environment. An adequate understanding of the ground-water flow system is necessary for an evaluation of the safety issues involved in siting the potential repository.

  15. Analysis of heterogeneous hydrological properties of a mountainous hillslope using intensive water flow measurements

    Science.gov (United States)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo

    2013-04-01

    Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside

  16. Evolution of concentration-discharge relations revealed by high frequency diurnal sampling of stream water during spring snowmelt

    Science.gov (United States)

    Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high

  17. Evaluation of water conservation capacity of loess plateau typical mountain ecosystems based on InVEST model simulation

    Science.gov (United States)

    Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing

    2017-06-01

    With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.

  18. Protecting the Sacred Water Bundle: Educating about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, one becomes surrounded by a deciduous forest, spotted with deer stands, fishing holes, mosquito havens, and secret berry-picking spots. It is here that the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation,…

  19. Spring in the Arab Spring

    NARCIS (Netherlands)

    Borg, G.J.A.

    2011-01-01

    Column Gert Borg | Spring in the Arab Spring door dr. Gert Borg, onderzoeker bij Islam en Arabisch aan de Radboud Universiteit Nijmegen en voormalig directeur van het Nederlands-Vlaams Instituut Caïro Spring If, in Google, you type "Arab Spring" and hit the button, you get more than

  20. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  1. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006-2008

    Science.gov (United States)

    Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk

    2010-01-01

    Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the

  2. Determination of 226 Ra and 228 Ra in mineral spring waters of the Aguas da Prata region

    International Nuclear Information System (INIS)

    Oliveira, J. de.

    1993-01-01

    Concentration levels of 226 Ra and 228 Ra have been analysed in most of the mineral spring waters available in the Aguas da Prata region. The 226 Ra and 228 Ra were determined by coprecipitation with barium sulphate. The 226 Ra was determined by gross alpha counting of the Ba(Ra)SO 4 precipitate. The determination of 228 Ra was done by measuring the gross beta activity of the same precipitate. Both measurements were carried out in a low background gas flow proportional counter. Dose calculations were performed in order to evaluate the relative importance of such radionuclides to the radiation exposure due to the ingestion of these waters. Based upon measured concentrations, committed effective doses up to 5.5 x 10 -1 mSv/y and 1.0 x 10 -2 mSv/y were observed for 226 Ra and 228 Ra, respectively. These results show that 226 Ra is the main contributor to radiation exposure. (author)

  3. Estimation of water-filled and air-filled porosity in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1993-01-01

    Water content and porosity vary considerably within the unsaturated zone at Yucca Mountain. Measurement of these quantities has been based on core samples. A log-based approach offers the advantage of in-situ measurements, continuous throughout the borehole. This paper describes an algorithm which determines the air-filled and water-filled porosities from density and dielectric logs. The responses of density and dielectric logs are formulated in terms of the matrix properties, air-filled porosity and water-filled porosity. Porosity values obtained from logs from borehole USW G-2 are in reasonable agreement with estimates from core determinations

  4. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer

    Science.gov (United States)

    Filippini, Maria; Squarzoni, Gabriela; De Waele, Jo; Fiorucci, Adriano; Vigna, Bartolomeo; Grillo, Barbara; Riva, Alberto; Rossetti, Stefano; Zini, Luca; Casagrande, Giacomo; Stumpp, Christine; Gargini, Alessandro

    2018-01-01

    Limestone massifs with a high density of dolines form important karst aquifers in most of the Alps, often with groundwater circulating through deep karst conduits and water coming out of closely spaced springs with flow rates of over some cubic meters per second. Although several hydrogeological studies and tracing experiments were carried out in many of these carbonate mountains in the past, the hydrogeology of most of these karst aquifers is still poorly known. Geological, hydrodynamic and hydrochemical investigations have been carried out in one of the most representative of these areas (Cansiglio-Monte Cavallo, NE Italy) since spring 2015, in order to enhance the knowledge on this important type of aquifer system. Additionally, a cave-to-spring multitracer test was carried out in late spring 2016 by using three different fluorescent tracers. This hydrogeological study allowed: 1) gathering new detailed information on the geological and tectonic structure of such alpine karst plateau; 2) defining discharge rates of the three main springs (Gorgazzo, Santissima, and Molinetto) by constructing rating curves; 3) understanding the discharging behavior of the system with respect to different recharge conditions; 4) better defining the recharge areas of the three springs. The three nearby springs (the spring front stretches over 5 km), that drain the investigated karst aquifer system, show different behaviors with respect to changing discharge conditions, demonstrating this aquifer to be divided in partially independent drainage systems under low-flow conditions, when their chemistry is clearly differentiated. Under high-flow conditions, waters discharging at all springs show more similar geochemical characteristics. The combination of geochemistry, hydrodynamic monitoring and dye tracing tests has shown that the three springs have different recharge areas. The study points out that even closely spaced karst springs, that apparently drain the same karst mountain, can

  5. A NEW APPROACH TO ESTIMATE WATER OUTPUT FROM THE MOUNTAIN GLACIERS IN ASIA

    Directory of Open Access Journals (Sweden)

    Vladimir G. Konovalov

    2015-01-01

    Full Text Available Regional data on climate, river runoff and inventory of glaciers within High Mountainous Asia were used as informational basis to elaborate new approach in computing components of the hydrological cycle (glaciers runoff, evaporation, precipitation. In order to improve and optimize the calculation methodology, 4 675 homogeneous groups of glaciers were identified in the largest Asian river basins, i.e., Amu Darya, Syr Darya, Indus, Ganges, Brahmaputra, Tarim, and others. As the classification criteria for 53 225 glaciers located there, the author consistently used 8 gradations of orientation (azimuth and 23 gradations of area. Calculating of the hydrological regime of glaciers was performed on the example of several Asian river basins. It has been shown that in the drainless basins in Asia, the only potential factor of the glacial influence on the changes in global Ocean level is the seasonal amount of evaporation from the melted surface of perennial ice and old firn. These results and published sources were used for re-evaluation of the previous conclusions on the influence of glacier runoff on change of the Ocean level. Comparison of measured and calculated annual river runoff, which was obtained by means of modeling the components of water-balance equation, showed good correspondence between these variables.

  6. Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    H. Miller; R. Monks; C. Warren; W. Wowak

    2000-06-09

    Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that

  7. Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    H. Miller; R. Monks; C. Warren; W. Wowak

    2000-01-01

    Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M and O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M and O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M and O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and

  8. Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.

    Science.gov (United States)

    Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang

    2016-01-01

    Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by

  9. Summertime Minimum Streamflow Elasticity to Antecendent Winter Precipitation, Peak Snow Water Equivalent and Summertime Evaporative Demand in the Western US Maritime Mountains

    Science.gov (United States)

    Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.

    2017-12-01

    As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.

  10. Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface waters

    International Nuclear Information System (INIS)

    Mitchell, Myron J.; Driscoll, Charles T.; Inamdar, Shreeram; McGee, Greg G.; Mbila, Monday O.; Raynal, Dudley J.

    2003-01-01

    Factors that regulate the fate of atmospherically deposited nitrogen to hardwood forests and subsequent transport to surface waters in the Adirondack region of New York are described. - Studies on the nitrogen (N) biogeochemistry in Adirondack northern hardwood ecosystems were summarized. Specific focus was placed on results at the Huntington Forest (HFS), Pancake-Hall Creek (PHC), Woods Lake (WL), Ampersand (AMO), Catlin Lake (CLO) and Hennessy Mountain (HM). Nitrogen deposition generally decreased from west to east in the Adirondacks, and there have been no marked temporal changes in N deposition from 1978 through 1998. Second-growth western sites (WL, PHC) had higher soil solution NO 3 - concentrations and fluxes than the HFS site in the central Adirondacks. Of the two old-growth sites (AMO and CLO), AMO had substantially higher NO 3 - concentrations due to the relative dominance of sugar maple that produced litter with high N mineralization and nitrification rates. The importance of vegetation in affecting N losses was also shown for N-fixing alders in wetlands. The Adirondack Manipulation and Modeling Project (AMMP) included separate experimental N additions of (NH 4 ) 2 SO 4 at WL, PHC and HFS and HNO 3 at WL and HFS. Patterns of N loss varied with site and form of N addition and most of the N input was retained. For 16 lake/watersheds no consistent changes in NO 3 - concentrations were found from 1982 to 1997. Simulations suggested that marked NO 3 - loss will only be manifested over extended periods. Studies at the Arbutus Watershed provided information on the role of biogeochemical and hydrological factors in affecting the spatial and temporal patterns of NO 3 - concentrations. The heterogeneous topography in the Adirondacks has generated diverse landscape features and patterns of connectivity that are especially important in regulating the temporal and spatial patterns of NO 3 - concentrations in surface waters

  11. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; McBride, C.M.

    1985-01-01

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inability to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs

  12. Determination of long-lived natural Ra isotopes, 226Ra, in mineral and spring waters from Caxambu (MG) and Aguas de Lindoia (SP) spas

    International Nuclear Information System (INIS)

    Negrao, Sergio Garcia

    2012-01-01

    The aim of this work was to study the long-lived Ra isotopes, 226 Ra and 228 Ra, natural distribution in mineral and spring waters from Caxambu (MG) and Aguas de Lindoia (SP) water parks. In Caxambu mineral waters it was observed 228 Ra activity concentrations slightly higher than those of 226 Ra. The elevated content of carbonates and bicarbonates of these waters can result in an increased solubility of the both Ra isotopes and may play an important role for the fate of 228 Ra and its equilibrium distribution between solid and liquid phases. In Caxambu Thermal Spa, arithmetic mean activities ranged from 83 mBq L -1 to 3599 mBq L -1 and from 60 mBq L -1 to 4481 mBq L -1 for 226 Ra and 228 Ra, respectively. The highest 226 Ra activity was found in Venancio Spring, while the maximum 228 Ra activity value was determined in Ernestina Guedes. 228 Ra/ 226 Ra activity ratios varied from 0.079 (Conde D'Eau and Princesa Isabel Spring) to 4.2 (Mairink II Spring). In Aguas de Lindoia, arithmetic mean activities ranged from 4.6 mBq L -1 to 41 mBq L -1 and from 30 mBq L -1 to 54 mBq L -1 for 226 Ra and 228 Ra, respectively. The maximum 226 Ra activity concentration was found in the bottled mineral water Sao Jorge, while the higher 228 Ra activity concentration was determined in Santa Filomena Spring (public station 2). 228 Ra/ 226 Ra activity ratios varied from 1.2 (bottled mineral water Sao Jorge) to 9.1 (bottled mineral water Jatoba 1). This work also performed the dose assessment due to the ingestion of 226 Ra and 228 Ra in Caxambu and Aguas de Lindoia mineral and spring waters. The committed effective doses were estimated by using a conservative dosimetric model and taking into account the results over a lifetime (70 years) following intake of both long-lived Ra isotopes. The results from this radiological evaluation showed that the guidance committed effective dose level of 0.1 mSv y-1 recommended by World Health Organization was exceeded in almost all samples studied in

  13. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    Science.gov (United States)

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  14. Utilization of Groundwater, Spring, and the Surface Water for Drinking Water Service for the People of Surakarta

    OpenAIRE

    Team PDAM Surakarta

    2004-01-01

    Case study: utilizing the groundwater, water resources, and surface of water to supply the drinking water for the inhabitants is Surakarta. Of the early target at 75%, the supply of drinking water for the inhabitants in Surakarta only achieves 44%. Because of this, the Regional Drinking Water ompany (PDAM) of Surakarta made a decision to: 1) utilize the debit of water production by making a deep well at a capacity of 30 liters a second for a short term, and on the basis of the study of water ...

  15. Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine

    2011-01-01

    Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the

  16. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  17. Freshwater fish’s spatial patterns in isolated water springs in North-eastern Mexico

    Directory of Open Access Journals (Sweden)

    Jorge Palacio-Núñez

    2010-03-01

    Full Text Available The Media Luna lake-spring was selected as representative of all thermal or no thermal springs in the zone of Valley of Rioverde, a semi-arid vegetation in the North-eastern of Mexico. This system is inhabited by 11 fish species, of which six are native. Four of the native species are endemic to the region and threatened due to touristic pressure and to the introduction of exotic species. The objectives were to determine the characteristics that influence the spatial distribution of the fish species, to analyze their spatial distribution patterns, and to describe the relationships between the different species. The general aim was to establish some basis for the conservation of these fish communities and their habitat. Several sessions were initiated in 1992 through direct observation. Later, between 1998 and 1999 five systematically seasonal sampling sessions were conducted (54 subaquatic transects/session. Finally, the data was updated by sampling in summer 2002 and winter 2006. Through the analysis was performed only for endemics of the region, like Ataeniobius toweri Meek, Cualac tessellatus Miller, Cichlasoma bartoni Bean and C. labridens Pellegrin, in at least one life stage, showed correlation with habitat variables or with other species. For these species, patterns of spatial aggregation and association with other species were observed. These results show a certain degree of specialization of endemic species to some microhabitat characteristics, as well as a significant interaction with other native species which they coexist. In addition, some significant relations between endemic and alien species suggest an antagonist relation. Management actions focused in the touristic use of the spring represent the main threat for these species, followed by an adequate management of exotic species. This study provides basis for future responsible management of these wetlands, where tourism and conservation can be combined. Rev. Biol. Trop. 58 (1

  18. Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere

    Directory of Open Access Journals (Sweden)

    G. H. Wang

    2013-01-01

    Full Text Available Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude of Mt. Hua, an alpine site nearby Xi'an. EC (elemental carbon, OC (organic carbon and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Compared to that in the non-dust period a sharp increase in OC was observed at both sites during the dust period, which was mainly caused by an input of biogenic organics from the Gobi desert. However, adsorption/heterogeneous reaction of gaseous organics with dust was another important source of OC in the urban, contributing 22% of OC in the dust event. In contrast to the mountain atmosphere where fine particles were less acidic when dust was present, the urban fine particles became more acidic in the dust event than in the non-dust event, mainly due to enhanced heterogeneous formation of nitrate and diluted NH3. Cl and NO3 in the urban air during the dust event significantly shifted toward coarse particles. Such redistributions were further pronounced on the mountaintop when dust was present, resulting in both ions almost entirely staying in coarse particles. On the contrary, no significant spatial difference in size distribution of SO42− was found between the urban ground surface and the mountain atmosphere, which dominated in the fine mode (<2.1 μm during the nonevent and comparably distributed in the fine (<2.1 μm and coarse (>2.1 μm modes during the dust event.

  19. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  20. Changes of Chlorophyll Index (SPAD, Relative Water Content, Electrolyte Leakage and Seed Yield in Spring Safflower Genotypes under Irrigation Termination

    Directory of Open Access Journals (Sweden)

    B.E. Moosavifar

    2012-04-01

    Full Text Available In order to evaluate the effect of irrigation termination and genotype on chlorophyll index (SPAD, relative water content, electrolyte leakage and seed yield in spring safflower, an experiment was conducted, in a spilt plot arrangement based on randomized complete block design with four replications at Research Farm, Faculty of Agriculture, the University of Birjand, during 2008. Irrigation regimes (full irrigation (whole season irrigation, irrigation until grain filling, flowering and heading-bud and genotypes (Mahali Isfahan (a local variety, Isfahan28 and IL111 were arranged in main and subplots, respectively. Results showed chlorophyll content, relative water content, cell membrane stability and seed yield were influenced by irrigation termination. Provided that with terminating irrigation at an earlier stage, an increase in electrolyte leakage and reduction in relative water content and seed yield was observed in plants. There were negative relations between electrolyte leakage from plants leaf cells and seed yield. Plants which experienced irrigation termination in an earlier growth stage, suffered more damage to their cell membranes, leading to depression of their production potential. Based on the results, Mahali Isfahan and Isfahan28 can be introduced as drought resistant genotypes, because of their lower electrolyte leakage and higher relative water content. But, in general, Mahali Isfahan had the highest seed yield due to its nativeness and high adaptation to arid conditions southern of Khorasan, and therefore this genotype suggests for planting in the region.

  1. Disequilibria in the disintegration series of U and Th and chemical parameters in thermal spring waters from the Tatun volcanic area (Taiwan)

    International Nuclear Information System (INIS)

    Lin Chunchih; Chu Tiehchi; Huang Yufen

    2003-01-01

    The activity concentrations of 238 U, 234 U, 230 Th, 226 Ra, 232 Th, and 228 Th in thermal spring waters in the Tatun volcanic area were determined. Parameters including acidity, Cl - and SO 4 2- concentrations in spring waters at the sampling sites have been investigated to allow interpretation of the migration of the radionuclides, and to elucidate the influence of these parameters on the variations of radionuclide contents. Radioactive disequilibria were found in uranium and thorium series in thermal spring waters. The contents of uranium and thorium decreased with increasing pH. The ratios of 230 Th/ 234 U, 226 Ra/ 230 Th and 228 Th/ 232 Th show significant disequilibria. The 226 Ra/ 230 Th ratio (0.60-34.8) decreased with the Cl - or SO 4 2- concentration. All 228 Th/ 232 Th ratios (1.01-9.49) deviated from unity due to the co-precipitation of 228 Ra with barium and lead sulfate. (orig.)

  2. Metagenomics of Bacterial Diversity in Villa Luz Caves with Sulfur Water Springs

    Directory of Open Access Journals (Sweden)

    Giuseppe D’Auria

    2018-01-01

    Full Text Available New biotechnology applications require in-depth preliminary studies of biodiversity. The methods of massive sequencing using metagenomics and bioinformatics tools offer us sufficient and reliable knowledge to understand environmental diversity, to know new microorganisms, and to take advantage of their functional genes. Villa Luz caves, in the southern Mexican state of Tabasco, are fed by at least 26 groundwater inlets, containing 300–500 mg L-1 H2S and <0.1 mg L-1 O2. We extracted environmental DNA for metagenomic analysis of collected samples in five selected Villa Luz caves sites, with pH values from 2.5 to 7. Foreign organisms found in this underground ecosystem can oxidize H2S to H2SO4. These include: biovermiculites, a bacterial association that can grow on the rock walls; snottites, that are whitish, viscous biofilms hanging from the rock walls, and sacks or bags of phlegm, which live within the aquatic environment of the springs. Through the emergency food assistance program (TEFAP pyrosequencing, a total of 20,901 readings of amplification products from hypervariable regions V1 and V3 of 16S rRNA bacterial gene in whole and pure metagenomic DNA samples were generated. Seven bacterial phyla were identified. As a result, Proteobacteria was more frequent than Acidobacteria. Finally, acidophilic Proteobacteria was detected in UJAT5 sample

  3. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  4. Masters of the springs

    DEFF Research Database (Denmark)

    Laursen, Steffen

    2010-01-01

    flanked by villages that relied on these water recourses for agricultural production. The springs emerged in the zone separating the cemeteries from the settlements. The freshwater springs were actively incorporated into the religious landscape of the dead, by consistently erecting mounds of a particular...... for water - a process which perhaps also is evidenced by temple constructions at Barbar, Umm al-Sujur and Abu Zaydan....

  5. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  6. Interbasin flow revisited: The contribution of local recharge to high-discharge springs, Death Valley, CA

    Science.gov (United States)

    Anderson, Katherine; Nelson, Stephen; Mayo, Alan; Tingey, David

    2006-05-01

    Springs in the Furnace Creek area (Texas, Travertine, and Nevares Springs) of Death Valley National Park exhibit high discharge rates and depleted δ18O VSMOW (˜-13‰) and δD VSMOW (˜-102‰) values. Isotopic depletion of this magnitude and large spring fluxes (˜10,000 L/min) suggests that modern local recharge in the arid Furnace Creek drainage cannot be responsible for spring fluxes. An alternate explanation, interbasin flow, is difficult to envisage due to the stratigraphic and structural relationships of bedrock in intervening ranges, although it is the most common conceptual model for Furnace Creek spring flows. High-flux springs at Furnace Creek nonetheless respond modestly to modern climate in terms of discharge rate and isotopic composition. Hydrographs show a climate response and variations in time-series stable isotope data of widely spaced springs track one another. Small, but measurable quantities of tritium (water for these springs may be, there appears to be a subtle, but recent climatic influence. Estimates of flow at nearby mountain springs produce discharge rates per square kilometer of catchment that, by analogy, could support from 20 to 300% of the flow at large Death Valley springs under the current climate. Yet, 14C model ages suggest valley-bottom springs at Furnace Creek (5500-14,500 yr) contain a large component of older water, suggesting that much of the water was recharged during a pluvial period (Younger Dryas?) when net infiltration would have been much higher and isotopically depleted. 14C model ages are also of similar age, or younger, than many 'up gradient' waters, rather than being older as would be expected for interbasin flow. Chemical evolution models of solutes are consistent with both local recharge and interbasin transfer from Ash Meadows. However, when considered with isotopic constraints, interbasin flow becomes obviously untenable. Estimates of the thickness of alluvium and semi-consolidated Tertiary units in the

  7. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    Science.gov (United States)

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  8. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    International Nuclear Information System (INIS)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.; Huddleston, M.H.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do not sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10 -7 to 3 X 10 -5 M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10 -8 to 1 X 10 -4 M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz

  9. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  10. Dose response behaviour of water scarcity towards genetical and morphological traits in spring wheat

    International Nuclear Information System (INIS)

    Noorkha, I.R.; Tabasum, S.

    2015-01-01

    Combining ability was studied in a Line * Tester mating fashion in wheat (Tricticum aestivum L.). Significant differences were observed for all the yield and yield contributing traits. GCA and SCA components of variation were found significant for most of the traits. Under water stressed conditions among lines the genotype Kohistan-97 revealed significant GCA effects for all the traits except spike length. Among testers, the genotype V08172 showed significant effects for the traits spike length, 1000-grain weight and flag leaf area. Based on desirable SCA effects and mean performance the cross combinations Kohistan-97 * V08172, Chakwal-86 * Punjab-81, Fsd-2008 * Punjab-81, Sehar-2006 * V08172 and Chakwal-86 * V08172 behaved best combiner to tolerate the water stress. Results of genetic analysis offered over dominance type of gene action that remained unchanged with the change in water provision for the traits like 1000 grain weight and economic yield. Similarly additive gene action was observed for the trait plant height under both normal irrigation and water stress conditions. However the cumulative genetic effects to control the expression of yield and yield components was shifted due to the changed environments. The study was concluded that due to presence of additive variance, selection could be practiced in early generation whereas in the presence of recessiveness the selection may be delayed up to the later generations. Plant traits associated with water stress tolerance having high heritability and with additive gene action may be used as indirect selection criteria for early selection of water stress tolerant genotypes. The information generated as a result of this study on genetic analysis of important economic traits of wheat under contrasting water availability positions will be of great value to the wheat breeders to design future breeding programmes. (author)

  11. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    Science.gov (United States)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  12. REDUCTION OF HERBICIDE AND WATER STRESS IN SPRING BARLEY BY REGULATORS OF POLYAMINE BIOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2014-02-01

    Full Text Available The experiment was carried out under artificial light of fluorescent lamps starting with 60 % full water capacity which was afterwards decreased on 40 % and finally the plants of barley were not watered. 30 plants of this cereal after plant emergence were thinned on 22 pieces. Experiment was treated by triazine herbicide, as well as its mixtures of regulators of polyamine synthesis: γ-aminobutyric acid, 1.3-propylenediamine dihydrochloride and salicyl acid. Solo application of triazine herbicide during water stress had negative balance on formation of root and above ground biomass. Addition of regulators of polyamine synthesis had positive effects on mentioned parameters, but not in comparison to control variant. These stress factors were eliminated most significantly only the application of GABA (100 g.ha-1 in mixture with herbicide.

  13. Chemical composition of ground water and the locations of permeable zones in the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Benson, L.V.; Robison, J.H.; Blankennagel, R.K.; Ogard, A.E.

    1983-01-01

    Ten wells in the Yucca Mountain area of southern Nevada have been sampled for chemical analysis. Samples were obtained during pumping of water from the entire well bore (composite sample) and in one instance by pumping water from a single isolated interval in well UE-25b number 1. Sodium is the most abundant cation and bicarbonate the most abundant anion in all water samples. Although the general chemical compositions of individual samples are similar, there are significant differences in uncorrected carbon-14 age and in inorganic and stable-isotope composition. Flow surveys of seven wells performed using iodine-131 as a tracer indicate that ground-water production is usually from one or more discrete zones of permeability. 7 references, 12 figures, 1 table

  14. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    Science.gov (United States)

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific

  15. Spring Tire

    Science.gov (United States)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  16. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    Science.gov (United States)

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance.

  17. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    Science.gov (United States)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  18. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  19. PENGARUH RASIO TEPUNG BERAS DAN AIR TERHADAP KARAKTERISTIK KULIT LUMPIA BASAH [Effect of Flour to Water Ratio on Characteristics of Fresh Rice-Based Spring Rolls Wrappers

    Directory of Open Access Journals (Sweden)

    Anna Ingani Widjajaseputra1*

    2011-12-01

    Full Text Available Flour to water ratio in batter compositions affected water availability which was needed to provide physical and chemical changes during fresh rice-based spring rolls wrappers processing, such as gel forming of starches and heat-induced gels, flour’s components interactions in batter systems. Degree of water-starch, water-protein and protein–starch-water interactions were depend on water amount, temperature and duration of heating. The mechanical strength of spring rolls wrappers is one of problems when it is being used. The wrappers could be torn apart due to moisture absorption from the filling and the environment. The goal of this study was to determine the optimum flour to water ratio in formulation of fresh rice-based spring rolls wrappers. The investigation was provided by Randomized Completely Block Design with single factor and three replicates. The factor was rice flour to water ratio in six levels (3.0:4.5; 3.0:5.0;3.0:5.5; 3.0:6.0; 3.0:6.5; and 3.0:7.0 the data were analyzed by Analysis of Variance with 95% degree of confident. Flour to water ratio greatly influenced elongation at break which is important in the utilization of fresh rice-based spring rolls wrappers. Its ratio also influenced the size of swelled rice starch granules, pores size and moisture content of the products. Optimal ratio flour to water is 3.0:6.0 which produced the highest elongation at break.

  20. The quality of the Florisbad spring-water in relation to the quality of ...

    African Journals Online (AJOL)

    drinie

    2001-01-01

    Jan 1, 2001 ... Nitrate. 0.733. 1.186. 0.901. 2.335. 4.807. Phosphate. 1.929. 0.100. 0.010. 0.010 ..... depth of 34 m, that six of the holes produced slightly saline water, and that ... Nitrogen. -. -. -. 27.4. 18.500. -. Methane. -. -. -. 6.9. 71.500. -. STABLE ... Ammonium bicarbonate (NH4HCO3) ... Aluminum oxide (Al2O3). 1.610.

  1. Just Spring

    CERN Document Server

    Konda, Madhusudhan

    2011-01-01

    Get a concise introduction to Spring, the increasingly popular open source framework for building lightweight enterprise applications on the Java platform. This example-driven book for Java developers delves into the framework's basic features, as well as advanced concepts such as containers. You'll learn how Spring makes Java Messaging Service easier to work with, and how its support for Hibernate helps you work with data persistence and retrieval. Throughout Just Spring, you'll get your hands deep into sample code, beginning with a problem that illustrates dependency injection, Spring's co

  2. Beginning Spring

    CERN Document Server

    Caliskan, Mert

    2015-01-01

    Get up to speed quickly with this comprehensive guide toSpring Beginning Spring is the complete beginner's guide toJava's most popular framework. Written with an eye towardreal-world enterprises, the book covers all aspects of applicationdevelopment within the Spring Framework. Extensive samples withineach chapter allow developers to get up to speed quickly byproviding concrete references for experimentation, building askillset that drives successful application development byexploiting the full capabilities of Java's latest advances. Spring provides the exact toolset required to build anent

  3. The effect of soll water conditions on carbon isotope discrimination and minerals contents in spring-planted wheat

    International Nuclear Information System (INIS)

    Zhu Lin; Liang Zongsuo; Xu Xing; Li Shuhua

    2008-01-01

    Carbon isotope discrimination (triangle open 13 C) has been proposed as indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for triangle open 13 C analysis, attempts have been made to identify alternative screening criteria. Ash content (m a ) has been proposed as an alternative criterion for triangle open 13 C in wheat and barley. A pot experiment with three water treatments (45% ± 5% FC, 55% ± 5% FC and 75% ± 5%FC) was conducted and flag leaf triangle open 13 C (triangle openL a ), contents of ash, potassium (K), magnesium (Mg) and calcium (Ca) were measured to study the relationships between triangle open, mineral composition in spring planted bread wheat (Triticum aestivum L.). In the light of the results obtained in this research, the traits measured showed significant differences among the three water treatments. There were variations in triangle openL a between the genotypes derived from contrasting environments. The improved varieties or advanced lines bred in irrigated areas displayed higher triangle open 13 C values, while the improved and local varieties bred in rain-fed areas exhibited lower triangle open 13 C values Significant positive correlations were found between triangle open 13 C and m a in seedlings and second fully developed leaves at elongation stage and in flag leaves at anthesis stage in severe drought treatment (T 1 ) (r=0.790, P 13 C was negatively associated with potassium (K) content in flag leaves in T 2 (r=0.813, P 2 and T 3 (r=0.725, P 13 C and calcium (Ca) content in flag leaves in T 3 (r=0.708, P a is a possible alternative criterion of triangle open 13 C in vegetative organs especially in stressed environments. K, Mg and Ca contents in flag leaf under moderate water stress or feasible water conditions might be new predictive criteria of triangle openL a . (authors)

  4. Ion exchange removal of strontium from simulated and actual N-Springs well water at the Hanford 100-N Area

    International Nuclear Information System (INIS)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kafka, T.M.; White, L.R.

    1996-06-01

    Experimental ion exchange studies are being conducted by the Pacific Northwest national Laboratory (PNNL) under the Efficient Separations and Processing (ESP) Crosscutting Program to evaluate newly emerging materials and technologies for removing cesium, strontium, technetium, and transuranic elements from simulated and actual wastes at Hanford. Previous work focused on applications to treat high-level alkaline tank wastes, but many of the technologies can also be applied in process and ground-water remediation. Ultimately, each process must be evaluated in terms of life-cycle costs, removal efficiency, process chemical consumption and recycle, stability of materials exposed to chemicals and radiation, compatibility with other process streams, secondary waste generation, process and maintenance costs, and final material disposal. This report assesses the performance of the 3M-designed Process Absorber Development Unit (PADU) and the AlliedSignal-produced sodium nonatitanate (NaTi) material in trace quantities of strontium from simulated and actual Hanford N-Springs ground water. The experimental objective was to determine the strontium-loading breakthrough profile of a proprietary 3M-engineered material in either disk or cartridge forms

  5. Physical characteristics of the waters and water masses off the west coast of India during late spring

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Murty, C.S.; Sankaranarayanan, V.N.

    and current. Considering the physical behaviour, the coastal waters of this highly industrialised region were found to possess high instantaneous dilution capacity. However the spatial and temporal variability of the parameters calls for better understanding...

  6. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    Science.gov (United States)

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  7. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  8. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    International Nuclear Information System (INIS)

    Laudon, Hjalmar; Poleo, Antonio B.S.; Voellestad, Leif Asbjoern; Bishop, Kevin

    2005-01-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring

  9. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, Hjalmar [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: hjalmar.laudon@sek.slu.se; Poleo, Antonio B.S. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Voellestad, Leif Asbjoern [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Bishop, Kevin [Department of Environmental Assessment, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden)

    2005-05-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring.

  10. Sensory Evaluation and Oxidative Stability of a Suncream Formulated with Thermal Spring Waters from Ourense (NW Spain and Sargassum muticum Extracts

    Directory of Open Access Journals (Sweden)

    Elena Balboa

    2017-06-01

    Full Text Available The purpose of this work was to evaluate four thermal spring waters from Ourense and a Sargassum muticum extract as cosmetic ingredients for the preparation of a suncream. The thermal spring waters were tested for their suitability as an aqueous phase main component, and the algal extract was added as an antioxidant instead of using synthetic preservatives in the cosmetic formula. The emulsion was tested for lipid oxidation during a period of 9 months and for consumer acceptance by performing a sensory test on controls and blanks. Further, color parameters were considered, and a pH determination was performed. The S. muticum extract protected from primary and secondary oxidation as efficiently as Fucus sp. or α-tocopherol extracts. In addition, the sensorial test revealed that consumers preferred suncreams prepared with the S. muticum extract and with thermal spring water from O Tinteiro and A Chavasqueira. The pH of the suncreams varied with the selection of the ingredients, and no oscillations in colorimetric values were visually observed. Our results indicate that the algal extract and the thermal spring waters from Ourense are potential cosmetic ingredients, since they showed effectiveness as antioxidant ingredients, and the suncreams were well accepted by consumers.

  11. Fire, Ice and Water: Glaciologic, Paleoclimate and Anthropogenic Linkages During Past Mega-Droughts in the Uinta Mountains, Utah

    Science.gov (United States)

    Power, M. J.; Rupper, S.; Codding, B.; Schaefer, J.; Hess, M.

    2017-12-01

    Alpine glaciers provide a valuable water source during prolonged drought events. We explore whether long-term climate dynamics and associated glacier changes within mountain drainage basins and adjacent landscapes ultimately influence how prehistoric human populations choose settlement locations. The Uinta Mountains of Utah, with a steep present-day precipitation gradient from the lowlands to the alpine zone of 20-100 cm per year, has a rich glacial history related to natural and anthropogenic climate variability. Here we examine how past climate variability has impacted glaciers and ultimately the availability of water over long timescales, and how these changes affected human settlement and subsistence decisions. Through a combination of geomorphologic evidence, paleoclimate proxies, and glacier and climate modelling, we test the hypothesis that glacier-charged hydrologic systems buffer prehistoric populations during extreme drought periods, facilitating long-term landscape management with fire. Initial field surveys suggest middle- and low-elevation glacial valleys contain glacially-derived sediment from meltwater and resulted in terraced river channels and outwash plains visible today. These terraces provide estimates of river discharge during varying stages of glacier advance and retreat. Archaeological evidence from middle- and high-elevations in the Uinta Mountains suggests human populations persisted through periods of dramatic climate change, possibly linked to the persistence of glacially-derived water resources through drought periods. Paleoenvironmental records indicate a long history of fire driven by the combined interaction of climatic variation and human disturbance. This research highlights the important role of moisture variability determining human settlement patterns and landscape management throughout time, and has direct relevance to the impacts of anthropogenic precipitation and glacier changes on vulnerable populations in the coming century

  12. Reaction of Topopah Spring tuff with J-13 water at 1500C: samples from drill cores USW G-1, USW GU-3, USW G-4, and UE-25h No. 1

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1985-01-01

    Samples of Topopah Spring tuff selected from vertical drill holes USW G-1, GU-3, and G-4, and from the horizontal air-drilled hole at Fran Ridge were reacted with J-13 water at 150 0 C. The primary purpose of these experiments was to compare the resulting solution chemistries to estimate the degree of homogeneity that might be expected in thermally affected ground water in a potential nuclear waste repository at Yucca Mountain. The second purpose was to relate data obtained from welded devitrified Topopah Spring tuff collected from the potential repository depth to that previously obtained using outcrop samples. The results show very similar aqueous phase chemistries for all samples after reaction for times up to 70 days. The largest difference in final solution concentrations was for silica in one of the samples from Fran Ridge. All vertical drill core samples gave results for silica that were in agreement to within +-6 ppM and indicated solubility controlled by cristobalite. The results for reaction at 150 0 C are in agreement with those obtained in previous experiments using surface outcrop samples from Fran Ridge. The major difference between the drill core results and the outcrop samples is found in the data for room-temperature rinse solutions. The outcrop samples show relatively large amounts of soluble salts that can be easily removed at room temperature. The data for room-temperature rinsing of drill core samples show no significant quantities of readily soluble salts. This result is particularly significant for the samples from the air-drilled hole at Fran Ridge, since drilling fluid that might have removed soluble salts was not used in the portion of the hole from which the samples were obtained. This result strongly suggests that the presence of soluble salts is a surface evaporation phenomenon, and that such materials are unlikely to be present at the depth of the repository

  13. Measurements of natural radioactivity concentration in drinking water samples of Shiraz city and springs of the Fars province, Iran, and dose estimation

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Derakhshan, S.

    2013-01-01

    The Fars province is located in the south-west region of Iran where different nuclear sites has been established, such as Bushehr Nuclear Power Plant. In this research, 92 water samples from the water supplies of Shiraz city and springs of the Fars province were investigated with regard to the concentrations of natural radioactive elements, total uranium, 226 Ra, gross alpha and gross beta. 226 Ra concentration was determined by the 222 Rn emanation method. To measure the total uranium concentration, a laser fluorimetry analyzer (UA-3) was used. The mean concentration of 226 Ra in Shiraz's water resources was 23.9 mBq l -1 , while 93% of spring waters have a concentration 2 mBq l -1 . The results of uranium concentration measurements show the mean concentrations of 7.6 and 6 mg l -1 in the water of Shiraz and springs of Fars, respectively. The gross alpha and beta concentrations measured by the evaporation method were lower than the limit of detection of the measuring instruments used in this survey. The mean annual effective doses of infants, children and adults from 238 U and 226 Ra content of Shiraz's water and spring waters were estimated. According to the results of this study, the activity concentration in water samples were below the maximum permissible concentrations determined by the World Health Organization and the US Environmental Protection Agency. Finally, the correlation between 226 Ra and total U activity concentrations and geochemical properties of water samples, i.e. pH, total dissolve solids and SO 4 2- , were estimated. (authors)

  14. Studies on mountain streams in the English lake district III. Aspects of water chemistry in Brownrigg Well, Whelpside Ghyll

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, D W; Carrick, T R

    1973-01-01

    Comparisons are made of pH and the concentrations of major ions in streamwater from Brownrigg Well (the source of Whelpside Ghyll) and from the River Duddon. PH in Brownrigg Well is usually >5.7, but the concentrations of sodium, potassium and possibly calcium are near to the minima required to support the amphipod Gammarus pulex. In contrast most insect taxa are not affected by low ionic concentrations. It is postulated that these had a wider distribution in mountain streams prior to the acidification of poorly buffered waters by acid rainfall resulting from large-scale combustion of fossil fuels.

  15. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain

  16. The impact of river water intrusion on trace metal cycling in karst aquifers: an example from the Floridan aquifer system at Madison Blue Spring, Florida

    Science.gov (United States)

    Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.

    2011-12-01

    Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other

  17. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  18. Unsaturated zone waters from the Nopal I natural analog, Chihuahua, Mexico -- Implications for radionuclide mobility at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, D.A.; Murphy, W.M.

    1999-07-01

    Chemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone.

  19. Unsaturated zone waters from the Nopal I natural analog, Chihuahua, Mexico -- Implications for radionuclide mobility at Yucca Mountain

    International Nuclear Information System (INIS)

    Pickett, D.A.; Murphy, W.M.

    1999-01-01

    Chemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone

  20. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) III. Vegetation and water fluxes

    International Nuclear Information System (INIS)

    Llorens, P.; Poyatos, R.; Muzylo, A.; Rubio, C. M.; Latron, J.; Delgado, J.; Gallart, F.

    2009-01-01

    The Vallcebre research catchment are located in a Mediterranean mountain area (Pyrenean, range, NE Spain). These catchments were originally covered by Quercus pubescens Willd. and deforested for agricultural use in the past. Nowadays they are covered by mesophyle grasses with spontaneous afforestation by Pinus sylvestris L. In this context, different investigations studying water fluxes in the soil-vegetation-atmosphere continuum have been performed. the main objective of these studies is the analysis and modelling of the role of vegetation cover on the catchment water balance in a framework of climate and land use changes. The dynamics of rainfall interception and transpiration by Scots pines and pubescens oaks, are investigated in terms of their dependence on meteorological conditions, on soil moisture and water table depth. (Author) 13 refs.

  1. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    Science.gov (United States)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  2. The 2014 assessment of stream quality in the Piedmont and southern Appalachian Mountain region of southeastern United States

    Science.gov (United States)

    Celeste Journey; Paul M. Bradley; Peter Van Metre

    2016-01-01

    During the spring and summer of 2014, the U.S. Geological Survey (USGS) National Water- Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain region in the southeastern United States.

  3. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)

    2008-06-15

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat

  4. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    International Nuclear Information System (INIS)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S.

    2008-01-01

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha -1 ·year -1 . This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be

  5. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    Science.gov (United States)

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  6. Radon in groundwater and dose estimation for inhabitants in spas of the Sudety Mountains area, Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Dorda, J.; Zipper, W.

    2008-01-01

    Full text: The highest average radon concentrations in water are found in the Sudety mountains area, located in the south-western part of Poland. This region is known for its beautiful hiking routes, clean environment and also a large number of natural water springs. Some of underground waters with mineralization of more than 1 g/l are mineral waters. Others contain elements with specific medicinal properties and they are called medicinal waters. Among them are radon enriched waters with radon activity equal to at least 74 Bq/l. Waters chosen for investigations were collected in 24 health resorts and towns of the Sudety mountains. Water samples were periodically collected from 118 springs over a period of 10 years. Most of these waters are mineral medicinal waters and are used for treatment for patients and tourists. 16 intakes are treated by inhabitants as drinking water for everyday use. Among them, 6 intakes are used in water supply systems for several buildings in some spas. The goal of our study was to determine the activity concentration of radon in underground spring water consumed by inhabitants and tourists and to calculate annual effective doses due to this radionuclide consumption and inhalation. Measurements of radon were performed with the use of the liquid scintillation technique

  7. Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas.

    Science.gov (United States)

    Zakeri, Farideh; Noghabi, Kambiz Akbari; Sadeghizadeh, Majid; Kardan, Mohammad Reza; Masoomi, Fatemeh; Farshidpour, Mohammad Reza; Atarilar, Ali

    2010-12-01

    The aim of this study is to isolate and characterize (226)Ra biosorbing indigenous bacterial strains from soils and hot-springs containing high concentrations of (226)Ra by using biochemical and molecular approaches. Fifteen bacteria were isolated and their phylogenetic affiliations were determined based on their 16S rRNA gene and the two most relevant hypervariable regions of this gene; V3 and V6 analysis. A pigmented Serratia sp. ZF03 strain isolated from the water with (226)Ra content of 50471 mBq l(-1), caused 70% removal of (226)Ra at a radioactivity level of 50 Bq ml(-1), after 5 min and 75-80% in equilibrium time of 1 h, depending on the particular biosorption system and experimental conditions studied. The biosorption equilibrium was described by Langmuir and Freundlich isotherm models. Kinetic studies indicated that the biosorption follows pseudo-second-order kinetics. Effect of different physico-chemical parameters on (226)Ra sorption, FTIR, SEM and TEM analysis were also investigated. 2010 Elsevier Ltd. All rights reserved.

  8. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  9. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  10. Reservoirs on the mountain rivers and their safety

    Directory of Open Access Journals (Sweden)

    Ts.Z. Basilashvili

    2016-06-01

    Full Text Available Water resource issues and problems in the world's developing countries, present special challenges, as development of these countries significantly depends on the utilization of water resources. Georgia nestled between the Black Sea, Russia, and Turkey, and surrounded by the Caucasus Mountains, occupies a unique geographic space, which gives it strategic importance far beyond its size. Though blessed by its rich hydro resources, Georgia due to its uneven distribution, experiences some problems as the demand on water frequently doesn't coincide with water provision. As a result it causes acute deficit situation. Due to the global warming of the climate, it is expected that the fresh water amount will decrease in Georgia. This is why it is necessary to approach the use of water resources in a complex way by means of water reservoirs, which will enable attaining of a large economic effect. In the mountainous conditions filling of reservoirs take place in spring time, when snow and glaciers melt. In Georgia as in mountainous country, abundant rains take place, thus causing catastrophic flooding on rivers. In summer and winter water amount decreases 10 times and irrigation, water provision and energy production is impeded. Thus, the lack of water just like the excess amount of water causes damage. This is why it is needed to forecast water amount in water reservoirs for different periods of the year. But in a complex, mountainous terrain operative data of hydrometeorology is not sufficient for application of modern mathematical methods. We have elaborated multiple-factor statistical model for a forecast, which by means of different mathematical criteria and methods can simultaneously research the increase of the timeliness of forecasts and the level of their precision. We have obtained methodologies for short and long term forecasts of inflowing water properties in Georgia's main water reservoirs to further plan optimally and regulate water resources

  11. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    Science.gov (United States)

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were

  12. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  13. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape.

    Science.gov (United States)

    Jobbágy, E G; Nosetto, M D; Villagra, P E; Jackson, R B

    2011-04-01

    In arid regions throughout the world, shallow phreatic aquifers feed natural oases of much higher productivity than would be expected solely from local rainfall. In South America, the presence of well-developed Prosopis flexuosa woodlands in the Monte Desert region east of the Andes has puzzled scientists for decades. Today these woodlands provide crucial subsistence to local populations, including descendants of the indigenous Huarpes. We explore the vulnerability and importance of phreatic groundwater for the productivity of the region, comparing the contributions of local rainfall to that of remote mountain recharge that is increasingly being diverted for irrigated agriculture before it reaches the desert. We combined deep soil coring, plant measurements, direct water-table observations, and stable-isotopic analyses (2H and 18O) of meteoric, surface, and ground waters at three study sites across the region, comparing woodland stands, bare dunes, and surrounding shrublands. The isotopic composition of phreatic groundwaters (delta2H: -137 per thousand +/- 5 per thousand) closely matched the signature of water brought to the region by the Mendoza River (-137 per thousand +/- 6 per thousand), suggestin that mountain-river infiltration rather than in situ rainfall deep drainage (-39 per thousand +/- 19 per thousand) was the dominant mechanism of recharge. Similarly, chloride mass balances determined from deep soil profiles (> 6 m) suggested very low recharge rates. Vegetation in woodland ecosystems, where significant groundwater discharge losses, likely >100 mm/yr occurred, relied on regionally derived groundwater located from 6.5 to 9.5 m underground. At these locations, daily water-table fluctuations of 10 mm, and stable-isotopic measurements of plant water, indicated groundwater uptake rates of 200-300 mm/yr. Regional scaling suggests that groundwater evapotranspiration reaches 18-42 mm/yr across the landscape, accounting for 7 17% of the Mendoza River flow

  14. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  15. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    Science.gov (United States)

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Preliminary conceptual model for mineral evolution in Yucca Mountain

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-12-01

    A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a SiO 2(aq) is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H + and CO 3 2- . Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain

  17. Does localized recharge occur at a discharge area within the ground-water flow system of Yucca Mountain, Nevada?

    International Nuclear Information System (INIS)

    Czarnecki, J.B.; Kroitoru, L.; Ronen, D.; Magaritz, M.

    1992-01-01

    Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient (-0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient (-0.10) and a 0. 83-meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone

  18. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  19. Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence

    International Nuclear Information System (INIS)

    Levy, S.S.

    1992-01-01

    This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago

  20. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    Science.gov (United States)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total

  1. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate

    Science.gov (United States)

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.

    2017-12-01

    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even

  2. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report Development Plan entitled ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (CRWMS M and O 1999a). As stated in this Development Plan, the purpose of the work is to provide an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. The analysis of hydrochemical and isotopic data is intended to provide a basis for evaluating the hydrologic system at Yucca Mountain independently of analyses based purely on hydraulic arguments. Where more than one conceptual model for flow is possible, based on existing hydraulic data, hydrochemical and isotopic data may be useful in eliminating some of these conceptual models. This report documents the use of geochemical and isotopic data to constrain rates and directions of groundwater flow near Yucca Mountain and the timing and magnitude of recharge in the Yucca Mountain vicinity. The geochemical and isotopic data are also examined with regard to the possible dilution of groundwater recharge from Yucca Mountain by mixing with groundwater downgradient from the potential repository site. Specifically, the primary tasks of this report, as listed in the AMR Development Plan (CRWMS M and O 1999a), consist of the following: (1) Compare geochemical and isotopic data for perched and pore water in the unsaturated zone with similar data from the saturated zone to determine if local recharge is present in the regional groundwater system; (2) Determine the timing of the recharge from stable isotopes such as deuterium ( 2 H) and oxygen-18 ( 18 O), which are known to vary over time as a function of climate, and from radioisotopes such as carbon-14 ( 14 C) and chlorine-36 ( 36 Cl); (3) Determine the magnitude of recharge from relatively

  3. Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China.

    Science.gov (United States)

    Liu, Xiao-huan; Wai, Ka-ming; Wang, Yan; Zhou, Jie; Li, Peng-hui; Guo, Jia; Xu, Peng-ju; Wang, Wen-xing

    2012-07-01

    Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534m a.s.l.)-the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3gm(-3). Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evidence for responses in water chemistry and macroinvertebrates in a strongly acidified mountain stream

    Czech Academy of Sciences Publication Activity Database

    Beneš, F.; Horecký, J.; Senoo, T.; Kamasová, L.; Lamačová, Anna; Tátosová, J.; Hardekopf, D. W.; Stuchlík, Evžen

    2017-01-01

    Roč. 72, č. 9 (2017), s. 1049-1058 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA17-05935S; GA ČR(CZ) GA15-08124S Institutional support: RVO:86652079 ; RVO:60077344 Keywords : acidified mountain stream * macroinvertebrates * logging * hydrological patterns * recovery Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (BC-A) OBOR OECD: Environmental sciences (social aspects to be 5.7); Environmental sciences (social aspects to be 5.7) (BC-A) Impact factor: 0.759, year: 2016

  5. Geomorphological approach in karstic domain: importance of underground water in the Jura mountains.

    Science.gov (United States)

    Rabin, Mickael; Sue, Christian; Champagnac, Jean Daniel; Bichet, Vincent; Carry, Nicolas; Eichenberger, Urs; Mudry, Jacques; Valla, Pierre

    2014-05-01

    The Jura mountain belt is the north-westernmost and one of the most recent expressions of the Alpine orogeny (i.e. Mio-Pliocene times). The Jura has been well studied from a structural framework, but still remains the source of scientific debates, especially regarding its current and recent tectonic activity [Laubscher, 1992; Burkhard and Sommaruga, 1998]. It is deemed to be always in a shortening state, according to leveling data [Jouanne et al., 1998] and neotectonic observations [Madritsch et al., 2010]. However, the few GPS data available on the Jura do not show evidence of shortening, but rather a low-magnitude extension parallel to the arc [Walpersdorf et al., 2006]. Moreover, the traditionally accepted assumption of a collisional activity of the Jura raises the question of its geodynamic origin. The Western Alps are themselves in a post-collisional regime and characterized by a noticeable isostatic-related extension, due to the interaction between buoyancy forces and external dynamics [Sue et al., 2007]. Quantitative morphotectonic approaches have been increasingly used in active mountain belts to infer relationship between climates and tectonics in landscape evolution [Whipple, 2009]. In this study, we propose to apply morphometric tools to calcareous bedrock, in a slowly deformed mountain belt. In particular, we have used watersheds metrics determination and associated river profiles analysis to allow quantifying the degree and nature of the equilibrium between the tectonic forcing and the fluvial erosional agent [Kirby and Whipple, 2001]. Indeed, long-term river profiles evolution is controlled by climatic and tectonic forcing through the following expression [Whipple and Tucker, 1999]: S = (U / K) 1/n Am/n (with U: uplift rate, K: empirical erodibility factor, function of hydrological and geological settings; A: drained area, m, n: empirical parameters). We present here a systematic analysis of river profiles applied to the main drainage system of the

  6. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.

    Science.gov (United States)

    Cappello, Michael Anthony; Ferraro, Aimee; Mendelsohn, Aaron B; Prehn, Angela Witt

    2013-11-01

    In the study discussed in this article, 27 private drinking water wells located in a rural Colorado mountain community were sampled for radon contamination and compared against (a) the U.S. Environmental Protection Agency's (U.S. EPA's) proposed maximum contaminant level (MCL), (b) the U.S. EPA proposed alternate maximum contaminate level (AMCL), and (c) the average radon level measured in the local municipal drinking water system. The data from the authors' study found that 100% of the wells within the study population had radon levels in excess of the U.S. EPA MCL, 37% were in excess of the U.S. EPA AMCL, and 100% of wells had radon levels greater than that found in the local municipal drinking water system. Radon contamination in one well was found to be 715 times greater than the U.S. EPA MCL, 54 times greater than the U.S. EPA AMLC, and 36,983 times greater than that found in the local municipal drinking water system. According to the research data and the reviewed literature, the results indicate that this population has a unique and elevated contamination profile and suggest that radon-contaminated drinking water from private wells can present a significant public health concern.

  7. The Occurrence of Erionite at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2004-01-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite

  8. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    Science.gov (United States)

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  9. Spring northward juvenile migration of the Patagonian grenadier (Macruronus magellanicus from the Northwest Patagonian waters of Chile

    Directory of Open Access Journals (Sweden)

    Luis A Cubillos

    2015-11-01

    Full Text Available Important nursery grounds for Patagonian grenadier (Macruronus magellanicus are located mainly in the Northwest Patagonian Inner Sea (42ºS-44ºS, from which juvenile must to disperse or migrate offshore, then along the Chilean coast either northward or southward. The objective of this paper was to estimate northward spring juvenile migration of the Patagonian grenadier from nursery to feeding areas, which are located near Talcahuano (35º00’S-37º10’S. Length-frequency data (LFD were obtained from an acoustic survey carried out in November 1999, which covered from 35ºS to 47ºS. Generalized linear model was used to describe the presence of juvenile per latitude and depth, and to infer the origin and displacement of juveniles. Subsequently, LFD data were grouped according to latitudinal strata. Grouped LFD were decomposed into normal component groups, from which mean, standard deviation and proportion were estimated from the mixed LFD. The average length of the identified groups were sorted from south to north, and linked to compute significant increment in fish length and age per kilometers. The length increment per time was not due to growth, rather they was due to spatial displacement of juvenile from southern nursery grounds to northern feeding areas. Although homing to feeding areas and/or high residency (partial migration have been postulated, it seems that recruitment of juveniles to northern feeding areas are origintaed from NPIS nurseries. The West Wind Drift Current seems to be the main drive for dispersion of Patagonian grenadier to recruit northward in open waters along the continental shelf.

  10. Contribution of {sup 222}Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang, E-mail: songg2005@126.co [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Diyun; Chen Yongheng [School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-04-15

    This study investigates the contribution of radon ({sup 222}Rn)-bearing water to indoor {sup 222}Rn in thermal baths. The {sup 222}Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM{sub 10} and PM{sub 2.5}) and carbon dioxide (CO{sub 2}) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m{sup -3} of {sup 222}Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which {sup 222}Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average {sup 222}Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor {sup 222}Rn levels were influenced by the {sup 222}Rn concentrations in the hot spring water and the bathing times. The average {sup 222}Rn transfer coefficients from water to air were 6.2 x 10{sup -4}-4.1 x 10{sup -3}. The 24-h average levels of CO{sub 2} and PM{sub 10} in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM{sub 2.5}. Radon and PM{sub 10} levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: {yields} {sup 222}Rn-bearing water is the main contributor to indoor radon in hot spring hotel. {yields} The PM{sub 2.5} and CO{sub 2} are also the main indoor pollutants in the hotel rooms. {yields} Higher radon and PM levels might have significant negative health effects to human. {yields} The radon transfer coefficients are consistent with the published data.

  11. Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Wang Xinming; Chen Diyun; Chen Yongheng

    2011-01-01

    This study investigates the contribution of radon ( 222 Rn)-bearing water to indoor 222 Rn in thermal baths. The 222 Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM 10 and PM 2.5 ) and carbon dioxide (CO 2 ) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m -3 of 222 Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222 Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222 Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222 Rn levels were influenced by the 222 Rn concentrations in the hot spring water and the bathing times. The average 222 Rn transfer coefficients from water to air were 6.2 x 10 -4 -4.1 x 10 -3 . The 24-h average levels of CO 2 and PM 10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM 2.5 . Radon and PM 10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants. - Highlights: → 222 Rn-bearing water is the main contributor to indoor radon in hot spring hotel. → The PM 2.5 and CO 2 are also the main indoor pollutants in the hotel rooms. → Higher radon and PM levels might have significant negative health effects to human. → The radon transfer coefficients are consistent with the published data.

  12. Spring performance tester for miniature extension springs

    Science.gov (United States)

    Salzbrenner, Bradley; Boyce, Brad

    2017-05-16

    A spring performance tester and method of testing a spring are disclosed that has improved accuracy and precision over prior art spring testers. The tester can perform static and cyclic testing. The spring tester can provide validation for product acceptance as well as test for cyclic degradation of springs, such as the change in the spring rate and fatigue failure.

  13. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results; Concentracao de Rn-222 e filhos em aguas provenientes de pocos e emergencias de agua da regiao de Presidente Prudente: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/UNESP), Presidente Prudente, SP (Brazil). Departamento de Fisica Quimica e Biologia; Aguiar, Claudinei Rodrigues de [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil); Pereira, Luiz Augusto Stuani [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil)

    2009-07-15

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  14. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd [Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Seibersdorf (Austria); Gerardo-Abaya, Jane [Division for Asia and the Pacific Section 2, Department of Technical Cooperation, IAEA, Vienna (Austria); Mavlyudov, Bulat [Institute of Geography, Russian Academy of Sciences, Moscow (Russian Federation); others, and

    2014-07-15

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas.

  15. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  16. Salt Content in Ready-to-Eat Food and Bottled Spring and Mineral Water Retailed in Novi Sad.

    Science.gov (United States)

    Paplović, Ljiljana B Trajković; Popović, Milka B; Bijelović, Sanja V; Velicki, Radmila S; Torović, Ljilja D

    2015-01-01

    Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD) risk. In 1,069 samples of ready-to-eat food, salt (sodium chloride) content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Average salt content (g/100 g) ranged from 0.36 ± 0.48 (breakfast cereals) to 2.32 ± 1.02 (grilled meat). The vast majority of the samples of sandwiches (91.7%), pizza (80.7%), salami (73.9%), sausages (72.9%), grilled meat (70.0%) and hard cheese (69.6%) had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals) to 46.4% (grilled meat) and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33 ± 0.30 mg and 33 ± 44 mg, respectively. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  17. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  18. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  19. Water disinfection in the mountains - state of the art recommendation paper of the Union Internationale des Associations d'Alpinisme Medical Commission.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker; Milledge, Jim S

    2009-01-01

    This paper provides the official recommendation of the Union Internationale des Associations d'Alpinisme (UIAA) Medical Commission to manage the problem of safe drinking water. The recommendation was accepted and authorized for publication by the Medical Commission during their annual meeting at Treplice, Tzechia, 2008. Safe water is essential for mountaineers worldwide in order to balance challenges associated with high altitude dehydration. The paper summarizes the advantages and disadvantages of several procedures used to procure safe drinking water in the mountains or at high altitude. Limitations or critical details, which may cause failure of the methods are mentioned systematically. We differentiate between "conventional" methods, which should be preferred because they produce safe water and "improvisation". The latter does not produce safe water but may be used if conventional methods are not available for any reason. They decrease the concentration of pathogenic microorganisms and by this they reduce the risk of enteral infection. Water filtration using a ceramic filter system or chemical disinfection is recommended as a standard method. Boiling water should be avoided because it is too fuel consuming and has the potential to increase deforestation. Generally, with regard to infections by water or food, all mountaineers should be vaccinated against hepatitis A and poliomyelitis in regions where they may be at-risk.

  20. Fog deposition fluxes of water and ions to a mountainous site in Central Europe

    OpenAIRE

    Klemm, Otto; Wrzesinsky, Thomas

    2011-01-01

    Fog and precipitation composition and deposition were measured over a 1-yr period. Ion concentrations were higher in fog than in precipitation by factors of between 6 and 18. The causes of these differences were less dilution of fog water due to non-availability of condensable water vapour, and more efficient transfer of surface emissions to fog water as compared to rain water or snow. Fogwater and dissolved ions depositions were measured with eddy covariance in combination with a bulk fogwat...